anonfd: Allow making anon files read-only
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47
48 #include <asm/processor.h>
49 #include <asm/io.h>
50 #include <asm/uaccess.h>
51 #include <asm/pgtable.h>
52 #include <asm-generic/bitops/le.h>
53
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
56 #endif
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/kvm.h>
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 /*
65 * Ordering of locks:
66 *
67 * kvm->slots_lock --> kvm->lock --> kvm->irq_lock
68 */
69
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
72
73 static cpumask_var_t cpus_hardware_enabled;
74 static int kvm_usage_count = 0;
75 static atomic_t hardware_enable_failed;
76
77 struct kmem_cache *kvm_vcpu_cache;
78 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
79
80 static __read_mostly struct preempt_ops kvm_preempt_ops;
81
82 struct dentry *kvm_debugfs_dir;
83
84 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
85 unsigned long arg);
86 static int hardware_enable_all(void);
87 static void hardware_disable_all(void);
88
89 static bool kvm_rebooting;
90
91 static bool largepages_enabled = true;
92
93 inline int kvm_is_mmio_pfn(pfn_t pfn)
94 {
95 if (pfn_valid(pfn)) {
96 struct page *page = compound_head(pfn_to_page(pfn));
97 return PageReserved(page);
98 }
99
100 return true;
101 }
102
103 /*
104 * Switches to specified vcpu, until a matching vcpu_put()
105 */
106 void vcpu_load(struct kvm_vcpu *vcpu)
107 {
108 int cpu;
109
110 mutex_lock(&vcpu->mutex);
111 cpu = get_cpu();
112 preempt_notifier_register(&vcpu->preempt_notifier);
113 kvm_arch_vcpu_load(vcpu, cpu);
114 put_cpu();
115 }
116
117 void vcpu_put(struct kvm_vcpu *vcpu)
118 {
119 preempt_disable();
120 kvm_arch_vcpu_put(vcpu);
121 preempt_notifier_unregister(&vcpu->preempt_notifier);
122 preempt_enable();
123 mutex_unlock(&vcpu->mutex);
124 }
125
126 static void ack_flush(void *_completed)
127 {
128 }
129
130 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
131 {
132 int i, cpu, me;
133 cpumask_var_t cpus;
134 bool called = true;
135 struct kvm_vcpu *vcpu;
136
137 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
138
139 spin_lock(&kvm->requests_lock);
140 me = smp_processor_id();
141 kvm_for_each_vcpu(i, vcpu, kvm) {
142 if (test_and_set_bit(req, &vcpu->requests))
143 continue;
144 cpu = vcpu->cpu;
145 if (cpus != NULL && cpu != -1 && cpu != me)
146 cpumask_set_cpu(cpu, cpus);
147 }
148 if (unlikely(cpus == NULL))
149 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
150 else if (!cpumask_empty(cpus))
151 smp_call_function_many(cpus, ack_flush, NULL, 1);
152 else
153 called = false;
154 spin_unlock(&kvm->requests_lock);
155 free_cpumask_var(cpus);
156 return called;
157 }
158
159 void kvm_flush_remote_tlbs(struct kvm *kvm)
160 {
161 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
162 ++kvm->stat.remote_tlb_flush;
163 }
164
165 void kvm_reload_remote_mmus(struct kvm *kvm)
166 {
167 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
168 }
169
170 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
171 {
172 struct page *page;
173 int r;
174
175 mutex_init(&vcpu->mutex);
176 vcpu->cpu = -1;
177 vcpu->kvm = kvm;
178 vcpu->vcpu_id = id;
179 init_waitqueue_head(&vcpu->wq);
180
181 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
182 if (!page) {
183 r = -ENOMEM;
184 goto fail;
185 }
186 vcpu->run = page_address(page);
187
188 r = kvm_arch_vcpu_init(vcpu);
189 if (r < 0)
190 goto fail_free_run;
191 return 0;
192
193 fail_free_run:
194 free_page((unsigned long)vcpu->run);
195 fail:
196 return r;
197 }
198 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
199
200 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
201 {
202 kvm_arch_vcpu_uninit(vcpu);
203 free_page((unsigned long)vcpu->run);
204 }
205 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
206
207 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
208 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
209 {
210 return container_of(mn, struct kvm, mmu_notifier);
211 }
212
213 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
214 struct mm_struct *mm,
215 unsigned long address)
216 {
217 struct kvm *kvm = mmu_notifier_to_kvm(mn);
218 int need_tlb_flush;
219
220 /*
221 * When ->invalidate_page runs, the linux pte has been zapped
222 * already but the page is still allocated until
223 * ->invalidate_page returns. So if we increase the sequence
224 * here the kvm page fault will notice if the spte can't be
225 * established because the page is going to be freed. If
226 * instead the kvm page fault establishes the spte before
227 * ->invalidate_page runs, kvm_unmap_hva will release it
228 * before returning.
