x86: ordering functions in io_apic_64.c
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
51 #include "coalesced_mmio.h"
52 #endif
53
54 MODULE_AUTHOR("Qumranet");
55 MODULE_LICENSE("GPL");
56
57 DEFINE_SPINLOCK(kvm_lock);
58 LIST_HEAD(vm_list);
59
60 static cpumask_t cpus_hardware_enabled;
61
62 struct kmem_cache *kvm_vcpu_cache;
63 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
64
65 static __read_mostly struct preempt_ops kvm_preempt_ops;
66
67 struct dentry *kvm_debugfs_dir;
68
69 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
70 unsigned long arg);
71
72 bool kvm_rebooting;
73
74 static inline int valid_vcpu(int n)
75 {
76 return likely(n >= 0 && n < KVM_MAX_VCPUS);
77 }
78
79 /*
80 * Switches to specified vcpu, until a matching vcpu_put()
81 */
82 void vcpu_load(struct kvm_vcpu *vcpu)
83 {
84 int cpu;
85
86 mutex_lock(&vcpu->mutex);
87 cpu = get_cpu();
88 preempt_notifier_register(&vcpu->preempt_notifier);
89 kvm_arch_vcpu_load(vcpu, cpu);
90 put_cpu();
91 }
92
93 void vcpu_put(struct kvm_vcpu *vcpu)
94 {
95 preempt_disable();
96 kvm_arch_vcpu_put(vcpu);
97 preempt_notifier_unregister(&vcpu->preempt_notifier);
98 preempt_enable();
99 mutex_unlock(&vcpu->mutex);
100 }
101
102 static void ack_flush(void *_completed)
103 {
104 }
105
106 void kvm_flush_remote_tlbs(struct kvm *kvm)
107 {
108 int i, cpu, me;
109 cpumask_t cpus;
110 struct kvm_vcpu *vcpu;
111
112 me = get_cpu();
113 cpus_clear(cpus);
114 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
115 vcpu = kvm->vcpus[i];
116 if (!vcpu)
117 continue;
118 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
119 continue;
120 cpu = vcpu->cpu;
121 if (cpu != -1 && cpu != me)
122 cpu_set(cpu, cpus);
123 }
124 if (cpus_empty(cpus))
125 goto out;
126 ++kvm->stat.remote_tlb_flush;
127 smp_call_function_mask(cpus, ack_flush, NULL, 1);
128 out:
129 put_cpu();
130 }
131
132 void kvm_reload_remote_mmus(struct kvm *kvm)
133 {
134 int i, cpu, me;
135 cpumask_t cpus;
136 struct kvm_vcpu *vcpu;
137
138 me = get_cpu();
139 cpus_clear(cpus);
140 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
141 vcpu = kvm->vcpus[i];
142 if (!vcpu)
143 continue;
144 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
145 continue;
146 cpu = vcpu->cpu;
147 if (cpu != -1 && cpu != me)
148 cpu_set(cpu, cpus);
149 }
150 if (cpus_empty(cpus))
151 goto out;
152 smp_call_function_mask(cpus, ack_flush, NULL, 1);
153 out:
154 put_cpu();
155 }
156
157
158 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
159 {
160 struct page *page;
161 int r;
162
163 mutex_init(&vcpu->mutex);
164 vcpu->cpu = -1;
165 vcpu->kvm = kvm;
166 vcpu->vcpu_id = id;
167 init_waitqueue_head(&vcpu->wq);
168
169 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
170 if (!page) {
171 r = -ENOMEM;
172 goto fail;
173 }
174 vcpu->run = page_address(page);
175
176 r = kvm_arch_vcpu_init(vcpu);
177 if (r < 0)
178 goto fail_free_run;
179 return 0;
180
181 fail_free_run:
182 free_page((unsigned long)vcpu->run);
183 fail:
184 return r;
185 }
186 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
187
188 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
189 {
190 kvm_arch_vcpu_uninit(vcpu);
191 free_page((unsigned long)vcpu->run);
192 }
193 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
194
195 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
196 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
197 {
198 return container_of(mn, struct kvm, mmu_notifier);
199 }
200
201 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
202 struct mm_struct *mm,
203 unsigned long address)
204 {
205 struct kvm *kvm = mmu_notifier_to_kvm(mn);
206 int need_tlb_flush;
207
208 /*
209 * When ->invalidate_page runs, the linux pte has been zapped
210 * already but the page is still allocated until
211 * ->invalidate_page returns. So if we increase the sequence
212 * here the kvm page fault will notice if the spte can't be
213 * established because the page is going to be freed. If
214 * instead the kvm page fault establishes the spte before
215 * ->invalidate_page runs, kvm_unmap_hva will release it
216 * before returning.
217 *
218 * The sequence increase only need to be seen at spin_unlock
219 * time, and not at spin_lock time.
220 *
221 * Increasing the sequence after the spin_unlock would be
222 * unsafe because the kvm page fault could then establish the
223 * pte after kvm_unmap_hva returned, without noticing the page
224 * is going to be freed.
225 */
226 spin_lock(&kvm->mmu_lock);
227 kvm->mmu_notifier_seq++;
228 need_tlb_flush = kvm_unmap_hva(kvm, address);
229 spin_unlock(&kvm->mmu_lock);
230
231 /* we've to flush the tlb before the pages can be freed */
232 if (need_tlb_flush)
233 kvm_flush_remote_tlbs(kvm);
234
235 }
236
237 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
238 struct mm_struct *mm,
239 unsigned long start,
240 unsigned long end)
241 {
242 struct kvm *kvm = mmu_notifier_to_kvm(mn);
243 int need_tlb_flush = 0;
244
245 spin_lock(&kvm->mmu_lock);
246 /*
247 * The count increase must become visible at unlock time as no
248 * spte can be established without taking the mmu_lock and
249 * count is also read inside the mmu_lock critical section.
