KVM: Add kvm_read_guest_atomic()
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43
44 #include <asm/processor.h>
45 #include <asm/io.h>
46 #include <asm/uaccess.h>
47 #include <asm/pgtable.h>
48
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
51
52 DEFINE_SPINLOCK(kvm_lock);
53 LIST_HEAD(vm_list);
54
55 static cpumask_t cpus_hardware_enabled;
56
57 struct kmem_cache *kvm_vcpu_cache;
58 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
59
60 static __read_mostly struct preempt_ops kvm_preempt_ops;
61
62 static struct dentry *debugfs_dir;
63
64 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
65 unsigned long arg);
66
67 static inline int valid_vcpu(int n)
68 {
69 return likely(n >= 0 && n < KVM_MAX_VCPUS);
70 }
71
72 /*
73 * Switches to specified vcpu, until a matching vcpu_put()
74 */
75 void vcpu_load(struct kvm_vcpu *vcpu)
76 {
77 int cpu;
78
79 mutex_lock(&vcpu->mutex);
80 cpu = get_cpu();
81 preempt_notifier_register(&vcpu->preempt_notifier);
82 kvm_arch_vcpu_load(vcpu, cpu);
83 put_cpu();
84 }
85
86 void vcpu_put(struct kvm_vcpu *vcpu)
87 {
88 preempt_disable();
89 kvm_arch_vcpu_put(vcpu);
90 preempt_notifier_unregister(&vcpu->preempt_notifier);
91 preempt_enable();
92 mutex_unlock(&vcpu->mutex);
93 }
94
95 static void ack_flush(void *_completed)
96 {
97 }
98
99 void kvm_flush_remote_tlbs(struct kvm *kvm)
100 {
101 int i, cpu;
102 cpumask_t cpus;
103 struct kvm_vcpu *vcpu;
104
105 cpus_clear(cpus);
106 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
107 vcpu = kvm->vcpus[i];
108 if (!vcpu)
109 continue;
110 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
111 continue;
112 cpu = vcpu->cpu;
113 if (cpu != -1 && cpu != raw_smp_processor_id())
114 cpu_set(cpu, cpus);
115 }
116 if (cpus_empty(cpus))
117 return;
118 ++kvm->stat.remote_tlb_flush;
119 smp_call_function_mask(cpus, ack_flush, NULL, 1);
120 }
121
122 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
123 {
124 struct page *page;
125 int r;
126
127 mutex_init(&vcpu->mutex);
128 vcpu->cpu = -1;
129 vcpu->kvm = kvm;
130 vcpu->vcpu_id = id;
131 init_waitqueue_head(&vcpu->wq);
132
133 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
134 if (!page) {
135 r = -ENOMEM;
136 goto fail;
137 }
138 vcpu->run = page_address(page);
139
140 r = kvm_arch_vcpu_init(vcpu);
141 if (r < 0)
142 goto fail_free_run;
143 return 0;
144
145 fail_free_run:
146 free_page((unsigned long)vcpu->run);
147 fail:
148 return r;
149 }
150 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
151
152 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
153 {
154 kvm_arch_vcpu_uninit(vcpu);
155 free_page((unsigned long)vcpu->run);
156 }
157 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
158
159 static struct kvm *kvm_create_vm(void)
160 {
161 struct kvm *kvm = kvm_arch_create_vm();
162
163 if (IS_ERR(kvm))
164 goto out;
165
166 kvm->mm = current->mm;
167 atomic_inc(&kvm->mm->mm_count);
168 kvm_io_bus_init(&kvm->pio_bus);
169 mutex_init(&kvm->lock);
170 kvm_io_bus_init(&kvm->mmio_bus);
171 spin_lock(&kvm_lock);
172 list_add(&kvm->vm_list, &vm_list);
173 spin_unlock(&kvm_lock);
174 out:
175 return kvm;
176 }
177
178 /*
179 * Free any memory in @free but not in @dont.
180 */
181 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
182 struct kvm_memory_slot *dont)
183 {
184 if (!dont || free->rmap != dont->rmap)
185 vfree(free->rmap);
186
187 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
188 vfree(free->dirty_bitmap);
189
190 free->npages = 0;
191 free->dirty_bitmap = NULL;
192 free->rmap = NULL;
193 }
194
195 void kvm_free_physmem(struct kvm *kvm)
196 {
197 int i;
198
199 for (i = 0; i < kvm->nmemslots; ++i)
200 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
201 }
202
203 static void kvm_destroy_vm(struct kvm *kvm)
204 {
205 struct mm_struct *mm = kvm->mm;
206
207 spin_lock(&kvm_lock);
208 list_del(&kvm->vm_list);
209 spin_unlock(&kvm_lock);
210 kvm_io_bus_destroy(&kvm->pio_bus);
211 kvm_io_bus_destroy(&kvm->mmio_bus);
212 kvm_arch_destroy_vm(kvm);
213 mmdrop(mm);
214 }
215
216 static int kvm_vm_release(struct inode *inode, struct file *filp)
217 {
218 struct kvm *kvm = filp->private_data;
219
220 kvm_destroy_vm(kvm);
221 return 0;
222 }
223
224 /*
225 * Allocate some memory and give it an address in the guest physical address
226 * space.
