Merge tag 'iio-fixes-for-3.12b2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn))
106 return PageReserved(pfn_to_page(pfn));
107
108 return true;
109 }
110
111 /*
112 * Switches to specified vcpu, until a matching vcpu_put()
113 */
114 int vcpu_load(struct kvm_vcpu *vcpu)
115 {
116 int cpu;
117
118 if (mutex_lock_killable(&vcpu->mutex))
119 return -EINTR;
120 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
121 /* The thread running this VCPU changed. */
122 struct pid *oldpid = vcpu->pid;
123 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
124 rcu_assign_pointer(vcpu->pid, newpid);
125 synchronize_rcu();
126 put_pid(oldpid);
127 }
128 cpu = get_cpu();
129 preempt_notifier_register(&vcpu->preempt_notifier);
130 kvm_arch_vcpu_load(vcpu, cpu);
131 put_cpu();
132 return 0;
133 }
134
135 void vcpu_put(struct kvm_vcpu *vcpu)
136 {
137 preempt_disable();
138 kvm_arch_vcpu_put(vcpu);
139 preempt_notifier_unregister(&vcpu->preempt_notifier);
140 preempt_enable();
141 mutex_unlock(&vcpu->mutex);
142 }
143
144 static void ack_flush(void *_completed)
145 {
146 }
147
148 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
149 {
150 int i, cpu, me;
151 cpumask_var_t cpus;
152 bool called = true;
153 struct kvm_vcpu *vcpu;
154
155 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
156
157 me = get_cpu();
158 kvm_for_each_vcpu(i, vcpu, kvm) {
159 kvm_make_request(req, vcpu);
160 cpu = vcpu->cpu;
161
162 /* Set ->requests bit before we read ->mode */
163 smp_mb();
164
165 if (cpus != NULL && cpu != -1 && cpu != me &&
166 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
167 cpumask_set_cpu(cpu, cpus);
168 }
169 if (unlikely(cpus == NULL))
170 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
171 else if (!cpumask_empty(cpus))
172 smp_call_function_many(cpus, ack_flush, NULL, 1);
173 else
174 called = false;
175 put_cpu();
176 free_cpumask_var(cpus);
177 return called;
178 }
179
180 void kvm_flush_remote_tlbs(struct kvm *kvm)
181 {
182 long dirty_count = kvm->tlbs_dirty;
183
184 smp_mb();
185 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
186 ++kvm->stat.remote_tlb_flush;
187 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
188 }
189
190 void kvm_reload_remote_mmus(struct kvm *kvm)
191 {
192 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
193 }
194
195 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
196 {
197 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
198 }
199
200 void kvm_make_scan_ioapic_request(struct kvm *kvm)
201 {
202 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
203 }
204
205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
206 {
207 struct page *page;
208 int r;
209
210 mutex_init(&vcpu->mutex);
211 vcpu->cpu = -1;
212 vcpu->kvm = kvm;
213 vcpu->vcpu_id = id;
214 vcpu->pid = NULL;
215 init_waitqueue_head(&vcpu->wq);
216 kvm_async_pf_vcpu_init(vcpu);
217
218 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
219 if (!page) {
220 r = -ENOMEM;
221 goto fail;
222 }
223 vcpu->run = page_address(page);
224
225 kvm_vcpu_set_in_spin_loop(vcpu, false);
226 kvm_vcpu_set_dy_eligible(vcpu, false);
227 vcpu->preempted = false;
228
229 r = kvm_arch_vcpu_init(vcpu);
230 if (r < 0)
231 goto fail_free_run;
232 return 0;
233
234 fail_free_run:
235 free_page((unsigned long)vcpu->run);
236 fail:
237 return r;
238 }
239 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
240
241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
242 {
243 put_pid(vcpu->pid);
244 kvm_arch_vcpu_uninit(vcpu);
245 free_page((unsigned long)vcpu->run);
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
248
249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
251 {
252 return container_of(mn, struct kvm, mmu_notifier);
253 }
254
255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
256 struct mm_struct *mm,
257 unsigned long address)
258 {
259 struct kvm *kvm = mmu_notifier_to_kvm(mn);
260 int need_tlb_flush, idx;
261
262 /*
263 * When ->invalidate_page runs, the linux pte has been zapped
264 * already but the page is still allocated until
265 * ->invalidate_page returns. So if we increase the sequence
266 * here the kvm page fault will notice if the spte can't be
267 * established because the page is going to be freed. If
268 * instead the kvm page fault establishes the spte before
269 * ->invalidate_page runs, kvm_unmap_hva will release it
270 * before returning.
271 *
272 * The sequence increase only need to be seen at spin_unlock
273 * time, and not at spin_lock time.
274 *
275 * Increasing the sequence after the spin_unlock would be
276 * unsafe because the kvm page fault could then establish the
277 * pte after kvm_unmap_hva returned, without noticing the page
278 * is going to be freed.
279 */
280 idx = srcu_read_lock(&kvm->srcu);
281 spin_lock(&kvm->mmu_lock);
282
283 kvm->mmu_notifier_seq++;
284 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
285 /* we've to flush the tlb before the pages can be freed */
286 if (need_tlb_flush)
287 kvm_flush_remote_tlbs(kvm);
288
289 spin_unlock(&kvm->mmu_lock);
290 srcu_read_unlock(&kvm->srcu, idx);
291 }
292
293 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
294 struct mm_struct *mm,
295 unsigned long address,
296 pte_t pte)
297 {
298 struct kvm *kvm = mmu_notifier_to_kvm(mn);
299 int idx;
300
301 idx = srcu_read_lock(&kvm->srcu);
302 spin_lock(&kvm->mmu_lock);
303 kvm->mmu_notifier_seq++;
304 kvm_set_spte_hva(kvm, address, pte);
305 spin_unlock(&kvm->mmu_lock);
306 srcu_read_unlock(&kvm->srcu, idx);
307 }
308
309 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
310 struct mm_struct *mm,
311 unsigned long start,
312 unsigned long end)
313 {
314 struct kvm *kvm = mmu_notifier_to_kvm(mn);
315 int need_tlb_flush = 0, idx;
316
317 idx = srcu_read_lock(&kvm->srcu);
318 spin_lock(&kvm->mmu_lock);
319 /*
320 * The count increase must become visible at unlock time as no
321 * spte can be established without taking the mmu_lock and
322 * count is also read inside the mmu_lock critical section.
323 */
324 kvm->mmu_notifier_count++;
325 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
326 need_tlb_flush |= kvm->tlbs_dirty;
327 /* we've to flush the tlb before the pages can be freed */
328 if (need_tlb_flush)
329 kvm_flush_remote_tlbs(kvm);
330
331 spin_unlock(&kvm->mmu_lock);
332 srcu_read_unlock(&kvm->srcu, idx);
333 }
334
335 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
336 struct mm_struct *mm,
337 unsigned long start,
338 unsigned long end)
339 {
340 struct kvm *kvm = mmu_notifier_to_kvm(mn);
341
342 spin_lock(&kvm->mmu_lock);
343 /*
344 * This sequence increase will notify the kvm page fault that
345 * the page that is going to be mapped in the spte could have
346 * been freed.
347 */
348 kvm->mmu_notifier_seq++;
349 smp_wmb();
350 /*
351 * The above sequence increase must be visible before the
352 * below count decrease, which is ensured by the smp_wmb above
353 * in conjunction with the smp_rmb in mmu_notifier_retry().
354 */
355 kvm->mmu_notifier_count--;
356 spin_unlock(&kvm->mmu_lock);
357
358 BUG_ON(kvm->mmu_notifier_count < 0);
359 }
360
361 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
362 struct mm_struct *mm,
363 unsigned long address)
364 {
365 struct kvm *kvm = mmu_notifier_to_kvm(mn);
366 int young, idx;
367
368 idx = srcu_read_lock(&kvm->srcu);
369 spin_lock(&kvm->mmu_lock);
370
371 young = kvm_age_hva(kvm, address);
372 if (young)
373 kvm_flush_remote_tlbs(kvm);
374
375 spin_unlock(&kvm->mmu_lock);
376 srcu_read_unlock(&kvm->srcu, idx);
377
378 return young;
379 }
380
381 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
382 struct mm_struct *mm,
383 unsigned long address)
384 {
385 struct kvm *kvm = mmu_notifier_to_kvm(mn);
386 int young, idx;
387
388 idx = srcu_read_lock(&kvm->srcu);
389 spin_lock(&kvm->mmu_lock);
390 young = kvm_test_age_hva(kvm, address);
391 spin_unlock(&kvm->mmu_lock);
392 srcu_read_unlock(&kvm->srcu, idx);
393
394 return young;
395 }
396
397 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
398 struct mm_struct *mm)
399 {
400 struct kvm *kvm = mmu_notifier_to_kvm(mn);
401 int idx;
402
403 idx = srcu_read_lock(&kvm->srcu);
404 kvm_arch_flush_shadow_all(kvm);
405 srcu_read_unlock(&kvm->srcu, idx);
406 }
407
408 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
409 .invalidate_page = kvm_mmu_notifier_invalidate_page,
410 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
411 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
412 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
413 .test_young = kvm_mmu_notifier_test_young,
414 .change_pte = kvm_mmu_notifier_change_pte,
415 .release = kvm_mmu_notifier_release,
416 };
417
418 static int kvm_init_mmu_notifier(struct kvm *kvm)
419 {
420 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
421 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
422 }
423
424 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
425
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428 return 0;
429 }
430
431 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
432
433 static void kvm_init_memslots_id(struct kvm *kvm)
434 {
435 int i;
436 struct kvm_memslots *slots = kvm->memslots;
437
438 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
439 slots->id_to_index[i] = slots->memslots[i].id = i;
440 }
441
442 static struct kvm *kvm_create_vm(unsigned long type)
443 {
444 int r, i;
445 struct kvm *kvm = kvm_arch_alloc_vm();
446
447 if (!kvm)
448 return ERR_PTR(-ENOMEM);
449
450 r = kvm_arch_init_vm(kvm, type);
451 if (r)
452 goto out_err_nodisable;
453
454 r = hardware_enable_all();
455 if (r)
456 goto out_err_nodisable;
457
458 #ifdef CONFIG_HAVE_KVM_IRQCHIP
459 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
460 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
461 #endif
462
463 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
464
465 r = -ENOMEM;
466 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
467 if (!kvm->memslots)
468 goto out_err_nosrcu;
469 kvm_init_memslots_id(kvm);
470 if (init_srcu_struct(&kvm->srcu))
471 goto out_err_nosrcu;
472 for (i = 0; i < KVM_NR_BUSES; i++) {
473 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
474 GFP_KERNEL);
475 if (!kvm->buses[i])
476 goto out_err;
477 }
478
479 spin_lock_init(&kvm->mmu_lock);
480 kvm->mm = current->mm;
481 atomic_inc(&kvm->mm->mm_count);
482 kvm_eventfd_init(kvm);
483 mutex_init(&kvm->lock);
484 mutex_init(&kvm->irq_lock);
485 mutex_init(&kvm->slots_lock);
486 atomic_set(&kvm->users_count, 1);
487 INIT_LIST_HEAD(&kvm->devices);
488
489 r = kvm_init_mmu_notifier(kvm);
490 if (r)
491 goto out_err;
492
493 raw_spin_lock(&kvm_lock);
494 list_add(&kvm->vm_list, &vm_list);
495 raw_spin_unlock(&kvm_lock);
496
497 return kvm;
498
499 out_err:
500 cleanup_srcu_struct(&kvm->srcu);
501 out_err_nosrcu:
502 hardware_disable_all();
503 out_err_nodisable:
504 for (i = 0; i < KVM_NR_BUSES; i++)
505 kfree(kvm->buses[i]);
506 kfree(kvm->memslots);
507 kvm_arch_free_vm(kvm);
508 return ERR_PTR(r);
509 }
510
511 /*
512 * Avoid using vmalloc for a small buffer.