250 */
251 kvm->mmu_notifier_count++;
252 for (; start < end; start += PAGE_SIZE)
253 need_tlb_flush |= kvm_unmap_hva(kvm, start);
254 spin_unlock(&kvm->mmu_lock);
255
256 /* we've to flush the tlb before the pages can be freed */
257 if (need_tlb_flush)
258 kvm_flush_remote_tlbs(kvm);
259 }
260
261 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
262 struct mm_struct *mm,
263 unsigned long start,
264 unsigned long end)
265 {
266 struct kvm *kvm = mmu_notifier_to_kvm(mn);
267
268 spin_lock(&kvm->mmu_lock);
269 /*
270 * This sequence increase will notify the kvm page fault that
271 * the page that is going to be mapped in the spte could have
272 * been freed.
273 */
274 kvm->mmu_notifier_seq++;
275 /*
276 * The above sequence increase must be visible before the
277 * below count decrease but both values are read by the kvm
278 * page fault under mmu_lock spinlock so we don't need to add
279 * a smb_wmb() here in between the two.
280 */
281 kvm->mmu_notifier_count--;
282 spin_unlock(&kvm->mmu_lock);
283
284 BUG_ON(kvm->mmu_notifier_count < 0);
285 }
286
287 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
288 struct mm_struct *mm,
289 unsigned long address)
290 {
291 struct kvm *kvm = mmu_notifier_to_kvm(mn);
292 int young;
293
294 spin_lock(&kvm->mmu_lock);
295 young = kvm_age_hva(kvm, address);
296 spin_unlock(&kvm->mmu_lock);
297
298 if (young)
299 kvm_flush_remote_tlbs(kvm);
300
301 return young;
302 }
303
304 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
305 .invalidate_page = kvm_mmu_notifier_invalidate_page,
306 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
307 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
308 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
309 };
310 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
311
312 static struct kvm *kvm_create_vm(void)
313 {
314 struct kvm *kvm = kvm_arch_create_vm();
315 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
316 struct page *page;
317 #endif
318
319 if (IS_ERR(kvm))
320 goto out;
321
322 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
323 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
324 if (!page) {
325 kfree(kvm);
326 return ERR_PTR(-ENOMEM);
327 }
328 kvm->coalesced_mmio_ring =
329 (struct kvm_coalesced_mmio_ring *)page_address(page);
330 #endif
331
332 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
333 {
334 int err;
335 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
336 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
337 if (err) {
338 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
339 put_page(page);
340 #endif
341 kfree(kvm);
342 return ERR_PTR(err);
343 }
344 }
345 #endif
346
347 kvm->mm = current->mm;
348 atomic_inc(&kvm->mm->mm_count);
349 spin_lock_init(&kvm->mmu_lock);
350 kvm_io_bus_init(&kvm->pio_bus);
351 mutex_init(&kvm->lock);
352 kvm_io_bus_init(&kvm->mmio_bus);
353 init_rwsem(&kvm->slots_lock);
354 atomic_set(&kvm->users_count, 1);
355 spin_lock(&kvm_lock);
356 list_add(&kvm->vm_list, &vm_list);
357 spin_unlock(&kvm_lock);
358 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
359 kvm_coalesced_mmio_init(kvm);
360 #endif
361 out:
362 return kvm;
363 }
364
365 /*
366 * Free any memory in @free but not in @dont.
367 */
368 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
369 struct kvm_memory_slot *dont)
370 {
371 if (!dont || free->rmap != dont->rmap)
372 vfree(free->rmap);
373
374 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
375 vfree(free->dirty_bitmap);
376
377 if (!dont || free->lpage_info != dont->lpage_info)
378 vfree(free->lpage_info);
379
380 free->npages = 0;
381 free->dirty_bitmap = NULL;
382 free->rmap = NULL;
383 free->lpage_info = NULL;
384 }
385
386 void kvm_free_physmem(struct kvm *kvm)
387 {
388 int i;
389
390 for (i = 0; i < kvm->nmemslots; ++i)
391 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
392 }
393
394 static void kvm_destroy_vm(struct kvm *kvm)
395 {
396 struct mm_struct *mm = kvm->mm;
397
398 spin_lock(&kvm_lock);
399 list_del(&kvm->vm_list);
400 spin_unlock(&kvm_lock);
401 kvm_io_bus_destroy(&kvm->pio_bus);
402 kvm_io_bus_destroy(&kvm->mmio_bus);
403 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
404 if (kvm->coalesced_mmio_ring != NULL)
405 free_page((unsigned long)kvm->coalesced_mmio_ring);
406 #endif
407 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
408 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
409 #endif
410 kvm_arch_destroy_vm(kvm);
411 mmdrop(mm);
412 }
413
414 void kvm_get_kvm(struct kvm *kvm)
415 {
416 atomic_inc(&kvm->users_count);
417 }
418 EXPORT_SYMBOL_GPL(kvm_get_kvm);
419
420 void kvm_put_kvm(struct kvm *kvm)
421 {
422 if (atomic_dec_and_test(&kvm->users_count))
423 kvm_destroy_vm(kvm);
424 }
425 EXPORT_SYMBOL_GPL(kvm_put_kvm);
426
427
428 static int kvm_vm_release(struct inode *inode, struct file *filp)
429 {
430 struct kvm *kvm = filp->private_data;
431
432 kvm_put_kvm(kvm);
433 return 0;
434 }
435
436 /*
437 * Allocate some memory and give it an address in the guest physical address
438 * space.
439 *
440 * Discontiguous memory is allowed, mostly for framebuffers.
441 *
442 * Must be called holding mmap_sem for write.