229 *
230 * The sequence increase only need to be seen at spin_unlock
231 * time, and not at spin_lock time.
232 *
233 * Increasing the sequence after the spin_unlock would be
234 * unsafe because the kvm page fault could then establish the
235 * pte after kvm_unmap_hva returned, without noticing the page
236 * is going to be freed.
237 */
238 spin_lock(&kvm->mmu_lock);
239 kvm->mmu_notifier_seq++;
240 need_tlb_flush = kvm_unmap_hva(kvm, address);
241 spin_unlock(&kvm->mmu_lock);
242
243 /* we've to flush the tlb before the pages can be freed */
244 if (need_tlb_flush)
245 kvm_flush_remote_tlbs(kvm);
246
247 }
248
249 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
250 struct mm_struct *mm,
251 unsigned long address,
252 pte_t pte)
253 {
254 struct kvm *kvm = mmu_notifier_to_kvm(mn);
255
256 spin_lock(&kvm->mmu_lock);
257 kvm->mmu_notifier_seq++;
258 kvm_set_spte_hva(kvm, address, pte);
259 spin_unlock(&kvm->mmu_lock);
260 }
261
262 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
263 struct mm_struct *mm,
264 unsigned long start,
265 unsigned long end)
266 {
267 struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 int need_tlb_flush = 0;
269
270 spin_lock(&kvm->mmu_lock);
271 /*
272 * The count increase must become visible at unlock time as no
273 * spte can be established without taking the mmu_lock and
274 * count is also read inside the mmu_lock critical section.
275 */
276 kvm->mmu_notifier_count++;
277 for (; start < end; start += PAGE_SIZE)
278 need_tlb_flush |= kvm_unmap_hva(kvm, start);
279 spin_unlock(&kvm->mmu_lock);
280
281 /* we've to flush the tlb before the pages can be freed */
282 if (need_tlb_flush)
283 kvm_flush_remote_tlbs(kvm);
284 }
285
286 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
287 struct mm_struct *mm,
288 unsigned long start,
289 unsigned long end)
290 {
291 struct kvm *kvm = mmu_notifier_to_kvm(mn);
292
293 spin_lock(&kvm->mmu_lock);
294 /*
295 * This sequence increase will notify the kvm page fault that
296 * the page that is going to be mapped in the spte could have
297 * been freed.
298 */
299 kvm->mmu_notifier_seq++;
300 /*
301 * The above sequence increase must be visible before the
302 * below count decrease but both values are read by the kvm
303 * page fault under mmu_lock spinlock so we don't need to add
304 * a smb_wmb() here in between the two.