513 * Should not be used when the size is statically known.
514 */
515 void *kvm_kvzalloc(unsigned long size)
516 {
517 if (size > PAGE_SIZE)
518 return vzalloc(size);
519 else
520 return kzalloc(size, GFP_KERNEL);
521 }
522
523 void kvm_kvfree(const void *addr)
524 {
525 if (is_vmalloc_addr(addr))
526 vfree(addr);
527 else
528 kfree(addr);
529 }
530
531 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
532 {
533 if (!memslot->dirty_bitmap)
534 return;
535
536 kvm_kvfree(memslot->dirty_bitmap);
537 memslot->dirty_bitmap = NULL;
538 }
539
540 /*
541 * Free any memory in @free but not in @dont.
542 */
543 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
544 struct kvm_memory_slot *dont)
545 {
546 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
547 kvm_destroy_dirty_bitmap(free);
548
549 kvm_arch_free_memslot(free, dont);
550
551 free->npages = 0;
552 }
553
554 void kvm_free_physmem(struct kvm *kvm)
555 {
556 struct kvm_memslots *slots = kvm->memslots;
557 struct kvm_memory_slot *memslot;
558
559 kvm_for_each_memslot(memslot, slots)
560 kvm_free_physmem_slot(memslot, NULL);
561
562 kfree(kvm->memslots);
563 }
564
565 static void kvm_destroy_devices(struct kvm *kvm)
566 {
567 struct list_head *node, *tmp;
568
569 list_for_each_safe(node, tmp, &kvm->devices) {
570 struct kvm_device *dev =
571 list_entry(node, struct kvm_device, vm_node);
572
573 list_del(node);
574 dev->ops->destroy(dev);
575 }
576 }
577
578 static void kvm_destroy_vm(struct kvm *kvm)
579 {
580 int i;
581 struct mm_struct *mm = kvm->mm;
582
583 kvm_arch_sync_events(kvm);
584 raw_spin_lock(&kvm_lock);
585 list_del(&kvm->vm_list);
586 raw_spin_unlock(&kvm_lock);
587 kvm_free_irq_routing(kvm);
588 for (i = 0; i < KVM_NR_BUSES; i++)
589 kvm_io_bus_destroy(kvm->buses[i]);
590 kvm_coalesced_mmio_free(kvm);
591 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
592 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
593 #else
594 kvm_arch_flush_shadow_all(kvm);
595 #endif
596 kvm_arch_destroy_vm(kvm);
597 kvm_destroy_devices(kvm);
598 kvm_free_physmem(kvm);
599 cleanup_srcu_struct(&kvm->srcu);
600 kvm_arch_free_vm(kvm);
601 hardware_disable_all();
602 mmdrop(mm);
603 }
604
605 void kvm_get_kvm(struct kvm *kvm)
606 {
607 atomic_inc(&kvm->users_count);
608 }
609 EXPORT_SYMBOL_GPL(kvm_get_kvm);
610
611 void kvm_put_kvm(struct kvm *kvm)
612 {
613 if (atomic_dec_and_test(&kvm->users_count))
614 kvm_destroy_vm(kvm);
615 }
616 EXPORT_SYMBOL_GPL(kvm_put_kvm);
617
618
619 static int kvm_vm_release(struct inode *inode, struct file *filp)
620 {
621 struct kvm *kvm = filp->private_data;
622
623 kvm_irqfd_release(kvm);
624
625 kvm_put_kvm(kvm);
626 return 0;
627 }
628
629 /*
630 * Allocation size is twice as large as the actual dirty bitmap size.
631 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
632 */
633 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
634 {
635 #ifndef CONFIG_S390
636 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
637
638 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
639 if (!memslot->dirty_bitmap)
640 return -ENOMEM;
641
642 #endif /* !CONFIG_S390 */
643 return 0;
644 }
645
646 static int cmp_memslot(const void *slot1, const void *slot2)
647 {
648 struct kvm_memory_slot *s1, *s2;
649
650 s1 = (struct kvm_memory_slot *)slot1;
651 s2 = (struct kvm_memory_slot *)slot2;
652
653 if (s1->npages < s2->npages)
654 return 1;
655 if (s1->npages > s2->npages)
656 return -1;
657
658 return 0;
659 }
660
661 /*
662 * Sort the memslots base on its size, so the larger slots
663 * will get better fit.
664 */
665 static void sort_memslots(struct kvm_memslots *slots)
666 {
667 int i;
668
669 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
670 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
671
672 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
673 slots->id_to_index[slots->memslots[i].id] = i;
674 }
675
676 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
677 u64 last_generation)
678 {
679 if (new) {
680 int id = new->id;
681 struct kvm_memory_slot *old = id_to_memslot(slots, id);
682 unsigned long npages = old->npages;
683
684 *old = *new;
685 if (new->npages != npages)
686 sort_memslots(slots);
687 }
688
689 slots->generation = last_generation + 1;
690 }
691
692 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
693 {
694 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
695
696 #ifdef KVM_CAP_READONLY_MEM
697 valid_flags |= KVM_MEM_READONLY;
698 #endif
699
700 if (mem->flags & ~valid_flags)
701 return -EINVAL;
702
703 return 0;
704 }
705
706 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
707 struct kvm_memslots *slots, struct kvm_memory_slot *new)
708 {
709 struct kvm_memslots *old_memslots = kvm->memslots;
710
711 update_memslots(slots, new, kvm->memslots->generation);
712 rcu_assign_pointer(kvm->memslots, slots);
713 synchronize_srcu_expedited(&kvm->srcu);
714
715 kvm_arch_memslots_updated(kvm);
716
717 return old_memslots;
718 }
719
720 /*
721 * Allocate some memory and give it an address in the guest physical address
722 * space.
723 *
724 * Discontiguous memory is allowed, mostly for framebuffers.
725 *
726 * Must be called holding mmap_sem for write.
727 */
728 int __kvm_set_memory_region(struct kvm *kvm,
729 struct kvm_userspace_memory_region *mem)
730 {
731 int r;
732 gfn_t base_gfn;
733 unsigned long npages;
734 struct kvm_memory_slot *slot;
735 struct kvm_memory_slot old, new;
736 struct kvm_memslots *slots = NULL, *old_memslots;
737 enum kvm_mr_change change;
738
739 r = check_memory_region_flags(mem);
740 if (r)
741 goto out;
742
743 r = -EINVAL;
744 /* General sanity checks */
745 if (mem->memory_size & (PAGE_SIZE - 1))
746 goto out;
747 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
748 goto out;
749 /* We can read the guest memory with __xxx_user() later on. */
750 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
751 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
752 !access_ok(VERIFY_WRITE,
753 (void __user *)(unsigned long)mem->userspace_addr,
754 mem->memory_size)))
755 goto out;
756 if (mem->slot >= KVM_MEM_SLOTS_NUM)
757 goto out;
758 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
759 goto out;
760
761 slot = id_to_memslot(kvm->memslots, mem->slot);
762 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
763 npages = mem->memory_size >> PAGE_SHIFT;
764
765 r = -EINVAL;
766 if (npages > KVM_MEM_MAX_NR_PAGES)
767 goto out;
768
769 if (!npages)
770 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
771
772 new = old = *slot;
773
774 new.id = mem->slot;
775 new.base_gfn = base_gfn;
776 new.npages = npages;
777 new.flags = mem->flags;
778
779 r = -EINVAL;
780 if (npages) {
781 if (!old.npages)
782 change = KVM_MR_CREATE;
783 else { /* Modify an existing slot. */
784 if ((mem->userspace_addr != old.userspace_addr) ||
785 (npages != old.npages) ||
786 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
787 goto out;
788
789 if (base_gfn != old.base_gfn)
790 change = KVM_MR_MOVE;
791 else if (new.flags != old.flags)
792 change = KVM_MR_FLAGS_ONLY;
793 else { /* Nothing to change. */
794 r = 0;
795 goto out;
796 }
797 }
798 } else if (old.npages) {
799 change = KVM_MR_DELETE;
800 } else /* Modify a non-existent slot: disallowed. */
801 goto out;
802
803 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
804 /* Check for overlaps */
805 r = -EEXIST;
806 kvm_for_each_memslot(slot, kvm->memslots) {
807 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
808 (slot->id == mem->slot))
809 continue;
810 if (!((base_gfn + npages <= slot->base_gfn) ||
811 (base_gfn >= slot->base_gfn + slot->npages)))
812 goto out;
813 }
814 }
815
816 /* Free page dirty bitmap if unneeded */
817 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
818 new.dirty_bitmap = NULL;
819
820 r = -ENOMEM;
821 if (change == KVM_MR_CREATE) {
822 new.userspace_addr = mem->userspace_addr;
823
824 if (kvm_arch_create_memslot(&new, npages))
825 goto out_free;
826 }
827
828 /* Allocate page dirty bitmap if needed */
829 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
830 if (kvm_create_dirty_bitmap(&new) < 0)
831 goto out_free;
832 }
833
834 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
835 r = -ENOMEM;
836 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837 GFP_KERNEL);
838 if (!slots)
839 goto out_free;
840 slot = id_to_memslot(slots, mem->slot);
841 slot->flags |= KVM_MEMSLOT_INVALID;
842
843 old_memslots = install_new_memslots(kvm, slots, NULL);
844
845 /* slot was deleted or moved, clear iommu mapping */
846 kvm_iommu_unmap_pages(kvm, &old);
847 /* From this point no new shadow pages pointing to a deleted,
848 * or moved, memslot will be created.
849 *
850 * validation of sp->gfn happens in:
851 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
852 * - kvm_is_visible_gfn (mmu_check_roots)
853 */
854 kvm_arch_flush_shadow_memslot(kvm, slot);
855 slots = old_memslots;
856 }
857
858 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
859 if (r)
860 goto out_slots;
861
862 r = -ENOMEM;
863 /*
864 * We can re-use the old_memslots from above, the only difference
865 * from the currently installed memslots is the invalid flag. This
866 * will get overwritten by update_memslots anyway.
