KVM: introduce KVM_MEM_SLOTS_NUM macro
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
105
106 struct page *fault_page;
107 pfn_t fault_pfn;
108
109 inline int kvm_is_mmio_pfn(pfn_t pfn)
110 {
111 if (pfn_valid(pfn)) {
112 int reserved;
113 struct page *tail = pfn_to_page(pfn);
114 struct page *head = compound_trans_head(tail);
115 reserved = PageReserved(head);
116 if (head != tail) {
117 /*
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
125 * what we just read.
126 */
127 smp_rmb();
128 if (PageTail(tail))
129 return reserved;
130 }
131 return PageReserved(tail);
132 }
133
134 return true;
135 }
136
137 /*
138 * Switches to specified vcpu, until a matching vcpu_put()
139 */
140 void vcpu_load(struct kvm_vcpu *vcpu)
141 {
142 int cpu;
143
144 mutex_lock(&vcpu->mutex);
145 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146 /* The thread running this VCPU changed. */
147 struct pid *oldpid = vcpu->pid;
148 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149 rcu_assign_pointer(vcpu->pid, newpid);
150 synchronize_rcu();
151 put_pid(oldpid);
152 }
153 cpu = get_cpu();
154 preempt_notifier_register(&vcpu->preempt_notifier);
155 kvm_arch_vcpu_load(vcpu, cpu);
156 put_cpu();
157 }
158
159 void vcpu_put(struct kvm_vcpu *vcpu)
160 {
161 preempt_disable();
162 kvm_arch_vcpu_put(vcpu);
163 preempt_notifier_unregister(&vcpu->preempt_notifier);
164 preempt_enable();
165 mutex_unlock(&vcpu->mutex);
166 }
167
168 static void ack_flush(void *_completed)
169 {
170 }
171
172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 int i, cpu, me;
175 cpumask_var_t cpus;
176 bool called = true;
177 struct kvm_vcpu *vcpu;
178
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181 me = get_cpu();
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
184 cpu = vcpu->cpu;
185
186 /* Set ->requests bit before we read ->mode */
187 smp_mb();
188
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
192 }
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
197 else
198 called = false;
199 put_cpu();
200 free_cpumask_var(cpus);
201 return called;
202 }
203
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206 int dirty_count = kvm->tlbs_dirty;
207
208 smp_mb();
209 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210 ++kvm->stat.remote_tlb_flush;
211 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
212 }
213
214 void kvm_reload_remote_mmus(struct kvm *kvm)
215 {
216 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 struct page *page;
222 int r;
223
224 mutex_init(&vcpu->mutex);
225 vcpu->cpu = -1;
226 vcpu->kvm = kvm;
227 vcpu->vcpu_id = id;
228 vcpu->pid = NULL;
229 init_waitqueue_head(&vcpu->wq);
230 kvm_async_pf_vcpu_init(vcpu);
231
232 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
233 if (!page) {
234 r = -ENOMEM;
235 goto fail;
236 }
237 vcpu->run = page_address(page);
238
239 r = kvm_arch_vcpu_init(vcpu);
240 if (r < 0)
241 goto fail_free_run;
242 return 0;
243
244 fail_free_run:
245 free_page((unsigned long)vcpu->run);
246 fail:
247 return r;
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
250
251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
252 {
253 put_pid(vcpu->pid);
254 kvm_arch_vcpu_uninit(vcpu);
255 free_page((unsigned long)vcpu->run);
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
258
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
261 {
262 return container_of(mn, struct kvm, mmu_notifier);
263 }
264
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 struct mm_struct *mm,
267 unsigned long address)
268 {
269 struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 int need_tlb_flush, idx;
271
272 /*
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
280 * before returning.
281 *
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
284 *
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
289 */
290 idx = srcu_read_lock(&kvm->srcu);
291 spin_lock(&kvm->mmu_lock);
292 kvm->mmu_notifier_seq++;
293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 spin_unlock(&kvm->mmu_lock);
295 srcu_read_unlock(&kvm->srcu, idx);
296
297 /* we've to flush the tlb before the pages can be freed */
298 if (need_tlb_flush)
299 kvm_flush_remote_tlbs(kvm);
300
301 }
302
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
306 pte_t pte)
307 {
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 int idx;
310
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
317 }
318
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
321 unsigned long start,
322 unsigned long end)
323 {
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
326
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
329 /*
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
333 */
334 kvm->mmu_notifier_count++;
335 for (; start < end; start += PAGE_SIZE)
336 need_tlb_flush |= kvm_unmap_hva(kvm, start);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 spin_unlock(&kvm->mmu_lock);
339 srcu_read_unlock(&kvm->srcu, idx);
340
341 /* we've to flush the tlb before the pages can be freed */
342 if (need_tlb_flush)
343 kvm_flush_remote_tlbs(kvm);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352
353 spin_lock(&kvm->mmu_lock);
354 /*
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
357 * been freed.
358 */
359 kvm->mmu_notifier_seq++;
360 /*
361 * The above sequence increase must be visible before the
362 * below count decrease but both values are read by the kvm
363 * page fault under mmu_lock spinlock so we don't need to add
364 * a smb_wmb() here in between the two.
365 */
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
368
369 BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long address)
375 {
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 int young, idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381 young = kvm_age_hva(kvm, address);
382 spin_unlock(&kvm->mmu_lock);
383 srcu_read_unlock(&kvm->srcu, idx);
384
385 if (young)
386 kvm_flush_remote_tlbs(kvm);
387
388 return young;
389 }
390
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 struct mm_struct *mm,
393 unsigned long address)
394 {
395 struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 int young, idx;
397
398 idx = srcu_read_lock(&kvm->srcu);
399 spin_lock(&kvm->mmu_lock);
400 young = kvm_test_age_hva(kvm, address);
401 spin_unlock(&kvm->mmu_lock);
402 srcu_read_unlock(&kvm->srcu, idx);
403
404 return young;
405 }
406
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 struct mm_struct *mm)
409 {
410 struct kvm *kvm = mmu_notifier_to_kvm(mn);
411 int idx;
412
413 idx = srcu_read_lock(&kvm->srcu);
414 kvm_arch_flush_shadow(kvm);
415 srcu_read_unlock(&kvm->srcu, idx);
416 }
417
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 .invalidate_page = kvm_mmu_notifier_invalidate_page,
420 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
421 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
422 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
423 .test_young = kvm_mmu_notifier_test_young,
424 .change_pte = kvm_mmu_notifier_change_pte,
425 .release = kvm_mmu_notifier_release,
426 };
427
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432 }
433
434 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
437 {
438 return 0;
439 }
440
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442
443 static struct kvm *kvm_create_vm(void)
444 {
445 int r, i;
446 struct kvm *kvm = kvm_arch_alloc_vm();
447
448 if (!kvm)
449 return ERR_PTR(-ENOMEM);
450
451 r = kvm_arch_init_vm(kvm);
452 if (r)
453 goto out_err_nodisable;
454
455 r = hardware_enable_all();
456 if (r)
457 goto out_err_nodisable;
458
459 #ifdef CONFIG_HAVE_KVM_IRQCHIP
460 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
461 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
462 #endif
463
464 r = -ENOMEM;
465 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
466 if (!kvm->memslots)
467 goto out_err_nosrcu;
468 if (init_srcu_struct(&kvm->srcu))
469 goto out_err_nosrcu;
470 for (i = 0; i < KVM_NR_BUSES; i++) {
471 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
472 GFP_KERNEL);
473 if (!kvm->buses[i])
474 goto out_err;
475 }
476
477 spin_lock_init(&kvm->mmu_lock);
478 kvm->mm = current->mm;
479 atomic_inc(&kvm->mm->mm_count);
480 kvm_eventfd_init(kvm);
481 mutex_init(&kvm->lock);
482 mutex_init(&kvm->irq_lock);
483 mutex_init(&kvm->slots_lock);
484 atomic_set(&kvm->users_count, 1);
485
486 r = kvm_init_mmu_notifier(kvm);
487 if (r)
488 goto out_err;
489
490 raw_spin_lock(&kvm_lock);
491 list_add(&kvm->vm_list, &vm_list);
492 raw_spin_unlock(&kvm_lock);
493
494 return kvm;
495
496 out_err:
497 cleanup_srcu_struct(&kvm->srcu);
498 out_err_nosrcu:
499 hardware_disable_all();
500 out_err_nodisable:
501 for (i = 0; i < KVM_NR_BUSES; i++)
502 kfree(kvm->buses[i]);
503 kfree(kvm->memslots);
504 kvm_arch_free_vm(kvm);
505 return ERR_PTR(r);
506 }
507
508 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
509 {
510 if (!memslot->dirty_bitmap)
511 return;
512
513 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
514 vfree(memslot->dirty_bitmap_head);
515 else
516 kfree(memslot->dirty_bitmap_head);
517
518 memslot->dirty_bitmap = NULL;
519 memslot->dirty_bitmap_head = NULL;
520 }
521
522 /*
523 * Free any memory in @free but not in @dont.
