KVM: Prepare memslot data structures for multiple hugepage sizes
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/kvm.h>
64
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
67
68 /*
69 * Ordering of locks:
70 *
71 * kvm->lock --> kvm->irq_lock
72 */
73
74 DEFINE_SPINLOCK(kvm_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78
79 struct kmem_cache *kvm_vcpu_cache;
80 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81
82 static __read_mostly struct preempt_ops kvm_preempt_ops;
83
84 struct dentry *kvm_debugfs_dir;
85
86 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
87 unsigned long arg);
88
89 static bool kvm_rebooting;
90
91 static bool largepages_enabled = true;
92
93 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
94 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
95 int assigned_dev_id)
96 {
97 struct list_head *ptr;
98 struct kvm_assigned_dev_kernel *match;
99
100 list_for_each(ptr, head) {
101 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
102 if (match->assigned_dev_id == assigned_dev_id)
103 return match;
104 }
105 return NULL;
106 }
107
108 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
109 *assigned_dev, int irq)
110 {
111 int i, index;
112 struct msix_entry *host_msix_entries;
113
114 host_msix_entries = assigned_dev->host_msix_entries;
115
116 index = -1;
117 for (i = 0; i < assigned_dev->entries_nr; i++)
118 if (irq == host_msix_entries[i].vector) {
119 index = i;
120 break;
121 }
122 if (index < 0) {
123 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
124 return 0;
125 }
126
127 return index;
128 }
129
130 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
131 {
132 struct kvm_assigned_dev_kernel *assigned_dev;
133 struct kvm *kvm;
134 int i;
135
136 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
137 interrupt_work);
138 kvm = assigned_dev->kvm;
139
140 mutex_lock(&kvm->irq_lock);
141 spin_lock_irq(&assigned_dev->assigned_dev_lock);
142 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
143 struct kvm_guest_msix_entry *guest_entries =
144 assigned_dev->guest_msix_entries;
145 for (i = 0; i < assigned_dev->entries_nr; i++) {
146 if (!(guest_entries[i].flags &
147 KVM_ASSIGNED_MSIX_PENDING))
148 continue;
149 guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
150 kvm_set_irq(assigned_dev->kvm,
151 assigned_dev->irq_source_id,
152 guest_entries[i].vector, 1);
153 }
154 } else
155 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
156 assigned_dev->guest_irq, 1);
157
158 spin_unlock_irq(&assigned_dev->assigned_dev_lock);
159 mutex_unlock(&assigned_dev->kvm->irq_lock);
160 }
161
162 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
163 {
164 unsigned long flags;
165 struct kvm_assigned_dev_kernel *assigned_dev =
166 (struct kvm_assigned_dev_kernel *) dev_id;
167
168 spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
169 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
170 int index = find_index_from_host_irq(assigned_dev, irq);
171 if (index < 0)
172 goto out;
173 assigned_dev->guest_msix_entries[index].flags |=
174 KVM_ASSIGNED_MSIX_PENDING;
175 }
176
177 schedule_work(&assigned_dev->interrupt_work);
178
179 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
180 disable_irq_nosync(irq);
181 assigned_dev->host_irq_disabled = true;
182 }
183
184 out:
185 spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
186 return IRQ_HANDLED;
187 }
188
189 /* Ack the irq line for an assigned device */
190 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
191 {
192 struct kvm_assigned_dev_kernel *dev;
193 unsigned long flags;
194
195 if (kian->gsi == -1)
196 return;
197
198 dev = container_of(kian, struct kvm_assigned_dev_kernel,
199 ack_notifier);
200
201 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
202
203 /* The guest irq may be shared so this ack may be
204 * from another device.
205 */
206 spin_lock_irqsave(&dev->assigned_dev_lock, flags);
207 if (dev->host_irq_disabled) {
208 enable_irq(dev->host_irq);
209 dev->host_irq_disabled = false;
210 }
211 spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
212 }
213
214 static void deassign_guest_irq(struct kvm *kvm,
215 struct kvm_assigned_dev_kernel *assigned_dev)
216 {
217 kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
218 assigned_dev->ack_notifier.gsi = -1;
219
220 if (assigned_dev->irq_source_id != -1)
221 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
222 assigned_dev->irq_source_id = -1;
223 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
224 }
225
226 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
227 static void deassign_host_irq(struct kvm *kvm,
228 struct kvm_assigned_dev_kernel *assigned_dev)
229 {
230 /*
231 * In kvm_free_device_irq, cancel_work_sync return true if:
232 * 1. work is scheduled, and then cancelled.
233 * 2. work callback is executed.
234 *
235 * The first one ensured that the irq is disabled and no more events
236 * would happen. But for the second one, the irq may be enabled (e.g.
237 * for MSI). So we disable irq here to prevent further events.
238 *
239 * Notice this maybe result in nested disable if the interrupt type is
240 * INTx, but it's OK for we are going to free it.
241 *
242 * If this function is a part of VM destroy, please ensure that till
243 * now, the kvm state is still legal for probably we also have to wait
244 * interrupt_work done.
245 */
246 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
247 int i;
248 for (i = 0; i < assigned_dev->entries_nr; i++)
249 disable_irq_nosync(assigned_dev->
250 host_msix_entries[i].vector);
251
252 cancel_work_sync(&assigned_dev->interrupt_work);
253
254 for (i = 0; i < assigned_dev->entries_nr; i++)
255 free_irq(assigned_dev->host_msix_entries[i].vector,
256 (void *)assigned_dev);
257
258 assigned_dev->entries_nr = 0;
259 kfree(assigned_dev->host_msix_entries);
260 kfree(assigned_dev->guest_msix_entries);
261 pci_disable_msix(assigned_dev->dev);
262 } else {
263 /* Deal with MSI and INTx */
264 disable_irq_nosync(assigned_dev->host_irq);
265 cancel_work_sync(&assigned_dev->interrupt_work);
266
267 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
268
269 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
270 pci_disable_msi(assigned_dev->dev);
271 }
272
273 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
274 }
275
276 static int kvm_deassign_irq(struct kvm *kvm,
277 struct kvm_assigned_dev_kernel *assigned_dev,
278 unsigned long irq_requested_type)
279 {
280 unsigned long guest_irq_type, host_irq_type;
281
282 if (!irqchip_in_kernel(kvm))
283 return -EINVAL;
284 /* no irq assignment to deassign */
285 if (!assigned_dev->irq_requested_type)
286 return -ENXIO;
287
288 host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
289 guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
290
291 if (host_irq_type)
292 deassign_host_irq(kvm, assigned_dev);
293 if (guest_irq_type)
294 deassign_guest_irq(kvm, assigned_dev);
295
296 return 0;
297 }
298
299 static void kvm_free_assigned_irq(struct kvm *kvm,
300 struct kvm_assigned_dev_kernel *assigned_dev)
301 {
302 kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
303 }
304
305 static void kvm_free_assigned_device(struct kvm *kvm,
306 struct kvm_assigned_dev_kernel
307 *assigned_dev)
308 {
309 kvm_free_assigned_irq(kvm, assigned_dev);
310
311 pci_reset_function(assigned_dev->dev);
312
313 pci_release_regions(assigned_dev->dev);
314 pci_disable_device(assigned_dev->dev);
315 pci_dev_put(assigned_dev->dev);
316
317 list_del(&assigned_dev->list);
318 kfree(assigned_dev);
319 }
320
321 void kvm_free_all_assigned_devices(struct kvm *kvm)
322 {
323 struct list_head *ptr, *ptr2;
324 struct kvm_assigned_dev_kernel *assigned_dev;
325
326 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
327 assigned_dev = list_entry(ptr,
328 struct kvm_assigned_dev_kernel,
329 list);
330
331 kvm_free_assigned_device(kvm, assigned_dev);
332 }
333 }
334
335 static int assigned_device_enable_host_intx(struct kvm *kvm,
336 struct kvm_assigned_dev_kernel *dev)
337 {
338 dev->host_irq = dev->dev->irq;
339 /* Even though this is PCI, we don't want to use shared
340 * interrupts. Sharing host devices with guest-assigned devices
341 * on the same interrupt line is not a happy situation: there
342 * are going to be long delays in accepting, acking, etc.