227 *
228 * Discontiguous memory is allowed, mostly for framebuffers.
229 *
230 * Must be called holding mmap_sem for write.
231 */
232 int __kvm_set_memory_region(struct kvm *kvm,
233 struct kvm_userspace_memory_region *mem,
234 int user_alloc)
235 {
236 int r;
237 gfn_t base_gfn;
238 unsigned long npages;
239 unsigned long i;
240 struct kvm_memory_slot *memslot;
241 struct kvm_memory_slot old, new;
242
243 r = -EINVAL;
244 /* General sanity checks */
245 if (mem->memory_size & (PAGE_SIZE - 1))
246 goto out;
247 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
248 goto out;
249 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
250 goto out;
251 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
252 goto out;
253
254 memslot = &kvm->memslots[mem->slot];
255 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
256 npages = mem->memory_size >> PAGE_SHIFT;
257
258 if (!npages)
259 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
260
261 new = old = *memslot;
262
263 new.base_gfn = base_gfn;
264 new.npages = npages;
265 new.flags = mem->flags;
266
267 /* Disallow changing a memory slot's size. */
268 r = -EINVAL;
269 if (npages && old.npages && npages != old.npages)
270 goto out_free;
271
272 /* Check for overlaps */
273 r = -EEXIST;
274 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
275 struct kvm_memory_slot *s = &kvm->memslots[i];
276
277 if (s == memslot)
278 continue;
279 if (!((base_gfn + npages <= s->base_gfn) ||
280 (base_gfn >= s->base_gfn + s->npages)))
281 goto out_free;
282 }
283
284 /* Free page dirty bitmap if unneeded */
285 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
286 new.dirty_bitmap = NULL;
287
288 r = -ENOMEM;
289
290 /* Allocate if a slot is being created */
291 if (npages && !new.rmap) {
292 new.rmap = vmalloc(npages * sizeof(struct page *));
293
294 if (!new.rmap)
295 goto out_free;
296
297 memset(new.rmap, 0, npages * sizeof(*new.rmap));
298
299 new.user_alloc = user_alloc;
300 new.userspace_addr = mem->userspace_addr;
301 }
302
303 /* Allocate page dirty bitmap if needed */
304 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
305 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
306
307 new.dirty_bitmap = vmalloc(dirty_bytes);
308 if (!new.dirty_bitmap)
309 goto out_free;
310 memset(new.dirty_bitmap, 0, dirty_bytes);
311 }
312
313 if (mem->slot >= kvm->nmemslots)
314 kvm->nmemslots = mem->slot + 1;
315
316 *memslot = new;
317
318 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
319 if (r) {
320 *memslot = old;
321 goto out_free;
322 }
323
324 kvm_free_physmem_slot(&old, &new);
325 return 0;
326
327 out_free:
328 kvm_free_physmem_slot(&new, &old);
329 out:
330 return r;
331
332 }
333 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
334
335 int kvm_set_memory_region(struct kvm *kvm,
336 struct kvm_userspace_memory_region *mem,
337 int user_alloc)
338 {
339 int r;
340
341 down_write(&current->mm->mmap_sem);
342 r = __kvm_set_memory_region(kvm, mem, user_alloc);
343 up_write(&current->mm->mmap_sem);
344 return r;
345 }
346 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
347
348 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
349 struct
350 kvm_userspace_memory_region *mem,
351 int user_alloc)
352 {
353 if (mem->slot >= KVM_MEMORY_SLOTS)
354 return -EINVAL;
355 return kvm_set_memory_region(kvm, mem, user_alloc);
356 }
357
358 int kvm_get_dirty_log(struct kvm *kvm,
359 struct kvm_dirty_log *log, int *is_dirty)
360 {
361 struct kvm_memory_slot *memslot;
362 int r, i;
363 int n;
364 unsigned long any = 0;
365
366 r = -EINVAL;
367 if (log->slot >= KVM_MEMORY_SLOTS)
368 goto out;
369
370 memslot = &kvm->memslots[log->slot];
371 r = -ENOENT;
372 if (!memslot->dirty_bitmap)
373 goto out;
374
375 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
376
377 for (i = 0; !any && i < n/sizeof(long); ++i)
378 any = memslot->dirty_bitmap[i];
379
380 r = -EFAULT;
381 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
382 goto out;
383
384 if (any)
385 *is_dirty = 1;
386
387 r = 0;