524 */
525 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
526 struct kvm_memory_slot *dont)
527 {
528 int i;
529
530 if (!dont || free->rmap != dont->rmap)
531 vfree(free->rmap);
532
533 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
534 kvm_destroy_dirty_bitmap(free);
535
536
537 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
538 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
539 vfree(free->lpage_info[i]);
540 free->lpage_info[i] = NULL;
541 }
542 }
543
544 free->npages = 0;
545 free->rmap = NULL;
546 }
547
548 void kvm_free_physmem(struct kvm *kvm)
549 {
550 int i;
551 struct kvm_memslots *slots = kvm->memslots;
552
553 for (i = 0; i < slots->nmemslots; ++i)
554 kvm_free_physmem_slot(&slots->memslots[i], NULL);
555
556 kfree(kvm->memslots);
557 }
558
559 static void kvm_destroy_vm(struct kvm *kvm)
560 {
561 int i;
562 struct mm_struct *mm = kvm->mm;
563
564 kvm_arch_sync_events(kvm);
565 raw_spin_lock(&kvm_lock);
566 list_del(&kvm->vm_list);
567 raw_spin_unlock(&kvm_lock);
568 kvm_free_irq_routing(kvm);
569 for (i = 0; i < KVM_NR_BUSES; i++)
570 kvm_io_bus_destroy(kvm->buses[i]);
571 kvm_coalesced_mmio_free(kvm);
572 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
573 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
574 #else
575 kvm_arch_flush_shadow(kvm);
576 #endif
577 kvm_arch_destroy_vm(kvm);
578 kvm_free_physmem(kvm);
579 cleanup_srcu_struct(&kvm->srcu);
580 kvm_arch_free_vm(kvm);
581 hardware_disable_all();
582 mmdrop(mm);
583 }
584
585 void kvm_get_kvm(struct kvm *kvm)
586 {
587 atomic_inc(&kvm->users_count);
588 }
589 EXPORT_SYMBOL_GPL(kvm_get_kvm);
590
591 void kvm_put_kvm(struct kvm *kvm)
592 {
593 if (atomic_dec_and_test(&kvm->users_count))
594 kvm_destroy_vm(kvm);
595 }
596 EXPORT_SYMBOL_GPL(kvm_put_kvm);
597
598
599 static int kvm_vm_release(struct inode *inode, struct file *filp)
600 {
601 struct kvm *kvm = filp->private_data;
602
603 kvm_irqfd_release(kvm);
604
605 kvm_put_kvm(kvm);
606 return 0;
607 }
608
609 #ifndef CONFIG_S390
610 /*
611 * Allocation size is twice as large as the actual dirty bitmap size.
612 * This makes it possible to do double buffering: see x86's
613 * kvm_vm_ioctl_get_dirty_log().
614 */
615 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
616 {
617 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
618
619 if (dirty_bytes > PAGE_SIZE)
620 memslot->dirty_bitmap = vzalloc(dirty_bytes);
621 else
622 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
623
624 if (!memslot->dirty_bitmap)
625 return -ENOMEM;
626
627 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
628 memslot->nr_dirty_pages = 0;
629 return 0;
630 }
631 #endif /* !CONFIG_S390 */
632
633 /*
634 * Allocate some memory and give it an address in the guest physical address
635 * space.
636 *
637 * Discontiguous memory is allowed, mostly for framebuffers.
638 *
639 * Must be called holding mmap_sem for write.
640 */
641 int __kvm_set_memory_region(struct kvm *kvm,
642 struct kvm_userspace_memory_region *mem,
643 int user_alloc)
644 {
645 int r;
646 gfn_t base_gfn;
647 unsigned long npages;
648 unsigned long i;
649 struct kvm_memory_slot *memslot;
650 struct kvm_memory_slot old, new;
651 struct kvm_memslots *slots, *old_memslots;
652
653 r = -EINVAL;
654 /* General sanity checks */
655 if (mem->memory_size & (PAGE_SIZE - 1))
656 goto out;
657 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
658 goto out;
659 /* We can read the guest memory with __xxx_user() later on. */
660 if (user_alloc &&
661 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
662 !access_ok(VERIFY_WRITE,
663 (void __user *)(unsigned long)mem->userspace_addr,
664 mem->memory_size)))
665 goto out;
666 if (mem->slot >= KVM_MEM_SLOTS_NUM)
667 goto out;
668 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
669 goto out;
670
671 memslot = &kvm->memslots->memslots[mem->slot];
672 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
673 npages = mem->memory_size >> PAGE_SHIFT;
674
675 r = -EINVAL;
676 if (npages > KVM_MEM_MAX_NR_PAGES)
677 goto out;
678
679 if (!npages)
680 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
681
682 new = old = *memslot;
683
684 new.id = mem->slot;
685 new.base_gfn = base_gfn;
686 new.npages = npages;
687 new.flags = mem->flags;
688
689 /* Disallow changing a memory slot's size. */
690 r = -EINVAL;
691 if (npages && old.npages && npages != old.npages)
692 goto out_free;
693
694 /* Check for overlaps */
695 r = -EEXIST;
696 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
697 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
698
699 if (s == memslot || !s->npages)
700 continue;
701 if (!((base_gfn + npages <= s->base_gfn) ||
702 (base_gfn >= s->base_gfn + s->npages)))
703 goto out_free;
704 }
705
706 /* Free page dirty bitmap if unneeded */
707 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
708 new.dirty_bitmap = NULL;
709
710 r = -ENOMEM;
711
712 /* Allocate if a slot is being created */
713 #ifndef CONFIG_S390
714 if (npages && !new.rmap) {
715 new.rmap = vzalloc(npages * sizeof(*new.rmap));
716
717 if (!new.rmap)
718 goto out_free;
719
720 new.user_alloc = user_alloc;
721 new.userspace_addr = mem->userspace_addr;
722 }
723 if (!npages)
724 goto skip_lpage;
725
726 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
727 unsigned long ugfn;
728 unsigned long j;
729 int lpages;
730 int level = i + 2;
731
732 /* Avoid unused variable warning if no large pages */
733 (void)level;
734
735 if (new.lpage_info[i])
736 continue;
737
738 lpages = 1 + ((base_gfn + npages - 1)
739 >> KVM_HPAGE_GFN_SHIFT(level));
740 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
741
742 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
743
744 if (!new.lpage_info[i])
745 goto out_free;
746
747 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
748 new.lpage_info[i][0].write_count = 1;
749 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
750 new.lpage_info[i][lpages - 1].write_count = 1;
751 ugfn = new.userspace_addr >> PAGE_SHIFT;
752 /*
753 * If the gfn and userspace address are not aligned wrt each
754 * other, or if explicitly asked to, disable large page
755 * support for this slot
756 */
757 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
758 !largepages_enabled)
759 for (j = 0; j < lpages; ++j)
760 new.lpage_info[i][j].write_count = 1;
761 }
762
763 skip_lpage:
764
765 /* Allocate page dirty bitmap if needed */
766 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
767 if (kvm_create_dirty_bitmap(&new) < 0)
768 goto out_free;
769 /* destroy any largepage mappings for dirty tracking */
770 }
771 #else /* not defined CONFIG_S390 */
772 new.user_alloc = user_alloc;
773 if (user_alloc)
774 new.userspace_addr = mem->userspace_addr;
775 #endif /* not defined CONFIG_S390 */
776
777 if (!npages) {
778 r = -ENOMEM;
779 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
780 GFP_KERNEL);
781 if (!slots)
782 goto out_free;
783 if (mem->slot >= slots->nmemslots)
784 slots->nmemslots = mem->slot + 1;
785 slots->generation++;
786 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
787
788 old_memslots = kvm->memslots;
789 rcu_assign_pointer(kvm->memslots, slots);
790 synchronize_srcu_expedited(&kvm->srcu);
791 /* From this point no new shadow pages pointing to a deleted
792 * memslot will be created.
793 *
794 * validation of sp->gfn happens in:
795 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
796 * - kvm_is_visible_gfn (mmu_check_roots)
797 */
798 kvm_arch_flush_shadow(kvm);
799 kfree(old_memslots);
800 }
801
802 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
803 if (r)
804 goto out_free;
805
806 /* map the pages in iommu page table */
807 if (npages) {
808 r = kvm_iommu_map_pages(kvm, &new);
809 if (r)
810 goto out_free;
811 }
812
813 r = -ENOMEM;
814 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
815 GFP_KERNEL);
816 if (!slots)
817 goto out_free;
818 if (mem->slot >= slots->nmemslots)
819 slots->nmemslots = mem->slot + 1;
820 slots->generation++;
821
822 /* actual memory is freed via old in kvm_free_physmem_slot below */
823 if (!npages) {
824 new.rmap = NULL;
825 new.dirty_bitmap = NULL;
826 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
827 new.lpage_info[i] = NULL;
828 }
829
830 slots->memslots[mem->slot] = new;
831 old_memslots = kvm->memslots;
832 rcu_assign_pointer(kvm->memslots, slots);
833 synchronize_srcu_expedited(&kvm->srcu);
834
835 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
836
837 /*
838 * If the new memory slot is created, we need to clear all
839 * mmio sptes.