305 */
306 kvm->mmu_notifier_count--;
307 spin_unlock(&kvm->mmu_lock);
308
309 BUG_ON(kvm->mmu_notifier_count < 0);
310 }
311
312 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
313 struct mm_struct *mm,
314 unsigned long address)
315 {
316 struct kvm *kvm = mmu_notifier_to_kvm(mn);
317 int young;
318
319 spin_lock(&kvm->mmu_lock);
320 young = kvm_age_hva(kvm, address);
321 spin_unlock(&kvm->mmu_lock);
322
323 if (young)
324 kvm_flush_remote_tlbs(kvm);
325
326 return young;
327 }
328
329 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
330 struct mm_struct *mm)
331 {
332 struct kvm *kvm = mmu_notifier_to_kvm(mn);
333 kvm_arch_flush_shadow(kvm);
334 }
335
336 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
337 .invalidate_page = kvm_mmu_notifier_invalidate_page,
338 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
339 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
340 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
341 .change_pte = kvm_mmu_notifier_change_pte,
342 .release = kvm_mmu_notifier_release,
343 };
344 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
345
346 static struct kvm *kvm_create_vm(void)
347 {
348 int r = 0;
349 struct kvm *kvm = kvm_arch_create_vm();
350 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
351 struct page *page;
352 #endif
353
354 if (IS_ERR(kvm))
355 goto out;
356
357 r = hardware_enable_all();
358 if (r)
359 goto out_err_nodisable;
360
361 #ifdef CONFIG_HAVE_KVM_IRQCHIP
362 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
363 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
364 #endif
365
366 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
367 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
368 if (!page) {
369 r = -ENOMEM;
370 goto out_err;
371 }
372 kvm->coalesced_mmio_ring =
373 (struct kvm_coalesced_mmio_ring *)page_address(page);
374 #endif
375
376 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
377 {
378 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
379 r = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
380 if (r) {
381 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
382 put_page(page);
383 #endif
384 goto out_err;
385 }
386 }
387 #endif
388
389 kvm->mm = current->mm;
390 atomic_inc(&kvm->mm->mm_count);
391 spin_lock_init(&kvm->mmu_lock);
392 spin_lock_init(&kvm->requests_lock);
393 kvm_io_bus_init(&kvm->pio_bus);
394 kvm_eventfd_init(kvm);
395 mutex_init(&kvm->lock);
396 mutex_init(&kvm->irq_lock);
397 kvm_io_bus_init(&kvm->mmio_bus);
398 init_rwsem(&kvm->slots_lock);
399 atomic_set(&kvm->users_count, 1);
400 spin_lock(&kvm_lock);
401 list_add(&kvm->vm_list, &vm_list);
402 spin_unlock(&kvm_lock);
403 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
404 kvm_coalesced_mmio_init(kvm);
405 #endif
406 out:
407 return kvm;
408
409 out_err:
410 hardware_disable_all();
411 out_err_nodisable:
412 kfree(kvm);
413 return ERR_PTR(r);
414 }
415
416 /*
417 * Free any memory in @free but not in @dont.
418 */
419 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
420 struct kvm_memory_slot *dont)
421 {
422 int i;
423
424 if (!dont || free->rmap != dont->rmap)
425 vfree(free->rmap);
426
427 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
428 vfree(free->dirty_bitmap);
429
430
431 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
432 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
433 vfree(free->lpage_info[i]);
434 free->lpage_info[i] = NULL;
435 }
436 }
437
438 free->npages = 0;
439 free->dirty_bitmap = NULL;
440 free->rmap = NULL;
441 }
442
443 void kvm_free_physmem(struct kvm *kvm)
444 {
445 int i;
446
447 for (i = 0; i < kvm->nmemslots; ++i)
448 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
449 }
450
451 static void kvm_destroy_vm(struct kvm *kvm)
452 {
453 struct mm_struct *mm = kvm->mm;
454
455 kvm_arch_sync_events(kvm);
456 spin_lock(&kvm_lock);
457 list_del(&kvm->vm_list);
458 spin_unlock(&kvm_lock);
459 kvm_free_irq_routing(kvm);
460 kvm_io_bus_destroy(&kvm->pio_bus);
461 kvm_io_bus_destroy(&kvm->mmio_bus);
462 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
463 if (kvm->coalesced_mmio_ring != NULL)
464 free_page((unsigned long)kvm->coalesced_mmio_ring);
465 #endif
466 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
467 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
468 #else
469 kvm_arch_flush_shadow(kvm);
470 #endif
471 kvm_arch_destroy_vm(kvm);
472 hardware_disable_all();
473 mmdrop(mm);
474 }
475
476 void kvm_get_kvm(struct kvm *kvm)
477 {
478 atomic_inc(&kvm->users_count);
479 }
480 EXPORT_SYMBOL_GPL(kvm_get_kvm);
481
482 void kvm_put_kvm(struct kvm *kvm)
483 {
484 if (atomic_dec_and_test(&kvm->users_count))
485 kvm_destroy_vm(kvm);
486 }
487 EXPORT_SYMBOL_GPL(kvm_put_kvm);
488
489
490 static int kvm_vm_release(struct inode *inode, struct file *filp)
491 {
492 struct kvm *kvm = filp->private_data;
493
494 kvm_irqfd_release(kvm);
495
496 kvm_put_kvm(kvm);
497 return 0;
498 }
499
500 /*
501 * Allocate some memory and give it an address in the guest physical address
502 * space.