388 out:
389 return r;
390 }
391
392 int is_error_page(struct page *page)
393 {
394 return page == bad_page;
395 }
396 EXPORT_SYMBOL_GPL(is_error_page);
397
398 static inline unsigned long bad_hva(void)
399 {
400 return PAGE_OFFSET;
401 }
402
403 int kvm_is_error_hva(unsigned long addr)
404 {
405 return addr == bad_hva();
406 }
407 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
408
409 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
410 {
411 int i;
412
413 for (i = 0; i < kvm->nmemslots; ++i) {
414 struct kvm_memory_slot *memslot = &kvm->memslots[i];
415
416 if (gfn >= memslot->base_gfn
417 && gfn < memslot->base_gfn + memslot->npages)
418 return memslot;
419 }
420 return NULL;
421 }
422
423 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
424 {
425 gfn = unalias_gfn(kvm, gfn);
426 return __gfn_to_memslot(kvm, gfn);
427 }
428
429 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
430 {
431 int i;
432
433 gfn = unalias_gfn(kvm, gfn);
434 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
435 struct kvm_memory_slot *memslot = &kvm->memslots[i];
436
437 if (gfn >= memslot->base_gfn
438 && gfn < memslot->base_gfn + memslot->npages)
439 return 1;
440 }
441 return 0;
442 }
443 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
444
445 static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
446 {
447 struct kvm_memory_slot *slot;
448
449 gfn = unalias_gfn(kvm, gfn);
450 slot = __gfn_to_memslot(kvm, gfn);
451 if (!slot)
452 return bad_hva();
453 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
454 }
455
456 /*
457 * Requires current->mm->mmap_sem to be held
458 */
459 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
460 {
461 struct page *page[1];
462 unsigned long addr;
463 int npages;
464
465 might_sleep();
466
467 addr = gfn_to_hva(kvm, gfn);
468 if (kvm_is_error_hva(addr)) {
469 get_page(bad_page);
470 return bad_page;
471 }
472
473 npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
474 NULL);
475
476 if (npages != 1) {
477 get_page(bad_page);
478 return bad_page;
479 }
480
481 return page[0];
482 }
483
484 EXPORT_SYMBOL_GPL(gfn_to_page);
485
486 void kvm_release_page_clean(struct page *page)
487 {
488 put_page(page);
489 }
490 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
491
492 void kvm_release_page_dirty(struct page *page)
493 {
494 if (!PageReserved(page))
495 SetPageDirty(page);
496 put_page(page);
497 }
498 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
499
500 static int next_segment(unsigned long len, int offset)
501 {
502 if (len > PAGE_SIZE - offset)
503 return PAGE_SIZE - offset;
504 else
505 return len;
506 }
507
508 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
509 int len)
510 {
511 int r;
512 unsigned long addr;
513
514 addr = gfn_to_hva(kvm, gfn);
515 if (kvm_is_error_hva(addr))
516 return -EFAULT;
517 r = copy_from_user(data, (void __user *)addr + offset, len);
518 if (r)
519 return -EFAULT;
520 return 0;
521 }
522 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
523
524 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
525 {
526 gfn_t gfn = gpa >> PAGE_SHIFT;
527 int seg;
528 int offset = offset_in_page(gpa);
529 int ret;
530
531 while ((seg = next_segment(len, offset)) != 0) {
532 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
533 if (ret < 0)
534 return ret;
535 offset = 0;
536 len -= seg;
537 data += seg;
538 ++gfn;
539 }
540 return 0;
541 }
542 EXPORT_SYMBOL_GPL(kvm_read_guest);
543
544 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
545 unsigned long len)
546 {
547 int r;
548 unsigned long addr;
549 gfn_t gfn = gpa >> PAGE_SHIFT;
550 int offset = offset_in_page(gpa);
551
552 addr = gfn_to_hva(kvm, gfn);
553 if (kvm_is_error_hva(addr))
554 return -EFAULT;
555 pagefault_disable();
556 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
557 pagefault_enable();
558 if (r)
559 return -EFAULT;
560 return 0;
561 }
562 EXPORT_SYMBOL(kvm_read_guest_atomic);
563
564 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
565 int offset, int len)