343 */
344 if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
345 0, "kvm_assigned_intx_device", (void *)dev))
346 return -EIO;
347 return 0;
348 }
349
350 #ifdef __KVM_HAVE_MSI
351 static int assigned_device_enable_host_msi(struct kvm *kvm,
352 struct kvm_assigned_dev_kernel *dev)
353 {
354 int r;
355
356 if (!dev->dev->msi_enabled) {
357 r = pci_enable_msi(dev->dev);
358 if (r)
359 return r;
360 }
361
362 dev->host_irq = dev->dev->irq;
363 if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
364 "kvm_assigned_msi_device", (void *)dev)) {
365 pci_disable_msi(dev->dev);
366 return -EIO;
367 }
368
369 return 0;
370 }
371 #endif
372
373 #ifdef __KVM_HAVE_MSIX
374 static int assigned_device_enable_host_msix(struct kvm *kvm,
375 struct kvm_assigned_dev_kernel *dev)
376 {
377 int i, r = -EINVAL;
378
379 /* host_msix_entries and guest_msix_entries should have been
380 * initialized */
381 if (dev->entries_nr == 0)
382 return r;
383
384 r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
385 if (r)
386 return r;
387
388 for (i = 0; i < dev->entries_nr; i++) {
389 r = request_irq(dev->host_msix_entries[i].vector,
390 kvm_assigned_dev_intr, 0,
391 "kvm_assigned_msix_device",
392 (void *)dev);
393 /* FIXME: free requested_irq's on failure */
394 if (r)
395 return r;
396 }
397
398 return 0;
399 }
400
401 #endif
402
403 static int assigned_device_enable_guest_intx(struct kvm *kvm,
404 struct kvm_assigned_dev_kernel *dev,
405 struct kvm_assigned_irq *irq)
406 {
407 dev->guest_irq = irq->guest_irq;
408 dev->ack_notifier.gsi = irq->guest_irq;
409 return 0;
410 }
411
412 #ifdef __KVM_HAVE_MSI
413 static int assigned_device_enable_guest_msi(struct kvm *kvm,
414 struct kvm_assigned_dev_kernel *dev,
415 struct kvm_assigned_irq *irq)
416 {
417 dev->guest_irq = irq->guest_irq;
418 dev->ack_notifier.gsi = -1;
419 dev->host_irq_disabled = false;
420 return 0;
421 }
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425 struct kvm_assigned_dev_kernel *dev,
426 struct kvm_assigned_irq *irq)
427 {
428 dev->guest_irq = irq->guest_irq;
429 dev->ack_notifier.gsi = -1;
430 dev->host_irq_disabled = false;
431 return 0;
432 }
433 #endif
434
435 static int assign_host_irq(struct kvm *kvm,
436 struct kvm_assigned_dev_kernel *dev,
437 __u32 host_irq_type)
438 {
439 int r = -EEXIST;
440
441 if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
442 return r;
443
444 switch (host_irq_type) {
445 case KVM_DEV_IRQ_HOST_INTX:
446 r = assigned_device_enable_host_intx(kvm, dev);
447 break;
448 #ifdef __KVM_HAVE_MSI
449 case KVM_DEV_IRQ_HOST_MSI:
450 r = assigned_device_enable_host_msi(kvm, dev);
451 break;
452 #endif
453 #ifdef __KVM_HAVE_MSIX
454 case KVM_DEV_IRQ_HOST_MSIX:
455 r = assigned_device_enable_host_msix(kvm, dev);
456 break;
457 #endif
458 default:
459 r = -EINVAL;
460 }
461
462 if (!r)
463 dev->irq_requested_type |= host_irq_type;
464
465 return r;
466 }
467
468 static int assign_guest_irq(struct kvm *kvm,
469 struct kvm_assigned_dev_kernel *dev,
470 struct kvm_assigned_irq *irq,
471 unsigned long guest_irq_type)
472 {
473 int id;
474 int r = -EEXIST;
475
476 if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
477 return r;
478
479 id = kvm_request_irq_source_id(kvm);
480 if (id < 0)
481 return id;
482
483 dev->irq_source_id = id;
484
485 switch (guest_irq_type) {
486 case KVM_DEV_IRQ_GUEST_INTX:
487 r = assigned_device_enable_guest_intx(kvm, dev, irq);
488 break;
489 #ifdef __KVM_HAVE_MSI
490 case KVM_DEV_IRQ_GUEST_MSI:
491 r = assigned_device_enable_guest_msi(kvm, dev, irq);
492 break;
493 #endif
494 #ifdef __KVM_HAVE_MSIX
495 case KVM_DEV_IRQ_GUEST_MSIX:
496 r = assigned_device_enable_guest_msix(kvm, dev, irq);
497 break;
498 #endif
499 default:
500 r = -EINVAL;
501 }
502
503 if (!r) {
504 dev->irq_requested_type |= guest_irq_type;
505 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
506 } else
507 kvm_free_irq_source_id(kvm, dev->irq_source_id);
508
509 return r;
510 }
511
512 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
513 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
514 struct kvm_assigned_irq *assigned_irq)
515 {
516 int r = -EINVAL;
517 struct kvm_assigned_dev_kernel *match;
518 unsigned long host_irq_type, guest_irq_type;
519
520 if (!capable(CAP_SYS_RAWIO))
521 return -EPERM;
522
523 if (!irqchip_in_kernel(kvm))
524 return r;
525
526 mutex_lock(&kvm->lock);
527 r = -ENODEV;
528 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
529 assigned_irq->assigned_dev_id);
530 if (!match)
531 goto out;
532
533 host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
534 guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
535
536 r = -EINVAL;
537 /* can only assign one type at a time */
538 if (hweight_long(host_irq_type) > 1)
539 goto out;
540 if (hweight_long(guest_irq_type) > 1)
541 goto out;
542 if (host_irq_type == 0 && guest_irq_type == 0)
543 goto out;
544
545 r = 0;
546 if (host_irq_type)
547 r = assign_host_irq(kvm, match, host_irq_type);
548 if (r)
549 goto out;
550
551 if (guest_irq_type)
552 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
553 out:
554 mutex_unlock(&kvm->lock);
555 return r;
556 }
557
558 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
559 struct kvm_assigned_irq
560 *assigned_irq)
561 {
562 int r = -ENODEV;
563 struct kvm_assigned_dev_kernel *match;
564
565 mutex_lock(&kvm->lock);
566
567 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
568 assigned_irq->assigned_dev_id);
569 if (!match)
570 goto out;
571
572 r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
573 out:
574 mutex_unlock(&kvm->lock);
575 return r;
576 }
577
578 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
579 struct kvm_assigned_pci_dev *assigned_dev)
580 {
581 int r = 0;
582 struct kvm_assigned_dev_kernel *match;
583 struct pci_dev *dev;
584
585 down_read(&kvm->slots_lock);
586 mutex_lock(&kvm->lock);
587
588 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
589 assigned_dev->assigned_dev_id);
590 if (match) {
591 /* device already assigned */
592 r = -EEXIST;
593 goto out;
594 }
595
596 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
597 if (match == NULL) {
598 printk(KERN_INFO "%s: Couldn't allocate memory\n",
599 __func__);
600 r = -ENOMEM;
601 goto out;
602 }
603 dev = pci_get_bus_and_slot(assigned_dev->busnr,
604 assigned_dev->devfn);
605 if (!dev) {
606 printk(KERN_INFO "%s: host device not found\n", __func__);
607 r = -EINVAL;
608 goto out_free;
609 }
610 if (pci_enable_device(dev)) {
611 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
612 r = -EBUSY;
613 goto out_put;
614 }
615 r = pci_request_regions(dev, "kvm_assigned_device");
616 if (r) {
617 printk(KERN_INFO "%s: Could not get access to device regions\n",
618 __func__);
619 goto out_disable;
620 }
621
622 pci_reset_function(dev);
623
624 match->assigned_dev_id = assigned_dev->assigned_dev_id;
625 match->host_busnr = assigned_dev->busnr;
626 match->host_devfn = assigned_dev->devfn;
627 match->flags = assigned_dev->flags;
628 match->dev = dev;
629 spin_lock_init(&match->assigned_dev_lock);
630 match->irq_source_id = -1;
631 match->kvm = kvm;
632 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
633 INIT_WORK(&match->interrupt_work,
634 kvm_assigned_dev_interrupt_work_handler);
635
636 list_add(&match->list, &kvm->arch.assigned_dev_head);
637
638 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
639 if (!kvm->arch.iommu_domain) {
640 r = kvm_iommu_map_guest(kvm);
641 if (r)
642 goto out_list_del;
643 }
644 r = kvm_assign_device(kvm, match);
645 if (r)
646 goto out_list_del;
647 }
648
649 out:
650 mutex_unlock(&kvm->lock);
651 up_read(&kvm->slots_lock);
652 return r;
653 out_list_del:
654 list_del(&match->list);
655 pci_release_regions(dev);
656 out_disable:
657 pci_disable_device(dev);
658 out_put:
659 pci_dev_put(dev);
660 out_free:
661 kfree(match);
662 mutex_unlock(&kvm->lock);
663 up_read(&kvm->slots_lock);
664 return r;
665 }
666 #endif
667
668 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
669 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
670 struct kvm_assigned_pci_dev *assigned_dev)
671 {
672 int r = 0;
673 struct kvm_assigned_dev_kernel *match;
674
675 mutex_lock(&kvm->lock);
676
677 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
678 assigned_dev->assigned_dev_id);
679 if (!match) {
680 printk(KERN_INFO "%s: device hasn't been assigned before, "
681 "so cannot be deassigned\n", __func__);
682 r = -EINVAL;
683 goto out;
684 }
685
686 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
687 kvm_deassign_device(kvm, match);
688
689 kvm_free_assigned_device(kvm, match);
690
691 out:
692 mutex_unlock(&kvm->lock);
693 return r;
694 }
695 #endif
696
697 inline int kvm_is_mmio_pfn(pfn_t pfn)
698 {
699 if (pfn_valid(pfn)) {
700 struct page *page = compound_head(pfn_to_page(pfn));
701 return PageReserved(page);
702 }
703
704 return true;
705 }
706
707 /*
708 * Switches to specified vcpu, until a matching vcpu_put()
709 */
710 void vcpu_load(struct kvm_vcpu *vcpu)
711 {
712 int cpu;
713
714 mutex_lock(&vcpu->mutex);
715 cpu = get_cpu();
716 preempt_notifier_register(&vcpu->preempt_notifier);
717 kvm_arch_vcpu_load(vcpu, cpu);
718 put_cpu();
719 }
720
721 void vcpu_put(struct kvm_vcpu *vcpu)
722 {
723 preempt_disable();
724 kvm_arch_vcpu_put(vcpu);
725 preempt_notifier_unregister(&vcpu->preempt_notifier);
726 preempt_enable();
727 mutex_unlock(&vcpu->mutex);
728 }
729
730 static void ack_flush(void *_completed)
731 {
732 }
733
734 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
735 {
736 int i, cpu, me;
737 cpumask_var_t cpus;
738 bool called = true;
739 struct kvm_vcpu *vcpu;
740
741 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
742 cpumask_clear(cpus);
743
744 me = get_cpu();
745 spin_lock(&kvm->requests_lock);
746 kvm_for_each_vcpu(i, vcpu, kvm) {
747 if (test_and_set_bit(req, &vcpu->requests))
748 continue;
749 cpu = vcpu->cpu;
750 if (cpus != NULL && cpu != -1 && cpu != me)
751 cpumask_set_cpu(cpu, cpus);
752 }
753 if (unlikely(cpus == NULL))
754 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
755 else if (!cpumask_empty(cpus))
756 smp_call_function_many(cpus, ack_flush, NULL, 1);
757 else
758 called = false;
759 spin_unlock(&kvm->requests_lock);
760 put_cpu();
761 free_cpumask_var(cpus);
762 return called;
763 }
764
765 void kvm_flush_remote_tlbs(struct kvm *kvm)
766 {
767 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
768 ++kvm->stat.remote_tlb_flush;
769 }
770
771 void kvm_reload_remote_mmus(struct kvm *kvm)
772 {
773 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
774 }
775
776 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
777 {
778 struct page *page;
779 int r;
780
781 mutex_init(&vcpu->mutex);
782 vcpu->cpu = -1;
783 vcpu->kvm = kvm;
784 vcpu->vcpu_id = id;
785 init_waitqueue_head(&vcpu->wq);
786
787 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
788 if (!page) {
789 r = -ENOMEM;
790 goto fail;
791 }
792 vcpu->run = page_address(page);
793
794 r = kvm_arch_vcpu_init(vcpu);
795 if (r < 0)
796 goto fail_free_run;
797 return 0;
798
799 fail_free_run:
800 free_page((unsigned long)vcpu->run);
801 fail:
802 return r;
803 }
804 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
805
806 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
807 {
808 kvm_arch_vcpu_uninit(vcpu);
809 free_page((unsigned long)vcpu->run);
810 }
811 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
812
813 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
814 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
815 {
816 return container_of(mn, struct kvm, mmu_notifier);
817 }
818
819 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
820 struct mm_struct *mm,
821 unsigned long address)
822 {
823 struct kvm *kvm = mmu_notifier_to_kvm(mn);
824 int need_tlb_flush;
825
826 /*
827 * When ->invalidate_page runs, the linux pte has been zapped
828 * already but the page is still allocated until
829 * ->invalidate_page returns. So if we increase the sequence
830 * here the kvm page fault will notice if the spte can't be
831 * established because the page is going to be freed. If
832 * instead the kvm page fault establishes the spte before
833 * ->invalidate_page runs, kvm_unmap_hva will release it
834 * before returning.