503 *
504 * Discontiguous memory is allowed, mostly for framebuffers.
505 *
506 * Must be called holding mmap_sem for write.
507 */
508 int __kvm_set_memory_region(struct kvm *kvm,
509 struct kvm_userspace_memory_region *mem,
510 int user_alloc)
511 {
512 int r;
513 gfn_t base_gfn;
514 unsigned long npages;
515 unsigned long i;
516 struct kvm_memory_slot *memslot;
517 struct kvm_memory_slot old, new;
518
519 r = -EINVAL;
520 /* General sanity checks */
521 if (mem->memory_size & (PAGE_SIZE - 1))
522 goto out;
523 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
524 goto out;
525 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
526 goto out;
527 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
528 goto out;
529 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
530 goto out;
531
532 memslot = &kvm->memslots[mem->slot];
533 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
534 npages = mem->memory_size >> PAGE_SHIFT;
535
536 if (!npages)
537 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
538
539 new = old = *memslot;
540
541 new.base_gfn = base_gfn;
542 new.npages = npages;
543 new.flags = mem->flags;
544
545 /* Disallow changing a memory slot's size. */
546 r = -EINVAL;
547 if (npages && old.npages && npages != old.npages)
548 goto out_free;
549
550 /* Check for overlaps */
551 r = -EEXIST;
552 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
553 struct kvm_memory_slot *s = &kvm->memslots[i];
554
555 if (s == memslot || !s->npages)
556 continue;
557 if (!((base_gfn + npages <= s->base_gfn) ||
558 (base_gfn >= s->base_gfn + s->npages)))
559 goto out_free;
560 }
561
562 /* Free page dirty bitmap if unneeded */
563 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
564 new.dirty_bitmap = NULL;
565
566 r = -ENOMEM;
567
568 /* Allocate if a slot is being created */
569 #ifndef CONFIG_S390
570 if (npages && !new.rmap) {
571 new.rmap = vmalloc(npages * sizeof(struct page *));
572
573 if (!new.rmap)
574 goto out_free;
575
576 memset(new.rmap, 0, npages * sizeof(*new.rmap));
577
578 new.user_alloc = user_alloc;
579 /*
580 * hva_to_rmmap() serialzies with the mmu_lock and to be
581 * safe it has to ignore memslots with !user_alloc &&
582 * !userspace_addr.