566 {
567 int r;
568 unsigned long addr;
569
570 addr = gfn_to_hva(kvm, gfn);
571 if (kvm_is_error_hva(addr))
572 return -EFAULT;
573 r = copy_to_user((void __user *)addr + offset, data, len);
574 if (r)
575 return -EFAULT;
576 mark_page_dirty(kvm, gfn);
577 return 0;
578 }
579 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
580
581 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
582 unsigned long len)
583 {
584 gfn_t gfn = gpa >> PAGE_SHIFT;
585 int seg;
586 int offset = offset_in_page(gpa);
587 int ret;
588
589 while ((seg = next_segment(len, offset)) != 0) {
590 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
591 if (ret < 0)
592 return ret;
593 offset = 0;
594 len -= seg;
595 data += seg;
596 ++gfn;
597 }
598 return 0;
599 }
600
601 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
602 {
603 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
604 }
605 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
606
607 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
608 {
609 gfn_t gfn = gpa >> PAGE_SHIFT;
610 int seg;
611 int offset = offset_in_page(gpa);
612 int ret;
613
614 while ((seg = next_segment(len, offset)) != 0) {
615 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
616 if (ret < 0)
617 return ret;
618 offset = 0;
619 len -= seg;
620 ++gfn;
621 }
622 return 0;
623 }
624 EXPORT_SYMBOL_GPL(kvm_clear_guest);
625
626 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
627 {
628 struct kvm_memory_slot *memslot;
629
630 gfn = unalias_gfn(kvm, gfn);
631 memslot = __gfn_to_memslot(kvm, gfn);
632 if (memslot && memslot->dirty_bitmap) {
633 unsigned long rel_gfn = gfn - memslot->base_gfn;
634
635 /* avoid RMW */
636 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
637 set_bit(rel_gfn, memslot->dirty_bitmap);
638 }
639 }
640
641 /*
642 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
643 */
644 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
645 {
646 DECLARE_WAITQUEUE(wait, current);
647
648 add_wait_queue(&vcpu->wq, &wait);
649
650 /*
651 * We will block until either an interrupt or a signal wakes us up
652 */
653 while (!kvm_cpu_has_interrupt(vcpu)
654 && !signal_pending(current)
655 && !kvm_arch_vcpu_runnable(vcpu)) {
656 set_current_state(TASK_INTERRUPTIBLE);
657 vcpu_put(vcpu);
658 schedule();
659 vcpu_load(vcpu);
660 }
661
662 __set_current_state(TASK_RUNNING);
663 remove_wait_queue(&vcpu->wq, &wait);
664 }
665
666 void kvm_resched(struct kvm_vcpu *vcpu)
667 {
668 if (!need_resched())
669 return;
670 cond_resched();
671 }
672 EXPORT_SYMBOL_GPL(kvm_resched);
673
674 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
675 {
676 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
677 struct page *page;
678
679 if (vmf->pgoff == 0)
680 page = virt_to_page(vcpu->run);
681 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
682 page = virt_to_page(vcpu->arch.pio_data);
683 else
684 return VM_FAULT_SIGBUS;
685 get_page(page);
686 vmf->page = page;
687 return 0;
688 }
689
690 static struct vm_operations_struct kvm_vcpu_vm_ops = {
691 .fault = kvm_vcpu_fault,
692 };
693
694 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
695 {
696 vma->vm_ops = &kvm_vcpu_vm_ops;
697 return 0;
698 }
699
700 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
701 {
702 struct kvm_vcpu *vcpu = filp->private_data;
703
704 fput(vcpu->kvm->filp);
705 return 0;
706 }
707
708 static struct file_operations kvm_vcpu_fops = {
709 .release = kvm_vcpu_release,
710 .unlocked_ioctl = kvm_vcpu_ioctl,
711 .compat_ioctl = kvm_vcpu_ioctl,
712 .mmap = kvm_vcpu_mmap,
713 };
714
715 /*
716 * Allocates an inode for the vcpu.
717 */
718 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
719 {
720 int fd, r;
721 struct inode *inode;
722 struct file *file;
723
724 r = anon_inode_getfd(&fd, &inode, &file,
725 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
726 if (r)
727 return r;
728 atomic_inc(&vcpu->kvm->filp->f_count);
729 return fd;
730 }
731
732 /*
733 * Creates some virtual cpus. Good luck creating more than one.