443 */
444 int __kvm_set_memory_region(struct kvm *kvm,
445 struct kvm_userspace_memory_region *mem,
446 int user_alloc)
447 {
448 int r;
449 gfn_t base_gfn;
450 unsigned long npages;
451 unsigned long i;
452 struct kvm_memory_slot *memslot;
453 struct kvm_memory_slot old, new;
454
455 r = -EINVAL;
456 /* General sanity checks */
457 if (mem->memory_size & (PAGE_SIZE - 1))
458 goto out;
459 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
460 goto out;
461 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
462 goto out;
463 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
464 goto out;
465
466 memslot = &kvm->memslots[mem->slot];
467 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
468 npages = mem->memory_size >> PAGE_SHIFT;
469
470 if (!npages)
471 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
472
473 new = old = *memslot;
474
475 new.base_gfn = base_gfn;
476 new.npages = npages;
477 new.flags = mem->flags;
478
479 /* Disallow changing a memory slot's size. */
480 r = -EINVAL;
481 if (npages && old.npages && npages != old.npages)
482 goto out_free;
483
484 /* Check for overlaps */
485 r = -EEXIST;
486 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
487 struct kvm_memory_slot *s = &kvm->memslots[i];
488
489 if (s == memslot)
490 continue;
491 if (!((base_gfn + npages <= s->base_gfn) ||
492 (base_gfn >= s->base_gfn + s->npages)))
493 goto out_free;
494 }
495
496 /* Free page dirty bitmap if unneeded */
497 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
498 new.dirty_bitmap = NULL;
499
500 r = -ENOMEM;
501
502 /* Allocate if a slot is being created */
503 #ifndef CONFIG_S390
504 if (npages && !new.rmap) {
505 new.rmap = vmalloc(npages * sizeof(struct page *));
506
507 if (!new.rmap)
508 goto out_free;
509
510 memset(new.rmap, 0, npages * sizeof(*new.rmap));
511
512 new.user_alloc = user_alloc;
513 /*
514 * hva_to_rmmap() serialzies with the mmu_lock and to be
515 * safe it has to ignore memslots with !user_alloc &&
516 * !userspace_addr.
517 */
518 if (user_alloc)
519 new.userspace_addr = mem->userspace_addr;
520 else
521 new.userspace_addr = 0;
522 }
523 if (npages && !new.lpage_info) {
524 int largepages = npages / KVM_PAGES_PER_HPAGE;
525 if (npages % KVM_PAGES_PER_HPAGE)
526 largepages++;
527 if (base_gfn % KVM_PAGES_PER_HPAGE)
528 largepages++;
529
530 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
531
532 if (!new.lpage_info)
533 goto out_free;
534
535 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
536
537 if (base_gfn % KVM_PAGES_PER_HPAGE)
538 new.lpage_info[0].write_count = 1;
539 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
540 new.lpage_info[largepages-1].write_count = 1;
541 }
542
543 /* Allocate page dirty bitmap if needed */
544 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
545 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
546
547 new.dirty_bitmap = vmalloc(dirty_bytes);
548 if (!new.dirty_bitmap)
549 goto out_free;
550 memset(new.dirty_bitmap, 0, dirty_bytes);
551 }
552 #endif /* not defined CONFIG_S390 */
553
554 if (!npages)
555 kvm_arch_flush_shadow(kvm);
556
557 spin_lock(&kvm->mmu_lock);
558 if (mem->slot >= kvm->nmemslots)
559 kvm->nmemslots = mem->slot + 1;
560
561 *memslot = new;
562 spin_unlock(&kvm->mmu_lock);
563
564 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
565 if (r) {
566 spin_lock(&kvm->mmu_lock);
567 *memslot = old;
568 spin_unlock(&kvm->mmu_lock);
569 goto out_free;
570 }
571
572 kvm_free_physmem_slot(&old, &new);
573 return 0;
574
575 out_free:
576 kvm_free_physmem_slot(&new, &old);
577 out:
578 return r;
579
580 }
581 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
582
583 int kvm_set_memory_region(struct kvm *kvm,
584 struct kvm_userspace_memory_region *mem,
585 int user_alloc)
586 {
587 int r;
588
589 down_write(&kvm->slots_lock);
590 r = __kvm_set_memory_region(kvm, mem, user_alloc);
591 up_write(&kvm->slots_lock);
592 return r;
593 }
594 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
595
596 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
597 struct
598 kvm_userspace_memory_region *mem,
599 int user_alloc)
600 {
601 if (mem->slot >= KVM_MEMORY_SLOTS)
602 return -EINVAL;
603 return kvm_set_memory_region(kvm, mem, user_alloc);
604 }
605
606 int kvm_get_dirty_log(struct kvm *kvm,
607 struct kvm_dirty_log *log, int *is_dirty)
608 {
609 struct kvm_memory_slot *memslot;
610 int r, i;
611 int n;
612 unsigned long any = 0;
613
614 r = -EINVAL;
615 if (log->slot >= KVM_MEMORY_SLOTS)
616 goto out;
617
618 memslot = &kvm->memslots[log->slot];
619 r = -ENOENT;
620 if (!memslot->dirty_bitmap)
621 goto out;
622
623 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
624
625 for (i = 0; !any && i < n/sizeof(long); ++i)
626 any = memslot->dirty_bitmap[i];
627
628 r = -EFAULT;
629 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
630 goto out;
631
632 if (any)
633 *is_dirty = 1;
634
635 r = 0;
636 out:
637 return r;
638 }
639
640 int is_error_page(struct page *page)
641 {
642 return page == bad_page;
643 }
644 EXPORT_SYMBOL_GPL(is_error_page);
645
646 int is_error_pfn(pfn_t pfn)
647 {
648 return pfn == bad_pfn;
649 }
650 EXPORT_SYMBOL_GPL(is_error_pfn);
651
652 static inline unsigned long bad_hva(void)
653 {
654 return PAGE_OFFSET;
655 }
656
657 int kvm_is_error_hva(unsigned long addr)
658 {
659 return addr == bad_hva();
660 }
661 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
662
663 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
664 {
665 int i;