583 */
584 if (user_alloc)
585 new.userspace_addr = mem->userspace_addr;
586 else
587 new.userspace_addr = 0;
588 }
589 if (!npages)
590 goto skip_lpage;
591
592 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
593 unsigned long ugfn;
594 unsigned long j;
595 int lpages;
596 int level = i + 2;
597
598 /* Avoid unused variable warning if no large pages */
599 (void)level;
600
601 if (new.lpage_info[i])
602 continue;
603
604 lpages = 1 + (base_gfn + npages - 1) /
605 KVM_PAGES_PER_HPAGE(level);
606 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
607
608 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
609
610 if (!new.lpage_info[i])
611 goto out_free;
612
613 memset(new.lpage_info[i], 0,
614 lpages * sizeof(*new.lpage_info[i]));
615
616 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
617 new.lpage_info[i][0].write_count = 1;
618 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
619 new.lpage_info[i][lpages - 1].write_count = 1;
620 ugfn = new.userspace_addr >> PAGE_SHIFT;
621 /*
622 * If the gfn and userspace address are not aligned wrt each
623 * other, or if explicitly asked to, disable large page
624 * support for this slot
625 */
626 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
627 !largepages_enabled)
628 for (j = 0; j < lpages; ++j)
629 new.lpage_info[i][j].write_count = 1;
630 }
631
632 skip_lpage:
633
634 /* Allocate page dirty bitmap if needed */
635 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
636 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
637
638 new.dirty_bitmap = vmalloc(dirty_bytes);
639 if (!new.dirty_bitmap)
640 goto out_free;
641 memset(new.dirty_bitmap, 0, dirty_bytes);
642 if (old.npages)
643 kvm_arch_flush_shadow(kvm);
644 }
645 #else /* not defined CONFIG_S390 */
646 new.user_alloc = user_alloc;
647 if (user_alloc)
648 new.userspace_addr = mem->userspace_addr;
649 #endif /* not defined CONFIG_S390 */
650
651 if (!npages)
652 kvm_arch_flush_shadow(kvm);
653
654 spin_lock(&kvm->mmu_lock);
655 if (mem->slot >= kvm->nmemslots)
656 kvm->nmemslots = mem->slot + 1;
657
658 *memslot = new;
659 spin_unlock(&kvm->mmu_lock);
660
661 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
662 if (r) {
663 spin_lock(&kvm->mmu_lock);
664 *memslot = old;
665 spin_unlock(&kvm->mmu_lock);
666 goto out_free;
667 }
668
669 kvm_free_physmem_slot(&old, npages ? &new : NULL);
670 /* Slot deletion case: we have to update the current slot */
671 spin_lock(&kvm->mmu_lock);
672 if (!npages)
673 *memslot = old;
674 spin_unlock(&kvm->mmu_lock);
675 #ifdef CONFIG_DMAR
676 /* map the pages in iommu page table */
677 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
678 if (r)
679 goto out;
680 #endif
681 return 0;
682
683 out_free:
684 kvm_free_physmem_slot(&new, &old);
685 out:
686 return r;
687
688 }
689 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
690
691 int kvm_set_memory_region(struct kvm *kvm,
692 struct kvm_userspace_memory_region *mem,
693 int user_alloc)
694 {
695 int r;
696
697 down_write(&kvm->slots_lock);
698 r = __kvm_set_memory_region(kvm, mem, user_alloc);
699 up_write(&kvm->slots_lock);
700 return r;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
703
704 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
705 struct
706 kvm_userspace_memory_region *mem,
707 int user_alloc)
708 {
709 if (mem->slot >= KVM_MEMORY_SLOTS)
710 return -EINVAL;
711 return kvm_set_memory_region(kvm, mem, user_alloc);
712 }
713
714 int kvm_get_dirty_log(struct kvm *kvm,
715 struct kvm_dirty_log *log, int *is_dirty)
716 {
717 struct kvm_memory_slot *memslot;
718 int r, i;
719 int n;
720 unsigned long any = 0;
721
722 r = -EINVAL;
723 if (log->slot >= KVM_MEMORY_SLOTS)
724 goto out;
725
726 memslot = &kvm->memslots[log->slot];
727 r = -ENOENT;