840 */
841 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
842 kvm_arch_flush_shadow(kvm);
843
844 kvm_free_physmem_slot(&old, &new);
845 kfree(old_memslots);
846
847 return 0;
848
849 out_free:
850 kvm_free_physmem_slot(&new, &old);
851 out:
852 return r;
853
854 }
855 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
856
857 int kvm_set_memory_region(struct kvm *kvm,
858 struct kvm_userspace_memory_region *mem,
859 int user_alloc)
860 {
861 int r;
862
863 mutex_lock(&kvm->slots_lock);
864 r = __kvm_set_memory_region(kvm, mem, user_alloc);
865 mutex_unlock(&kvm->slots_lock);
866 return r;
867 }
868 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
869
870 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
871 struct
872 kvm_userspace_memory_region *mem,
873 int user_alloc)
874 {
875 if (mem->slot >= KVM_MEMORY_SLOTS)
876 return -EINVAL;
877 return kvm_set_memory_region(kvm, mem, user_alloc);
878 }
879
880 int kvm_get_dirty_log(struct kvm *kvm,
881 struct kvm_dirty_log *log, int *is_dirty)
882 {
883 struct kvm_memory_slot *memslot;
884 int r, i;
885 unsigned long n;
886 unsigned long any = 0;
887
888 r = -EINVAL;
889 if (log->slot >= KVM_MEMORY_SLOTS)
890 goto out;
891
892 memslot = &kvm->memslots->memslots[log->slot];
893 r = -ENOENT;
894 if (!memslot->dirty_bitmap)
895 goto out;
896
897 n = kvm_dirty_bitmap_bytes(memslot);
898
899 for (i = 0; !any && i < n/sizeof(long); ++i)
900 any = memslot->dirty_bitmap[i];
901
902 r = -EFAULT;
903 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
904 goto out;
905
906 if (any)
907 *is_dirty = 1;
908
909 r = 0;
910 out:
911 return r;
912 }
913
914 void kvm_disable_largepages(void)
915 {
916 largepages_enabled = false;
917 }
918 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
919
920 int is_error_page(struct page *page)
921 {
922 return page == bad_page || page == hwpoison_page || page == fault_page;
923 }
924 EXPORT_SYMBOL_GPL(is_error_page);
925
926 int is_error_pfn(pfn_t pfn)
927 {
928 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
929 }
930 EXPORT_SYMBOL_GPL(is_error_pfn);
931
932 int is_hwpoison_pfn(pfn_t pfn)
933 {
934 return pfn == hwpoison_pfn;
935 }
936 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
937
938 int is_fault_pfn(pfn_t pfn)
939 {
940 return pfn == fault_pfn;
941 }
942 EXPORT_SYMBOL_GPL(is_fault_pfn);
943
944 int is_noslot_pfn(pfn_t pfn)
945 {
946 return pfn == bad_pfn;
947 }
948 EXPORT_SYMBOL_GPL(is_noslot_pfn);
949
950 int is_invalid_pfn(pfn_t pfn)
951 {
952 return pfn == hwpoison_pfn || pfn == fault_pfn;
953 }
954 EXPORT_SYMBOL_GPL(is_invalid_pfn);
955
956 static inline unsigned long bad_hva(void)
957 {
958 return PAGE_OFFSET;
959 }
960
961 int kvm_is_error_hva(unsigned long addr)
962 {
963 return addr == bad_hva();
964 }
965 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
966
967 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
968 gfn_t gfn)
969 {
970 int i;
971
972 for (i = 0; i < slots->nmemslots; ++i) {
973 struct kvm_memory_slot *memslot = &slots->memslots[i];
974
975 if (gfn >= memslot->base_gfn
976 && gfn < memslot->base_gfn + memslot->npages)
977 return memslot;
978 }
979 return NULL;
980 }
981
982 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
983 {
984 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
985 }
986 EXPORT_SYMBOL_GPL(gfn_to_memslot);
987
988 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
989 {
990 int i;
991 struct kvm_memslots *slots = kvm_memslots(kvm);
992
993 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
994 struct kvm_memory_slot *memslot = &slots->memslots[i];
995
996 if (memslot->flags & KVM_MEMSLOT_INVALID)
997 continue;
998
999 if (gfn >= memslot->base_gfn
1000 && gfn < memslot->base_gfn + memslot->npages)
1001 return 1;
1002 }
1003 return 0;
1004 }
1005 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1006
1007 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1008 {
1009 struct vm_area_struct *vma;
1010 unsigned long addr, size;
1011
1012 size = PAGE_SIZE;
1013
1014 addr = gfn_to_hva(kvm, gfn);
1015 if (kvm_is_error_hva(addr))
1016 return PAGE_SIZE;
1017
1018 down_read(&current->mm->mmap_sem);
1019 vma = find_vma(current->mm, addr);
1020 if (!vma)
1021 goto out;
1022
1023 size = vma_kernel_pagesize(vma);
1024
1025 out:
1026 up_read(&current->mm->mmap_sem);
1027
1028 return size;
1029 }
1030
1031 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1032 gfn_t *nr_pages)
1033 {
1034 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1035 return bad_hva();
1036
1037 if (nr_pages)
1038 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1039
1040 return gfn_to_hva_memslot(slot, gfn);
1041 }
1042
1043 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1044 {
1045 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1046 }
1047 EXPORT_SYMBOL_GPL(gfn_to_hva);
1048
1049 static pfn_t get_fault_pfn(void)
1050 {
1051 get_page(fault_page);
1052 return fault_pfn;
1053 }
1054
1055 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1056 unsigned long start, int write, struct page **page)
1057 {
1058 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1059
1060 if (write)
1061 flags |= FOLL_WRITE;
1062
1063 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1064 }
1065
1066 static inline int check_user_page_hwpoison(unsigned long addr)
1067 {
1068 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1069
1070 rc = __get_user_pages(current, current->mm, addr, 1,
1071 flags, NULL, NULL, NULL);
1072 return rc == -EHWPOISON;
1073 }
1074
1075 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1076 bool *async, bool write_fault, bool *writable)
1077 {
1078 struct page *page[1];
1079 int npages = 0;
1080 pfn_t pfn;
1081
1082 /* we can do it either atomically or asynchronously, not both */
1083 BUG_ON(atomic && async);
1084
1085 BUG_ON(!write_fault && !writable);
1086
1087 if (writable)
1088 *writable = true;
1089
1090 if (atomic || async)
1091 npages = __get_user_pages_fast(addr, 1, 1, page);
1092
1093 if (unlikely(npages != 1) && !atomic) {
1094 might_sleep();
1095
1096 if (writable)
1097 *writable = write_fault;
1098
1099 if (async) {
1100 down_read(&current->mm->mmap_sem);
1101 npages = get_user_page_nowait(current, current->mm,
1102 addr, write_fault, page);
1103 up_read(&current->mm->mmap_sem);
1104 } else
1105 npages = get_user_pages_fast(addr, 1, write_fault,
1106 page);
1107
1108 /* map read fault as writable if possible */
1109 if (unlikely(!write_fault) && npages == 1) {
1110 struct page *wpage[1];
1111
1112 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1113 if (npages == 1) {
1114 *writable = true;
1115 put_page(page[0]);
1116 page[0] = wpage[0];
1117 }
1118 npages = 1;
1119 }
1120 }
1121
1122 if (unlikely(npages != 1)) {
1123 struct vm_area_struct *vma;
1124
1125 if (atomic)
1126 return get_fault_pfn();
1127
1128 down_read(&current->mm->mmap_sem);
1129 if (npages == -EHWPOISON ||
1130 (!async && check_user_page_hwpoison(addr))) {
1131 up_read(&current->mm->mmap_sem);
1132 get_page(hwpoison_page);
1133 return page_to_pfn(hwpoison_page);
1134 }
1135
1136 vma = find_vma_intersection(current->mm, addr, addr+1);
1137
1138 if (vma == NULL)
1139 pfn = get_fault_pfn();
1140 else if ((vma->vm_flags & VM_PFNMAP)) {
1141 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1142 vma->vm_pgoff;
1143 BUG_ON(!kvm_is_mmio_pfn(pfn));
1144 } else {
1145 if (async && (vma->vm_flags & VM_WRITE))
1146 *async = true;
1147 pfn = get_fault_pfn();
1148 }
1149 up_read(&current->mm->mmap_sem);
1150 } else
1151 pfn = page_to_pfn(page[0]);
1152
1153 return pfn;
1154 }
1155
1156 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1157 {
1158 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1159 }
1160 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1161
1162 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1163 bool write_fault, bool *writable)
1164 {
1165 unsigned long addr;
1166
1167 if (async)
1168 *async = false;
1169
1170 addr = gfn_to_hva(kvm, gfn);
1171 if (kvm_is_error_hva(addr)) {
1172 get_page(bad_page);
1173 return page_to_pfn(bad_page);
1174 }
1175
1176 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1177 }
1178
1179 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1180 {
1181 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1182 }
1183 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1184
1185 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1186 bool write_fault, bool *writable)
1187 {
1188 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1189 }
1190 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1191
1192 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1193 {
1194 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1195 }
1196 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1197
1198 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1199 bool *writable)
1200 {
1201 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1202 }
1203 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1204