835 *
836 * The sequence increase only need to be seen at spin_unlock
837 * time, and not at spin_lock time.
838 *
839 * Increasing the sequence after the spin_unlock would be
840 * unsafe because the kvm page fault could then establish the
841 * pte after kvm_unmap_hva returned, without noticing the page
842 * is going to be freed.
843 */
844 spin_lock(&kvm->mmu_lock);
845 kvm->mmu_notifier_seq++;
846 need_tlb_flush = kvm_unmap_hva(kvm, address);
847 spin_unlock(&kvm->mmu_lock);
848
849 /* we've to flush the tlb before the pages can be freed */
850 if (need_tlb_flush)
851 kvm_flush_remote_tlbs(kvm);
852
853 }
854
855 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
856 struct mm_struct *mm,
857 unsigned long start,
858 unsigned long end)
859 {
860 struct kvm *kvm = mmu_notifier_to_kvm(mn);
861 int need_tlb_flush = 0;
862
863 spin_lock(&kvm->mmu_lock);
864 /*
865 * The count increase must become visible at unlock time as no
866 * spte can be established without taking the mmu_lock and
867 * count is also read inside the mmu_lock critical section.
868 */
869 kvm->mmu_notifier_count++;
870 for (; start < end; start += PAGE_SIZE)
871 need_tlb_flush |= kvm_unmap_hva(kvm, start);
872 spin_unlock(&kvm->mmu_lock);
873
874 /* we've to flush the tlb before the pages can be freed */
875 if (need_tlb_flush)
876 kvm_flush_remote_tlbs(kvm);
877 }
878
879 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
880 struct mm_struct *mm,
881 unsigned long start,
882 unsigned long end)
883 {
884 struct kvm *kvm = mmu_notifier_to_kvm(mn);
885
886 spin_lock(&kvm->mmu_lock);
887 /*
888 * This sequence increase will notify the kvm page fault that
889 * the page that is going to be mapped in the spte could have
890 * been freed.
891 */
892 kvm->mmu_notifier_seq++;
893 /*
894 * The above sequence increase must be visible before the
895 * below count decrease but both values are read by the kvm
896 * page fault under mmu_lock spinlock so we don't need to add
897 * a smb_wmb() here in between the two.
898 */
899 kvm->mmu_notifier_count--;
900 spin_unlock(&kvm->mmu_lock);
901
902 BUG_ON(kvm->mmu_notifier_count < 0);
903 }
904
905 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
906 struct mm_struct *mm,
907 unsigned long address)
908 {
909 struct kvm *kvm = mmu_notifier_to_kvm(mn);
910 int young;
911
912 spin_lock(&kvm->mmu_lock);
913 young = kvm_age_hva(kvm, address);
914 spin_unlock(&kvm->mmu_lock);
915
916 if (young)
917 kvm_flush_remote_tlbs(kvm);
918
919 return young;
920 }
921
922 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
923 struct mm_struct *mm)
924 {
925 struct kvm *kvm = mmu_notifier_to_kvm(mn);
926 kvm_arch_flush_shadow(kvm);
927 }
928
929 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
930 .invalidate_page = kvm_mmu_notifier_invalidate_page,
931 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
932 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
933 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
934 .release = kvm_mmu_notifier_release,
935 };
936 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
937
938 static struct kvm *kvm_create_vm(void)
939 {
940 struct kvm *kvm = kvm_arch_create_vm();
941 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
942 struct page *page;
943 #endif
944
945 if (IS_ERR(kvm))
946 goto out;
947 #ifdef CONFIG_HAVE_KVM_IRQCHIP
948 INIT_LIST_HEAD(&kvm->irq_routing);
949 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
950 #endif
951
952 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
953 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
954 if (!page) {
955 kfree(kvm);
956 return ERR_PTR(-ENOMEM);
957 }
958 kvm->coalesced_mmio_ring =
959 (struct kvm_coalesced_mmio_ring *)page_address(page);
960 #endif
961
962 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
963 {
964 int err;
965 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
966 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
967 if (err) {
968 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
969 put_page(page);
970 #endif
971 kfree(kvm);
972 return ERR_PTR(err);
973 }
974 }
975 #endif
976
977 kvm->mm = current->mm;
978 atomic_inc(&kvm->mm->mm_count);
979 spin_lock_init(&kvm->mmu_lock);
980 spin_lock_init(&kvm->requests_lock);
981 kvm_io_bus_init(&kvm->pio_bus);
982 kvm_irqfd_init(kvm);
983 mutex_init(&kvm->lock);
984 mutex_init(&kvm->irq_lock);
985 kvm_io_bus_init(&kvm->mmio_bus);
986 init_rwsem(&kvm->slots_lock);
987 atomic_set(&kvm->users_count, 1);
988 spin_lock(&kvm_lock);
989 list_add(&kvm->vm_list, &vm_list);
990 spin_unlock(&kvm_lock);
991 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
992 kvm_coalesced_mmio_init(kvm);
993 #endif
994 out:
995 return kvm;
996 }
997
998 /*
999 * Free any memory in @free but not in @dont.
1000 */
1001 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1002 struct kvm_memory_slot *dont)
1003 {
1004 int i;
1005
1006 if (!dont || free->rmap != dont->rmap)
1007 vfree(free->rmap);
1008
1009 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1010 vfree(free->dirty_bitmap);
1011
1012
1013 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1014 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
1015 vfree(free->lpage_info[i]);
1016 free->lpage_info[i] = NULL;
1017 }
1018 }
1019
1020 free->npages = 0;
1021 free->dirty_bitmap = NULL;
1022 free->rmap = NULL;
1023 }
1024
1025 void kvm_free_physmem(struct kvm *kvm)
1026 {
1027 int i;
1028
1029 for (i = 0; i < kvm->nmemslots; ++i)
1030 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1031 }
1032
1033 static void kvm_destroy_vm(struct kvm *kvm)
1034 {
1035 struct mm_struct *mm = kvm->mm;
1036
1037 kvm_arch_sync_events(kvm);
1038 spin_lock(&kvm_lock);
1039 list_del(&kvm->vm_list);
1040 spin_unlock(&kvm_lock);
1041 kvm_free_irq_routing(kvm);
1042 kvm_io_bus_destroy(&kvm->pio_bus);
1043 kvm_io_bus_destroy(&kvm->mmio_bus);
1044 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1045 if (kvm->coalesced_mmio_ring != NULL)
1046 free_page((unsigned long)kvm->coalesced_mmio_ring);
1047 #endif
1048 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1049 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1050 #else
1051 kvm_arch_flush_shadow(kvm);
1052 #endif
1053 kvm_arch_destroy_vm(kvm);
1054 mmdrop(mm);
1055 }
1056
1057 void kvm_get_kvm(struct kvm *kvm)
1058 {
1059 atomic_inc(&kvm->users_count);
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1062
1063 void kvm_put_kvm(struct kvm *kvm)
1064 {
1065 if (atomic_dec_and_test(&kvm->users_count))
1066 kvm_destroy_vm(kvm);
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1069
1070
1071 static int kvm_vm_release(struct inode *inode, struct file *filp)
1072 {
1073 struct kvm *kvm = filp->private_data;
1074
1075 kvm_irqfd_release(kvm);
1076
1077 kvm_put_kvm(kvm);
1078 return 0;
1079 }
1080
1081 /*
1082 * Allocate some memory and give it an address in the guest physical address
1083 * space.