728 if (!memslot->dirty_bitmap)
729 goto out;
730
731 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
732
733 for (i = 0; !any && i < n/sizeof(long); ++i)
734 any = memslot->dirty_bitmap[i];
735
736 r = -EFAULT;
737 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
738 goto out;
739
740 if (any)
741 *is_dirty = 1;
742
743 r = 0;
744 out:
745 return r;
746 }
747
748 void kvm_disable_largepages(void)
749 {
750 largepages_enabled = false;
751 }
752 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
753
754 int is_error_page(struct page *page)
755 {
756 return page == bad_page;
757 }
758 EXPORT_SYMBOL_GPL(is_error_page);
759
760 int is_error_pfn(pfn_t pfn)
761 {
762 return pfn == bad_pfn;
763 }
764 EXPORT_SYMBOL_GPL(is_error_pfn);
765
766 static inline unsigned long bad_hva(void)
767 {
768 return PAGE_OFFSET;
769 }
770
771 int kvm_is_error_hva(unsigned long addr)
772 {
773 return addr == bad_hva();
774 }
775 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
776
777 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
778 {
779 int i;
780
781 for (i = 0; i < kvm->nmemslots; ++i) {
782 struct kvm_memory_slot *memslot = &kvm->memslots[i];
783
784 if (gfn >= memslot->base_gfn
785 && gfn < memslot->base_gfn + memslot->npages)
786 return memslot;
787 }
788 return NULL;
789 }
790 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
791
792 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
793 {
794 gfn = unalias_gfn(kvm, gfn);
795 return gfn_to_memslot_unaliased(kvm, gfn);
796 }
797
798 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
799 {
800 int i;
801
802 gfn = unalias_gfn(kvm, gfn);
803 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
804 struct kvm_memory_slot *memslot = &kvm->memslots[i];
805
806 if (gfn >= memslot->base_gfn
807 && gfn < memslot->base_gfn + memslot->npages)
808 return 1;
809 }
810 return 0;
811 }
812 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
813
814 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
815 {
816 struct kvm_memory_slot *slot;
817
818 gfn = unalias_gfn(kvm, gfn);
819 slot = gfn_to_memslot_unaliased(kvm, gfn);
820 if (!slot)
821 return bad_hva();
822 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
823 }
824 EXPORT_SYMBOL_GPL(gfn_to_hva);
825
826 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
827 {
828 struct page *page[1];
829 unsigned long addr;
830 int npages;
831 pfn_t pfn;
832
833 might_sleep();
834
835 addr = gfn_to_hva(kvm, gfn);
836 if (kvm_is_error_hva(addr)) {
837 get_page(bad_page);
838 return page_to_pfn(bad_page);
839 }
840
841 npages = get_user_pages_fast(addr, 1, 1, page);
842
843 if (unlikely(npages != 1)) {
844 struct vm_area_struct *vma;
845
846 down_read(&current->mm->mmap_sem);
847 vma = find_vma(current->mm, addr);
848
849 if (vma == NULL || addr < vma->vm_start ||
850 !(vma->vm_flags & VM_PFNMAP)) {
851 up_read(&current->mm->mmap_sem);
852 get_page(bad_page);
853 return page_to_pfn(bad_page);
854 }
855
856 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
857 up_read(&current->mm->mmap_sem);
858 BUG_ON(!kvm_is_mmio_pfn(pfn));
859 } else
860 pfn = page_to_pfn(page[0]);
861
862 return pfn;
863 }
864
865 EXPORT_SYMBOL_GPL(gfn_to_pfn);
866
867 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
868 {
869 pfn_t pfn;
870
871 pfn = gfn_to_pfn(kvm, gfn);
872 if (!kvm_is_mmio_pfn(pfn))
873 return pfn_to_page(pfn);
874
875 WARN_ON(kvm_is_mmio_pfn(pfn));
876
877 get_page(bad_page);
878 return bad_page;
879 }
880
881 EXPORT_SYMBOL_GPL(gfn_to_page);
882
883 void kvm_release_page_clean(struct page *page)
884 {
885 kvm_release_pfn_clean(page_to_pfn(page));
886 }
887 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
888
889 void kvm_release_pfn_clean(pfn_t pfn)
890 {
891 if (!kvm_is_mmio_pfn(pfn))