1205 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1206 struct kvm_memory_slot *slot, gfn_t gfn)
1207 {
1208 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1209 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1210 }
1211
1212 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1213 int nr_pages)
1214 {
1215 unsigned long addr;
1216 gfn_t entry;
1217
1218 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1219 if (kvm_is_error_hva(addr))
1220 return -1;
1221
1222 if (entry < nr_pages)
1223 return 0;
1224
1225 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1226 }
1227 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1228
1229 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1230 {
1231 pfn_t pfn;
1232
1233 pfn = gfn_to_pfn(kvm, gfn);
1234 if (!kvm_is_mmio_pfn(pfn))
1235 return pfn_to_page(pfn);
1236
1237 WARN_ON(kvm_is_mmio_pfn(pfn));
1238
1239 get_page(bad_page);
1240 return bad_page;
1241 }
1242
1243 EXPORT_SYMBOL_GPL(gfn_to_page);
1244
1245 void kvm_release_page_clean(struct page *page)
1246 {
1247 kvm_release_pfn_clean(page_to_pfn(page));
1248 }
1249 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1250
1251 void kvm_release_pfn_clean(pfn_t pfn)
1252 {
1253 if (!kvm_is_mmio_pfn(pfn))
1254 put_page(pfn_to_page(pfn));
1255 }
1256 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1257
1258 void kvm_release_page_dirty(struct page *page)
1259 {
1260 kvm_release_pfn_dirty(page_to_pfn(page));
1261 }
1262 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1263
1264 void kvm_release_pfn_dirty(pfn_t pfn)
1265 {
1266 kvm_set_pfn_dirty(pfn);
1267 kvm_release_pfn_clean(pfn);
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1270
1271 void kvm_set_page_dirty(struct page *page)
1272 {
1273 kvm_set_pfn_dirty(page_to_pfn(page));
1274 }
1275 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1276
1277 void kvm_set_pfn_dirty(pfn_t pfn)
1278 {
1279 if (!kvm_is_mmio_pfn(pfn)) {
1280 struct page *page = pfn_to_page(pfn);
1281 if (!PageReserved(page))
1282 SetPageDirty(page);
1283 }
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1286
1287 void kvm_set_pfn_accessed(pfn_t pfn)
1288 {
1289 if (!kvm_is_mmio_pfn(pfn))
1290 mark_page_accessed(pfn_to_page(pfn));
1291 }
1292 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1293
1294 void kvm_get_pfn(pfn_t pfn)
1295 {
1296 if (!kvm_is_mmio_pfn(pfn))
1297 get_page(pfn_to_page(pfn));
1298 }
1299 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1300
1301 static int next_segment(unsigned long len, int offset)
1302 {
1303 if (len > PAGE_SIZE - offset)
1304 return PAGE_SIZE - offset;
1305 else
1306 return len;
1307 }
1308
1309 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1310 int len)
1311 {
1312 int r;
1313 unsigned long addr;
1314
1315 addr = gfn_to_hva(kvm, gfn);
1316 if (kvm_is_error_hva(addr))
1317 return -EFAULT;
1318 r = __copy_from_user(data, (void __user *)addr + offset, len);
1319 if (r)
1320 return -EFAULT;
1321 return 0;
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1324
1325 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1326 {
1327 gfn_t gfn = gpa >> PAGE_SHIFT;
1328 int seg;
1329 int offset = offset_in_page(gpa);
1330 int ret;
1331
1332 while ((seg = next_segment(len, offset)) != 0) {
1333 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1334 if (ret < 0)
1335 return ret;
1336 offset = 0;
1337 len -= seg;
1338 data += seg;
1339 ++gfn;
1340 }
1341 return 0;
1342 }
1343 EXPORT_SYMBOL_GPL(kvm_read_guest);
1344
1345 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1346 unsigned long len)
1347 {
1348 int r;
1349 unsigned long addr;
1350 gfn_t gfn = gpa >> PAGE_SHIFT;
1351 int offset = offset_in_page(gpa);
1352
1353 addr = gfn_to_hva(kvm, gfn);
1354 if (kvm_is_error_hva(addr))
1355 return -EFAULT;
1356 pagefault_disable();
1357 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1358 pagefault_enable();
1359 if (r)
1360 return -EFAULT;
1361 return 0;
1362 }
1363 EXPORT_SYMBOL(kvm_read_guest_atomic);
1364
1365 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1366 int offset, int len)
1367 {
1368 int r;
1369 unsigned long addr;
1370
1371 addr = gfn_to_hva(kvm, gfn);
1372 if (kvm_is_error_hva(addr))
1373 return -EFAULT;
1374 r = __copy_to_user((void __user *)addr + offset, data, len);
1375 if (r)
1376 return -EFAULT;
1377 mark_page_dirty(kvm, gfn);
1378 return 0;
1379 }
1380 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1381
1382 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1383 unsigned long len)
1384 {
1385 gfn_t gfn = gpa >> PAGE_SHIFT;
1386 int seg;
1387 int offset = offset_in_page(gpa);
1388 int ret;
1389
1390 while ((seg = next_segment(len, offset)) != 0) {
1391 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1392 if (ret < 0)
1393 return ret;
1394 offset = 0;
1395 len -= seg;
1396 data += seg;
1397 ++gfn;
1398 }
1399 return 0;
1400 }
1401
1402 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1403 gpa_t gpa)
1404 {
1405 struct kvm_memslots *slots = kvm_memslots(kvm);
1406 int offset = offset_in_page(gpa);
1407 gfn_t gfn = gpa >> PAGE_SHIFT;
1408
1409 ghc->gpa = gpa;
1410 ghc->generation = slots->generation;
1411 ghc->memslot = __gfn_to_memslot(slots, gfn);
1412 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1413 if (!kvm_is_error_hva(ghc->hva))
1414 ghc->hva += offset;
1415 else
1416 return -EFAULT;
1417
1418 return 0;
1419 }
1420 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1421
1422 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1423 void *data, unsigned long len)
1424 {
1425 struct kvm_memslots *slots = kvm_memslots(kvm);
1426 int r;
1427
1428 if (slots->generation != ghc->generation)
1429 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1430
1431 if (kvm_is_error_hva(ghc->hva))
1432 return -EFAULT;
1433
1434 r = __copy_to_user((void __user *)ghc->hva, data, len);
1435 if (r)
1436 return -EFAULT;
1437 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1438
1439 return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1442
1443 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1444 void *data, unsigned long len)
1445 {
1446 struct kvm_memslots *slots = kvm_memslots(kvm);
1447 int r;
1448
1449 if (slots->generation != ghc->generation)
1450 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1451
1452 if (kvm_is_error_hva(ghc->hva))
1453 return -EFAULT;
1454
1455 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1456 if (r)
1457 return -EFAULT;
1458
1459 return 0;
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1462
1463 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1464 {
1465 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1466 offset, len);
1467 }
1468 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1469
1470 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1471 {
1472 gfn_t gfn = gpa >> PAGE_SHIFT;
1473 int seg;
1474 int offset = offset_in_page(gpa);
1475 int ret;
1476
1477 while ((seg = next_segment(len, offset)) != 0) {
1478 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1479 if (ret < 0)
1480 return ret;
1481 offset = 0;
1482 len -= seg;
1483 ++gfn;
1484 }
1485 return 0;
1486 }
1487 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1488
1489 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1490 gfn_t gfn)
1491 {
1492 if (memslot && memslot->dirty_bitmap) {
1493 unsigned long rel_gfn = gfn - memslot->base_gfn;
1494
1495 if (!__test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap))
1496 memslot->nr_dirty_pages++;
1497 }
1498 }
1499
1500 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1501 {
1502 struct kvm_memory_slot *memslot;
1503
1504 memslot = gfn_to_memslot(kvm, gfn);
1505 mark_page_dirty_in_slot(kvm, memslot, gfn);
1506 }
1507
1508 /*
1509 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1510 */
1511 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1512 {
1513 DEFINE_WAIT(wait);
1514
1515 for (;;) {
1516 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1517
1518 if (kvm_arch_vcpu_runnable(vcpu)) {
1519 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1520 break;
1521 }
1522 if (kvm_cpu_has_pending_timer(vcpu))
1523 break;
1524 if (signal_pending(current))
1525 break;
1526
1527 schedule();
1528 }
1529
1530 finish_wait(&vcpu->wq, &wait);
1531 }
1532
1533 void kvm_resched(struct kvm_vcpu *vcpu)
1534 {
1535 if (!need_resched())
1536 return;
1537 cond_resched();
1538 }
1539 EXPORT_SYMBOL_GPL(kvm_resched);
1540
1541 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1542 {
1543 struct kvm *kvm = me->kvm;
1544 struct kvm_vcpu *vcpu;
1545 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1546 int yielded = 0;
1547 int pass;
1548 int i;
1549
1550 /*
1551 * We boost the priority of a VCPU that is runnable but not
1552 * currently running, because it got preempted by something
1553 * else and called schedule in __vcpu_run. Hopefully that
1554 * VCPU is holding the lock that we need and will release it.