734 */
735 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
736 {
737 int r;
738 struct kvm_vcpu *vcpu;
739
740 if (!valid_vcpu(n))
741 return -EINVAL;
742
743 vcpu = kvm_arch_vcpu_create(kvm, n);
744 if (IS_ERR(vcpu))
745 return PTR_ERR(vcpu);
746
747 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
748
749 r = kvm_arch_vcpu_setup(vcpu);
750 if (r)
751 goto vcpu_destroy;
752
753 mutex_lock(&kvm->lock);
754 if (kvm->vcpus[n]) {
755 r = -EEXIST;
756 mutex_unlock(&kvm->lock);
757 goto vcpu_destroy;
758 }
759 kvm->vcpus[n] = vcpu;
760 mutex_unlock(&kvm->lock);
761
762 /* Now it's all set up, let userspace reach it */
763 r = create_vcpu_fd(vcpu);
764 if (r < 0)
765 goto unlink;
766 return r;
767
768 unlink:
769 mutex_lock(&kvm->lock);
770 kvm->vcpus[n] = NULL;
771 mutex_unlock(&kvm->lock);
772 vcpu_destroy:
773 kvm_arch_vcpu_destroy(vcpu);
774 return r;
775 }
776
777 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
778 {
779 if (sigset) {
780 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
781 vcpu->sigset_active = 1;
782 vcpu->sigset = *sigset;
783 } else
784 vcpu->sigset_active = 0;
785 return 0;
786 }
787
788 static long kvm_vcpu_ioctl(struct file *filp,
789 unsigned int ioctl, unsigned long arg)
790 {
791 struct kvm_vcpu *vcpu = filp->private_data;
792 void __user *argp = (void __user *)arg;
793 int r;
794
795 if (vcpu->kvm->mm != current->mm)
796 return -EIO;
797 switch (ioctl) {
798 case KVM_RUN:
799 r = -EINVAL;
800 if (arg)
801 goto out;
802 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
803 break;
804 case KVM_GET_REGS: {
805 struct kvm_regs kvm_regs;
806
807 memset(&kvm_regs, 0, sizeof kvm_regs);
808 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
809 if (r)
810 goto out;
811 r = -EFAULT;
812 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
813 goto out;
814 r = 0;
815 break;
816 }
817 case KVM_SET_REGS: {
818 struct kvm_regs kvm_regs;
819
820 r = -EFAULT;
821 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
822 goto out;
823 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
824 if (r)
825 goto out;
826 r = 0;
827 break;
828 }
829 case KVM_GET_SREGS: {
830 struct kvm_sregs kvm_sregs;
831
832 memset(&kvm_sregs, 0, sizeof kvm_sregs);
833 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
834 if (r)
835 goto out;
836 r = -EFAULT;
837 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
838 goto out;
839 r = 0;
840 break;
841 }
842 case KVM_SET_SREGS: {
843 struct kvm_sregs kvm_sregs;
844
845 r = -EFAULT;
846 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
847 goto out;
848 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
849 if (r)
850 goto out;
851 r = 0;
852 break;
853 }
854 case KVM_TRANSLATE: {
855 struct kvm_translation tr;
856
857 r = -EFAULT;
858 if (copy_from_user(&tr, argp, sizeof tr))
859 goto out;
860 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
861 if (r)
862 goto out;
863 r = -EFAULT;
864 if (copy_to_user(argp, &tr, sizeof tr))
865 goto out;
866 r = 0;
867 break;
868 }
869 case KVM_DEBUG_GUEST: {
870 struct kvm_debug_guest dbg;
871
872 r = -EFAULT;
873 if (copy_from_user(&dbg, argp, sizeof dbg))
874 goto out;
875 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
876 if (r)
877 goto out;
878 r = 0;
879 break;
880 }
881 case KVM_SET_SIGNAL_MASK: {
882 struct kvm_signal_mask __user *sigmask_arg = argp;
883 struct kvm_signal_mask kvm_sigmask;
884 sigset_t sigset, *p;
885
886 p = NULL;
887 if (argp) {
888 r = -EFAULT;
889 if (copy_from_user(&kvm_sigmask, argp,
890 sizeof kvm_sigmask))
891 goto out;
892 r = -EINVAL;
893 if (kvm_sigmask.len != sizeof sigset)
894 goto out;
895 r = -EFAULT;
896 if (copy_from_user(&sigset, sigmask_arg->sigset,
897 sizeof sigset))
898 goto out;
899 p = &sigset;
900 }
901 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
902 break;
903 }
904 case KVM_GET_FPU: {
905 struct kvm_fpu fpu;
906
907 memset(&fpu, 0, sizeof fpu);
908 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
909 if (r)
910 goto out;
911 r = -EFAULT;
912 if (copy_to_user(argp, &fpu, sizeof fpu))
913 goto out;
914 r = 0;
915 break;
916 }
917 case KVM_SET_FPU: {
918 struct kvm_fpu fpu;
919
920 r = -EFAULT;
921 if (copy_from_user(&fpu, argp, sizeof fpu))
922 goto out;
923 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
924 if (r)
925 goto out;
926 r = 0;
927 break;
928 }
929 default:
930 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
931 }
932 out:
933 return r;
934 }
935
936 static long kvm_vm_ioctl(struct file *filp,
937 unsigned int ioctl, unsigned long arg)
938 {
939 struct kvm *kvm = filp->private_data;