892 put_page(pfn_to_page(pfn));
893 }
894 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
895
896 void kvm_release_page_dirty(struct page *page)
897 {
898 kvm_release_pfn_dirty(page_to_pfn(page));
899 }
900 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
901
902 void kvm_release_pfn_dirty(pfn_t pfn)
903 {
904 kvm_set_pfn_dirty(pfn);
905 kvm_release_pfn_clean(pfn);
906 }
907 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
908
909 void kvm_set_page_dirty(struct page *page)
910 {
911 kvm_set_pfn_dirty(page_to_pfn(page));
912 }
913 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
914
915 void kvm_set_pfn_dirty(pfn_t pfn)
916 {
917 if (!kvm_is_mmio_pfn(pfn)) {
918 struct page *page = pfn_to_page(pfn);
919 if (!PageReserved(page))
920 SetPageDirty(page);
921 }
922 }
923 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
924
925 void kvm_set_pfn_accessed(pfn_t pfn)
926 {
927 if (!kvm_is_mmio_pfn(pfn))
928 mark_page_accessed(pfn_to_page(pfn));
929 }
930 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
931
932 void kvm_get_pfn(pfn_t pfn)
933 {
934 if (!kvm_is_mmio_pfn(pfn))
935 get_page(pfn_to_page(pfn));
936 }
937 EXPORT_SYMBOL_GPL(kvm_get_pfn);
938
939 static int next_segment(unsigned long len, int offset)
940 {
941 if (len > PAGE_SIZE - offset)
942 return PAGE_SIZE - offset;
943 else
944 return len;
945 }
946
947 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
948 int len)
949 {
950 int r;
951 unsigned long addr;
952
953 addr = gfn_to_hva(kvm, gfn);
954 if (kvm_is_error_hva(addr))
955 return -EFAULT;
956 r = copy_from_user(data, (void __user *)addr + offset, len);
957 if (r)
958 return -EFAULT;
959 return 0;
960 }
961 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
962
963 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
964 {
965 gfn_t gfn = gpa >> PAGE_SHIFT;
966 int seg;
967 int offset = offset_in_page(gpa);
968 int ret;
969
970 while ((seg = next_segment(len, offset)) != 0) {
971 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
972 if (ret < 0)
973 return ret;
974 offset = 0;
975 len -= seg;
976 data += seg;
977 ++gfn;
978 }
979 return 0;
980 }
981 EXPORT_SYMBOL_GPL(kvm_read_guest);
982
983 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
984 unsigned long len)
985 {
986 int r;
987 unsigned long addr;
988 gfn_t gfn = gpa >> PAGE_SHIFT;
989 int offset = offset_in_page(gpa);
990
991 addr = gfn_to_hva(kvm, gfn);
992 if (kvm_is_error_hva(addr))
993 return -EFAULT;
994 pagefault_disable();
995 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
996 pagefault_enable();
997 if (r)
998 return -EFAULT;
999 return 0;
1000 }
1001 EXPORT_SYMBOL(kvm_read_guest_atomic);
1002
1003 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1004 int offset, int len)
1005 {
1006 int r;
1007 unsigned long addr;
1008
1009 addr = gfn_to_hva(kvm, gfn);
1010 if (kvm_is_error_hva(addr))
1011 return -EFAULT;
1012 r = copy_to_user((void __user *)addr + offset, data, len);
1013 if (r)
1014 return -EFAULT;
1015 mark_page_dirty(kvm, gfn);
1016 return 0;
1017 }
1018 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1019
1020 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1021 unsigned long len)
1022 {
1023 gfn_t gfn = gpa >> PAGE_SHIFT;
1024 int seg;
1025 int offset = offset_in_page(gpa);
1026 int ret;
1027
1028 while ((seg = next_segment(len, offset)) != 0) {
1029 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1030 if (ret < 0)
1031 return ret;
1032 offset = 0;
1033 len -= seg;
1034 data += seg;
1035 ++gfn;
1036 }
1037 return 0;
1038 }
1039
1040 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1041 {
1042 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1043 }
1044 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1045