1555 * We approximate round-robin by starting at the last boosted VCPU.
1556 */
1557 for (pass = 0; pass < 2 && !yielded; pass++) {
1558 kvm_for_each_vcpu(i, vcpu, kvm) {
1559 struct task_struct *task = NULL;
1560 struct pid *pid;
1561 if (!pass && i < last_boosted_vcpu) {
1562 i = last_boosted_vcpu;
1563 continue;
1564 } else if (pass && i > last_boosted_vcpu)
1565 break;
1566 if (vcpu == me)
1567 continue;
1568 if (waitqueue_active(&vcpu->wq))
1569 continue;
1570 rcu_read_lock();
1571 pid = rcu_dereference(vcpu->pid);
1572 if (pid)
1573 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1574 rcu_read_unlock();
1575 if (!task)
1576 continue;
1577 if (task->flags & PF_VCPU) {
1578 put_task_struct(task);
1579 continue;
1580 }
1581 if (yield_to(task, 1)) {
1582 put_task_struct(task);
1583 kvm->last_boosted_vcpu = i;
1584 yielded = 1;
1585 break;
1586 }
1587 put_task_struct(task);
1588 }
1589 }
1590 }
1591 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1592
1593 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1594 {
1595 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1596 struct page *page;
1597
1598 if (vmf->pgoff == 0)
1599 page = virt_to_page(vcpu->run);
1600 #ifdef CONFIG_X86
1601 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1602 page = virt_to_page(vcpu->arch.pio_data);
1603 #endif
1604 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1605 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1606 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1607 #endif
1608 else
1609 return VM_FAULT_SIGBUS;
1610 get_page(page);
1611 vmf->page = page;
1612 return 0;
1613 }
1614
1615 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1616 .fault = kvm_vcpu_fault,
1617 };
1618
1619 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1620 {
1621 vma->vm_ops = &kvm_vcpu_vm_ops;
1622 return 0;
1623 }
1624
1625 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1626 {
1627 struct kvm_vcpu *vcpu = filp->private_data;
1628
1629 kvm_put_kvm(vcpu->kvm);
1630 return 0;
1631 }
1632
1633 static struct file_operations kvm_vcpu_fops = {
1634 .release = kvm_vcpu_release,
1635 .unlocked_ioctl = kvm_vcpu_ioctl,
1636 #ifdef CONFIG_COMPAT
1637 .compat_ioctl = kvm_vcpu_compat_ioctl,
1638 #endif
1639 .mmap = kvm_vcpu_mmap,
1640 .llseek = noop_llseek,
1641 };
1642
1643 /*
1644 * Allocates an inode for the vcpu.
1645 */
1646 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1647 {
1648 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1649 }
1650
1651 /*
1652 * Creates some virtual cpus. Good luck creating more than one.
1653 */
1654 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1655 {
1656 int r;
1657 struct kvm_vcpu *vcpu, *v;
1658
1659 vcpu = kvm_arch_vcpu_create(kvm, id);
1660 if (IS_ERR(vcpu))
1661 return PTR_ERR(vcpu);
1662
1663 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1664
1665 r = kvm_arch_vcpu_setup(vcpu);
1666 if (r)
1667 goto vcpu_destroy;
1668
1669 mutex_lock(&kvm->lock);
1670 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1671 r = -EINVAL;
1672 goto unlock_vcpu_destroy;
1673 }
1674
1675 kvm_for_each_vcpu(r, v, kvm)
1676 if (v->vcpu_id == id) {
1677 r = -EEXIST;
1678 goto unlock_vcpu_destroy;
1679 }
1680
1681 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1682
1683 /* Now it's all set up, let userspace reach it */
1684 kvm_get_kvm(kvm);
1685 r = create_vcpu_fd(vcpu);
1686 if (r < 0) {
1687 kvm_put_kvm(kvm);
1688 goto unlock_vcpu_destroy;
1689 }
1690
1691 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1692 smp_wmb();
1693 atomic_inc(&kvm->online_vcpus);
1694
1695 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1696 if (kvm->bsp_vcpu_id == id)
1697 kvm->bsp_vcpu = vcpu;
1698 #endif
1699 mutex_unlock(&kvm->lock);
1700 return r;
1701
1702 unlock_vcpu_destroy:
1703 mutex_unlock(&kvm->lock);
1704 vcpu_destroy:
1705 kvm_arch_vcpu_destroy(vcpu);
1706 return r;
1707 }
1708
1709 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1710 {
1711 if (sigset) {
1712 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1713 vcpu->sigset_active = 1;
1714 vcpu->sigset = *sigset;
1715 } else
1716 vcpu->sigset_active = 0;
1717 return 0;
1718 }
1719
1720 static long kvm_vcpu_ioctl(struct file *filp,
1721 unsigned int ioctl, unsigned long arg)
1722 {
1723 struct kvm_vcpu *vcpu = filp->private_data;
1724 void __user *argp = (void __user *)arg;
1725 int r;
1726 struct kvm_fpu *fpu = NULL;
1727 struct kvm_sregs *kvm_sregs = NULL;
1728
1729 if (vcpu->kvm->mm != current->mm)
1730 return -EIO;
1731
1732 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1733 /*
1734 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1735 * so vcpu_load() would break it.
1736 */
1737 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1738 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1739 #endif
1740
1741
1742 vcpu_load(vcpu);
1743 switch (ioctl) {
1744 case KVM_RUN:
1745 r = -EINVAL;
1746 if (arg)
1747 goto out;
1748 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1749 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1750 break;
1751 case KVM_GET_REGS: {
1752 struct kvm_regs *kvm_regs;
1753
1754 r = -ENOMEM;
1755 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1756 if (!kvm_regs)
1757 goto out;
1758 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1759 if (r)
1760 goto out_free1;
1761 r = -EFAULT;
1762 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1763 goto out_free1;
1764 r = 0;
1765 out_free1:
1766 kfree(kvm_regs);
1767 break;
1768 }
1769 case KVM_SET_REGS: {
1770 struct kvm_regs *kvm_regs;
1771
1772 r = -ENOMEM;
1773 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1774 if (!kvm_regs)
1775 goto out;
1776 r = -EFAULT;
1777 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1778 goto out_free2;
1779 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1780 if (r)
1781 goto out_free2;
1782 r = 0;
1783 out_free2:
1784 kfree(kvm_regs);
1785 break;
1786 }
1787 case KVM_GET_SREGS: {
1788 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1789 r = -ENOMEM;
1790 if (!kvm_sregs)
1791 goto out;
1792 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1793 if (r)
1794 goto out;
1795 r = -EFAULT;
1796 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1797 goto out;
1798 r = 0;
1799 break;
1800 }
1801 case KVM_SET_SREGS: {
1802 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1803 r = -ENOMEM;
1804 if (!kvm_sregs)
1805 goto out;
1806 r = -EFAULT;
1807 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1808 goto out;
1809 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1810 if (r)
1811 goto out;
1812 r = 0;
1813 break;
1814 }
1815 case KVM_GET_MP_STATE: {
1816 struct kvm_mp_state mp_state;
1817
1818 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1819 if (r)
1820 goto out;
1821 r = -EFAULT;
1822 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1823 goto out;
1824 r = 0;
1825 break;
1826 }
1827 case KVM_SET_MP_STATE: {
1828 struct kvm_mp_state mp_state;
1829
1830 r = -EFAULT;
1831 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1832 goto out;
1833 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1834 if (r)
1835 goto out;
1836 r = 0;
1837 break;
1838 }
1839 case KVM_TRANSLATE: {
1840 struct kvm_translation tr;
1841
1842 r = -EFAULT;
1843 if (copy_from_user(&tr, argp, sizeof tr))
1844 goto out;
1845 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1846 if (r)
1847 goto out;
1848 r = -EFAULT;
1849 if (copy_to_user(argp, &tr, sizeof tr))
1850 goto out;
1851 r = 0;
1852 break;
1853 }
1854 case KVM_SET_GUEST_DEBUG: {
1855 struct kvm_guest_debug dbg;
1856
1857 r = -EFAULT;
1858 if (copy_from_user(&dbg, argp, sizeof dbg))
1859 goto out;
1860 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1861 if (r)
1862 goto out;