867 */
868 if (!slots) {
869 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
870 GFP_KERNEL);
871 if (!slots)
872 goto out_free;
873 }
874
875 /*
876 * IOMMU mapping: New slots need to be mapped. Old slots need to be
877 * un-mapped and re-mapped if their base changes. Since base change
878 * unmapping is handled above with slot deletion, mapping alone is
879 * needed here. Anything else the iommu might care about for existing
880 * slots (size changes, userspace addr changes and read-only flag
881 * changes) is disallowed above, so any other attribute changes getting
882 * here can be skipped.
883 */
884 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
885 r = kvm_iommu_map_pages(kvm, &new);
886 if (r)
887 goto out_slots;
888 }
889
890 /* actual memory is freed via old in kvm_free_physmem_slot below */
891 if (change == KVM_MR_DELETE) {
892 new.dirty_bitmap = NULL;
893 memset(&new.arch, 0, sizeof(new.arch));
894 }
895
896 old_memslots = install_new_memslots(kvm, slots, &new);
897
898 kvm_arch_commit_memory_region(kvm, mem, &old, change);
899
900 kvm_free_physmem_slot(&old, &new);
901 kfree(old_memslots);
902
903 return 0;
904
905 out_slots:
906 kfree(slots);
907 out_free:
908 kvm_free_physmem_slot(&new, &old);
909 out:
910 return r;
911 }
912 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
913
914 int kvm_set_memory_region(struct kvm *kvm,
915 struct kvm_userspace_memory_region *mem)
916 {
917 int r;
918
919 mutex_lock(&kvm->slots_lock);
920 r = __kvm_set_memory_region(kvm, mem);
921 mutex_unlock(&kvm->slots_lock);
922 return r;
923 }
924 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
925
926 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
927 struct kvm_userspace_memory_region *mem)
928 {
929 if (mem->slot >= KVM_USER_MEM_SLOTS)
930 return -EINVAL;
931 return kvm_set_memory_region(kvm, mem);
932 }
933
934 int kvm_get_dirty_log(struct kvm *kvm,
935 struct kvm_dirty_log *log, int *is_dirty)
936 {
937 struct kvm_memory_slot *memslot;
938 int r, i;
939 unsigned long n;
940 unsigned long any = 0;
941
942 r = -EINVAL;
943 if (log->slot >= KVM_USER_MEM_SLOTS)
944 goto out;
945
946 memslot = id_to_memslot(kvm->memslots, log->slot);
947 r = -ENOENT;
948 if (!memslot->dirty_bitmap)
949 goto out;
950
951 n = kvm_dirty_bitmap_bytes(memslot);
952
953 for (i = 0; !any && i < n/sizeof(long); ++i)
954 any = memslot->dirty_bitmap[i];
955
956 r = -EFAULT;
957 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
958 goto out;
959
960 if (any)
961 *is_dirty = 1;
962
963 r = 0;
964 out:
965 return r;
966 }
967
968 bool kvm_largepages_enabled(void)
969 {
970 return largepages_enabled;
971 }
972
973 void kvm_disable_largepages(void)
974 {
975 largepages_enabled = false;
976 }
977 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
978
979 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
980 {
981 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
982 }
983 EXPORT_SYMBOL_GPL(gfn_to_memslot);
984
985 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
986 {
987 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
988
989 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
990 memslot->flags & KVM_MEMSLOT_INVALID)
991 return 0;
992
993 return 1;
994 }
995 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
996
997 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
998 {
999 struct vm_area_struct *vma;
1000 unsigned long addr, size;
1001
1002 size = PAGE_SIZE;
1003
1004 addr = gfn_to_hva(kvm, gfn);
1005 if (kvm_is_error_hva(addr))
1006 return PAGE_SIZE;
1007
1008 down_read(&current->mm->mmap_sem);
1009 vma = find_vma(current->mm, addr);
1010 if (!vma)
1011 goto out;
1012
1013 size = vma_kernel_pagesize(vma);
1014
1015 out:
1016 up_read(&current->mm->mmap_sem);
1017
1018 return size;
1019 }
1020
1021 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1022 {
1023 return slot->flags & KVM_MEM_READONLY;
1024 }
1025
1026 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1027 gfn_t *nr_pages, bool write)
1028 {
1029 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1030 return KVM_HVA_ERR_BAD;
1031
1032 if (memslot_is_readonly(slot) && write)
1033 return KVM_HVA_ERR_RO_BAD;
1034
1035 if (nr_pages)
1036 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1037
1038 return __gfn_to_hva_memslot(slot, gfn);
1039 }
1040
1041 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1042 gfn_t *nr_pages)
1043 {
1044 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1045 }
1046
1047 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1048 gfn_t gfn)
1049 {
1050 return gfn_to_hva_many(slot, gfn, NULL);
1051 }
1052 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1053
1054 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1055 {
1056 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1057 }
1058 EXPORT_SYMBOL_GPL(gfn_to_hva);
1059
1060 /*
1061 * If writable is set to false, the hva returned by this function is only
1062 * allowed to be read.
1063 */
1064 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1065 {
1066 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1067 if (writable)
1068 *writable = !memslot_is_readonly(slot);
1069
1070 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1071 }
1072
1073 static int kvm_read_hva(void *data, void __user *hva, int len)
1074 {
1075 return __copy_from_user(data, hva, len);
1076 }
1077
1078 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1079 {
1080 return __copy_from_user_inatomic(data, hva, len);
1081 }
1082
1083 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1084 unsigned long start, int write, struct page **page)
1085 {
1086 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1087
1088 if (write)
1089 flags |= FOLL_WRITE;
1090
1091 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1092 }
1093
1094 static inline int check_user_page_hwpoison(unsigned long addr)
1095 {
1096 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1097
1098 rc = __get_user_pages(current, current->mm, addr, 1,
1099 flags, NULL, NULL, NULL);
1100 return rc == -EHWPOISON;
1101 }
1102
1103 /*
1104 * The atomic path to get the writable pfn which will be stored in @pfn,
1105 * true indicates success, otherwise false is returned.
1106 */
1107 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1108 bool write_fault, bool *writable, pfn_t *pfn)
1109 {
1110 struct page *page[1];
1111 int npages;
1112
1113 if (!(async || atomic))
1114 return false;
1115
1116 /*
1117 * Fast pin a writable pfn only if it is a write fault request
1118 * or the caller allows to map a writable pfn for a read fault
1119 * request.
1120 */
1121 if (!(write_fault || writable))
1122 return false;
1123
1124 npages = __get_user_pages_fast(addr, 1, 1, page);
1125 if (npages == 1) {
1126 *pfn = page_to_pfn(page[0]);
1127
1128 if (writable)
1129 *writable = true;
1130 return true;
1131 }
1132
1133 return false;
1134 }
1135
1136 /*
1137 * The slow path to get the pfn of the specified host virtual address,
1138 * 1 indicates success, -errno is returned if error is detected.
1139 */
1140 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1141 bool *writable, pfn_t *pfn)
1142 {
1143 struct page *page[1];
1144 int npages = 0;
1145
1146 might_sleep();
1147
1148 if (writable)
1149 *writable = write_fault;
1150
1151 if (async) {
1152 down_read(&current->mm->mmap_sem);
1153 npages = get_user_page_nowait(current, current->mm,
1154 addr, write_fault, page);
1155 up_read(&current->mm->mmap_sem);
1156 } else
1157 npages = get_user_pages_fast(addr, 1, write_fault,
1158 page);
1159 if (npages != 1)
1160 return npages;
1161
1162 /* map read fault as writable if possible */
1163 if (unlikely(!write_fault) && writable) {
1164 struct page *wpage[1];
1165
1166 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1167 if (npages == 1) {
1168 *writable = true;
1169 put_page(page[0]);
1170 page[0] = wpage[0];
1171 }
1172
1173 npages = 1;
1174 }
1175 *pfn = page_to_pfn(page[0]);
1176 return npages;
1177 }
1178
1179 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1180 {
1181 if (unlikely(!(vma->vm_flags & VM_READ)))
1182 return false;
1183
1184 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1185 return false;
1186
1187 return true;
1188 }
1189
1190 /*
1191 * Pin guest page in memory and return its pfn.
1192 * @addr: host virtual address which maps memory to the guest
1193 * @atomic: whether this function can sleep
1194 * @async: whether this function need to wait IO complete if the
1195 * host page is not in the memory
1196 * @write_fault: whether we should get a writable host page
1197 * @writable: whether it allows to map a writable host page for !@write_fault
1198 *
1199 * The function will map a writable host page for these two cases:
1200 * 1): @write_fault = true
1201 * 2): @write_fault = false && @writable, @writable will tell the caller
1202 * whether the mapping is writable.