940 void __user *argp = (void __user *)arg;
941 int r;
942
943 if (kvm->mm != current->mm)
944 return -EIO;
945 switch (ioctl) {
946 case KVM_CREATE_VCPU:
947 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
948 if (r < 0)
949 goto out;
950 break;
951 case KVM_SET_USER_MEMORY_REGION: {
952 struct kvm_userspace_memory_region kvm_userspace_mem;
953
954 r = -EFAULT;
955 if (copy_from_user(&kvm_userspace_mem, argp,
956 sizeof kvm_userspace_mem))
957 goto out;
958
959 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
960 if (r)
961 goto out;
962 break;
963 }
964 case KVM_GET_DIRTY_LOG: {
965 struct kvm_dirty_log log;
966
967 r = -EFAULT;
968 if (copy_from_user(&log, argp, sizeof log))
969 goto out;
970 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
971 if (r)
972 goto out;
973 break;
974 }
975 default:
976 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
977 }
978 out:
979 return r;
980 }
981
982 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
983 {
984 struct kvm *kvm = vma->vm_file->private_data;
985 struct page *page;
986
987 if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
988 return VM_FAULT_SIGBUS;
989 page = gfn_to_page(kvm, vmf->pgoff);
990 if (is_error_page(page)) {
991 kvm_release_page_clean(page);
992 return VM_FAULT_SIGBUS;
993 }
994 vmf->page = page;
995 return 0;
996 }
997
998 static struct vm_operations_struct kvm_vm_vm_ops = {
999 .fault = kvm_vm_fault,
1000 };
1001
1002 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1003 {
1004 vma->vm_ops = &kvm_vm_vm_ops;
1005 return 0;
1006 }
1007
1008 static struct file_operations kvm_vm_fops = {
1009 .release = kvm_vm_release,
1010 .unlocked_ioctl = kvm_vm_ioctl,
1011 .compat_ioctl = kvm_vm_ioctl,
1012 .mmap = kvm_vm_mmap,
1013 };
1014
1015 static int kvm_dev_ioctl_create_vm(void)
1016 {
1017 int fd, r;
1018 struct inode *inode;
1019 struct file *file;
1020 struct kvm *kvm;
1021
1022 kvm = kvm_create_vm();
1023 if (IS_ERR(kvm))
1024 return PTR_ERR(kvm);
1025 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
1026 if (r) {
1027 kvm_destroy_vm(kvm);
1028 return r;
1029 }
1030
1031 kvm->filp = file;
1032
1033 return fd;
1034 }
1035
1036 static long kvm_dev_ioctl(struct file *filp,
1037 unsigned int ioctl, unsigned long arg)
1038 {
1039 void __user *argp = (void __user *)arg;
1040 long r = -EINVAL;
1041
1042 switch (ioctl) {
1043 case KVM_GET_API_VERSION:
1044 r = -EINVAL;
1045 if (arg)
1046 goto out;
1047 r = KVM_API_VERSION;
1048 break;
1049 case KVM_CREATE_VM:
1050 r = -EINVAL;
1051 if (arg)
1052 goto out;
1053 r = kvm_dev_ioctl_create_vm();
1054 break;
1055 case KVM_CHECK_EXTENSION:
1056 r = kvm_dev_ioctl_check_extension((long)argp);
1057 break;
1058 case KVM_GET_VCPU_MMAP_SIZE:
1059 r = -EINVAL;
1060 if (arg)
1061 goto out;
1062 r = 2 * PAGE_SIZE;
1063 break;
1064 default:
1065 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1066 }
1067 out:
1068 return r;
1069 }
1070
1071 static struct file_operations kvm_chardev_ops = {
1072 .unlocked_ioctl = kvm_dev_ioctl,
1073 .compat_ioctl = kvm_dev_ioctl,
1074 };
1075
1076 static struct miscdevice kvm_dev = {
1077 KVM_MINOR,
1078 "kvm",
1079 &kvm_chardev_ops,
1080 };
1081
1082 static void hardware_enable(void *junk)
1083 {
1084 int cpu = raw_smp_processor_id();
1085
1086 if (cpu_isset(cpu, cpus_hardware_enabled))
1087 return;
1088 cpu_set(cpu, cpus_hardware_enabled);
1089 kvm_arch_hardware_enable(NULL);
1090 }
1091
1092 static void hardware_disable(void *junk)
1093 {
1094 int cpu = raw_smp_processor_id();
1095
1096 if (!cpu_isset(cpu, cpus_hardware_enabled))
1097 return;
1098 cpu_clear(cpu, cpus_hardware_enabled);
1099 decache_vcpus_on_cpu(cpu);
1100 kvm_arch_hardware_disable(NULL);
1101 }
1102
1103 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1104 void *v)
1105 {
1106 int cpu = (long)v;
1107
1108 val &= ~CPU_TASKS_FROZEN;
1109 switch (val) {
1110 case CPU_DYING:
1111 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1112 cpu);
1113 hardware_disable(NULL);
1114 break;
1115 case CPU_UP_CANCELED:
1116 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1117 cpu);
1118 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
1119 break;
1120 case CPU_ONLINE:
1121 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1122 cpu);
1123 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
1124 break;
1125 }
1126 return NOTIFY_OK;
1127 }
1128
1129 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1130 void *v)
1131 {
1132 if (val == SYS_RESTART) {
1133 /*
1134 * Some (well, at least mine) BIOSes hang on reboot if
1135 * in vmx root mode.