1863 r = 0;
1864 break;
1865 }
1866 case KVM_SET_SIGNAL_MASK: {
1867 struct kvm_signal_mask __user *sigmask_arg = argp;
1868 struct kvm_signal_mask kvm_sigmask;
1869 sigset_t sigset, *p;
1870
1871 p = NULL;
1872 if (argp) {
1873 r = -EFAULT;
1874 if (copy_from_user(&kvm_sigmask, argp,
1875 sizeof kvm_sigmask))
1876 goto out;
1877 r = -EINVAL;
1878 if (kvm_sigmask.len != sizeof sigset)
1879 goto out;
1880 r = -EFAULT;
1881 if (copy_from_user(&sigset, sigmask_arg->sigset,
1882 sizeof sigset))
1883 goto out;
1884 p = &sigset;
1885 }
1886 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1887 break;
1888 }
1889 case KVM_GET_FPU: {
1890 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1891 r = -ENOMEM;
1892 if (!fpu)
1893 goto out;
1894 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1895 if (r)
1896 goto out;
1897 r = -EFAULT;
1898 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1899 goto out;
1900 r = 0;
1901 break;
1902 }
1903 case KVM_SET_FPU: {
1904 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1905 r = -ENOMEM;
1906 if (!fpu)
1907 goto out;
1908 r = -EFAULT;
1909 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1910 goto out;
1911 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1912 if (r)
1913 goto out;
1914 r = 0;
1915 break;
1916 }
1917 default:
1918 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1919 }
1920 out:
1921 vcpu_put(vcpu);
1922 kfree(fpu);
1923 kfree(kvm_sregs);
1924 return r;
1925 }
1926
1927 #ifdef CONFIG_COMPAT
1928 static long kvm_vcpu_compat_ioctl(struct file *filp,
1929 unsigned int ioctl, unsigned long arg)
1930 {
1931 struct kvm_vcpu *vcpu = filp->private_data;
1932 void __user *argp = compat_ptr(arg);
1933 int r;
1934
1935 if (vcpu->kvm->mm != current->mm)
1936 return -EIO;
1937
1938 switch (ioctl) {
1939 case KVM_SET_SIGNAL_MASK: {
1940 struct kvm_signal_mask __user *sigmask_arg = argp;
1941 struct kvm_signal_mask kvm_sigmask;
1942 compat_sigset_t csigset;
1943 sigset_t sigset;
1944
1945 if (argp) {
1946 r = -EFAULT;
1947 if (copy_from_user(&kvm_sigmask, argp,
1948 sizeof kvm_sigmask))
1949 goto out;
1950 r = -EINVAL;
1951 if (kvm_sigmask.len != sizeof csigset)
1952 goto out;
1953 r = -EFAULT;
1954 if (copy_from_user(&csigset, sigmask_arg->sigset,
1955 sizeof csigset))
1956 goto out;
1957 }
1958 sigset_from_compat(&sigset, &csigset);
1959 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1960 break;
1961 }
1962 default:
1963 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1964 }
1965
1966 out:
1967 return r;
1968 }
1969 #endif
1970
1971 static long kvm_vm_ioctl(struct file *filp,
1972 unsigned int ioctl, unsigned long arg)
1973 {
1974 struct kvm *kvm = filp->private_data;
1975 void __user *argp = (void __user *)arg;
1976 int r;
1977
1978 if (kvm->mm != current->mm)
1979 return -EIO;
1980 switch (ioctl) {
1981 case KVM_CREATE_VCPU:
1982 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1983 if (r < 0)
1984 goto out;
1985 break;
1986 case KVM_SET_USER_MEMORY_REGION: {
1987 struct kvm_userspace_memory_region kvm_userspace_mem;
1988
1989 r = -EFAULT;
1990 if (copy_from_user(&kvm_userspace_mem, argp,
1991 sizeof kvm_userspace_mem))
1992 goto out;
1993
1994 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1995 if (r)
1996 goto out;
1997 break;
1998 }
1999 case KVM_GET_DIRTY_LOG: {
2000 struct kvm_dirty_log log;
2001
2002 r = -EFAULT;
2003 if (copy_from_user(&log, argp, sizeof log))
2004 goto out;
2005 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2006 if (r)
2007 goto out;
2008 break;
2009 }
2010 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2011 case KVM_REGISTER_COALESCED_MMIO: {
2012 struct kvm_coalesced_mmio_zone zone;
2013 r = -EFAULT;
2014 if (copy_from_user(&zone, argp, sizeof zone))
2015 goto out;
2016 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2017 if (r)
2018 goto out;
2019 r = 0;
2020 break;
2021 }
2022 case KVM_UNREGISTER_COALESCED_MMIO: {
2023 struct kvm_coalesced_mmio_zone zone;
2024 r = -EFAULT;
2025 if (copy_from_user(&zone, argp, sizeof zone))
2026 goto out;
2027 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2028 if (r)
2029 goto out;
2030 r = 0;
2031 break;
2032 }
2033 #endif
2034 case KVM_IRQFD: {
2035 struct kvm_irqfd data;
2036
2037 r = -EFAULT;
2038 if (copy_from_user(&data, argp, sizeof data))
2039 goto out;
2040 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2041 break;
2042 }
2043 case KVM_IOEVENTFD: {
2044 struct kvm_ioeventfd data;
2045
2046 r = -EFAULT;
2047 if (copy_from_user(&data, argp, sizeof data))
2048 goto out;
2049 r = kvm_ioeventfd(kvm, &data);
2050 break;
2051 }
2052 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2053 case KVM_SET_BOOT_CPU_ID:
2054 r = 0;
2055 mutex_lock(&kvm->lock);
2056 if (atomic_read(&kvm->online_vcpus) != 0)
2057 r = -EBUSY;
2058 else
2059 kvm->bsp_vcpu_id = arg;
2060 mutex_unlock(&kvm->lock);
2061 break;
2062 #endif
2063 default:
2064 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2065 if (r == -ENOTTY)
2066 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2067 }
2068 out:
2069 return r;
2070 }
2071
2072 #ifdef CONFIG_COMPAT
2073 struct compat_kvm_dirty_log {
2074 __u32 slot;
2075 __u32 padding1;
2076 union {
2077 compat_uptr_t dirty_bitmap; /* one bit per page */
2078 __u64 padding2;
2079 };
2080 };
2081
2082 static long kvm_vm_compat_ioctl(struct file *filp,
2083 unsigned int ioctl, unsigned long arg)
2084 {
2085 struct kvm *kvm = filp->private_data;
2086 int r;
2087
2088 if (kvm->mm != current->mm)
2089 return -EIO;
2090 switch (ioctl) {
2091 case KVM_GET_DIRTY_LOG: {
2092 struct compat_kvm_dirty_log compat_log;
2093 struct kvm_dirty_log log;
2094
2095 r = -EFAULT;
2096 if (copy_from_user(&compat_log, (void __user *)arg,
2097 sizeof(compat_log)))
2098 goto out;
2099 log.slot = compat_log.slot;
2100 log.padding1 = compat_log.padding1;
2101 log.padding2 = compat_log.padding2;
2102 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2103
2104 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2105 if (r)
2106 goto out;
2107 break;
2108 }
2109 default:
2110 r = kvm_vm_ioctl(filp, ioctl, arg);
2111 }
2112
2113 out:
2114 return r;
2115 }
2116 #endif
2117
2118 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2119 {
2120 struct page *page[1];
2121 unsigned long addr;
2122 int npages;
2123 gfn_t gfn = vmf->pgoff;
2124 struct kvm *kvm = vma->vm_file->private_data;
2125
2126 addr = gfn_to_hva(kvm, gfn);
2127 if (kvm_is_error_hva(addr))
2128 return VM_FAULT_SIGBUS;
2129
2130 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2131 NULL);
2132 if (unlikely(npages != 1))
2133 return VM_FAULT_SIGBUS;
2134
2135 vmf->page = page[0];
2136 return 0;
2137 }
2138
2139 static const struct vm_operations_struct kvm_vm_vm_ops = {
2140 .fault = kvm_vm_fault,
2141 };
2142
2143 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2144 {
2145 vma->vm_ops = &kvm_vm_vm_ops;
2146 return 0;
2147 }
2148
2149 static struct file_operations kvm_vm_fops = {
2150 .release = kvm_vm_release,
2151 .unlocked_ioctl = kvm_vm_ioctl,
2152 #ifdef CONFIG_COMPAT
2153 .compat_ioctl = kvm_vm_compat_ioctl,
2154 #endif
2155 .mmap = kvm_vm_mmap,
2156 .llseek = noop_llseek,
2157 };
2158
2159 static int kvm_dev_ioctl_create_vm(void)
2160 {
2161 int r;
2162 struct kvm *kvm;
2163
2164 kvm = kvm_create_vm();
2165 if (IS_ERR(kvm))
2166 return PTR_ERR(kvm);
2167 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2168 r = kvm_coalesced_mmio_init(kvm);
2169 if (r < 0) {
2170 kvm_put_kvm(kvm);
2171 return r;
2172 }
2173 #endif
2174 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2175 if (r < 0)
2176 kvm_put_kvm(kvm);
2177
2178 return r;
2179 }
2180
2181 static long kvm_dev_ioctl_check_extension_generic(long arg)
2182 {
2183 switch (arg) {
2184 case KVM_CAP_USER_MEMORY:
2185 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2186 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2187 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2188 case KVM_CAP_SET_BOOT_CPU_ID:
2189 #endif
2190 case KVM_CAP_INTERNAL_ERROR_DATA:
2191 return 1;
2192 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2193 case KVM_CAP_IRQ_ROUTING:
2194 return KVM_MAX_IRQ_ROUTES;
2195 #endif
2196 default:
2197 break;
2198 }
2199 return kvm_dev_ioctl_check_extension(arg);
2200 }
2201
2202 static long kvm_dev_ioctl(struct file *filp,
2203 unsigned int ioctl, unsigned long arg)
2204 {
2205 long r = -EINVAL;
2206
2207 switch (ioctl) {
2208 case KVM_GET_API_VERSION:
2209 r = -EINVAL;
2210 if (arg)
2211 goto out;
2212 r = KVM_API_VERSION;
2213 break;
2214 case KVM_CREATE_VM:
2215 r = -EINVAL;
2216 if (arg)
2217 goto out;
2218 r = kvm_dev_ioctl_create_vm();
2219 break;
2220 case KVM_CHECK_EXTENSION:
2221 r = kvm_dev_ioctl_check_extension_generic(arg);
2222 break;
2223 case KVM_GET_VCPU_MMAP_SIZE:
2224 r = -EINVAL;
2225 if (arg)
2226 goto out;
2227 r = PAGE_SIZE; /* struct kvm_run */
2228 #ifdef CONFIG_X86
2229 r += PAGE_SIZE; /* pio data page */
2230 #endif
2231 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2232 r += PAGE_SIZE; /* coalesced mmio ring page */
2233 #endif
2234 break;
2235 case KVM_TRACE_ENABLE:
2236 case KVM_TRACE_PAUSE:
2237 case KVM_TRACE_DISABLE:
2238 r = -EOPNOTSUPP;
2239 break;
2240 default:
2241 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2242 }
2243 out:
2244 return r;
2245 }
2246
2247 static struct file_operations kvm_chardev_ops = {
2248 .unlocked_ioctl = kvm_dev_ioctl,
2249 .compat_ioctl = kvm_dev_ioctl,
2250 .llseek = noop_llseek,
2251 };
2252
2253 static struct miscdevice kvm_dev = {
2254 KVM_MINOR,
2255 "kvm",
2256 &kvm_chardev_ops,
2257 };
2258
2259 static void hardware_enable_nolock(void *junk)
2260 {
2261 int cpu = raw_smp_processor_id();
2262 int r;
2263
2264 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2265 return;
2266
2267 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2268
2269 r = kvm_arch_hardware_enable(NULL);
2270
2271 if (r) {
2272 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2273 atomic_inc(&hardware_enable_failed);
2274 printk(KERN_INFO "kvm: enabling virtualization on "
2275 "CPU%d failed\n", cpu);
2276 }
2277 }
2278
2279 static void hardware_enable(void *junk)
2280 {
2281 raw_spin_lock(&kvm_lock);
2282 hardware_enable_nolock(junk);
2283 raw_spin_unlock(&kvm_lock);
2284 }
2285
2286 static void hardware_disable_nolock(void *junk)
2287 {
2288 int cpu = raw_smp_processor_id();
2289
2290 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2291 return;
2292 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2293 kvm_arch_hardware_disable(NULL);
2294 }
2295
2296 static void hardware_disable(void *junk)
2297 {
2298 raw_spin_lock(&kvm_lock);
2299 hardware_disable_nolock(junk);
2300 raw_spin_unlock(&kvm_lock);
2301 }
2302
2303 static void hardware_disable_all_nolock(void)
2304 {
2305 BUG_ON(!kvm_usage_count);
2306
2307 kvm_usage_count--;
2308 if (!kvm_usage_count)
2309 on_each_cpu(hardware_disable_nolock, NULL, 1);
2310 }
2311
2312 static void hardware_disable_all(void)
2313 {
2314 raw_spin_lock(&kvm_lock);
2315 hardware_disable_all_nolock();
2316 raw_spin_unlock(&kvm_lock);
2317 }
2318
2319 static int hardware_enable_all(void)
2320 {
2321 int r = 0;
2322
2323 raw_spin_lock(&kvm_lock);
2324
2325 kvm_usage_count++;
2326 if (kvm_usage_count == 1) {
2327 atomic_set(&hardware_enable_failed, 0);
2328 on_each_cpu(hardware_enable_nolock, NULL, 1);
2329
2330 if (atomic_read(&hardware_enable_failed)) {
2331 hardware_disable_all_nolock();
2332 r = -EBUSY;
2333 }
2334 }
2335
2336 raw_spin_unlock(&kvm_lock);
2337
2338 return r;
2339 }
2340
2341 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2342 void *v)
2343 {
2344 int cpu = (long)v;
2345
2346 if (!kvm_usage_count)
2347 return NOTIFY_OK;
2348
2349 val &= ~CPU_TASKS_FROZEN;
2350 switch (val) {
2351 case CPU_DYING:
2352 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2353 cpu);
2354 hardware_disable(NULL);
2355 break;
2356 case CPU_STARTING:
2357 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2358 cpu);
2359 hardware_enable(NULL);
2360 break;
2361 }
2362 return NOTIFY_OK;
2363 }
2364
2365
2366 asmlinkage void kvm_spurious_fault(void)
2367 {
2368 /* Fault while not rebooting. We want the trace. */
2369 BUG();
2370 }
2371 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2372
2373 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2374 void *v)
2375 {
2376 /*
2377 * Some (well, at least mine) BIOSes hang on reboot if
2378 * in vmx root mode.
2379 *
2380 * And Intel TXT required VMX off for all cpu when system shutdown.
2381 */
2382 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2383 kvm_rebooting = true;
2384 on_each_cpu(hardware_disable_nolock, NULL, 1);
2385 return NOTIFY_OK;
2386 }
2387
2388 static struct notifier_block kvm_reboot_notifier = {
2389 .notifier_call = kvm_reboot,
2390 .priority = 0,
2391 };
2392
2393 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2394 {
2395 int i;
2396
2397 for (i = 0; i < bus->dev_count; i++) {
2398 struct kvm_io_device *pos = bus->range[i].dev;
2399
2400 kvm_iodevice_destructor(pos);
2401 }
2402 kfree(bus);
2403 }
2404
2405 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2406 {
2407 const struct kvm_io_range *r1 = p1;
2408 const struct kvm_io_range *r2 = p2;
2409
2410 if (r1->addr < r2->addr)
2411 return -1;
2412 if (r1->addr + r1->len > r2->addr + r2->len)
2413 return 1;
2414 return 0;
2415 }
2416
2417 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2418 gpa_t addr, int len)
2419 {
2420 if (bus->dev_count == NR_IOBUS_DEVS)
2421 return -ENOSPC;
2422
2423 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2424 .addr = addr,
2425 .len = len,
2426 .dev = dev,
2427 };
2428
2429 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2430 kvm_io_bus_sort_cmp, NULL);
2431
2432 return 0;
2433 }
2434
2435 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2436 gpa_t addr, int len)
2437 {
2438 struct kvm_io_range *range, key;
2439 int off;
2440
2441 key = (struct kvm_io_range) {
2442 .addr = addr,
2443 .len = len,
2444 };
2445
2446 range = bsearch(&key, bus->range, bus->dev_count,
2447 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2448 if (range == NULL)
2449 return -ENOENT;
2450
2451 off = range - bus->range;
2452
2453 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2454 off--;
2455
2456 return off;
2457 }
2458
2459 /* kvm_io_bus_write - called under kvm->slots_lock */
2460 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2461 int len, const void *val)
2462 {
2463 int idx;
2464 struct kvm_io_bus *bus;
2465 struct kvm_io_range range;
2466
2467 range = (struct kvm_io_range) {
2468 .addr = addr,
2469 .len = len,
2470 };
2471
2472 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2473 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2474 if (idx < 0)
2475 return -EOPNOTSUPP;
2476
2477 while (idx < bus->dev_count &&
2478 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2479 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2480 return 0;
2481 idx++;
2482 }
2483
2484 return -EOPNOTSUPP;
2485 }
2486
2487 /* kvm_io_bus_read - called under kvm->slots_lock */
2488 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2489 int len, void *val)
2490 {
2491 int idx;
2492 struct kvm_io_bus *bus;
2493 struct kvm_io_range range;
2494
2495 range = (struct kvm_io_range) {
2496 .addr = addr,
2497 .len = len,
2498 };
2499
2500 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2501 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2502 if (idx < 0)
2503 return -EOPNOTSUPP;
2504