1203 */
1204 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1205 bool write_fault, bool *writable)
1206 {
1207 struct vm_area_struct *vma;
1208 pfn_t pfn = 0;
1209 int npages;
1210
1211 /* we can do it either atomically or asynchronously, not both */
1212 BUG_ON(atomic && async);
1213
1214 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1215 return pfn;
1216
1217 if (atomic)
1218 return KVM_PFN_ERR_FAULT;
1219
1220 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1221 if (npages == 1)
1222 return pfn;
1223
1224 down_read(&current->mm->mmap_sem);
1225 if (npages == -EHWPOISON ||
1226 (!async && check_user_page_hwpoison(addr))) {
1227 pfn = KVM_PFN_ERR_HWPOISON;
1228 goto exit;
1229 }
1230
1231 vma = find_vma_intersection(current->mm, addr, addr + 1);
1232
1233 if (vma == NULL)
1234 pfn = KVM_PFN_ERR_FAULT;
1235 else if ((vma->vm_flags & VM_PFNMAP)) {
1236 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1237 vma->vm_pgoff;
1238 BUG_ON(!kvm_is_mmio_pfn(pfn));
1239 } else {
1240 if (async && vma_is_valid(vma, write_fault))
1241 *async = true;
1242 pfn = KVM_PFN_ERR_FAULT;
1243 }
1244 exit:
1245 up_read(&current->mm->mmap_sem);
1246 return pfn;
1247 }
1248
1249 static pfn_t
1250 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1251 bool *async, bool write_fault, bool *writable)
1252 {
1253 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1254
1255 if (addr == KVM_HVA_ERR_RO_BAD)
1256 return KVM_PFN_ERR_RO_FAULT;
1257
1258 if (kvm_is_error_hva(addr))
1259 return KVM_PFN_NOSLOT;
1260
1261 /* Do not map writable pfn in the readonly memslot. */
1262 if (writable && memslot_is_readonly(slot)) {
1263 *writable = false;
1264 writable = NULL;
1265 }
1266
1267 return hva_to_pfn(addr, atomic, async, write_fault,
1268 writable);
1269 }
1270
1271 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1272 bool write_fault, bool *writable)
1273 {
1274 struct kvm_memory_slot *slot;
1275
1276 if (async)
1277 *async = false;
1278
1279 slot = gfn_to_memslot(kvm, gfn);
1280
1281 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1282 writable);
1283 }
1284
1285 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1286 {
1287 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1288 }
1289 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1290
1291 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1292 bool write_fault, bool *writable)
1293 {
1294 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1295 }
1296 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1297
1298 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1299 {
1300 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1303
1304 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1305 bool *writable)
1306 {
1307 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1310
1311 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1312 {
1313 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1314 }
1315
1316 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1317 {
1318 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1319 }
1320 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1321
1322 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1323 int nr_pages)
1324 {
1325 unsigned long addr;
1326 gfn_t entry;
1327
1328 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1329 if (kvm_is_error_hva(addr))
1330 return -1;
1331
1332 if (entry < nr_pages)
1333 return 0;
1334
1335 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1336 }
1337 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1338
1339 static struct page *kvm_pfn_to_page(pfn_t pfn)
1340 {
1341 if (is_error_noslot_pfn(pfn))
1342 return KVM_ERR_PTR_BAD_PAGE;
1343
1344 if (kvm_is_mmio_pfn(pfn)) {
1345 WARN_ON(1);
1346 return KVM_ERR_PTR_BAD_PAGE;
1347 }
1348
1349 return pfn_to_page(pfn);
1350 }
1351
1352 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1353 {
1354 pfn_t pfn;
1355
1356 pfn = gfn_to_pfn(kvm, gfn);
1357
1358 return kvm_pfn_to_page(pfn);
1359 }
1360
1361 EXPORT_SYMBOL_GPL(gfn_to_page);
1362
1363 void kvm_release_page_clean(struct page *page)
1364 {
1365 WARN_ON(is_error_page(page));
1366
1367 kvm_release_pfn_clean(page_to_pfn(page));
1368 }
1369 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1370
1371 void kvm_release_pfn_clean(pfn_t pfn)
1372 {
1373 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1374 put_page(pfn_to_page(pfn));
1375 }
1376 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1377
1378 void kvm_release_page_dirty(struct page *page)
1379 {
1380 WARN_ON(is_error_page(page));
1381
1382 kvm_release_pfn_dirty(page_to_pfn(page));
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1385
1386 void kvm_release_pfn_dirty(pfn_t pfn)
1387 {
1388 kvm_set_pfn_dirty(pfn);
1389 kvm_release_pfn_clean(pfn);
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1392
1393 void kvm_set_page_dirty(struct page *page)
1394 {
1395 kvm_set_pfn_dirty(page_to_pfn(page));
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1398
1399 void kvm_set_pfn_dirty(pfn_t pfn)
1400 {
1401 if (!kvm_is_mmio_pfn(pfn)) {
1402 struct page *page = pfn_to_page(pfn);
1403 if (!PageReserved(page))
1404 SetPageDirty(page);
1405 }
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1408
1409 void kvm_set_pfn_accessed(pfn_t pfn)
1410 {
1411 if (!kvm_is_mmio_pfn(pfn))
1412 mark_page_accessed(pfn_to_page(pfn));
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1415
1416 void kvm_get_pfn(pfn_t pfn)
1417 {
1418 if (!kvm_is_mmio_pfn(pfn))
1419 get_page(pfn_to_page(pfn));
1420 }
1421 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1422
1423 static int next_segment(unsigned long len, int offset)
1424 {
1425 if (len > PAGE_SIZE - offset)
1426 return PAGE_SIZE - offset;
1427 else
1428 return len;
1429 }
1430
1431 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1432 int len)
1433 {
1434 int r;
1435 unsigned long addr;
1436
1437 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1438 if (kvm_is_error_hva(addr))
1439 return -EFAULT;
1440 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1441 if (r)
1442 return -EFAULT;
1443 return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1446
1447 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1448 {
1449 gfn_t gfn = gpa >> PAGE_SHIFT;
1450 int seg;
1451 int offset = offset_in_page(gpa);
1452 int ret;
1453
1454 while ((seg = next_segment(len, offset)) != 0) {
1455 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1456 if (ret < 0)
1457 return ret;
1458 offset = 0;
1459 len -= seg;
1460 data += seg;
1461 ++gfn;
1462 }
1463 return 0;
1464 }
1465 EXPORT_SYMBOL_GPL(kvm_read_guest);
1466
1467 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1468 unsigned long len)
1469 {
1470 int r;
1471 unsigned long addr;
1472 gfn_t gfn = gpa >> PAGE_SHIFT;
1473 int offset = offset_in_page(gpa);
1474
1475 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1476 if (kvm_is_error_hva(addr))
1477 return -EFAULT;
1478 pagefault_disable();
1479 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1480 pagefault_enable();
1481 if (r)
1482 return -EFAULT;
1483 return 0;
1484 }
1485 EXPORT_SYMBOL(kvm_read_guest_atomic);
1486
1487 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1488 int offset, int len)
1489 {
1490 int r;
1491 unsigned long addr;
1492
1493 addr = gfn_to_hva(kvm, gfn);
1494 if (kvm_is_error_hva(addr))
1495 return -EFAULT;
1496 r = __copy_to_user((void __user *)addr + offset, data, len);
1497 if (r)
1498 return -EFAULT;
1499 mark_page_dirty(kvm, gfn);
1500 return 0;
1501 }
1502 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1503
1504 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1505 unsigned long len)
1506 {
1507 gfn_t gfn = gpa >> PAGE_SHIFT;
1508 int seg;
1509 int offset = offset_in_page(gpa);
1510 int ret;
1511
1512 while ((seg = next_segment(len, offset)) != 0) {
1513 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1514 if (ret < 0)
1515 return ret;
1516 offset = 0;
1517 len -= seg;
1518 data += seg;
1519 ++gfn;
1520 }
1521 return 0;
1522 }
1523
1524 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1525 gpa_t gpa, unsigned long len)
1526 {
1527 struct kvm_memslots *slots = kvm_memslots(kvm);
1528 int offset = offset_in_page(gpa);
1529 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1530 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1531 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1532 gfn_t nr_pages_avail;
1533
1534 ghc->gpa = gpa;
1535 ghc->generation = slots->generation;
1536 ghc->len = len;
1537 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1538 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1539 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1540 ghc->hva += offset;
1541 } else {
1542 /*
1543 * If the requested region crosses two memslots, we still
1544 * verify that the entire region is valid here.
1545 */
1546 while (start_gfn <= end_gfn) {
1547 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1548 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1549 &nr_pages_avail);
1550 if (kvm_is_error_hva(ghc->hva))
1551 return -EFAULT;
1552 start_gfn += nr_pages_avail;
1553 }
1554 /* Use the slow path for cross page reads and writes. */
1555 ghc->memslot = NULL;
1556 }
1557 return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1560
1561 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1562 void *data, unsigned long len)
1563 {
1564 struct kvm_memslots *slots = kvm_memslots(kvm);
1565 int r;
1566
1567 BUG_ON(len > ghc->len);
1568
1569 if (slots->generation != ghc->generation)
1570 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1571
1572 if (unlikely(!ghc->memslot))
1573 return kvm_write_guest(kvm, ghc->gpa, data, len);
1574
1575 if (kvm_is_error_hva(ghc->hva))
1576 return -EFAULT;
1577
1578 r = __copy_to_user((void __user *)ghc->hva, data, len);
1579 if (r)
1580 return -EFAULT;
1581 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1582
1583 return 0;
1584 }
1585 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1586
1587 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1588 void *data, unsigned long len)
1589 {
1590 struct kvm_memslots *slots = kvm_memslots(kvm);
1591 int r;
1592
1593 BUG_ON(len > ghc->len);
1594
1595 if (slots->generation != ghc->generation)
1596 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1597
1598 if (unlikely(!ghc->memslot))
1599 return kvm_read_guest(kvm, ghc->gpa, data, len);
1600
1601 if (kvm_is_error_hva(ghc->hva))
1602 return -EFAULT;
1603
1604 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1605 if (r)
1606 return -EFAULT;
1607
1608 return 0;
1609 }
1610 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1611
1612 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1613 {
1614 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1615 offset, len);
1616 }
1617 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1618
1619 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1620 {
1621 gfn_t gfn = gpa >> PAGE_SHIFT;
1622 int seg;
1623 int offset = offset_in_page(gpa);
1624 int ret;
1625
1626 while ((seg = next_segment(len, offset)) != 0) {
1627 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1628 if (ret < 0)
1629 return ret;
1630 offset = 0;
1631 len -= seg;
1632 ++gfn;
1633 }
1634 return 0;
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1637
1638 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1639 gfn_t gfn)
1640 {
1641 if (memslot && memslot->dirty_bitmap) {
1642 unsigned long rel_gfn = gfn - memslot->base_gfn;
1643
1644 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1645 }
1646 }
1647
1648 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1649 {
1650 struct kvm_memory_slot *memslot;
1651
1652 memslot = gfn_to_memslot(kvm, gfn);
1653 mark_page_dirty_in_slot(kvm, memslot, gfn);
1654 }
1655
1656 /*
1657 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1658 */
1659 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1660 {
1661 DEFINE_WAIT(wait);
1662
1663 for (;;) {
1664 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1665
1666 if (kvm_arch_vcpu_runnable(vcpu)) {
1667 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1668 break;
1669 }
1670 if (kvm_cpu_has_pending_timer(vcpu))
1671 break;
1672 if (signal_pending(current))
1673 break;
1674
1675 schedule();
1676 }
1677
1678 finish_wait(&vcpu->wq, &wait);
1679 }
1680
1681 #ifndef CONFIG_S390
1682 /*
1683 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1684 */
1685 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1686 {
1687 int me;
1688 int cpu = vcpu->cpu;
1689 wait_queue_head_t *wqp;
1690
1691 wqp = kvm_arch_vcpu_wq(vcpu);
1692 if (waitqueue_active(wqp)) {
1693 wake_up_interruptible(wqp);
1694 ++vcpu->stat.halt_wakeup;
1695 }
1696
1697 me = get_cpu();
1698 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1699 if (kvm_arch_vcpu_should_kick(vcpu))
1700 smp_send_reschedule(cpu);
1701 put_cpu();
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1704 #endif /* !CONFIG_S390 */
1705
1706 void kvm_resched(struct kvm_vcpu *vcpu)
1707 {
1708 if (!need_resched())
1709 return;
1710 cond_resched();
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_resched);
1713
1714 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1715 {
1716 struct pid *pid;
1717 struct task_struct *task = NULL;
1718 bool ret = false;
1719
1720 rcu_read_lock();
1721 pid = rcu_dereference(target->pid);
1722 if (pid)
1723 task = get_pid_task(target->pid, PIDTYPE_PID);
1724 rcu_read_unlock();
1725 if (!task)
1726 return ret;
1727 if (task->flags & PF_VCPU) {
1728 put_task_struct(task);
1729 return ret;
1730 }
1731 ret = yield_to(task, 1);
1732 put_task_struct(task);
1733
1734 return ret;
1735 }
1736 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1737
1738 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1739 /*
1740 * Helper that checks whether a VCPU is eligible for directed yield.