666
667 for (i = 0; i < kvm->nmemslots; ++i) {
668 struct kvm_memory_slot *memslot = &kvm->memslots[i];
669
670 if (gfn >= memslot->base_gfn
671 && gfn < memslot->base_gfn + memslot->npages)
672 return memslot;
673 }
674 return NULL;
675 }
676
677 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
678 {
679 gfn = unalias_gfn(kvm, gfn);
680 return __gfn_to_memslot(kvm, gfn);
681 }
682
683 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
684 {
685 int i;
686
687 gfn = unalias_gfn(kvm, gfn);
688 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
689 struct kvm_memory_slot *memslot = &kvm->memslots[i];
690
691 if (gfn >= memslot->base_gfn
692 && gfn < memslot->base_gfn + memslot->npages)
693 return 1;
694 }
695 return 0;
696 }
697 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
698
699 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
700 {
701 struct kvm_memory_slot *slot;
702
703 gfn = unalias_gfn(kvm, gfn);
704 slot = __gfn_to_memslot(kvm, gfn);
705 if (!slot)
706 return bad_hva();
707 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
708 }
709 EXPORT_SYMBOL_GPL(gfn_to_hva);
710
711 /*
712 * Requires current->mm->mmap_sem to be held
713 */
714 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
715 {
716 struct page *page[1];
717 unsigned long addr;
718 int npages;
719 pfn_t pfn;
720
721 might_sleep();
722
723 addr = gfn_to_hva(kvm, gfn);
724 if (kvm_is_error_hva(addr)) {
725 get_page(bad_page);
726 return page_to_pfn(bad_page);
727 }
728
729 npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
730 NULL);
731
732 if (unlikely(npages != 1)) {
733 struct vm_area_struct *vma;
734
735 vma = find_vma(current->mm, addr);
736 if (vma == NULL || addr < vma->vm_start ||
737 !(vma->vm_flags & VM_PFNMAP)) {
738 get_page(bad_page);
739 return page_to_pfn(bad_page);
740 }
741
742 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
743 BUG_ON(pfn_valid(pfn));
744 } else
745 pfn = page_to_pfn(page[0]);
746
747 return pfn;
748 }
749
750 EXPORT_SYMBOL_GPL(gfn_to_pfn);
751
752 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
753 {
754 pfn_t pfn;
755
756 pfn = gfn_to_pfn(kvm, gfn);
757 if (pfn_valid(pfn))
758 return pfn_to_page(pfn);
759
760 WARN_ON(!pfn_valid(pfn));
761
762 get_page(bad_page);
763 return bad_page;
764 }
765
766 EXPORT_SYMBOL_GPL(gfn_to_page);
767
768 void kvm_release_page_clean(struct page *page)
769 {
770 kvm_release_pfn_clean(page_to_pfn(page));
771 }
772 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
773
774 void kvm_release_pfn_clean(pfn_t pfn)
775 {
776 if (pfn_valid(pfn))
777 put_page(pfn_to_page(pfn));
778 }
779 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
780
781 void kvm_release_page_dirty(struct page *page)
782 {
783 kvm_release_pfn_dirty(page_to_pfn(page));
784 }
785 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
786
787 void kvm_release_pfn_dirty(pfn_t pfn)
788 {
789 kvm_set_pfn_dirty(pfn);
790 kvm_release_pfn_clean(pfn);
791 }
792 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
793
794 void kvm_set_page_dirty(struct page *page)
795 {
796 kvm_set_pfn_dirty(page_to_pfn(page));
797 }
798 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
799
800 void kvm_set_pfn_dirty(pfn_t pfn)
801 {
802 if (pfn_valid(pfn)) {
803 struct page *page = pfn_to_page(pfn);
804 if (!PageReserved(page))
805 SetPageDirty(page);
806 }
807 }
808 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
809
810 void kvm_set_pfn_accessed(pfn_t pfn)
811 {
812 if (pfn_valid(pfn))
813 mark_page_accessed(pfn_to_page(pfn));
814 }
815 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
816
817 void kvm_get_pfn(pfn_t pfn)
818 {
819 if (pfn_valid(pfn))
820 get_page(pfn_to_page(pfn));
821 }
822 EXPORT_SYMBOL_GPL(kvm_get_pfn);
823
824 static int next_segment(unsigned long len, int offset)
825 {
826 if (len > PAGE_SIZE - offset)
827 return PAGE_SIZE - offset;
828 else
829 return len;
830 }
831
832 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
833 int len)
834 {
835 int r;
836 unsigned long addr;
837
838 addr = gfn_to_hva(kvm, gfn);
839 if (kvm_is_error_hva(addr))
840 return -EFAULT;
841 r = copy_from_user(data, (void __user *)addr + offset, len);
842 if (r)
843 return -EFAULT;
844 return 0;
845 }
846 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
847
848 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
849 {
850 gfn_t gfn = gpa >> PAGE_SHIFT;
851 int seg;
852 int offset = offset_in_page(gpa);
853 int ret;
854
855 while ((seg = next_segment(len, offset)) != 0) {
856 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
857 if (ret < 0)
858 return ret;
859 offset = 0;
860 len -= seg;
861 data += seg;
862 ++gfn;
863 }
864 return 0;
865 }
866 EXPORT_SYMBOL_GPL(kvm_read_guest);
867
868 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
869 unsigned long len)
870 {
871 int r;
872 unsigned long addr;
873 gfn_t gfn = gpa >> PAGE_SHIFT;
874 int offset = offset_in_page(gpa);
875
876 addr = gfn_to_hva(kvm, gfn);
877 if (kvm_is_error_hva(addr))
878 return -EFAULT;
879 pagefault_disable();
880 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
881 pagefault_enable();
882 if (r)
883 return -EFAULT;
884 return 0;
885 }
886 EXPORT_SYMBOL(kvm_read_guest_atomic);
887
888 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
889 int offset, int len)
890 {
891 int r;
892 unsigned long addr;
893
894 addr = gfn_to_hva(kvm, gfn);
895 if (kvm_is_error_hva(addr))
896 return -EFAULT;
897 r = copy_to_user((void __user *)addr + offset, data, len);
898 if (r)