1084 *
1085 * Discontiguous memory is allowed, mostly for framebuffers.
1086 *
1087 * Must be called holding mmap_sem for write.
1088 */
1089 int __kvm_set_memory_region(struct kvm *kvm,
1090 struct kvm_userspace_memory_region *mem,
1091 int user_alloc)
1092 {
1093 int r;
1094 gfn_t base_gfn;
1095 unsigned long npages, ugfn;
1096 int lpages;
1097 unsigned long i, j;
1098 struct kvm_memory_slot *memslot;
1099 struct kvm_memory_slot old, new;
1100
1101 r = -EINVAL;
1102 /* General sanity checks */
1103 if (mem->memory_size & (PAGE_SIZE - 1))
1104 goto out;
1105 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1106 goto out;
1107 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1108 goto out;
1109 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1110 goto out;
1111 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1112 goto out;
1113
1114 memslot = &kvm->memslots[mem->slot];
1115 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1116 npages = mem->memory_size >> PAGE_SHIFT;
1117
1118 if (!npages)
1119 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1120
1121 new = old = *memslot;
1122
1123 new.base_gfn = base_gfn;
1124 new.npages = npages;
1125 new.flags = mem->flags;
1126
1127 /* Disallow changing a memory slot's size. */
1128 r = -EINVAL;
1129 if (npages && old.npages && npages != old.npages)
1130 goto out_free;
1131
1132 /* Check for overlaps */
1133 r = -EEXIST;
1134 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1135 struct kvm_memory_slot *s = &kvm->memslots[i];
1136
1137 if (s == memslot || !s->npages)
1138 continue;
1139 if (!((base_gfn + npages <= s->base_gfn) ||
1140 (base_gfn >= s->base_gfn + s->npages)))
1141 goto out_free;
1142 }
1143
1144 /* Free page dirty bitmap if unneeded */
1145 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1146 new.dirty_bitmap = NULL;
1147
1148 r = -ENOMEM;
1149
1150 /* Allocate if a slot is being created */
1151 #ifndef CONFIG_S390
1152 if (npages && !new.rmap) {
1153 new.rmap = vmalloc(npages * sizeof(struct page *));
1154
1155 if (!new.rmap)
1156 goto out_free;
1157
1158 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1159
1160 new.user_alloc = user_alloc;
1161 /*
1162 * hva_to_rmmap() serialzies with the mmu_lock and to be
1163 * safe it has to ignore memslots with !user_alloc &&
1164 * !userspace_addr.
1165 */
1166 if (user_alloc)
1167 new.userspace_addr = mem->userspace_addr;
1168 else
1169 new.userspace_addr = 0;
1170 }
1171 if (!npages)
1172 goto skip_lpage;
1173
1174 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1175 int level = i + 2;
1176
1177 /* Avoid unused variable warning if no large pages */
1178 (void)level;
1179
1180 if (new.lpage_info[i])
1181 continue;
1182
1183 lpages = 1 + (base_gfn + npages - 1) /
1184 KVM_PAGES_PER_HPAGE(level);
1185 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
1186
1187 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
1188
1189 if (!new.lpage_info[i])
1190 goto out_free;
1191
1192 memset(new.lpage_info[i], 0,
1193 lpages * sizeof(*new.lpage_info[i]));
1194
1195 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
1196 new.lpage_info[i][0].write_count = 1;
1197 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
1198 new.lpage_info[i][lpages - 1].write_count = 1;
1199 ugfn = new.userspace_addr >> PAGE_SHIFT;
1200 /*
1201 * If the gfn and userspace address are not aligned wrt each
1202 * other, or if explicitly asked to, disable large page
1203 * support for this slot
1204 */
1205 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
1206 !largepages_enabled)
1207 for (j = 0; j < lpages; ++j)
1208 new.lpage_info[i][j].write_count = 1;
1209 }
1210
1211 skip_lpage:
1212
1213 /* Allocate page dirty bitmap if needed */
1214 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1215 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1216
1217 new.dirty_bitmap = vmalloc(dirty_bytes);
1218 if (!new.dirty_bitmap)
1219 goto out_free;
1220 memset(new.dirty_bitmap, 0, dirty_bytes);
1221 if (old.npages)
1222 kvm_arch_flush_shadow(kvm);
1223 }
1224 #else /* not defined CONFIG_S390 */
1225 new.user_alloc = user_alloc;
1226 if (user_alloc)
1227 new.userspace_addr = mem->userspace_addr;
1228 #endif /* not defined CONFIG_S390 */
1229
1230 if (!npages)
1231 kvm_arch_flush_shadow(kvm);
1232
1233 spin_lock(&kvm->mmu_lock);
1234 if (mem->slot >= kvm->nmemslots)
1235 kvm->nmemslots = mem->slot + 1;
1236
1237 *memslot = new;
1238 spin_unlock(&kvm->mmu_lock);
1239
1240 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1241 if (r) {
1242 spin_lock(&kvm->mmu_lock);
1243 *memslot = old;
1244 spin_unlock(&kvm->mmu_lock);
1245 goto out_free;
1246 }
1247
1248 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1249 /* Slot deletion case: we have to update the current slot */
1250 spin_lock(&kvm->mmu_lock);
1251 if (!npages)
1252 *memslot = old;
1253 spin_unlock(&kvm->mmu_lock);
1254 #ifdef CONFIG_DMAR
1255 /* map the pages in iommu page table */
1256 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1257 if (r)
1258 goto out;
1259 #endif
1260 return 0;
1261
1262 out_free:
1263 kvm_free_physmem_slot(&new, &old);
1264 out:
1265 return r;
1266
1267 }
1268 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1269
1270 int kvm_set_memory_region(struct kvm *kvm,
1271 struct kvm_userspace_memory_region *mem,
1272 int user_alloc)
1273 {
1274 int r;
1275
1276 down_write(&kvm->slots_lock);
1277 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1278 up_write(&kvm->slots_lock);
1279 return r;
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1282
1283 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1284 struct
1285 kvm_userspace_memory_region *mem,
1286 int user_alloc)
1287 {
1288 if (mem->slot >= KVM_MEMORY_SLOTS)
1289 return -EINVAL;
1290 return kvm_set_memory_region(kvm, mem, user_alloc);
1291 }
1292
1293 int kvm_get_dirty_log(struct kvm *kvm,
1294 struct kvm_dirty_log *log, int *is_dirty)
1295 {
1296 struct kvm_memory_slot *memslot;
1297 int r, i;
1298 int n;
1299 unsigned long any = 0;
1300
1301 r = -EINVAL;
1302 if (log->slot >= KVM_MEMORY_SLOTS)
1303 goto out;
1304
1305 memslot = &kvm->memslots[log->slot];
1306 r = -ENOENT;
1307 if (!memslot->dirty_bitmap)
1308 goto out;
1309
1310 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1311
1312 for (i = 0; !any && i < n/sizeof(long); ++i)
1313 any = memslot->dirty_bitmap[i];
1314
1315 r = -EFAULT;
1316 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1317 goto out;
1318
1319 if (any)
1320 *is_dirty = 1;
1321
1322 r = 0;
1323 out:
1324 return r;
1325 }
1326
1327 void kvm_disable_largepages(void)
1328 {
1329 largepages_enabled = false;
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1332
1333 int is_error_page(struct page *page)
1334 {
1335 return page == bad_page;
1336 }
1337 EXPORT_SYMBOL_GPL(is_error_page);
1338
1339 int is_error_pfn(pfn_t pfn)
1340 {
1341 return pfn == bad_pfn;
1342 }
1343 EXPORT_SYMBOL_GPL(is_error_pfn);
1344
1345 static inline unsigned long bad_hva(void)
1346 {
1347 return PAGE_OFFSET;
1348 }
1349
1350 int kvm_is_error_hva(unsigned long addr)
1351 {
1352 return addr == bad_hva();
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1355
1356 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1357 {
1358 int i;
1359
1360 for (i = 0; i < kvm->nmemslots; ++i) {
1361 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1362
1363 if (gfn >= memslot->base_gfn
1364 && gfn < memslot->base_gfn + memslot->npages)
1365 return memslot;
1366 }
1367 return NULL;
1368 }
1369 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1370
1371 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1372 {
1373 gfn = unalias_gfn(kvm, gfn);
1374 return gfn_to_memslot_unaliased(kvm, gfn);
1375 }
1376
1377 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1378 {
1379 int i;
1380
1381 gfn = unalias_gfn(kvm, gfn);
1382 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1383 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1384
1385 if (gfn >= memslot->base_gfn
1386 && gfn < memslot->base_gfn + memslot->npages)
1387 return 1;
1388 }
1389 return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1392
1393 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1394 {
1395 struct kvm_memory_slot *slot;
1396
1397 gfn = unalias_gfn(kvm, gfn);
1398 slot = gfn_to_memslot_unaliased(kvm, gfn);
1399 if (!slot)
1400 return bad_hva();
1401 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1402 }
1403 EXPORT_SYMBOL_GPL(gfn_to_hva);
1404
1405 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1406 {
1407 struct page *page[1];
1408 unsigned long addr;