2505 while (idx < bus->dev_count &&
2506 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2507 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2508 return 0;
2509 idx++;
2510 }
2511
2512 return -EOPNOTSUPP;
2513 }
2514
2515 /* Caller must hold slots_lock. */
2516 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2517 int len, struct kvm_io_device *dev)
2518 {
2519 struct kvm_io_bus *new_bus, *bus;
2520
2521 bus = kvm->buses[bus_idx];
2522 if (bus->dev_count > NR_IOBUS_DEVS-1)
2523 return -ENOSPC;
2524
2525 new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL);
2526 if (!new_bus)
2527 return -ENOMEM;
2528 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2529 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2530 synchronize_srcu_expedited(&kvm->srcu);
2531 kfree(bus);
2532
2533 return 0;
2534 }
2535
2536 /* Caller must hold slots_lock. */
2537 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2538 struct kvm_io_device *dev)
2539 {
2540 int i, r;
2541 struct kvm_io_bus *new_bus, *bus;
2542
2543 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2544 if (!new_bus)
2545 return -ENOMEM;
2546
2547 bus = kvm->buses[bus_idx];
2548 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2549
2550 r = -ENOENT;
2551 for (i = 0; i < new_bus->dev_count; i++)
2552 if (new_bus->range[i].dev == dev) {
2553 r = 0;
2554 new_bus->dev_count--;
2555 new_bus->range[i] = new_bus->range[new_bus->dev_count];
2556 sort(new_bus->range, new_bus->dev_count,
2557 sizeof(struct kvm_io_range),
2558 kvm_io_bus_sort_cmp, NULL);
2559 break;
2560 }
2561
2562 if (r) {
2563 kfree(new_bus);
2564 return r;
2565 }
2566
2567 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2568 synchronize_srcu_expedited(&kvm->srcu);
2569 kfree(bus);
2570 return r;
2571 }
2572
2573 static struct notifier_block kvm_cpu_notifier = {
2574 .notifier_call = kvm_cpu_hotplug,
2575 };
2576
2577 static int vm_stat_get(void *_offset, u64 *val)
2578 {
2579 unsigned offset = (long)_offset;
2580 struct kvm *kvm;
2581
2582 *val = 0;
2583 raw_spin_lock(&kvm_lock);
2584 list_for_each_entry(kvm, &vm_list, vm_list)
2585 *val += *(u32 *)((void *)kvm + offset);
2586 raw_spin_unlock(&kvm_lock);
2587 return 0;
2588 }
2589
2590 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2591
2592 static int vcpu_stat_get(void *_offset, u64 *val)
2593 {
2594 unsigned offset = (long)_offset;
2595 struct kvm *kvm;
2596 struct kvm_vcpu *vcpu;
2597 int i;
2598
2599 *val = 0;
2600 raw_spin_lock(&kvm_lock);
2601 list_for_each_entry(kvm, &vm_list, vm_list)
2602 kvm_for_each_vcpu(i, vcpu, kvm)
2603 *val += *(u32 *)((void *)vcpu + offset);
2604
2605 raw_spin_unlock(&kvm_lock);
2606 return 0;
2607 }
2608
2609 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2610
2611 static const struct file_operations *stat_fops[] = {
2612 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2613 [KVM_STAT_VM] = &vm_stat_fops,
2614 };
2615
2616 static void kvm_init_debug(void)
2617 {
2618 struct kvm_stats_debugfs_item *p;
2619
2620 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2621 for (p = debugfs_entries; p->name; ++p)
2622 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2623 (void *)(long)p->offset,
2624 stat_fops[p->kind]);
2625 }
2626
2627 static void kvm_exit_debug(void)
2628 {
2629 struct kvm_stats_debugfs_item *p;
2630
2631 for (p = debugfs_entries; p->name; ++p)
2632 debugfs_remove(p->dentry);
2633 debugfs_remove(kvm_debugfs_dir);
2634 }
2635
2636 static int kvm_suspend(void)
2637 {
2638 if (kvm_usage_count)
2639 hardware_disable_nolock(NULL);
2640 return 0;
2641 }
2642
2643 static void kvm_resume(void)
2644 {
2645 if (kvm_usage_count) {
2646 WARN_ON(raw_spin_is_locked(&kvm_lock));
2647 hardware_enable_nolock(NULL);
2648 }
2649 }
2650
2651 static struct syscore_ops kvm_syscore_ops = {
2652 .suspend = kvm_suspend,
2653 .resume = kvm_resume,
2654 };
2655
2656 struct page *bad_page;
2657 pfn_t bad_pfn;
2658
2659 static inline
2660 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2661 {
2662 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2663 }
2664
2665 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2666 {
2667 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2668
2669 kvm_arch_vcpu_load(vcpu, cpu);
2670 }
2671
2672 static void kvm_sched_out(struct preempt_notifier *pn,
2673 struct task_struct *next)
2674 {
2675 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2676
2677 kvm_arch_vcpu_put(vcpu);
2678 }
2679
2680 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2681 struct module *module)
2682 {
2683 int r;
2684 int cpu;
2685
2686 r = kvm_arch_init(opaque);
2687 if (r)
2688 goto out_fail;
2689
2690 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2691
2692 if (bad_page == NULL) {
2693 r = -ENOMEM;
2694 goto out;
2695 }
2696
2697 bad_pfn = page_to_pfn(bad_page);
2698
2699 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2700
2701 if (hwpoison_page == NULL) {
2702 r = -ENOMEM;
2703 goto out_free_0;
2704 }
2705
2706 hwpoison_pfn = page_to_pfn(hwpoison_page);
2707
2708 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2709
2710 if (fault_page == NULL) {
2711 r = -ENOMEM;
2712 goto out_free_0;
2713 }
2714
2715 fault_pfn = page_to_pfn(fault_page);
2716
2717 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2718 r = -ENOMEM;
2719 goto out_free_0;
2720 }
2721
2722 r = kvm_arch_hardware_setup();
2723 if (r < 0)
2724 goto out_free_0a;
2725
2726 for_each_online_cpu(cpu) {
2727 smp_call_function_single(cpu,
2728 kvm_arch_check_processor_compat,
2729 &r, 1);
2730 if (r < 0)
2731 goto out_free_1;
2732 }
2733
2734 r = register_cpu_notifier(&kvm_cpu_notifier);
2735 if (r)
2736 goto out_free_2;
2737 register_reboot_notifier(&kvm_reboot_notifier);
2738
2739 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2740 if (!vcpu_align)
2741 vcpu_align = __alignof__(struct kvm_vcpu);
2742 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2743 0, NULL);
2744 if (!kvm_vcpu_cache) {
2745 r = -ENOMEM;
2746 goto out_free_3;
2747 }
2748
2749 r = kvm_async_pf_init();
2750 if (r)
2751 goto out_free;
2752
2753 kvm_chardev_ops.owner = module;
2754 kvm_vm_fops.owner = module;
2755 kvm_vcpu_fops.owner = module;
2756
2757 r = misc_register(&kvm_dev);
2758 if (r) {
2759 printk(KERN_ERR "kvm: misc device register failed\n");
2760 goto out_unreg;
2761 }
2762
2763 register_syscore_ops(&kvm_syscore_ops);
2764
2765 kvm_preempt_ops.sched_in = kvm_sched_in;
2766 kvm_preempt_ops.sched_out = kvm_sched_out;
2767
2768 kvm_init_debug();
2769
2770 return 0;
2771
2772 out_unreg:
2773 kvm_async_pf_deinit();
2774 out_free:
2775 kmem_cache_destroy(kvm_vcpu_cache);
2776 out_free_3:
2777 unregister_reboot_notifier(&kvm_reboot_notifier);
2778 unregister_cpu_notifier(&kvm_cpu_notifier);
2779 out_free_2:
2780 out_free_1:
2781 kvm_arch_hardware_unsetup();
2782 out_free_0a:
2783 free_cpumask_var(cpus_hardware_enabled);
2784 out_free_0:
2785 if (fault_page)
2786 __free_page(fault_page);
2787 if (hwpoison_page)
2788 __free_page(hwpoison_page);
2789 __free_page(bad_page);
2790 out:
2791 kvm_arch_exit();
2792 out_fail:
2793 return r;
2794 }
2795 EXPORT_SYMBOL_GPL(kvm_init);
2796
2797 void kvm_exit(void)
2798 {
2799 kvm_exit_debug();
2800 misc_deregister(&kvm_dev);
2801 kmem_cache_destroy(kvm_vcpu_cache);
2802 kvm_async_pf_deinit();
2803 unregister_syscore_ops(&kvm_syscore_ops);
2804 unregister_reboot_notifier(&kvm_reboot_notifier);
2805 unregister_cpu_notifier(&kvm_cpu_notifier);
2806 on_each_cpu(hardware_disable_nolock, NULL, 1);
2807 kvm_arch_hardware_unsetup();
2808 kvm_arch_exit();
2809 free_cpumask_var(cpus_hardware_enabled);
2810 __free_page(hwpoison_page);
2811 __free_page(bad_page);
2812 }
2813 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.121244 seconds and 5 git commands to generate.