1741 * Most eligible candidate to yield is decided by following heuristics:
1742 *
1743 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1744 * (preempted lock holder), indicated by @in_spin_loop.
1745 * Set at the beiginning and cleared at the end of interception/PLE handler.
1746 *
1747 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1748 * chance last time (mostly it has become eligible now since we have probably
1749 * yielded to lockholder in last iteration. This is done by toggling
1750 * @dy_eligible each time a VCPU checked for eligibility.)
1751 *
1752 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1753 * to preempted lock-holder could result in wrong VCPU selection and CPU
1754 * burning. Giving priority for a potential lock-holder increases lock
1755 * progress.
1756 *
1757 * Since algorithm is based on heuristics, accessing another VCPU data without
1758 * locking does not harm. It may result in trying to yield to same VCPU, fail
1759 * and continue with next VCPU and so on.
1760 */
1761 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1762 {
1763 bool eligible;
1764
1765 eligible = !vcpu->spin_loop.in_spin_loop ||
1766 (vcpu->spin_loop.in_spin_loop &&
1767 vcpu->spin_loop.dy_eligible);
1768
1769 if (vcpu->spin_loop.in_spin_loop)
1770 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1771
1772 return eligible;
1773 }
1774 #endif
1775
1776 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1777 {
1778 struct kvm *kvm = me->kvm;
1779 struct kvm_vcpu *vcpu;
1780 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1781 int yielded = 0;
1782 int try = 3;
1783 int pass;
1784 int i;
1785
1786 kvm_vcpu_set_in_spin_loop(me, true);
1787 /*
1788 * We boost the priority of a VCPU that is runnable but not
1789 * currently running, because it got preempted by something
1790 * else and called schedule in __vcpu_run. Hopefully that
1791 * VCPU is holding the lock that we need and will release it.
1792 * We approximate round-robin by starting at the last boosted VCPU.
1793 */
1794 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1795 kvm_for_each_vcpu(i, vcpu, kvm) {
1796 if (!pass && i <= last_boosted_vcpu) {
1797 i = last_boosted_vcpu;
1798 continue;
1799 } else if (pass && i > last_boosted_vcpu)
1800 break;
1801 if (!ACCESS_ONCE(vcpu->preempted))
1802 continue;
1803 if (vcpu == me)
1804 continue;
1805 if (waitqueue_active(&vcpu->wq))
1806 continue;
1807 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1808 continue;
1809
1810 yielded = kvm_vcpu_yield_to(vcpu);
1811 if (yielded > 0) {
1812 kvm->last_boosted_vcpu = i;
1813 break;
1814 } else if (yielded < 0) {
1815 try--;
1816 if (!try)
1817 break;
1818 }
1819 }
1820 }
1821 kvm_vcpu_set_in_spin_loop(me, false);
1822
1823 /* Ensure vcpu is not eligible during next spinloop */
1824 kvm_vcpu_set_dy_eligible(me, false);
1825 }
1826 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1827
1828 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1829 {
1830 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1831 struct page *page;
1832
1833 if (vmf->pgoff == 0)
1834 page = virt_to_page(vcpu->run);
1835 #ifdef CONFIG_X86
1836 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1837 page = virt_to_page(vcpu->arch.pio_data);
1838 #endif
1839 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1840 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1841 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1842 #endif
1843 else
1844 return kvm_arch_vcpu_fault(vcpu, vmf);
1845 get_page(page);
1846 vmf->page = page;
1847 return 0;
1848 }
1849
1850 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1851 .fault = kvm_vcpu_fault,
1852 };
1853
1854 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1855 {
1856 vma->vm_ops = &kvm_vcpu_vm_ops;
1857 return 0;
1858 }
1859
1860 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1861 {
1862 struct kvm_vcpu *vcpu = filp->private_data;
1863
1864 kvm_put_kvm(vcpu->kvm);
1865 return 0;
1866 }
1867
1868 static struct file_operations kvm_vcpu_fops = {
1869 .release = kvm_vcpu_release,
1870 .unlocked_ioctl = kvm_vcpu_ioctl,
1871 #ifdef CONFIG_COMPAT
1872 .compat_ioctl = kvm_vcpu_compat_ioctl,
1873 #endif
1874 .mmap = kvm_vcpu_mmap,
1875 .llseek = noop_llseek,
1876 };
1877
1878 /*
1879 * Allocates an inode for the vcpu.
1880 */
1881 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1882 {
1883 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1884 }
1885
1886 /*
1887 * Creates some virtual cpus. Good luck creating more than one.
1888 */
1889 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1890 {
1891 int r;
1892 struct kvm_vcpu *vcpu, *v;
1893
1894 vcpu = kvm_arch_vcpu_create(kvm, id);
1895 if (IS_ERR(vcpu))
1896 return PTR_ERR(vcpu);
1897
1898 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1899
1900 r = kvm_arch_vcpu_setup(vcpu);
1901 if (r)
1902 goto vcpu_destroy;
1903
1904 mutex_lock(&kvm->lock);
1905 if (!kvm_vcpu_compatible(vcpu)) {
1906 r = -EINVAL;
1907 goto unlock_vcpu_destroy;
1908 }
1909 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1910 r = -EINVAL;
1911 goto unlock_vcpu_destroy;
1912 }
1913
1914 kvm_for_each_vcpu(r, v, kvm)
1915 if (v->vcpu_id == id) {
1916 r = -EEXIST;
1917 goto unlock_vcpu_destroy;
1918 }
1919
1920 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1921
1922 /* Now it's all set up, let userspace reach it */
1923 kvm_get_kvm(kvm);
1924 r = create_vcpu_fd(vcpu);
1925 if (r < 0) {
1926 kvm_put_kvm(kvm);
1927 goto unlock_vcpu_destroy;
1928 }
1929
1930 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1931 smp_wmb();
1932 atomic_inc(&kvm->online_vcpus);
1933
1934 mutex_unlock(&kvm->lock);
1935 kvm_arch_vcpu_postcreate(vcpu);
1936 return r;
1937
1938 unlock_vcpu_destroy:
1939 mutex_unlock(&kvm->lock);
1940 vcpu_destroy:
1941 kvm_arch_vcpu_destroy(vcpu);
1942 return r;
1943 }
1944
1945 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1946 {
1947 if (sigset) {
1948 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1949 vcpu->sigset_active = 1;
1950 vcpu->sigset = *sigset;
1951 } else
1952 vcpu->sigset_active = 0;
1953 return 0;
1954 }
1955
1956 static long kvm_vcpu_ioctl(struct file *filp,
1957 unsigned int ioctl, unsigned long arg)
1958 {
1959 struct kvm_vcpu *vcpu = filp->private_data;
1960 void __user *argp = (void __user *)arg;
1961 int r;
1962 struct kvm_fpu *fpu = NULL;
1963 struct kvm_sregs *kvm_sregs = NULL;
1964
1965 if (vcpu->kvm->mm != current->mm)
1966 return -EIO;
1967
1968 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1969 /*
1970 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1971 * so vcpu_load() would break it.
1972 */
1973 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1974 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1975 #endif
1976
1977
1978 r = vcpu_load(vcpu);
1979 if (r)
1980 return r;
1981 switch (ioctl) {
1982 case KVM_RUN:
1983 r = -EINVAL;
1984 if (arg)
1985 goto out;
1986 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1987 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1988 break;
1989 case KVM_GET_REGS: {
1990 struct kvm_regs *kvm_regs;
1991
1992 r = -ENOMEM;
1993 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1994 if (!kvm_regs)
1995 goto out;
1996 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1997 if (r)
1998 goto out_free1;
1999 r = -EFAULT;
2000 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2001 goto out_free1;
2002 r = 0;
2003 out_free1:
2004 kfree(kvm_regs);
2005 break;
2006 }
2007 case KVM_SET_REGS: {
2008 struct kvm_regs *kvm_regs;
2009
2010 r = -ENOMEM;
2011 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2012 if (IS_ERR(kvm_regs)) {
2013 r = PTR_ERR(kvm_regs);
2014 goto out;
2015 }
2016 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2017 kfree(kvm_regs);
2018 break;
2019 }
2020 case KVM_GET_SREGS: {
2021 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2022 r = -ENOMEM;
2023 if (!kvm_sregs)
2024 goto out;
2025 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2026 if (r)
2027 goto out;
2028 r = -EFAULT;
2029 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2030 goto out;
2031 r = 0;
2032 break;
2033 }
2034 case KVM_SET_SREGS: {
2035 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2036 if (IS_ERR(kvm_sregs)) {
2037 r = PTR_ERR(kvm_sregs);
2038 kvm_sregs = NULL;
2039 goto out;
2040 }
2041 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2042 break;
2043 }
2044 case KVM_GET_MP_STATE: {
2045 struct kvm_mp_state mp_state;
2046
2047 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2048 if (r)
2049 goto out;
2050 r = -EFAULT;
2051 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2052 goto out;
2053 r = 0;
2054 break;
2055 }
2056 case KVM_SET_MP_STATE: {
2057 struct kvm_mp_state mp_state;
2058
2059 r = -EFAULT;
2060 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2061 goto out;
2062 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2063 break;
2064 }
2065 case KVM_TRANSLATE: {
2066 struct kvm_translation tr;
2067
2068 r = -EFAULT;
2069 if (copy_from_user(&tr, argp, sizeof tr))
2070 goto out;
2071 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2072 if (r)
2073 goto out;
2074 r = -EFAULT;
2075 if (copy_to_user(argp, &tr, sizeof tr))
2076 goto out;
2077 r = 0;
2078 break;
2079 }
2080 case KVM_SET_GUEST_DEBUG: {
2081 struct kvm_guest_debug dbg;
2082
2083 r = -EFAULT;
2084 if (copy_from_user(&dbg, argp, sizeof dbg))
2085 goto out;
2086 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2087 break;
2088 }
2089 case KVM_SET_SIGNAL_MASK: {
2090 struct kvm_signal_mask __user *sigmask_arg = argp;
2091 struct kvm_signal_mask kvm_sigmask;
2092 sigset_t sigset, *p;
2093
2094 p = NULL;
2095 if (argp) {
2096 r = -EFAULT;
2097 if (copy_from_user(&kvm_sigmask, argp,
2098 sizeof kvm_sigmask))
2099 goto out;
2100 r = -EINVAL;
2101 if (kvm_sigmask.len != sizeof sigset)
2102 goto out;
2103 r = -EFAULT;
2104 if (copy_from_user(&sigset, sigmask_arg->sigset,
2105 sizeof sigset))