1409 int npages;
1410 pfn_t pfn;
1411
1412 might_sleep();
1413
1414 addr = gfn_to_hva(kvm, gfn);
1415 if (kvm_is_error_hva(addr)) {
1416 get_page(bad_page);
1417 return page_to_pfn(bad_page);
1418 }
1419
1420 npages = get_user_pages_fast(addr, 1, 1, page);
1421
1422 if (unlikely(npages != 1)) {
1423 struct vm_area_struct *vma;
1424
1425 down_read(&current->mm->mmap_sem);
1426 vma = find_vma(current->mm, addr);
1427
1428 if (vma == NULL || addr < vma->vm_start ||
1429 !(vma->vm_flags & VM_PFNMAP)) {
1430 up_read(&current->mm->mmap_sem);
1431 get_page(bad_page);
1432 return page_to_pfn(bad_page);
1433 }
1434
1435 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1436 up_read(&current->mm->mmap_sem);
1437 BUG_ON(!kvm_is_mmio_pfn(pfn));
1438 } else
1439 pfn = page_to_pfn(page[0]);
1440
1441 return pfn;
1442 }
1443
1444 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1445
1446 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1447 {
1448 pfn_t pfn;
1449
1450 pfn = gfn_to_pfn(kvm, gfn);
1451 if (!kvm_is_mmio_pfn(pfn))
1452 return pfn_to_page(pfn);
1453
1454 WARN_ON(kvm_is_mmio_pfn(pfn));
1455
1456 get_page(bad_page);
1457 return bad_page;
1458 }
1459
1460 EXPORT_SYMBOL_GPL(gfn_to_page);
1461
1462 void kvm_release_page_clean(struct page *page)
1463 {
1464 kvm_release_pfn_clean(page_to_pfn(page));
1465 }
1466 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1467
1468 void kvm_release_pfn_clean(pfn_t pfn)
1469 {
1470 if (!kvm_is_mmio_pfn(pfn))
1471 put_page(pfn_to_page(pfn));
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1474
1475 void kvm_release_page_dirty(struct page *page)
1476 {
1477 kvm_release_pfn_dirty(page_to_pfn(page));
1478 }
1479 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1480
1481 void kvm_release_pfn_dirty(pfn_t pfn)
1482 {
1483 kvm_set_pfn_dirty(pfn);
1484 kvm_release_pfn_clean(pfn);
1485 }
1486 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1487
1488 void kvm_set_page_dirty(struct page *page)
1489 {
1490 kvm_set_pfn_dirty(page_to_pfn(page));
1491 }
1492 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1493
1494 void kvm_set_pfn_dirty(pfn_t pfn)
1495 {
1496 if (!kvm_is_mmio_pfn(pfn)) {
1497 struct page *page = pfn_to_page(pfn);
1498 if (!PageReserved(page))
1499 SetPageDirty(page);
1500 }
1501 }
1502 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1503
1504 void kvm_set_pfn_accessed(pfn_t pfn)
1505 {
1506 if (!kvm_is_mmio_pfn(pfn))
1507 mark_page_accessed(pfn_to_page(pfn));
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1510
1511 void kvm_get_pfn(pfn_t pfn)
1512 {
1513 if (!kvm_is_mmio_pfn(pfn))
1514 get_page(pfn_to_page(pfn));
1515 }
1516 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1517
1518 static int next_segment(unsigned long len, int offset)
1519 {
1520 if (len > PAGE_SIZE - offset)
1521 return PAGE_SIZE - offset;
1522 else
1523 return len;
1524 }
1525
1526 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1527 int len)
1528 {
1529 int r;
1530 unsigned long addr;
1531
1532 addr = gfn_to_hva(kvm, gfn);
1533 if (kvm_is_error_hva(addr))
1534 return -EFAULT;
1535 r = copy_from_user(data, (void __user *)addr + offset, len);
1536 if (r)
1537 return -EFAULT;
1538 return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1541
1542 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1543 {
1544 gfn_t gfn = gpa >> PAGE_SHIFT;
1545 int seg;
1546 int offset = offset_in_page(gpa);
1547 int ret;
1548
1549 while ((seg = next_segment(len, offset)) != 0) {
1550 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1551 if (ret < 0)
1552 return ret;
1553 offset = 0;
1554 len -= seg;
1555 data += seg;
1556 ++gfn;
1557 }
1558 return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(kvm_read_guest);
1561
1562 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1563 unsigned long len)
1564 {
1565 int r;
1566 unsigned long addr;
1567 gfn_t gfn = gpa >> PAGE_SHIFT;
1568 int offset = offset_in_page(gpa);
1569
1570 addr = gfn_to_hva(kvm, gfn);
1571 if (kvm_is_error_hva(addr))
1572 return -EFAULT;
1573 pagefault_disable();
1574 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1575 pagefault_enable();
1576 if (r)
1577 return -EFAULT;
1578 return 0;
1579 }
1580 EXPORT_SYMBOL(kvm_read_guest_atomic);
1581
1582 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1583 int offset, int len)
1584 {
1585 int r;
1586 unsigned long addr;
1587
1588 addr = gfn_to_hva(kvm, gfn);
1589 if (kvm_is_error_hva(addr))
1590 return -EFAULT;
1591 r = copy_to_user((void __user *)addr + offset, data, len);
1592 if (r)
1593 return -EFAULT;
1594 mark_page_dirty(kvm, gfn);
1595 return 0;
1596 }
1597 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1598
1599 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1600 unsigned long len)
1601 {
1602 gfn_t gfn = gpa >> PAGE_SHIFT;
1603 int seg;
1604 int offset = offset_in_page(gpa);
1605 int ret;
1606
1607 while ((seg = next_segment(len, offset)) != 0) {
1608 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1609 if (ret < 0)
1610 return ret;
1611 offset = 0;
1612 len -= seg;
1613 data += seg;
1614 ++gfn;
1615 }
1616 return 0;
1617 }
1618
1619 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1620 {
1621 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1622 }
1623 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1624
1625 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1626 {
1627 gfn_t gfn = gpa >> PAGE_SHIFT;
1628 int seg;
1629 int offset = offset_in_page(gpa);
1630 int ret;
1631
1632 while ((seg = next_segment(len, offset)) != 0) {
1633 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1634 if (ret < 0)
1635 return ret;
1636 offset = 0;
1637 len -= seg;
1638 ++gfn;
1639 }
1640 return 0;
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1643
1644 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1645 {
1646 struct kvm_memory_slot *memslot;
1647
1648 gfn = unalias_gfn(kvm, gfn);
1649 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1650 if (memslot && memslot->dirty_bitmap) {
1651 unsigned long rel_gfn = gfn - memslot->base_gfn;
1652
1653 /* avoid RMW */
1654 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1655 set_bit(rel_gfn, memslot->dirty_bitmap);
1656 }
1657 }
1658
1659 /*
1660 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1661 */
1662 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1663 {
1664 DEFINE_WAIT(wait);
1665
1666 for (;;) {
1667 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1668
1669 if ((kvm_arch_interrupt_allowed(vcpu) &&
1670 kvm_cpu_has_interrupt(vcpu)) ||
1671 kvm_arch_vcpu_runnable(vcpu)) {
1672 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1673 break;
1674 }
1675 if (kvm_cpu_has_pending_timer(vcpu))
1676 break;
1677 if (signal_pending(current))
1678 break;
1679
1680 vcpu_put(vcpu);
1681 schedule();
1682 vcpu_load(vcpu);
1683 }
1684
1685 finish_wait(&vcpu->wq, &wait);
1686 }
1687
1688 void kvm_resched(struct kvm_vcpu *vcpu)
1689 {
1690 if (!need_resched())
1691 return;
1692 cond_resched();
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_resched);
1695
1696 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1697 {
1698 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1699 struct page *page;
1700
1701 if (vmf->pgoff == 0)
1702 page = virt_to_page(vcpu->run);
1703 #ifdef CONFIG_X86
1704 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1705 page = virt_to_page(vcpu->arch.pio_data);
1706 #endif
1707 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1708 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1709 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1710 #endif
1711 else
1712 return VM_FAULT_SIGBUS;
1713 get_page(page);
1714 vmf->page = page;
1715 return 0;
1716 }
1717
1718 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1719 .fault = kvm_vcpu_fault,
1720 };
1721
1722 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1723 {
1724 vma->vm_ops = &kvm_vcpu_vm_ops;
1725 return 0;
1726 }
1727
1728 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1729 {
1730 struct kvm_vcpu *vcpu = filp->private_data;
1731
1732 kvm_put_kvm(vcpu->kvm);
1733 return 0;
1734 }
1735
1736 static struct file_operations kvm_vcpu_fops = {
1737 .release = kvm_vcpu_release,
1738 .unlocked_ioctl = kvm_vcpu_ioctl,
1739 .compat_ioctl = kvm_vcpu_ioctl,
1740 .mmap = kvm_vcpu_mmap,
1741 };
1742
1743 /*
1744 * Allocates an inode for the vcpu.
1745 */
1746 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1747 {
1748 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1749 }
1750
1751 /*
1752 * Creates some virtual cpus. Good luck creating more than one.