899 return -EFAULT;
900 mark_page_dirty(kvm, gfn);
901 return 0;
902 }
903 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
904
905 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
906 unsigned long len)
907 {
908 gfn_t gfn = gpa >> PAGE_SHIFT;
909 int seg;
910 int offset = offset_in_page(gpa);
911 int ret;
912
913 while ((seg = next_segment(len, offset)) != 0) {
914 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
915 if (ret < 0)
916 return ret;
917 offset = 0;
918 len -= seg;
919 data += seg;
920 ++gfn;
921 }
922 return 0;
923 }
924
925 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
926 {
927 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
928 }
929 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
930
931 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
932 {
933 gfn_t gfn = gpa >> PAGE_SHIFT;
934 int seg;
935 int offset = offset_in_page(gpa);
936 int ret;
937
938 while ((seg = next_segment(len, offset)) != 0) {
939 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
940 if (ret < 0)
941 return ret;
942 offset = 0;
943 len -= seg;
944 ++gfn;
945 }
946 return 0;
947 }
948 EXPORT_SYMBOL_GPL(kvm_clear_guest);
949
950 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
951 {
952 struct kvm_memory_slot *memslot;
953
954 gfn = unalias_gfn(kvm, gfn);
955 memslot = __gfn_to_memslot(kvm, gfn);
956 if (memslot && memslot->dirty_bitmap) {
957 unsigned long rel_gfn = gfn - memslot->base_gfn;
958
959 /* avoid RMW */
960 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
961 set_bit(rel_gfn, memslot->dirty_bitmap);
962 }
963 }
964
965 /*
966 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
967 */
968 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
969 {
970 DEFINE_WAIT(wait);
971
972 for (;;) {
973 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
974
975 if (kvm_cpu_has_interrupt(vcpu))
976 break;
977 if (kvm_cpu_has_pending_timer(vcpu))
978 break;
979 if (kvm_arch_vcpu_runnable(vcpu))
980 break;
981 if (signal_pending(current))
982 break;
983
984 vcpu_put(vcpu);
985 schedule();
986 vcpu_load(vcpu);
987 }
988
989 finish_wait(&vcpu->wq, &wait);
990 }
991
992 void kvm_resched(struct kvm_vcpu *vcpu)
993 {
994 if (!need_resched())
995 return;
996 cond_resched();
997 }
998 EXPORT_SYMBOL_GPL(kvm_resched);
999
1000 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1001 {
1002 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1003 struct page *page;
1004
1005 if (vmf->pgoff == 0)
1006 page = virt_to_page(vcpu->run);
1007 #ifdef CONFIG_X86
1008 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1009 page = virt_to_page(vcpu->arch.pio_data);
1010 #endif
1011 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1012 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1013 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1014 #endif
1015 else
1016 return VM_FAULT_SIGBUS;
1017 get_page(page);
1018 vmf->page = page;
1019 return 0;
1020 }
1021
1022 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1023 .fault = kvm_vcpu_fault,
1024 };
1025
1026 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1027 {
1028 vma->vm_ops = &kvm_vcpu_vm_ops;
1029 return 0;
1030 }
1031
1032 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1033 {
1034 struct kvm_vcpu *vcpu = filp->private_data;
1035
1036 kvm_put_kvm(vcpu->kvm);
1037 return 0;
1038 }
1039
1040 static const struct file_operations kvm_vcpu_fops = {
1041 .release = kvm_vcpu_release,
1042 .unlocked_ioctl = kvm_vcpu_ioctl,
1043 .compat_ioctl = kvm_vcpu_ioctl,
1044 .mmap = kvm_vcpu_mmap,
1045 };
1046
1047 /*
1048 * Allocates an inode for the vcpu.
1049 */
1050 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1051 {
1052 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1053 if (fd < 0)
1054 kvm_put_kvm(vcpu->kvm);
1055 return fd;
1056 }
1057
1058 /*
1059 * Creates some virtual cpus. Good luck creating more than one.
1060 */
1061 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1062 {
1063 int r;
1064 struct kvm_vcpu *vcpu;
1065
1066 if (!valid_vcpu(n))
1067 return -EINVAL;
1068
1069 vcpu = kvm_arch_vcpu_create(kvm, n);
1070 if (IS_ERR(vcpu))
1071 return PTR_ERR(vcpu);
1072
1073 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1074
1075 r = kvm_arch_vcpu_setup(vcpu);
1076 if (r)
1077 goto vcpu_destroy;
1078
1079 mutex_lock(&kvm->lock);
1080 if (kvm->vcpus[n]) {
1081 r = -EEXIST;
1082 mutex_unlock(&kvm->lock);
1083 goto vcpu_destroy;
1084 }
1085 kvm->vcpus[n] = vcpu;
1086 mutex_unlock(&kvm->lock);
1087
1088 /* Now it's all set up, let userspace reach it */
1089 kvm_get_kvm(kvm);
1090 r = create_vcpu_fd(vcpu);
1091 if (r < 0)
1092 goto unlink;
1093 return r;
1094
1095 unlink:
1096 mutex_lock(&kvm->lock);
1097 kvm->vcpus[n] = NULL;
1098 mutex_unlock(&kvm->lock);
1099 vcpu_destroy:
1100 kvm_arch_vcpu_destroy(vcpu);
1101 return r;
1102 }
1103
1104 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1105 {
1106 if (sigset) {
1107 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1108 vcpu->sigset_active = 1;
1109 vcpu->sigset = *sigset;
1110 } else
1111 vcpu->sigset_active = 0;
1112 return 0;
1113 }
1114
1115 static long kvm_vcpu_ioctl(struct file *filp,
1116 unsigned int ioctl, unsigned long arg)
1117 {
1118 struct kvm_vcpu *vcpu = filp->private_data;
1119 void __user *argp = (void __user *)arg;
1120 int r;
1121
1122 if (vcpu->kvm->mm != current->mm)
1123 return -EIO;
1124 switch (ioctl) {
1125 case KVM_RUN:
1126 r = -EINVAL;
1127 if (arg)
1128 goto out;
1129 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1130 break;