1136 */
1137 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1138 on_each_cpu(hardware_disable, NULL, 0, 1);
1139 }
1140 return NOTIFY_OK;
1141 }
1142
1143 static struct notifier_block kvm_reboot_notifier = {
1144 .notifier_call = kvm_reboot,
1145 .priority = 0,
1146 };
1147
1148 void kvm_io_bus_init(struct kvm_io_bus *bus)
1149 {
1150 memset(bus, 0, sizeof(*bus));
1151 }
1152
1153 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1154 {
1155 int i;
1156
1157 for (i = 0; i < bus->dev_count; i++) {
1158 struct kvm_io_device *pos = bus->devs[i];
1159
1160 kvm_iodevice_destructor(pos);
1161 }
1162 }
1163
1164 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
1165 {
1166 int i;
1167
1168 for (i = 0; i < bus->dev_count; i++) {
1169 struct kvm_io_device *pos = bus->devs[i];
1170
1171 if (pos->in_range(pos, addr))
1172 return pos;
1173 }
1174
1175 return NULL;
1176 }
1177
1178 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1179 {
1180 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1181
1182 bus->devs[bus->dev_count++] = dev;
1183 }
1184
1185 static struct notifier_block kvm_cpu_notifier = {
1186 .notifier_call = kvm_cpu_hotplug,
1187 .priority = 20, /* must be > scheduler priority */
1188 };
1189
1190 static u64 vm_stat_get(void *_offset)
1191 {
1192 unsigned offset = (long)_offset;
1193 u64 total = 0;
1194 struct kvm *kvm;
1195
1196 spin_lock(&kvm_lock);
1197 list_for_each_entry(kvm, &vm_list, vm_list)
1198 total += *(u32 *)((void *)kvm + offset);
1199 spin_unlock(&kvm_lock);
1200 return total;
1201 }
1202
1203 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1204
1205 static u64 vcpu_stat_get(void *_offset)
1206 {
1207 unsigned offset = (long)_offset;
1208 u64 total = 0;
1209 struct kvm *kvm;
1210 struct kvm_vcpu *vcpu;
1211 int i;
1212
1213 spin_lock(&kvm_lock);
1214 list_for_each_entry(kvm, &vm_list, vm_list)
1215 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1216 vcpu = kvm->vcpus[i];
1217 if (vcpu)
1218 total += *(u32 *)((void *)vcpu + offset);
1219 }
1220 spin_unlock(&kvm_lock);
1221 return total;
1222 }
1223
1224 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1225
1226 static struct file_operations *stat_fops[] = {
1227 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1228 [KVM_STAT_VM] = &vm_stat_fops,
1229 };
1230
1231 static void kvm_init_debug(void)
1232 {
1233 struct kvm_stats_debugfs_item *p;
1234
1235 debugfs_dir = debugfs_create_dir("kvm", NULL);
1236 for (p = debugfs_entries; p->name; ++p)
1237 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
1238 (void *)(long)p->offset,
1239 stat_fops[p->kind]);
1240 }
1241
1242 static void kvm_exit_debug(void)
1243 {
1244 struct kvm_stats_debugfs_item *p;
1245
1246 for (p = debugfs_entries; p->name; ++p)
1247 debugfs_remove(p->dentry);
1248 debugfs_remove(debugfs_dir);
1249 }
1250
1251 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1252 {
1253 hardware_disable(NULL);
1254 return 0;
1255 }
1256
1257 static int kvm_resume(struct sys_device *dev)
1258 {
1259 hardware_enable(NULL);
1260 return 0;
1261 }
1262
1263 static struct sysdev_class kvm_sysdev_class = {
1264 .name = "kvm",
1265 .suspend = kvm_suspend,
1266 .resume = kvm_resume,
1267 };
1268
1269 static struct sys_device kvm_sysdev = {
1270 .id = 0,
1271 .cls = &kvm_sysdev_class,