1753 */
1754 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1755 {
1756 int r;
1757 struct kvm_vcpu *vcpu, *v;
1758
1759 vcpu = kvm_arch_vcpu_create(kvm, id);
1760 if (IS_ERR(vcpu))
1761 return PTR_ERR(vcpu);
1762
1763 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1764
1765 r = kvm_arch_vcpu_setup(vcpu);
1766 if (r)
1767 return r;
1768
1769 mutex_lock(&kvm->lock);
1770 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1771 r = -EINVAL;
1772 goto vcpu_destroy;
1773 }
1774
1775 kvm_for_each_vcpu(r, v, kvm)
1776 if (v->vcpu_id == id) {
1777 r = -EEXIST;
1778 goto vcpu_destroy;
1779 }
1780
1781 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1782
1783 /* Now it's all set up, let userspace reach it */
1784 kvm_get_kvm(kvm);
1785 r = create_vcpu_fd(vcpu);
1786 if (r < 0) {
1787 kvm_put_kvm(kvm);
1788 goto vcpu_destroy;
1789 }
1790
1791 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1792 smp_wmb();
1793 atomic_inc(&kvm->online_vcpus);
1794
1795 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1796 if (kvm->bsp_vcpu_id == id)
1797 kvm->bsp_vcpu = vcpu;
1798 #endif
1799 mutex_unlock(&kvm->lock);
1800 return r;
1801
1802 vcpu_destroy:
1803 mutex_unlock(&kvm->lock);
1804 kvm_arch_vcpu_destroy(vcpu);
1805 return r;
1806 }
1807
1808 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1809 {
1810 if (sigset) {
1811 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1812 vcpu->sigset_active = 1;
1813 vcpu->sigset = *sigset;
1814 } else
1815 vcpu->sigset_active = 0;
1816 return 0;
1817 }
1818
1819 #ifdef __KVM_HAVE_MSIX
1820 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1821 struct kvm_assigned_msix_nr *entry_nr)
1822 {
1823 int r = 0;
1824 struct kvm_assigned_dev_kernel *adev;
1825
1826 mutex_lock(&kvm->lock);
1827
1828 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1829 entry_nr->assigned_dev_id);
1830 if (!adev) {
1831 r = -EINVAL;
1832 goto msix_nr_out;
1833 }
1834
1835 if (adev->entries_nr == 0) {
1836 adev->entries_nr = entry_nr->entry_nr;
1837 if (adev->entries_nr == 0 ||
1838 adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1839 r = -EINVAL;
1840 goto msix_nr_out;
1841 }
1842
1843 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1844 entry_nr->entry_nr,
1845 GFP_KERNEL);
1846 if (!adev->host_msix_entries) {
1847 r = -ENOMEM;
1848 goto msix_nr_out;
1849 }
1850 adev->guest_msix_entries = kzalloc(
1851 sizeof(struct kvm_guest_msix_entry) *
1852 entry_nr->entry_nr, GFP_KERNEL);
1853 if (!adev->guest_msix_entries) {
1854 kfree(adev->host_msix_entries);
1855 r = -ENOMEM;
1856 goto msix_nr_out;
1857 }
1858 } else /* Not allowed set MSI-X number twice */
1859 r = -EINVAL;
1860 msix_nr_out:
1861 mutex_unlock(&kvm->lock);
1862 return r;
1863 }
1864
1865 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1866 struct kvm_assigned_msix_entry *entry)
1867 {
1868 int r = 0, i;
1869 struct kvm_assigned_dev_kernel *adev;
1870
1871 mutex_lock(&kvm->lock);
1872
1873 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1874 entry->assigned_dev_id);
1875
1876 if (!adev) {
1877 r = -EINVAL;
1878 goto msix_entry_out;
1879 }
1880
1881 for (i = 0; i < adev->entries_nr; i++)
1882 if (adev->guest_msix_entries[i].vector == 0 ||
1883 adev->guest_msix_entries[i].entry == entry->entry) {
1884 adev->guest_msix_entries[i].entry = entry->entry;
1885 adev->guest_msix_entries[i].vector = entry->gsi;
1886 adev->host_msix_entries[i].entry = entry->entry;
1887 break;
1888 }
1889 if (i == adev->entries_nr) {
1890 r = -ENOSPC;
1891 goto msix_entry_out;
1892 }
1893
1894 msix_entry_out:
1895 mutex_unlock(&kvm->lock);
1896
1897 return r;
1898 }
1899 #endif
1900
1901 static long kvm_vcpu_ioctl(struct file *filp,
1902 unsigned int ioctl, unsigned long arg)
1903 {
1904 struct kvm_vcpu *vcpu = filp->private_data;
1905 void __user *argp = (void __user *)arg;
1906 int r;
1907 struct kvm_fpu *fpu = NULL;
1908 struct kvm_sregs *kvm_sregs = NULL;
1909
1910 if (vcpu->kvm->mm != current->mm)
1911 return -EIO;
1912 switch (ioctl) {
1913 case KVM_RUN:
1914 r = -EINVAL;
1915 if (arg)
1916 goto out;
1917 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1918 break;
1919 case KVM_GET_REGS: {
1920 struct kvm_regs *kvm_regs;
1921
1922 r = -ENOMEM;
1923 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1924 if (!kvm_regs)
1925 goto out;
1926 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1927 if (r)
1928 goto out_free1;
1929 r = -EFAULT;
1930 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1931 goto out_free1;
1932 r = 0;
1933 out_free1:
1934 kfree(kvm_regs);
1935 break;
1936 }
1937 case KVM_SET_REGS: {
1938 struct kvm_regs *kvm_regs;
1939
1940 r = -ENOMEM;
1941 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1942 if (!kvm_regs)
1943 goto out;
1944 r = -EFAULT;
1945 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1946 goto out_free2;
1947 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1948 if (r)
1949 goto out_free2;
1950 r = 0;
1951 out_free2:
1952 kfree(kvm_regs);
1953 break;
1954 }
1955 case KVM_GET_SREGS: {
1956 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1957 r = -ENOMEM;
1958 if (!kvm_sregs)
1959 goto out;
1960 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1961 if (r)
1962 goto out;
1963 r = -EFAULT;
1964 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1965 goto out;
1966 r = 0;
1967 break;
1968 }
1969 case KVM_SET_SREGS: {
1970 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1971 r = -ENOMEM;
1972 if (!kvm_sregs)
1973 goto out;
1974 r = -EFAULT;
1975 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1976 goto out;
1977 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1978 if (r)
1979 goto out;
1980 r = 0;
1981 break;
1982 }
1983 case KVM_GET_MP_STATE: {
1984 struct kvm_mp_state mp_state;
1985
1986 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1987 if (r)
1988 goto out;
1989 r = -EFAULT;
1990 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1991 goto out;
1992 r = 0;
1993 break;
1994 }
1995 case KVM_SET_MP_STATE: {
1996 struct kvm_mp_state mp_state;
1997
1998 r = -EFAULT;
1999 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2000 goto out;
2001 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2002 if (r)
2003 goto out;
2004 r = 0;
2005 break;
2006 }
2007 case KVM_TRANSLATE: {
2008 struct kvm_translation tr;
2009
2010 r = -EFAULT;
2011 if (copy_from_user(&tr, argp, sizeof tr))
2012 goto out;
2013 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2014 if (r)
2015 goto out;
2016 r = -EFAULT;
2017 if (copy_to_user(argp, &tr, sizeof tr))
2018 goto out;
2019 r = 0;
2020 break;
2021 }
2022 case KVM_SET_GUEST_DEBUG: {
2023 struct kvm_guest_debug dbg;
2024
2025 r = -EFAULT;
2026 if (copy_from_user(&dbg, argp, sizeof dbg))
2027 goto out;
2028 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2029 if (r)
2030 goto out;
2031 r = 0;
2032 break;
2033 }
2034 case KVM_SET_SIGNAL_MASK: {
2035 struct kvm_signal_mask __user *sigmask_arg = argp;
2036 struct kvm_signal_mask kvm_sigmask;
2037 sigset_t sigset, *p;
2038
2039 p = NULL;
2040 if (argp) {
2041 r = -EFAULT;
2042 if (copy_from_user(&kvm_sigmask, argp,
2043 sizeof kvm_sigmask))
2044 goto out;
2045 r = -EINVAL;
2046 if (kvm_sigmask.len != sizeof sigset)
2047 goto out;
2048 r = -EFAULT;
2049 if (copy_from_user(&sigset, sigmask_arg->sigset,
2050 sizeof sigset))
2051 goto out;
2052 p = &sigset;
2053 }
2054 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2055 break;
2056 }
2057 case KVM_GET_FPU: {
2058 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2059 r = -ENOMEM;
2060 if (!fpu)
2061 goto out;
2062 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2063 if (r)
2064 goto out;
2065 r = -EFAULT;
2066 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2067 goto out;
2068 r = 0;
2069 break;
2070 }
2071 case KVM_SET_FPU: {
2072 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2073 r = -ENOMEM;
2074 if (!fpu)
2075 goto out;
2076 r = -EFAULT;
2077 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2078 goto out;
2079 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2080 if (r)
2081 goto out;
2082 r = 0;
2083 break;
2084 }
2085 default:
2086 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2087 }
2088 out:
2089 kfree(fpu);
2090 kfree(kvm_sregs);
2091 return r;
2092 }
2093
2094 static long kvm_vm_ioctl(struct file *filp,
2095 unsigned int ioctl, unsigned long arg)
2096 {
2097 struct kvm *kvm = filp->private_data;
2098 void __user *argp = (void __user *)arg;
2099 int r;
2100
2101 if (kvm->mm != current->mm)
2102 return -EIO;
2103 switch (ioctl) {
2104 case KVM_CREATE_VCPU:
2105 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2106 if (r < 0)
2107 goto out;
2108 break;
2109 case KVM_SET_USER_MEMORY_REGION: {
2110 struct kvm_userspace_memory_region kvm_userspace_mem;
2111
2112 r = -EFAULT;
2113 if (copy_from_user(&kvm_userspace_mem, argp,
2114 sizeof kvm_userspace_mem))
2115 goto out;
2116
2117 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2118 if (r)
2119 goto out;
2120 break;
2121 }
2122 case KVM_GET_DIRTY_LOG: {
2123 struct kvm_dirty_log log;
2124