1131 case KVM_GET_REGS: {
1132 struct kvm_regs *kvm_regs;
1133
1134 r = -ENOMEM;
1135 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1136 if (!kvm_regs)
1137 goto out;
1138 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1139 if (r)
1140 goto out_free1;
1141 r = -EFAULT;
1142 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1143 goto out_free1;
1144 r = 0;
1145 out_free1:
1146 kfree(kvm_regs);
1147 break;
1148 }
1149 case KVM_SET_REGS: {
1150 struct kvm_regs *kvm_regs;
1151
1152 r = -ENOMEM;
1153 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1154 if (!kvm_regs)
1155 goto out;
1156 r = -EFAULT;
1157 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1158 goto out_free2;
1159 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1160 if (r)
1161 goto out_free2;
1162 r = 0;
1163 out_free2:
1164 kfree(kvm_regs);
1165 break;
1166 }
1167 case KVM_GET_SREGS: {
1168 struct kvm_sregs kvm_sregs;
1169
1170 memset(&kvm_sregs, 0, sizeof kvm_sregs);
1171 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
1172 if (r)
1173 goto out;
1174 r = -EFAULT;
1175 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
1176 goto out;
1177 r = 0;
1178 break;
1179 }
1180 case KVM_SET_SREGS: {
1181 struct kvm_sregs kvm_sregs;
1182
1183 r = -EFAULT;
1184 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1185 goto out;
1186 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
1187 if (r)
1188 goto out;
1189 r = 0;
1190 break;
1191 }
1192 case KVM_GET_MP_STATE: {
1193 struct kvm_mp_state mp_state;
1194
1195 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1196 if (r)
1197 goto out;
1198 r = -EFAULT;
1199 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1200 goto out;
1201 r = 0;
1202 break;
1203 }
1204 case KVM_SET_MP_STATE: {
1205 struct kvm_mp_state mp_state;
1206
1207 r = -EFAULT;
1208 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1209 goto out;
1210 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1211 if (r)
1212 goto out;
1213 r = 0;
1214 break;
1215 }
1216 case KVM_TRANSLATE: {
1217 struct kvm_translation tr;
1218
1219 r = -EFAULT;
1220 if (copy_from_user(&tr, argp, sizeof tr))
1221 goto out;
1222 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1223 if (r)
1224 goto out;
1225 r = -EFAULT;
1226 if (copy_to_user(argp, &tr, sizeof tr))
1227 goto out;
1228 r = 0;
1229 break;
1230 }
1231 case KVM_DEBUG_GUEST: {
1232 struct kvm_debug_guest dbg;
1233
1234 r = -EFAULT;
1235 if (copy_from_user(&dbg, argp, sizeof dbg))
1236 goto out;
1237 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1238 if (r)
1239 goto out;
1240 r = 0;
1241 break;
1242 }
1243 case KVM_SET_SIGNAL_MASK: {
1244 struct kvm_signal_mask __user *sigmask_arg = argp;
1245 struct kvm_signal_mask kvm_sigmask;
1246 sigset_t sigset, *p;
1247
1248 p = NULL;
1249 if (argp) {
1250 r = -EFAULT;
1251 if (copy_from_user(&kvm_sigmask, argp,
1252 sizeof kvm_sigmask))
1253 goto out;
1254 r = -EINVAL;
1255 if (kvm_sigmask.len != sizeof sigset)
1256 goto out;
1257 r = -EFAULT;
1258 if (copy_from_user(&sigset, sigmask_arg->sigset,
1259 sizeof sigset))
1260 goto out;
1261 p = &sigset;
1262 }
1263 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1264 break;
1265 }
1266 case KVM_GET_FPU: {
1267 struct kvm_fpu fpu;
1268
1269 memset(&fpu, 0, sizeof fpu);
1270 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
1271 if (r)
1272 goto out;
1273 r = -EFAULT;
1274 if (copy_to_user(argp, &fpu, sizeof fpu))
1275 goto out;
1276 r = 0;
1277 break;
1278 }
1279 case KVM_SET_FPU: {
1280 struct kvm_fpu fpu;
1281
1282 r = -EFAULT;
1283 if (copy_from_user(&fpu, argp, sizeof fpu))
1284 goto out;
1285 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
1286 if (r)
1287 goto out;
1288 r = 0;
1289 break;
1290 }
1291 default:
1292 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1293 }
1294 out:
1295 return r;
1296 }
1297
1298 static long kvm_vm_ioctl(struct file *filp,
1299 unsigned int ioctl, unsigned long arg)
1300 {
1301 struct kvm *kvm = filp->private_data;
1302 void __user *argp = (void __user *)arg;
1303 int r;
1304
1305 if (kvm->mm != current->mm)
1306 return -EIO;
1307 switch (ioctl) {
1308 case KVM_CREATE_VCPU:
1309 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1310 if (r < 0)
1311 goto out;
1312 break;
1313 case KVM_SET_USER_MEMORY_REGION: {
1314 struct kvm_userspace_memory_region kvm_userspace_mem;
1315
1316 r = -EFAULT;
1317 if (copy_from_user(&kvm_userspace_mem, argp,
1318 sizeof kvm_userspace_mem))
1319 goto out;
1320
1321 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1322 if (r)
1323 goto out;
1324 break;
1325 }
1326 case KVM_GET_DIRTY_LOG: {
1327 struct kvm_dirty_log log;
1328
1329 r = -EFAULT;
1330 if (copy_from_user(&log, argp, sizeof log))
1331 goto out;
1332 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1333 if (r)
1334 goto out;
1335 break;
1336 }
1337 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1338 case KVM_REGISTER_COALESCED_MMIO: {
1339 struct kvm_coalesced_mmio_zone zone;
1340 r = -EFAULT;
1341 if (copy_from_user(&zone, argp, sizeof zone))
1342 goto out;
1343 r = -ENXIO;
1344 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1345 if (r)
1346 goto out;
1347 r = 0;
1348 break;
1349 }
1350 case KVM_UNREGISTER_COALESCED_MMIO: {
1351 struct kvm_coalesced_mmio_zone zone;
1352 r = -EFAULT;
1353 if (copy_from_user(&zone, argp, sizeof zone))
1354 goto out;
1355 r = -ENXIO;
1356 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1357 if (r)
1358 goto out;