2106 goto out;
2107 p = &sigset;
2108 }
2109 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2110 break;
2111 }
2112 case KVM_GET_FPU: {
2113 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2114 r = -ENOMEM;
2115 if (!fpu)
2116 goto out;
2117 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2118 if (r)
2119 goto out;
2120 r = -EFAULT;
2121 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2122 goto out;
2123 r = 0;
2124 break;
2125 }
2126 case KVM_SET_FPU: {
2127 fpu = memdup_user(argp, sizeof(*fpu));
2128 if (IS_ERR(fpu)) {
2129 r = PTR_ERR(fpu);
2130 fpu = NULL;
2131 goto out;
2132 }
2133 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2134 break;
2135 }
2136 default:
2137 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2138 }
2139 out:
2140 vcpu_put(vcpu);
2141 kfree(fpu);
2142 kfree(kvm_sregs);
2143 return r;
2144 }
2145
2146 #ifdef CONFIG_COMPAT
2147 static long kvm_vcpu_compat_ioctl(struct file *filp,
2148 unsigned int ioctl, unsigned long arg)
2149 {
2150 struct kvm_vcpu *vcpu = filp->private_data;
2151 void __user *argp = compat_ptr(arg);
2152 int r;
2153
2154 if (vcpu->kvm->mm != current->mm)
2155 return -EIO;
2156
2157 switch (ioctl) {
2158 case KVM_SET_SIGNAL_MASK: {
2159 struct kvm_signal_mask __user *sigmask_arg = argp;
2160 struct kvm_signal_mask kvm_sigmask;
2161 compat_sigset_t csigset;
2162 sigset_t sigset;
2163
2164 if (argp) {
2165 r = -EFAULT;
2166 if (copy_from_user(&kvm_sigmask, argp,
2167 sizeof kvm_sigmask))
2168 goto out;
2169 r = -EINVAL;
2170 if (kvm_sigmask.len != sizeof csigset)
2171 goto out;
2172 r = -EFAULT;
2173 if (copy_from_user(&csigset, sigmask_arg->sigset,
2174 sizeof csigset))
2175 goto out;
2176 sigset_from_compat(&sigset, &csigset);
2177 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2178 } else
2179 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2180 break;
2181 }
2182 default:
2183 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2184 }
2185
2186 out:
2187 return r;
2188 }
2189 #endif
2190
2191 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2192 int (*accessor)(struct kvm_device *dev,
2193 struct kvm_device_attr *attr),
2194 unsigned long arg)
2195 {
2196 struct kvm_device_attr attr;
2197
2198 if (!accessor)
2199 return -EPERM;
2200
2201 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2202 return -EFAULT;
2203
2204 return accessor(dev, &attr);
2205 }
2206
2207 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2208 unsigned long arg)
2209 {
2210 struct kvm_device *dev = filp->private_data;
2211
2212 switch (ioctl) {
2213 case KVM_SET_DEVICE_ATTR:
2214 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2215 case KVM_GET_DEVICE_ATTR:
2216 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2217 case KVM_HAS_DEVICE_ATTR:
2218 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2219 default:
2220 if (dev->ops->ioctl)
2221 return dev->ops->ioctl(dev, ioctl, arg);
2222
2223 return -ENOTTY;
2224 }
2225 }
2226
2227 static int kvm_device_release(struct inode *inode, struct file *filp)
2228 {
2229 struct kvm_device *dev = filp->private_data;
2230 struct kvm *kvm = dev->kvm;
2231
2232 kvm_put_kvm(kvm);
2233 return 0;
2234 }
2235
2236 static const struct file_operations kvm_device_fops = {
2237 .unlocked_ioctl = kvm_device_ioctl,
2238 #ifdef CONFIG_COMPAT
2239 .compat_ioctl = kvm_device_ioctl,
2240 #endif
2241 .release = kvm_device_release,
2242 };
2243
2244 struct kvm_device *kvm_device_from_filp(struct file *filp)
2245 {
2246 if (filp->f_op != &kvm_device_fops)
2247 return NULL;
2248
2249 return filp->private_data;
2250 }
2251
2252 static int kvm_ioctl_create_device(struct kvm *kvm,
2253 struct kvm_create_device *cd)
2254 {
2255 struct kvm_device_ops *ops = NULL;
2256 struct kvm_device *dev;
2257 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2258 int ret;
2259
2260 switch (cd->type) {
2261 #ifdef CONFIG_KVM_MPIC
2262 case KVM_DEV_TYPE_FSL_MPIC_20:
2263 case KVM_DEV_TYPE_FSL_MPIC_42:
2264 ops = &kvm_mpic_ops;
2265 break;
2266 #endif
2267 #ifdef CONFIG_KVM_XICS
2268 case KVM_DEV_TYPE_XICS:
2269 ops = &kvm_xics_ops;
2270 break;
2271 #endif
2272 default:
2273 return -ENODEV;
2274 }
2275
2276 if (test)
2277 return 0;
2278
2279 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2280 if (!dev)
2281 return -ENOMEM;
2282
2283 dev->ops = ops;
2284 dev->kvm = kvm;
2285
2286 ret = ops->create(dev, cd->type);
2287 if (ret < 0) {
2288 kfree(dev);
2289 return ret;
2290 }
2291
2292 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2293 if (ret < 0) {
2294 ops->destroy(dev);
2295 return ret;
2296 }
2297
2298 list_add(&dev->vm_node, &kvm->devices);
2299 kvm_get_kvm(kvm);
2300 cd->fd = ret;
2301 return 0;
2302 }
2303
2304 static long kvm_vm_ioctl(struct file *filp,
2305 unsigned int ioctl, unsigned long arg)
2306 {
2307 struct kvm *kvm = filp->private_data;
2308 void __user *argp = (void __user *)arg;
2309 int r;
2310
2311 if (kvm->mm != current->mm)
2312 return -EIO;
2313 switch (ioctl) {
2314 case KVM_CREATE_VCPU:
2315 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2316 break;
2317 case KVM_SET_USER_MEMORY_REGION: {
2318 struct kvm_userspace_memory_region kvm_userspace_mem;
2319
2320 r = -EFAULT;
2321 if (copy_from_user(&kvm_userspace_mem, argp,
2322 sizeof kvm_userspace_mem))
2323 goto out;
2324
2325 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2326 break;
2327 }
2328 case KVM_GET_DIRTY_LOG: {
2329 struct kvm_dirty_log log;
2330
2331 r = -EFAULT;
2332 if (copy_from_user(&log, argp, sizeof log))
2333 goto out;
2334 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2335 break;
2336 }
2337 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2338 case KVM_REGISTER_COALESCED_MMIO: {
2339 struct kvm_coalesced_mmio_zone zone;
2340 r = -EFAULT;
2341 if (copy_from_user(&zone, argp, sizeof zone))
2342 goto out;
2343 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2344 break;
2345 }
2346 case KVM_UNREGISTER_COALESCED_MMIO: {
2347 struct kvm_coalesced_mmio_zone zone;
2348 r = -EFAULT;
2349 if (copy_from_user(&zone, argp, sizeof zone))
2350 goto out;
2351 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2352 break;
2353 }
2354 #endif
2355 case KVM_IRQFD: {
2356 struct kvm_irqfd data;
2357
2358 r = -EFAULT;
2359 if (copy_from_user(&data, argp, sizeof data))
2360 goto out;
2361 r = kvm_irqfd(kvm, &data);
2362 break;
2363 }
2364 case KVM_IOEVENTFD: {
2365 struct kvm_ioeventfd data;
2366
2367 r = -EFAULT;
2368 if (copy_from_user(&data, argp, sizeof data))
2369 goto out;
2370 r = kvm_ioeventfd(kvm, &data);
2371 break;
2372 }
2373 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2374 case KVM_SET_BOOT_CPU_ID:
2375 r = 0;
2376 mutex_lock(&kvm->lock);
2377 if (atomic_read(&kvm->online_vcpus) != 0)
2378 r = -EBUSY;
2379 else
2380 kvm->bsp_vcpu_id = arg;
2381 mutex_unlock(&kvm->lock);
2382 break;
2383 #endif
2384 #ifdef CONFIG_HAVE_KVM_MSI
2385 case KVM_SIGNAL_MSI: {
2386 struct kvm_msi msi;
2387
2388 r = -EFAULT;
2389 if (copy_from_user(&msi, argp, sizeof msi))
2390 goto out;
2391 r = kvm_send_userspace_msi(kvm, &msi);
2392 break;
2393 }
2394 #endif
2395 #ifdef __KVM_HAVE_IRQ_LINE
2396 case KVM_IRQ_LINE_STATUS:
2397 case KVM_IRQ_LINE: {
2398 struct kvm_irq_level irq_event;
2399
2400 r = -EFAULT;
2401 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2402 goto out;
2403
2404 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2405 ioctl == KVM_IRQ_LINE_STATUS);
2406 if (r)
2407 goto out;
2408
2409 r = -EFAULT;
2410 if (ioctl == KVM_IRQ_LINE_STATUS) {
2411 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2412 goto out;
2413 }
2414
2415 r = 0;
2416 break;
2417 }
2418 #endif
2419 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2420 case KVM_SET_GSI_ROUTING: {
2421 struct kvm_irq_routing routing;
2422 struct kvm_irq_routing __user *urouting;
2423 struct kvm_irq_routing_entry *entries;
2424
2425 r = -EFAULT;
2426 if (copy_from_user(&routing, argp, sizeof(routing)))
2427 goto out;
2428 r = -EINVAL;
2429 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2430 goto out;
2431 if (routing.flags)
2432 goto out;
2433 r = -ENOMEM;
2434 entries = vmalloc(routing.nr * sizeof(*entries));
2435 if (!entries)
2436 goto out;
2437 r = -EFAULT;
2438 urouting = argp;
2439 if (copy_from_user(entries, urouting->entries,
2440 routing.nr * sizeof(*entries)))
2441 goto out_free_irq_routing;
2442 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2443 routing.flags);
2444 out_free_irq_routing:
2445 vfree(entries);
2446 break;
2447 }
2448 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2449 case KVM_CREATE_DEVICE: {
2450 struct kvm_create_device cd;
2451
2452 r = -EFAULT;
2453 if (copy_from_user(&cd, argp, sizeof(cd)))
2454 goto out;
2455
2456 r = kvm_ioctl_create_device(kvm, &cd);
2457 if (r)
2458 goto out;
2459
2460 r = -EFAULT;
2461 if (copy_to_user(argp, &cd, sizeof(cd)))
2462 goto out;
2463
2464 r = 0;
2465 break;
2466 }
2467 default:
2468 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2469 if (r == -ENOTTY)
2470 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2471 }
2472 out:
2473 return r;
2474 }
2475
2476 #ifdef CONFIG_COMPAT
2477 struct compat_kvm_dirty_log {
2478 __u32 slot;
2479 __u32 padding1;
2480 union {
2481 compat_uptr_t dirty_bitmap; /* one bit per page */
2482 __u64 padding2;
2483 };
2484 };
2485
2486 static long kvm_vm_compat_ioctl(struct file *filp,
2487 unsigned int ioctl, unsigned long arg)
2488 {
2489 struct kvm *kvm = filp->private_data;
2490 int r;
2491
2492 if (kvm->mm != current->mm)
2493 return -EIO;
2494 switch (ioctl) {
2495 case KVM_GET_DIRTY_LOG: {
2496 struct compat_kvm_dirty_log compat_log;
2497 struct kvm_dirty_log log;
2498
2499 r = -EFAULT;
2500 if (copy_from_user(&compat_log, (void __user *)arg,
2501 sizeof(compat_log)))
2502 goto out;
2503 log.slot = compat_log.slot;
2504 log.padding1 = compat_log.padding1;
2505 log.padding2 = compat_log.padding2;
2506 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2507