1272 };
1273
1274 struct page *bad_page;
1275
1276 static inline
1277 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1278 {
1279 return container_of(pn, struct kvm_vcpu, preempt_notifier);
1280 }
1281
1282 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1283 {
1284 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1285
1286 kvm_arch_vcpu_load(vcpu, cpu);
1287 }
1288
1289 static void kvm_sched_out(struct preempt_notifier *pn,
1290 struct task_struct *next)
1291 {
1292 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1293
1294 kvm_arch_vcpu_put(vcpu);
1295 }
1296
1297 int kvm_init(void *opaque, unsigned int vcpu_size,
1298 struct module *module)
1299 {
1300 int r;
1301 int cpu;
1302
1303 kvm_init_debug();
1304
1305 r = kvm_arch_init(opaque);
1306 if (r)
1307 goto out_fail;
1308
1309 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1310
1311 if (bad_page == NULL) {
1312 r = -ENOMEM;
1313 goto out;
1314 }
1315
1316 r = kvm_arch_hardware_setup();
1317 if (r < 0)
1318 goto out_free_0;
1319
1320 for_each_online_cpu(cpu) {
1321 smp_call_function_single(cpu,
1322 kvm_arch_check_processor_compat,
1323 &r, 0, 1);
1324 if (r < 0)
1325 goto out_free_1;
1326 }
1327
1328 on_each_cpu(hardware_enable, NULL, 0, 1);
1329 r = register_cpu_notifier(&kvm_cpu_notifier);
1330 if (r)
1331 goto out_free_2;
1332 register_reboot_notifier(&kvm_reboot_notifier);
1333
1334 r = sysdev_class_register(&kvm_sysdev_class);
1335 if (r)
1336 goto out_free_3;
1337
1338 r = sysdev_register(&kvm_sysdev);
1339 if (r)
1340 goto out_free_4;
1341
1342 /* A kmem cache lets us meet the alignment requirements of fx_save. */
1343 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
1344 __alignof__(struct kvm_vcpu),
1345 0, NULL);
1346 if (!kvm_vcpu_cache) {
1347 r = -ENOMEM;
1348 goto out_free_5;
1349 }
1350
1351 kvm_chardev_ops.owner = module;
1352
1353 r = misc_register(&kvm_dev);
1354 if (r) {
1355 printk(KERN_ERR "kvm: misc device register failed\n");
1356 goto out_free;
1357 }
1358
1359 kvm_preempt_ops.sched_in = kvm_sched_in;
1360 kvm_preempt_ops.sched_out = kvm_sched_out;
1361
1362 return 0;
1363
1364 out_free:
1365 kmem_cache_destroy(kvm_vcpu_cache);
1366 out_free_5:
1367 sysdev_unregister(&kvm_sysdev);
1368 out_free_4:
1369 sysdev_class_unregister(&kvm_sysdev_class);
1370 out_free_3:
1371 unregister_reboot_notifier(&kvm_reboot_notifier);
1372 unregister_cpu_notifier(&kvm_cpu_notifier);
1373 out_free_2:
1374 on_each_cpu(hardware_disable, NULL, 0, 1);
1375 out_free_1:
1376 kvm_arch_hardware_unsetup();
1377 out_free_0:
1378 __free_page(bad_page);
1379 out:
1380 kvm_arch_exit();
1381 kvm_exit_debug();
1382 out_fail:
1383 return r;
1384 }
1385 EXPORT_SYMBOL_GPL(kvm_init);
1386
1387 void kvm_exit(void)
1388 {
1389 misc_deregister(&kvm_dev);
1390 kmem_cache_destroy(kvm_vcpu_cache);
1391 sysdev_unregister(&kvm_sysdev);
1392 sysdev_class_unregister(&kvm_sysdev_class);
1393 unregister_reboot_notifier(&kvm_reboot_notifier);
1394 unregister_cpu_notifier(&kvm_cpu_notifier);
1395 on_each_cpu(hardware_disable, NULL, 0, 1);
1396 kvm_arch_hardware_unsetup();
1397 kvm_arch_exit();
1398 kvm_exit_debug();
1399 __free_page(bad_page);
1400 }
1401 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.067963 seconds and 5 git commands to generate.