2125 r = -EFAULT;
2126 if (copy_from_user(&log, argp, sizeof log))
2127 goto out;
2128 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2129 if (r)
2130 goto out;
2131 break;
2132 }
2133 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2134 case KVM_REGISTER_COALESCED_MMIO: {
2135 struct kvm_coalesced_mmio_zone zone;
2136 r = -EFAULT;
2137 if (copy_from_user(&zone, argp, sizeof zone))
2138 goto out;
2139 r = -ENXIO;
2140 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2141 if (r)
2142 goto out;
2143 r = 0;
2144 break;
2145 }
2146 case KVM_UNREGISTER_COALESCED_MMIO: {
2147 struct kvm_coalesced_mmio_zone zone;
2148 r = -EFAULT;
2149 if (copy_from_user(&zone, argp, sizeof zone))
2150 goto out;
2151 r = -ENXIO;
2152 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2153 if (r)
2154 goto out;
2155 r = 0;
2156 break;
2157 }
2158 #endif
2159 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2160 case KVM_ASSIGN_PCI_DEVICE: {
2161 struct kvm_assigned_pci_dev assigned_dev;
2162
2163 r = -EFAULT;
2164 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2165 goto out;
2166 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2167 if (r)
2168 goto out;
2169 break;
2170 }
2171 case KVM_ASSIGN_IRQ: {
2172 r = -EOPNOTSUPP;
2173 break;
2174 }
2175 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2176 case KVM_ASSIGN_DEV_IRQ: {
2177 struct kvm_assigned_irq assigned_irq;
2178
2179 r = -EFAULT;
2180 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2181 goto out;
2182 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2183 if (r)
2184 goto out;
2185 break;
2186 }
2187 case KVM_DEASSIGN_DEV_IRQ: {
2188 struct kvm_assigned_irq assigned_irq;
2189
2190 r = -EFAULT;
2191 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2192 goto out;
2193 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2194 if (r)
2195 goto out;
2196 break;
2197 }
2198 #endif
2199 #endif
2200 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2201 case KVM_DEASSIGN_PCI_DEVICE: {
2202 struct kvm_assigned_pci_dev assigned_dev;
2203
2204 r = -EFAULT;
2205 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2206 goto out;
2207 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2208 if (r)
2209 goto out;
2210 break;
2211 }
2212 #endif
2213 #ifdef KVM_CAP_IRQ_ROUTING
2214 case KVM_SET_GSI_ROUTING: {
2215 struct kvm_irq_routing routing;
2216 struct kvm_irq_routing __user *urouting;
2217 struct kvm_irq_routing_entry *entries;
2218
2219 r = -EFAULT;
2220 if (copy_from_user(&routing, argp, sizeof(routing)))
2221 goto out;
2222 r = -EINVAL;
2223 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2224 goto out;
2225 if (routing.flags)
2226 goto out;
2227 r = -ENOMEM;
2228 entries = vmalloc(routing.nr * sizeof(*entries));
2229 if (!entries)
2230 goto out;
2231 r = -EFAULT;
2232 urouting = argp;
2233 if (copy_from_user(entries, urouting->entries,
2234 routing.nr * sizeof(*entries)))
2235 goto out_free_irq_routing;
2236 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2237 routing.flags);
2238 out_free_irq_routing:
2239 vfree(entries);
2240 break;
2241 }
2242 #ifdef __KVM_HAVE_MSIX
2243 case KVM_ASSIGN_SET_MSIX_NR: {
2244 struct kvm_assigned_msix_nr entry_nr;
2245 r = -EFAULT;
2246 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2247 goto out;
2248 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2249 if (r)
2250 goto out;
2251 break;
2252 }
2253 case KVM_ASSIGN_SET_MSIX_ENTRY: {
2254 struct kvm_assigned_msix_entry entry;
2255 r = -EFAULT;
2256 if (copy_from_user(&entry, argp, sizeof entry))
2257 goto out;
2258 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2259 if (r)
2260 goto out;
2261 break;
2262 }
2263 #endif
2264 #endif /* KVM_CAP_IRQ_ROUTING */
2265 case KVM_IRQFD: {
2266 struct kvm_irqfd data;
2267
2268 r = -EFAULT;
2269 if (copy_from_user(&data, argp, sizeof data))
2270 goto out;
2271 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2272 break;
2273 }
2274 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2275 case KVM_SET_BOOT_CPU_ID:
2276 r = 0;
2277 if (atomic_read(&kvm->online_vcpus) != 0)
2278 r = -EBUSY;
2279 else
2280 kvm->bsp_vcpu_id = arg;
2281 break;
2282 #endif
2283 default:
2284 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2285 }
2286 out:
2287 return r;
2288 }
2289
2290 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2291 {
2292 struct page *page[1];
2293 unsigned long addr;
2294 int npages;
2295 gfn_t gfn = vmf->pgoff;
2296 struct kvm *kvm = vma->vm_file->private_data;
2297
2298 addr = gfn_to_hva(kvm, gfn);
2299 if (kvm_is_error_hva(addr))
2300 return VM_FAULT_SIGBUS;
2301
2302 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2303 NULL);
2304 if (unlikely(npages != 1))
2305 return VM_FAULT_SIGBUS;
2306
2307 vmf->page = page[0];
2308 return 0;
2309 }
2310
2311 static struct vm_operations_struct kvm_vm_vm_ops = {
2312 .fault = kvm_vm_fault,
2313 };
2314
2315 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2316 {
2317 vma->vm_ops = &kvm_vm_vm_ops;
2318 return 0;
2319 }
2320
2321 static struct file_operations kvm_vm_fops = {
2322 .release = kvm_vm_release,
2323 .unlocked_ioctl = kvm_vm_ioctl,
2324 .compat_ioctl = kvm_vm_ioctl,
2325 .mmap = kvm_vm_mmap,
2326 };
2327
2328 static int kvm_dev_ioctl_create_vm(void)
2329 {
2330 int fd;
2331 struct kvm *kvm;
2332
2333 kvm = kvm_create_vm();
2334 if (IS_ERR(kvm))
2335 return PTR_ERR(kvm);
2336 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2337 if (fd < 0)
2338 kvm_put_kvm(kvm);
2339
2340 return fd;
2341 }
2342
2343 static long kvm_dev_ioctl_check_extension_generic(long arg)
2344 {
2345 switch (arg) {
2346 case KVM_CAP_USER_MEMORY:
2347 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2348 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2349 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2350 case KVM_CAP_SET_BOOT_CPU_ID:
2351 #endif
2352 return 1;
2353 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2354 case KVM_CAP_IRQ_ROUTING:
2355 return KVM_MAX_IRQ_ROUTES;
2356 #endif
2357 default:
2358 break;
2359 }
2360 return kvm_dev_ioctl_check_extension(arg);
2361 }
2362
2363 static long kvm_dev_ioctl(struct file *filp,
2364 unsigned int ioctl, unsigned long arg)
2365 {
2366 long r = -EINVAL;
2367
2368 switch (ioctl) {
2369 case KVM_GET_API_VERSION:
2370 r = -EINVAL;
2371 if (arg)
2372 goto out;
2373 r = KVM_API_VERSION;
2374 break;
2375 case KVM_CREATE_VM:
2376 r = -EINVAL;
2377 if (arg)
2378 goto out;
2379 r = kvm_dev_ioctl_create_vm();
2380 break;
2381 case KVM_CHECK_EXTENSION:
2382 r = kvm_dev_ioctl_check_extension_generic(arg);
2383 break;
2384 case KVM_GET_VCPU_MMAP_SIZE:
2385 r = -EINVAL;
2386 if (arg)
2387 goto out;
2388 r = PAGE_SIZE; /* struct kvm_run */
2389 #ifdef CONFIG_X86
2390 r += PAGE_SIZE; /* pio data page */
2391 #endif
2392 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2393 r += PAGE_SIZE; /* coalesced mmio ring page */
2394 #endif
2395 break;
2396 case KVM_TRACE_ENABLE:
2397 case KVM_TRACE_PAUSE:
2398 case KVM_TRACE_DISABLE:
2399 r = kvm_trace_ioctl(ioctl, arg);
2400 break;
2401 default:
2402 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2403 }
2404 out:
2405 return r;
2406 }
2407
2408 static struct file_operations kvm_chardev_ops = {
2409 .unlocked_ioctl = kvm_dev_ioctl,
2410 .compat_ioctl = kvm_dev_ioctl,
2411 };
2412
2413 static struct miscdevice kvm_dev = {
2414 KVM_MINOR,
2415 "kvm",
2416 &kvm_chardev_ops,
2417 };
2418
2419 static void hardware_enable(void *junk)
2420 {
2421 int cpu = raw_smp_processor_id();
2422
2423 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2424 return;
2425 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2426 kvm_arch_hardware_enable(NULL);
2427 }
2428
2429 static void hardware_disable(void *junk)
2430 {
2431 int cpu = raw_smp_processor_id();
2432
2433 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2434 return;
2435 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2436 kvm_arch_hardware_disable(NULL);
2437 }
2438
2439 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2440 void *v)
2441 {
2442 int cpu = (long)v;
2443
2444 val &= ~CPU_TASKS_FROZEN;
2445 switch (val) {
2446 case CPU_DYING:
2447 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2448 cpu);
2449 hardware_disable(NULL);
2450 break;
2451 case CPU_UP_CANCELED:
2452 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2453 cpu);
2454 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2455 break;
2456 case CPU_ONLINE:
2457 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2458 cpu);
2459 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2460 break;
2461 }
2462 return NOTIFY_OK;
2463 }
2464
2465
2466 asmlinkage void kvm_handle_fault_on_reboot(void)
2467 {
2468 if (kvm_rebooting)
2469 /* spin while reset goes on */
2470 while (true)
2471 ;
2472 /* Fault while not rebooting. We want the trace. */
2473 BUG();
2474 }
2475 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2476
2477 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2478 void *v)
2479 {
2480 /*
2481 * Some (well, at least mine) BIOSes hang on reboot if
2482 * in vmx root mode.