2508 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2509 break;
2510 }
2511 default:
2512 r = kvm_vm_ioctl(filp, ioctl, arg);
2513 }
2514
2515 out:
2516 return r;
2517 }
2518 #endif
2519
2520 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2521 {
2522 struct page *page[1];
2523 unsigned long addr;
2524 int npages;
2525 gfn_t gfn = vmf->pgoff;
2526 struct kvm *kvm = vma->vm_file->private_data;
2527
2528 addr = gfn_to_hva(kvm, gfn);
2529 if (kvm_is_error_hva(addr))
2530 return VM_FAULT_SIGBUS;
2531
2532 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2533 NULL);
2534 if (unlikely(npages != 1))
2535 return VM_FAULT_SIGBUS;
2536
2537 vmf->page = page[0];
2538 return 0;
2539 }
2540
2541 static const struct vm_operations_struct kvm_vm_vm_ops = {
2542 .fault = kvm_vm_fault,
2543 };
2544
2545 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2546 {
2547 vma->vm_ops = &kvm_vm_vm_ops;
2548 return 0;
2549 }
2550
2551 static struct file_operations kvm_vm_fops = {
2552 .release = kvm_vm_release,
2553 .unlocked_ioctl = kvm_vm_ioctl,
2554 #ifdef CONFIG_COMPAT
2555 .compat_ioctl = kvm_vm_compat_ioctl,
2556 #endif
2557 .mmap = kvm_vm_mmap,
2558 .llseek = noop_llseek,
2559 };
2560
2561 static int kvm_dev_ioctl_create_vm(unsigned long type)
2562 {
2563 int r;
2564 struct kvm *kvm;
2565
2566 kvm = kvm_create_vm(type);
2567 if (IS_ERR(kvm))
2568 return PTR_ERR(kvm);
2569 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2570 r = kvm_coalesced_mmio_init(kvm);
2571 if (r < 0) {
2572 kvm_put_kvm(kvm);
2573 return r;
2574 }
2575 #endif
2576 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2577 if (r < 0)
2578 kvm_put_kvm(kvm);
2579
2580 return r;
2581 }
2582
2583 static long kvm_dev_ioctl_check_extension_generic(long arg)
2584 {
2585 switch (arg) {
2586 case KVM_CAP_USER_MEMORY:
2587 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2588 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2589 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2590 case KVM_CAP_SET_BOOT_CPU_ID:
2591 #endif
2592 case KVM_CAP_INTERNAL_ERROR_DATA:
2593 #ifdef CONFIG_HAVE_KVM_MSI
2594 case KVM_CAP_SIGNAL_MSI:
2595 #endif
2596 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2597 case KVM_CAP_IRQFD_RESAMPLE:
2598 #endif
2599 return 1;
2600 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2601 case KVM_CAP_IRQ_ROUTING:
2602 return KVM_MAX_IRQ_ROUTES;
2603 #endif
2604 default:
2605 break;
2606 }
2607 return kvm_dev_ioctl_check_extension(arg);
2608 }
2609
2610 static long kvm_dev_ioctl(struct file *filp,
2611 unsigned int ioctl, unsigned long arg)
2612 {
2613 long r = -EINVAL;
2614
2615 switch (ioctl) {
2616 case KVM_GET_API_VERSION:
2617 r = -EINVAL;
2618 if (arg)
2619 goto out;
2620 r = KVM_API_VERSION;
2621 break;
2622 case KVM_CREATE_VM:
2623 r = kvm_dev_ioctl_create_vm(arg);
2624 break;
2625 case KVM_CHECK_EXTENSION:
2626 r = kvm_dev_ioctl_check_extension_generic(arg);
2627 break;
2628 case KVM_GET_VCPU_MMAP_SIZE:
2629 r = -EINVAL;
2630 if (arg)
2631 goto out;
2632 r = PAGE_SIZE; /* struct kvm_run */
2633 #ifdef CONFIG_X86
2634 r += PAGE_SIZE; /* pio data page */
2635 #endif
2636 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2637 r += PAGE_SIZE; /* coalesced mmio ring page */
2638 #endif
2639 break;
2640 case KVM_TRACE_ENABLE:
2641 case KVM_TRACE_PAUSE:
2642 case KVM_TRACE_DISABLE:
2643 r = -EOPNOTSUPP;
2644 break;
2645 default:
2646 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2647 }
2648 out:
2649 return r;
2650 }
2651
2652 static struct file_operations kvm_chardev_ops = {
2653 .unlocked_ioctl = kvm_dev_ioctl,
2654 .compat_ioctl = kvm_dev_ioctl,
2655 .llseek = noop_llseek,
2656 };
2657
2658 static struct miscdevice kvm_dev = {
2659 KVM_MINOR,
2660 "kvm",
2661 &kvm_chardev_ops,
2662 };
2663
2664 static void hardware_enable_nolock(void *junk)
2665 {
2666 int cpu = raw_smp_processor_id();
2667 int r;
2668
2669 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2670 return;
2671
2672 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2673
2674 r = kvm_arch_hardware_enable(NULL);
2675
2676 if (r) {
2677 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2678 atomic_inc(&hardware_enable_failed);
2679 printk(KERN_INFO "kvm: enabling virtualization on "
2680 "CPU%d failed\n", cpu);
2681 }
2682 }
2683
2684 static void hardware_enable(void *junk)
2685 {
2686 raw_spin_lock(&kvm_lock);
2687 hardware_enable_nolock(junk);
2688 raw_spin_unlock(&kvm_lock);
2689 }
2690
2691 static void hardware_disable_nolock(void *junk)
2692 {
2693 int cpu = raw_smp_processor_id();
2694
2695 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2696 return;
2697 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2698 kvm_arch_hardware_disable(NULL);
2699 }
2700
2701 static void hardware_disable(void *junk)
2702 {
2703 raw_spin_lock(&kvm_lock);
2704 hardware_disable_nolock(junk);
2705 raw_spin_unlock(&kvm_lock);
2706 }
2707
2708 static void hardware_disable_all_nolock(void)
2709 {
2710 BUG_ON(!kvm_usage_count);
2711
2712 kvm_usage_count--;
2713 if (!kvm_usage_count)
2714 on_each_cpu(hardware_disable_nolock, NULL, 1);
2715 }
2716
2717 static void hardware_disable_all(void)
2718 {
2719 raw_spin_lock(&kvm_lock);
2720 hardware_disable_all_nolock();
2721 raw_spin_unlock(&kvm_lock);
2722 }
2723
2724 static int hardware_enable_all(void)
2725 {
2726 int r = 0;
2727
2728 raw_spin_lock(&kvm_lock);
2729
2730 kvm_usage_count++;
2731 if (kvm_usage_count == 1) {
2732 atomic_set(&hardware_enable_failed, 0);
2733 on_each_cpu(hardware_enable_nolock, NULL, 1);
2734
2735 if (atomic_read(&hardware_enable_failed)) {
2736 hardware_disable_all_nolock();
2737 r = -EBUSY;
2738 }
2739 }
2740
2741 raw_spin_unlock(&kvm_lock);
2742
2743 return r;
2744 }
2745
2746 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2747 void *v)
2748 {
2749 int cpu = (long)v;
2750
2751 if (!kvm_usage_count)
2752 return NOTIFY_OK;
2753
2754 val &= ~CPU_TASKS_FROZEN;
2755 switch (val) {
2756 case CPU_DYING:
2757 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2758 cpu);
2759 hardware_disable(NULL);
2760 break;
2761 case CPU_STARTING:
2762 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2763 cpu);
2764 hardware_enable(NULL);
2765 break;
2766 }
2767 return NOTIFY_OK;
2768 }
2769
2770 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2771 void *v)
2772 {
2773 /*
2774 * Some (well, at least mine) BIOSes hang on reboot if
2775 * in vmx root mode.
2776 *
2777 * And Intel TXT required VMX off for all cpu when system shutdown.
2778 */
2779 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2780 kvm_rebooting = true;
2781 on_each_cpu(hardware_disable_nolock, NULL, 1);
2782 return NOTIFY_OK;
2783 }
2784
2785 static struct notifier_block kvm_reboot_notifier = {
2786 .notifier_call = kvm_reboot,
2787 .priority = 0,
2788 };
2789
2790 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2791 {
2792 int i;
2793
2794 for (i = 0; i < bus->dev_count; i++) {
2795 struct kvm_io_device *pos = bus->range[i].dev;
2796
2797 kvm_iodevice_destructor(pos);
2798 }
2799 kfree(bus);
2800 }
2801
2802 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2803 const struct kvm_io_range *r2)
2804 {
2805 if (r1->addr < r2->addr)
2806 return -1;
2807 if (r1->addr + r1->len > r2->addr + r2->len)
2808 return 1;
2809 return 0;
2810 }
2811
2812 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2813 {
2814 return kvm_io_bus_cmp(p1, p2);
2815 }
2816
2817 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2818 gpa_t addr, int len)
2819 {
2820 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2821 .addr = addr,
2822 .len = len,
2823 .dev = dev,
2824 };
2825
2826 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2827 kvm_io_bus_sort_cmp, NULL);
2828
2829 return 0;
2830 }
2831
2832 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2833 gpa_t addr, int len)
2834 {
2835 struct kvm_io_range *range, key;
2836 int off;
2837
2838 key = (struct kvm_io_range) {
2839 .addr = addr,
2840 .len = len,
2841 };
2842
2843 range = bsearch(&key, bus->range, bus->dev_count,
2844 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2845 if (range == NULL)
2846 return -ENOENT;
2847
2848 off = range - bus->range;
2849
2850 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2851 off--;
2852
2853 return off;
2854 }
2855
2856 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2857 struct kvm_io_range *range, const void *val)
2858 {
2859 int idx;
2860
2861 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2862 if (idx < 0)
2863 return -EOPNOTSUPP;
2864
2865 while (idx < bus->dev_count &&
2866 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2867 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2868 range->len, val))
2869 return idx;
2870 idx++;
2871 }
2872
2873 return -EOPNOTSUPP;
2874 }
2875
2876 /* kvm_io_bus_write - called under kvm->slots_lock */
2877 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2878 int len, const void *val)
2879 {
2880 struct kvm_io_bus *bus;
2881 struct kvm_io_range range;
2882 int r;
2883
2884 range = (struct kvm_io_range) {
2885 .addr = addr,
2886 .len = len,
2887 };
2888
2889 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2890 r = __kvm_io_bus_write(bus, &range, val);
2891 return r < 0 ? r : 0;
2892 }
2893
2894 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2895 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2896 int len, const void *val, long cookie)
2897 {
2898 struct kvm_io_bus *bus;
2899 struct kvm_io_range range;
2900
2901 range = (struct kvm_io_range) {
2902 .addr = addr,
2903 .len = len,
2904 };
2905
2906 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2907
2908 /* First try the device referenced by cookie. */
2909 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2910 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2911 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2912 val))
2913 return cookie;
2914
2915 /*
2916 * cookie contained garbage; fall back to search and return the
2917 * correct cookie value.