1359 r = 0;
1360 break;
1361 }
1362 #endif
1363 default:
1364 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1365 }
1366 out:
1367 return r;
1368 }
1369
1370 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1371 {
1372 struct kvm *kvm = vma->vm_file->private_data;
1373 struct page *page;
1374
1375 if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
1376 return VM_FAULT_SIGBUS;
1377 page = gfn_to_page(kvm, vmf->pgoff);
1378 if (is_error_page(page)) {
1379 kvm_release_page_clean(page);
1380 return VM_FAULT_SIGBUS;
1381 }
1382 vmf->page = page;
1383 return 0;
1384 }
1385
1386 static struct vm_operations_struct kvm_vm_vm_ops = {
1387 .fault = kvm_vm_fault,
1388 };
1389
1390 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1391 {
1392 vma->vm_ops = &kvm_vm_vm_ops;
1393 return 0;
1394 }
1395
1396 static const struct file_operations kvm_vm_fops = {
1397 .release = kvm_vm_release,
1398 .unlocked_ioctl = kvm_vm_ioctl,
1399 .compat_ioctl = kvm_vm_ioctl,
1400 .mmap = kvm_vm_mmap,
1401 };
1402
1403 static int kvm_dev_ioctl_create_vm(void)
1404 {
1405 int fd;
1406 struct kvm *kvm;
1407
1408 kvm = kvm_create_vm();
1409 if (IS_ERR(kvm))
1410 return PTR_ERR(kvm);
1411 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1412 if (fd < 0)
1413 kvm_put_kvm(kvm);
1414
1415 return fd;
1416 }
1417
1418 static long kvm_dev_ioctl(struct file *filp,
1419 unsigned int ioctl, unsigned long arg)
1420 {
1421 long r = -EINVAL;
1422
1423 switch (ioctl) {
1424 case KVM_GET_API_VERSION:
1425 r = -EINVAL;
1426 if (arg)
1427 goto out;
1428 r = KVM_API_VERSION;
1429 break;
1430 case KVM_CREATE_VM:
1431 r = -EINVAL;
1432 if (arg)
1433 goto out;
1434 r = kvm_dev_ioctl_create_vm();
1435 break;
1436 case KVM_CHECK_EXTENSION:
1437 r = kvm_dev_ioctl_check_extension(arg);
1438 break;
1439 case KVM_GET_VCPU_MMAP_SIZE:
1440 r = -EINVAL;
1441 if (arg)
1442 goto out;
1443 r = PAGE_SIZE; /* struct kvm_run */
1444 #ifdef CONFIG_X86
1445 r += PAGE_SIZE; /* pio data page */
1446 #endif
1447 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1448 r += PAGE_SIZE; /* coalesced mmio ring page */
1449 #endif
1450 break;
1451 case KVM_TRACE_ENABLE:
1452 case KVM_TRACE_PAUSE:
1453 case KVM_TRACE_DISABLE:
1454 r = kvm_trace_ioctl(ioctl, arg);
1455 break;
1456 default:
1457 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1458 }
1459 out:
1460 return r;
1461 }
1462
1463 static struct file_operations kvm_chardev_ops = {
1464 .unlocked_ioctl = kvm_dev_ioctl,
1465 .compat_ioctl = kvm_dev_ioctl,
1466 };
1467
1468 static struct miscdevice kvm_dev = {
1469 KVM_MINOR,
1470 "kvm",
1471 &kvm_chardev_ops,
1472 };
1473
1474 static void hardware_enable(void *junk)
1475 {
1476 int cpu = raw_smp_processor_id();
1477
1478 if (cpu_isset(cpu, cpus_hardware_enabled))
1479 return;
1480 cpu_set(cpu, cpus_hardware_enabled);
1481 kvm_arch_hardware_enable(NULL);
1482 }
1483
1484 static void hardware_disable(void *junk)
1485 {
1486 int cpu = raw_smp_processor_id();
1487
1488 if (!cpu_isset(cpu, cpus_hardware_enabled))
1489 return;
1490 cpu_clear(cpu, cpus_hardware_enabled);
1491 kvm_arch_hardware_disable(NULL);
1492 }
1493
1494 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1495 void *v)
1496 {
1497 int cpu = (long)v;
1498
1499 val &= ~CPU_TASKS_FROZEN;
1500 switch (val) {
1501 case CPU_DYING:
1502 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1503 cpu);
1504 hardware_disable(NULL);
1505 break;
1506 case CPU_UP_CANCELED:
1507 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1508 cpu);
1509 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1510 break;
1511 case CPU_ONLINE:
1512 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1513 cpu);
1514 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1515 break;
1516 }
1517 return NOTIFY_OK;
1518 }
1519
1520
1521 asmlinkage void kvm_handle_fault_on_reboot(void)
1522 {
1523 if (kvm_rebooting)
1524 /* spin while reset goes on */
1525 while (true)
1526 ;
1527 /* Fault while not rebooting. We want the trace. */
1528 BUG();
1529 }
1530 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1531
1532 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1533 void *v)
1534 {
1535 if (val == SYS_RESTART) {
1536 /*
1537 * Some (well, at least mine) BIOSes hang on reboot if
1538 * in vmx root mode.
1539 */
1540 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1541 kvm_rebooting = true;
1542 on_each_cpu(hardware_disable, NULL, 1);
1543 }
1544 return NOTIFY_OK;
1545 }
1546
1547 static struct notifier_block kvm_reboot_notifier = {
1548 .notifier_call = kvm_reboot,
1549 .priority = 0,
1550 };
1551
1552 void kvm_io_bus_init(struct kvm_io_bus *bus)
1553 {
1554 memset(bus, 0, sizeof(*bus));
1555 }
1556
1557 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1558 {
1559 int i;
1560
1561 for (i = 0; i < bus->dev_count; i++) {
1562 struct kvm_io_device *pos = bus->devs[i];
1563
1564 kvm_iodevice_destructor(pos);
1565 }
1566 }
1567
1568 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
1569 gpa_t addr, int len, int is_write)
1570 {
1571 int i;
1572
1573 for (i = 0; i < bus->dev_count; i++) {
1574 struct kvm_io_device *pos = bus->devs[i];
1575
1576 if (pos->in_range(pos, addr, len, is_write))
1577 return pos;
1578 }
1579
1580 return NULL;
1581 }
1582
1583 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1584 {
1585 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1586
1587 bus->devs[bus->dev_count++] = dev;
1588 }
1589
1590 static struct notifier_block kvm_cpu_notifier = {
1591 .notifier_call = kvm_cpu_hotplug,