2483 *
2484 * And Intel TXT required VMX off for all cpu when system shutdown.
2485 */
2486 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2487 kvm_rebooting = true;
2488 on_each_cpu(hardware_disable, NULL, 1);
2489 return NOTIFY_OK;
2490 }
2491
2492 static struct notifier_block kvm_reboot_notifier = {
2493 .notifier_call = kvm_reboot,
2494 .priority = 0,
2495 };
2496
2497 void kvm_io_bus_init(struct kvm_io_bus *bus)
2498 {
2499 memset(bus, 0, sizeof(*bus));
2500 }
2501
2502 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2503 {
2504 int i;
2505
2506 for (i = 0; i < bus->dev_count; i++) {
2507 struct kvm_io_device *pos = bus->devs[i];
2508
2509 kvm_iodevice_destructor(pos);
2510 }
2511 }
2512
2513 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2514 gpa_t addr, int len, int is_write)
2515 {
2516 int i;
2517
2518 for (i = 0; i < bus->dev_count; i++) {
2519 struct kvm_io_device *pos = bus->devs[i];
2520
2521 if (kvm_iodevice_in_range(pos, addr, len, is_write))
2522 return pos;
2523 }
2524
2525 return NULL;
2526 }
2527
2528 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2529 {
2530 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2531
2532 bus->devs[bus->dev_count++] = dev;
2533 }
2534
2535 static struct notifier_block kvm_cpu_notifier = {
2536 .notifier_call = kvm_cpu_hotplug,
2537 .priority = 20, /* must be > scheduler priority */
2538 };
2539
2540 static int vm_stat_get(void *_offset, u64 *val)
2541 {
2542 unsigned offset = (long)_offset;
2543 struct kvm *kvm;
2544
2545 *val = 0;
2546 spin_lock(&kvm_lock);
2547 list_for_each_entry(kvm, &vm_list, vm_list)
2548 *val += *(u32 *)((void *)kvm + offset);
2549 spin_unlock(&kvm_lock);
2550 return 0;
2551 }
2552
2553 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2554
2555 static int vcpu_stat_get(void *_offset, u64 *val)
2556 {
2557 unsigned offset = (long)_offset;
2558 struct kvm *kvm;
2559 struct kvm_vcpu *vcpu;
2560 int i;
2561
2562 *val = 0;
2563 spin_lock(&kvm_lock);
2564 list_for_each_entry(kvm, &vm_list, vm_list)
2565 kvm_for_each_vcpu(i, vcpu, kvm)
2566 *val += *(u32 *)((void *)vcpu + offset);
2567
2568 spin_unlock(&kvm_lock);
2569 return 0;
2570 }
2571
2572 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2573
2574 static struct file_operations *stat_fops[] = {
2575 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2576 [KVM_STAT_VM] = &vm_stat_fops,
2577 };
2578
2579 static void kvm_init_debug(void)
2580 {
2581 struct kvm_stats_debugfs_item *p;
2582
2583 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2584 for (p = debugfs_entries; p->name; ++p)
2585 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2586 (void *)(long)p->offset,
2587 stat_fops[p->kind]);
2588 }
2589
2590 static void kvm_exit_debug(void)
2591 {
2592 struct kvm_stats_debugfs_item *p;
2593
2594 for (p = debugfs_entries; p->name; ++p)
2595 debugfs_remove(p->dentry);
2596 debugfs_remove(kvm_debugfs_dir);
2597 }
2598
2599 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2600 {
2601 hardware_disable(NULL);
2602 return 0;
2603 }
2604
2605 static int kvm_resume(struct sys_device *dev)
2606 {
2607 hardware_enable(NULL);
2608 return 0;
2609 }
2610
2611 static struct sysdev_class kvm_sysdev_class = {
2612 .name = "kvm",
2613 .suspend = kvm_suspend,
2614 .resume = kvm_resume,
2615 };
2616
2617 static struct sys_device kvm_sysdev = {
2618 .id = 0,
2619 .cls = &kvm_sysdev_class,
2620 };
2621
2622 struct page *bad_page;
2623 pfn_t bad_pfn;
2624
2625 static inline
2626 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2627 {
2628 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2629 }
2630
2631 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2632 {
2633 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2634
2635 kvm_arch_vcpu_load(vcpu, cpu);
2636 }
2637
2638 static void kvm_sched_out(struct preempt_notifier *pn,
2639 struct task_struct *next)
2640 {
2641 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2642
2643 kvm_arch_vcpu_put(vcpu);
2644 }
2645
2646 int kvm_init(void *opaque, unsigned int vcpu_size,
2647 struct module *module)
2648 {
2649 int r;
2650 int cpu;
2651
2652 kvm_init_debug();
2653
2654 r = kvm_arch_init(opaque);
2655 if (r)
2656 goto out_fail;
2657
2658 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2659
2660 if (bad_page == NULL) {
2661 r = -ENOMEM;
2662 goto out;
2663 }
2664
2665 bad_pfn = page_to_pfn(bad_page);
2666
2667 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2668 r = -ENOMEM;
2669 goto out_free_0;
2670 }
2671
2672 r = kvm_arch_hardware_setup();
2673 if (r < 0)
2674 goto out_free_0a;
2675
2676 for_each_online_cpu(cpu) {
2677 smp_call_function_single(cpu,
2678 kvm_arch_check_processor_compat,
2679 &r, 1);
2680 if (r < 0)
2681 goto out_free_1;
2682 }
2683
2684 on_each_cpu(hardware_enable, NULL, 1);
2685 r = register_cpu_notifier(&kvm_cpu_notifier);
2686 if (r)
2687 goto out_free_2;
2688 register_reboot_notifier(&kvm_reboot_notifier);
2689
2690 r = sysdev_class_register(&kvm_sysdev_class);
2691 if (r)
2692 goto out_free_3;
2693
2694 r = sysdev_register(&kvm_sysdev);
2695 if (r)
2696 goto out_free_4;
2697
2698 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2699 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2700 __alignof__(struct kvm_vcpu),
2701 0, NULL);
2702 if (!kvm_vcpu_cache) {
2703 r = -ENOMEM;
2704 goto out_free_5;
2705 }
2706
2707 kvm_chardev_ops.owner = module;
2708 kvm_vm_fops.owner = module;
2709 kvm_vcpu_fops.owner = module;
2710
2711 r = misc_register(&kvm_dev);
2712 if (r) {
2713 printk(KERN_ERR "kvm: misc device register failed\n");
2714 goto out_free;
2715 }
2716
2717 kvm_preempt_ops.sched_in = kvm_sched_in;
2718 kvm_preempt_ops.sched_out = kvm_sched_out;
2719
2720 return 0;
2721
2722 out_free:
2723 kmem_cache_destroy(kvm_vcpu_cache);
2724 out_free_5:
2725 sysdev_unregister(&kvm_sysdev);
2726 out_free_4:
2727 sysdev_class_unregister(&kvm_sysdev_class);
2728 out_free_3:
2729 unregister_reboot_notifier(&kvm_reboot_notifier);
2730 unregister_cpu_notifier(&kvm_cpu_notifier);
2731 out_free_2:
2732 on_each_cpu(hardware_disable, NULL, 1);
2733 out_free_1:
2734 kvm_arch_hardware_unsetup();
2735 out_free_0a:
2736 free_cpumask_var(cpus_hardware_enabled);
2737 out_free_0:
2738 __free_page(bad_page);
2739 out:
2740 kvm_arch_exit();
2741 kvm_exit_debug();
2742 out_fail:
2743 return r;
2744 }
2745 EXPORT_SYMBOL_GPL(kvm_init);
2746
2747 void kvm_exit(void)
2748 {
2749 kvm_trace_cleanup();
2750 tracepoint_synchronize_unregister();
2751 misc_deregister(&kvm_dev);
2752 kmem_cache_destroy(kvm_vcpu_cache);
2753 sysdev_unregister(&kvm_sysdev);
2754 sysdev_class_unregister(&kvm_sysdev_class);
2755 unregister_reboot_notifier(&kvm_reboot_notifier);
2756 unregister_cpu_notifier(&kvm_cpu_notifier);
2757 on_each_cpu(hardware_disable, NULL, 1);
2758 kvm_arch_hardware_unsetup();
2759 kvm_arch_exit();
2760 kvm_exit_debug();
2761 free_cpumask_var(cpus_hardware_enabled);
2762 __free_page(bad_page);
2763 }
2764 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.091263 seconds and 5 git commands to generate.