2918 */
2919 return __kvm_io_bus_write(bus, &range, val);
2920 }
2921
2922 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2923 void *val)
2924 {
2925 int idx;
2926
2927 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2928 if (idx < 0)
2929 return -EOPNOTSUPP;
2930
2931 while (idx < bus->dev_count &&
2932 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2933 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2934 range->len, val))
2935 return idx;
2936 idx++;
2937 }
2938
2939 return -EOPNOTSUPP;
2940 }
2941
2942 /* kvm_io_bus_read - called under kvm->slots_lock */
2943 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2944 int len, void *val)
2945 {
2946 struct kvm_io_bus *bus;
2947 struct kvm_io_range range;
2948 int r;
2949
2950 range = (struct kvm_io_range) {
2951 .addr = addr,
2952 .len = len,
2953 };
2954
2955 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2956 r = __kvm_io_bus_read(bus, &range, val);
2957 return r < 0 ? r : 0;
2958 }
2959
2960 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2961 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2962 int len, void *val, long cookie)
2963 {
2964 struct kvm_io_bus *bus;
2965 struct kvm_io_range range;
2966
2967 range = (struct kvm_io_range) {
2968 .addr = addr,
2969 .len = len,
2970 };
2971
2972 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2973
2974 /* First try the device referenced by cookie. */
2975 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2976 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2977 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2978 val))
2979 return cookie;
2980
2981 /*
2982 * cookie contained garbage; fall back to search and return the
2983 * correct cookie value.
2984 */
2985 return __kvm_io_bus_read(bus, &range, val);
2986 }
2987
2988 /* Caller must hold slots_lock. */
2989 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2990 int len, struct kvm_io_device *dev)
2991 {
2992 struct kvm_io_bus *new_bus, *bus;
2993
2994 bus = kvm->buses[bus_idx];
2995 /* exclude ioeventfd which is limited by maximum fd */
2996 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2997 return -ENOSPC;
2998
2999 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3000 sizeof(struct kvm_io_range)), GFP_KERNEL);
3001 if (!new_bus)
3002 return -ENOMEM;
3003 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3004 sizeof(struct kvm_io_range)));
3005 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3006 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3007 synchronize_srcu_expedited(&kvm->srcu);
3008 kfree(bus);
3009
3010 return 0;
3011 }
3012
3013 /* Caller must hold slots_lock. */
3014 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3015 struct kvm_io_device *dev)
3016 {
3017 int i, r;
3018 struct kvm_io_bus *new_bus, *bus;
3019
3020 bus = kvm->buses[bus_idx];
3021 r = -ENOENT;
3022 for (i = 0; i < bus->dev_count; i++)
3023 if (bus->range[i].dev == dev) {
3024 r = 0;
3025 break;
3026 }
3027
3028 if (r)
3029 return r;
3030
3031 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3032 sizeof(struct kvm_io_range)), GFP_KERNEL);
3033 if (!new_bus)
3034 return -ENOMEM;
3035
3036 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3037 new_bus->dev_count--;
3038 memcpy(new_bus->range + i, bus->range + i + 1,
3039 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3040
3041 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3042 synchronize_srcu_expedited(&kvm->srcu);
3043 kfree(bus);
3044 return r;
3045 }
3046
3047 static struct notifier_block kvm_cpu_notifier = {
3048 .notifier_call = kvm_cpu_hotplug,
3049 };
3050
3051 static int vm_stat_get(void *_offset, u64 *val)
3052 {
3053 unsigned offset = (long)_offset;
3054 struct kvm *kvm;
3055
3056 *val = 0;
3057 raw_spin_lock(&kvm_lock);
3058 list_for_each_entry(kvm, &vm_list, vm_list)
3059 *val += *(u32 *)((void *)kvm + offset);
3060 raw_spin_unlock(&kvm_lock);
3061 return 0;
3062 }
3063
3064 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3065
3066 static int vcpu_stat_get(void *_offset, u64 *val)
3067 {
3068 unsigned offset = (long)_offset;
3069 struct kvm *kvm;
3070 struct kvm_vcpu *vcpu;
3071 int i;
3072
3073 *val = 0;
3074 raw_spin_lock(&kvm_lock);
3075 list_for_each_entry(kvm, &vm_list, vm_list)
3076 kvm_for_each_vcpu(i, vcpu, kvm)
3077 *val += *(u32 *)((void *)vcpu + offset);
3078
3079 raw_spin_unlock(&kvm_lock);
3080 return 0;
3081 }
3082
3083 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3084
3085 static const struct file_operations *stat_fops[] = {
3086 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3087 [KVM_STAT_VM] = &vm_stat_fops,
3088 };
3089
3090 static int kvm_init_debug(void)
3091 {
3092 int r = -EFAULT;
3093 struct kvm_stats_debugfs_item *p;
3094
3095 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3096 if (kvm_debugfs_dir == NULL)
3097 goto out;
3098
3099 for (p = debugfs_entries; p->name; ++p) {
3100 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3101 (void *)(long)p->offset,
3102 stat_fops[p->kind]);
3103 if (p->dentry == NULL)
3104 goto out_dir;
3105 }
3106
3107 return 0;
3108
3109 out_dir:
3110 debugfs_remove_recursive(kvm_debugfs_dir);
3111 out:
3112 return r;
3113 }
3114
3115 static void kvm_exit_debug(void)
3116 {
3117 struct kvm_stats_debugfs_item *p;
3118
3119 for (p = debugfs_entries; p->name; ++p)
3120 debugfs_remove(p->dentry);
3121 debugfs_remove(kvm_debugfs_dir);
3122 }
3123
3124 static int kvm_suspend(void)
3125 {
3126 if (kvm_usage_count)
3127 hardware_disable_nolock(NULL);
3128 return 0;
3129 }
3130
3131 static void kvm_resume(void)
3132 {
3133 if (kvm_usage_count) {
3134 WARN_ON(raw_spin_is_locked(&kvm_lock));
3135 hardware_enable_nolock(NULL);
3136 }
3137 }
3138
3139 static struct syscore_ops kvm_syscore_ops = {
3140 .suspend = kvm_suspend,
3141 .resume = kvm_resume,
3142 };
3143
3144 static inline
3145 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3146 {
3147 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3148 }
3149
3150 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3151 {
3152 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3153 if (vcpu->preempted)
3154 vcpu->preempted = false;
3155
3156 kvm_arch_vcpu_load(vcpu, cpu);
3157 }
3158
3159 static void kvm_sched_out(struct preempt_notifier *pn,
3160 struct task_struct *next)
3161 {
3162 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3163
3164 if (current->state == TASK_RUNNING)
3165 vcpu->preempted = true;
3166 kvm_arch_vcpu_put(vcpu);
3167 }
3168
3169 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3170 struct module *module)
3171 {
3172 int r;
3173 int cpu;
3174
3175 r = kvm_arch_init(opaque);
3176 if (r)
3177 goto out_fail;
3178
3179 /*
3180 * kvm_arch_init makes sure there's at most one caller
3181 * for architectures that support multiple implementations,
3182 * like intel and amd on x86.
3183 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3184 * conflicts in case kvm is already setup for another implementation.
3185 */
3186 r = kvm_irqfd_init();
3187 if (r)
3188 goto out_irqfd;
3189
3190 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3191 r = -ENOMEM;
3192 goto out_free_0;
3193 }
3194
3195 r = kvm_arch_hardware_setup();
3196 if (r < 0)
3197 goto out_free_0a;
3198
3199 for_each_online_cpu(cpu) {
3200 smp_call_function_single(cpu,
3201 kvm_arch_check_processor_compat,
3202 &r, 1);
3203 if (r < 0)
3204 goto out_free_1;
3205 }
3206
3207 r = register_cpu_notifier(&kvm_cpu_notifier);
3208 if (r)
3209 goto out_free_2;
3210 register_reboot_notifier(&kvm_reboot_notifier);
3211
3212 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3213 if (!vcpu_align)
3214 vcpu_align = __alignof__(struct kvm_vcpu);
3215 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3216 0, NULL);
3217 if (!kvm_vcpu_cache) {
3218 r = -ENOMEM;
3219 goto out_free_3;
3220 }
3221
3222 r = kvm_async_pf_init();
3223 if (r)
3224 goto out_free;
3225
3226 kvm_chardev_ops.owner = module;
3227 kvm_vm_fops.owner = module;
3228 kvm_vcpu_fops.owner = module;
3229
3230 r = misc_register(&kvm_dev);
3231 if (r) {
3232 printk(KERN_ERR "kvm: misc device register failed\n");
3233 goto out_unreg;
3234 }
3235
3236 register_syscore_ops(&kvm_syscore_ops);
3237
3238 kvm_preempt_ops.sched_in = kvm_sched_in;
3239 kvm_preempt_ops.sched_out = kvm_sched_out;
3240
3241 r = kvm_init_debug();
3242 if (r) {
3243 printk(KERN_ERR "kvm: create debugfs files failed\n");
3244 goto out_undebugfs;
3245 }
3246
3247 return 0;
3248
3249 out_undebugfs:
3250 unregister_syscore_ops(&kvm_syscore_ops);
3251 misc_deregister(&kvm_dev);
3252 out_unreg:
3253 kvm_async_pf_deinit();
3254 out_free:
3255 kmem_cache_destroy(kvm_vcpu_cache);
3256 out_free_3:
3257 unregister_reboot_notifier(&kvm_reboot_notifier);
3258 unregister_cpu_notifier(&kvm_cpu_notifier);
3259 out_free_2:
3260 out_free_1:
3261 kvm_arch_hardware_unsetup();
3262 out_free_0a:
3263 free_cpumask_var(cpus_hardware_enabled);
3264 out_free_0:
3265 kvm_irqfd_exit();
3266 out_irqfd:
3267 kvm_arch_exit();
3268 out_fail:
3269 return r;
3270 }
3271 EXPORT_SYMBOL_GPL(kvm_init);
3272
3273 void kvm_exit(void)
3274 {
3275 kvm_exit_debug();
3276 misc_deregister(&kvm_dev);
3277 kmem_cache_destroy(kvm_vcpu_cache);
3278 kvm_async_pf_deinit();
3279 unregister_syscore_ops(&kvm_syscore_ops);
3280 unregister_reboot_notifier(&kvm_reboot_notifier);
3281 unregister_cpu_notifier(&kvm_cpu_notifier);
3282 on_each_cpu(hardware_disable_nolock, NULL, 1);
3283 kvm_arch_hardware_unsetup();
3284 kvm_arch_exit();
3285 kvm_irqfd_exit();
3286 free_cpumask_var(cpus_hardware_enabled);
3287 }
3288 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.100898 seconds and 5 git commands to generate.