1592 .priority = 20, /* must be > scheduler priority */
1593 };
1594
1595 static int vm_stat_get(void *_offset, u64 *val)
1596 {
1597 unsigned offset = (long)_offset;
1598 struct kvm *kvm;
1599
1600 *val = 0;
1601 spin_lock(&kvm_lock);
1602 list_for_each_entry(kvm, &vm_list, vm_list)
1603 *val += *(u32 *)((void *)kvm + offset);
1604 spin_unlock(&kvm_lock);
1605 return 0;
1606 }
1607
1608 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1609
1610 static int vcpu_stat_get(void *_offset, u64 *val)
1611 {
1612 unsigned offset = (long)_offset;
1613 struct kvm *kvm;
1614 struct kvm_vcpu *vcpu;
1615 int i;
1616
1617 *val = 0;
1618 spin_lock(&kvm_lock);
1619 list_for_each_entry(kvm, &vm_list, vm_list)
1620 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1621 vcpu = kvm->vcpus[i];
1622 if (vcpu)
1623 *val += *(u32 *)((void *)vcpu + offset);
1624 }
1625 spin_unlock(&kvm_lock);
1626 return 0;
1627 }
1628
1629 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1630
1631 static struct file_operations *stat_fops[] = {
1632 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1633 [KVM_STAT_VM] = &vm_stat_fops,
1634 };
1635
1636 static void kvm_init_debug(void)
1637 {
1638 struct kvm_stats_debugfs_item *p;
1639
1640 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1641 for (p = debugfs_entries; p->name; ++p)
1642 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1643 (void *)(long)p->offset,
1644 stat_fops[p->kind]);
1645 }
1646
1647 static void kvm_exit_debug(void)
1648 {
1649 struct kvm_stats_debugfs_item *p;
1650
1651 for (p = debugfs_entries; p->name; ++p)
1652 debugfs_remove(p->dentry);
1653 debugfs_remove(kvm_debugfs_dir);
1654 }
1655
1656 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1657 {
1658 hardware_disable(NULL);
1659 return 0;
1660 }
1661
1662 static int kvm_resume(struct sys_device *dev)
1663 {
1664 hardware_enable(NULL);
1665 return 0;
1666 }
1667
1668 static struct sysdev_class kvm_sysdev_class = {
1669 .name = "kvm",
1670 .suspend = kvm_suspend,
1671 .resume = kvm_resume,
1672 };
1673
1674 static struct sys_device kvm_sysdev = {
1675 .id = 0,
1676 .cls = &kvm_sysdev_class,
1677 };
1678
1679 struct page *bad_page;
1680 pfn_t bad_pfn;
1681
1682 static inline
1683 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1684 {
1685 return container_of(pn, struct kvm_vcpu, preempt_notifier);
1686 }
1687
1688 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1689 {
1690 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1691
1692 kvm_arch_vcpu_load(vcpu, cpu);
1693 }
1694
1695 static void kvm_sched_out(struct preempt_notifier *pn,
1696 struct task_struct *next)
1697 {
1698 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1699
1700 kvm_arch_vcpu_put(vcpu);
1701 }
1702
1703 int kvm_init(void *opaque, unsigned int vcpu_size,
1704 struct module *module)
1705 {
1706 int r;
1707 int cpu;
1708
1709 kvm_init_debug();
1710
1711 r = kvm_arch_init(opaque);
1712 if (r)
1713 goto out_fail;
1714
1715 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1716
1717 if (bad_page == NULL) {
1718 r = -ENOMEM;
1719 goto out;
1720 }
1721
1722 bad_pfn = page_to_pfn(bad_page);
1723
1724 r = kvm_arch_hardware_setup();
1725 if (r < 0)
1726 goto out_free_0;
1727
1728 for_each_online_cpu(cpu) {
1729 smp_call_function_single(cpu,
1730 kvm_arch_check_processor_compat,
1731 &r, 1);
1732 if (r < 0)
1733 goto out_free_1;
1734 }
1735
1736 on_each_cpu(hardware_enable, NULL, 1);
1737 r = register_cpu_notifier(&kvm_cpu_notifier);
1738 if (r)
1739 goto out_free_2;
1740 register_reboot_notifier(&kvm_reboot_notifier);
1741
1742 r = sysdev_class_register(&kvm_sysdev_class);
1743 if (r)
1744 goto out_free_3;
1745
1746 r = sysdev_register(&kvm_sysdev);
1747 if (r)
1748 goto out_free_4;
1749
1750 /* A kmem cache lets us meet the alignment requirements of fx_save. */
1751 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
1752 __alignof__(struct kvm_vcpu),
1753 0, NULL);
1754 if (!kvm_vcpu_cache) {
1755 r = -ENOMEM;
1756 goto out_free_5;
1757 }
1758
1759 kvm_chardev_ops.owner = module;
1760
1761 r = misc_register(&kvm_dev);
1762 if (r) {
1763 printk(KERN_ERR "kvm: misc device register failed\n");
1764 goto out_free;
1765 }
1766
1767 kvm_preempt_ops.sched_in = kvm_sched_in;
1768 kvm_preempt_ops.sched_out = kvm_sched_out;
1769
1770 return 0;
1771
1772 out_free:
1773 kmem_cache_destroy(kvm_vcpu_cache);
1774 out_free_5:
1775 sysdev_unregister(&kvm_sysdev);
1776 out_free_4:
1777 sysdev_class_unregister(&kvm_sysdev_class);
1778 out_free_3:
1779 unregister_reboot_notifier(&kvm_reboot_notifier);
1780 unregister_cpu_notifier(&kvm_cpu_notifier);
1781 out_free_2:
1782 on_each_cpu(hardware_disable, NULL, 1);
1783 out_free_1:
1784 kvm_arch_hardware_unsetup();
1785 out_free_0:
1786 __free_page(bad_page);
1787 out:
1788 kvm_arch_exit();
1789 kvm_exit_debug();
1790 out_fail:
1791 return r;
1792 }
1793 EXPORT_SYMBOL_GPL(kvm_init);
1794
1795 void kvm_exit(void)
1796 {
1797 kvm_trace_cleanup();
1798 misc_deregister(&kvm_dev);
1799 kmem_cache_destroy(kvm_vcpu_cache);
1800 sysdev_unregister(&kvm_sysdev);
1801 sysdev_class_unregister(&kvm_sysdev_class);
1802 unregister_reboot_notifier(&kvm_reboot_notifier);
1803 unregister_cpu_notifier(&kvm_cpu_notifier);
1804 on_each_cpu(hardware_disable, NULL, 1);
1805 kvm_arch_hardware_unsetup();
1806 kvm_arch_exit();
1807 kvm_exit_debug();
1808 __free_page(bad_page);
1809 }
1810 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.066622 seconds and 5 git commands to generate.