1046 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1047 {
1048 gfn_t gfn = gpa >> PAGE_SHIFT;
1049 int seg;
1050 int offset = offset_in_page(gpa);
1051 int ret;
1052
1053 while ((seg = next_segment(len, offset)) != 0) {
1054 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1055 if (ret < 0)
1056 return ret;
1057 offset = 0;
1058 len -= seg;
1059 ++gfn;
1060 }
1061 return 0;
1062 }
1063 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1064
1065 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1066 {
1067 struct kvm_memory_slot *memslot;
1068
1069 gfn = unalias_gfn(kvm, gfn);
1070 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1071 if (memslot && memslot->dirty_bitmap) {
1072 unsigned long rel_gfn = gfn - memslot->base_gfn;
1073
1074 /* avoid RMW */
1075 if (!generic_test_le_bit(rel_gfn, memslot->dirty_bitmap))
1076 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1077 }
1078 }
1079
1080 /*
1081 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1082 */
1083 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1084 {
1085 DEFINE_WAIT(wait);
1086
1087 for (;;) {
1088 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1089
1090 if (kvm_arch_vcpu_runnable(vcpu)) {
1091 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1092 break;
1093 }
1094 if (kvm_cpu_has_pending_timer(vcpu))
1095 break;
1096 if (signal_pending(current))
1097 break;
1098
1099 schedule();
1100 }
1101
1102 finish_wait(&vcpu->wq, &wait);
1103 }
1104
1105 void kvm_resched(struct kvm_vcpu *vcpu)
1106 {
1107 if (!need_resched())
1108 return;
1109 cond_resched();
1110 }
1111 EXPORT_SYMBOL_GPL(kvm_resched);
1112
1113 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1114 {
1115 ktime_t expires;
1116 DEFINE_WAIT(wait);
1117
1118 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1119
1120 /* Sleep for 100 us, and hope lock-holder got scheduled */
1121 expires = ktime_add_ns(ktime_get(), 100000UL);
1122 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1123
1124 finish_wait(&vcpu->wq, &wait);
1125 }
1126 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1127
1128 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1129 {
1130 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1131 struct page *page;
1132
1133 if (vmf->pgoff == 0)
1134 page = virt_to_page(vcpu->run);
1135 #ifdef CONFIG_X86
1136 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1137 page = virt_to_page(vcpu->arch.pio_data);
1138 #endif
1139 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1140 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1141 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1142 #endif
1143 else
1144 return VM_FAULT_SIGBUS;
1145 get_page(page);
1146 vmf->page = page;
1147 return 0;
1148 }
1149
1150 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1151 .fault = kvm_vcpu_fault,
1152 };
1153
1154 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1155 {
1156 vma->vm_ops = &kvm_vcpu_vm_ops;
1157 return 0;
1158 }
1159
1160 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1161 {
1162 struct kvm_vcpu *vcpu = filp->private_data;
1163
1164 kvm_put_kvm(vcpu->kvm);
1165 return 0;
1166 }
1167
1168 static struct file_operations kvm_vcpu_fops = {
1169 .release = kvm_vcpu_release,
1170 .unlocked_ioctl = kvm_vcpu_ioctl,
1171 .compat_ioctl = kvm_vcpu_ioctl,
1172 .mmap = kvm_vcpu_mmap,
1173 };
1174
1175 /*
1176 * Allocates an inode for the vcpu.
1177 */
1178 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1179 {
1180 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1181 }
1182
1183 /*
1184 * Creates some virtual cpus. Good luck creating more than one.
1185 */
1186 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1187 {
1188 int r;
1189 struct kvm_vcpu *vcpu, *v;
1190
1191 vcpu = kvm_arch_vcpu_create(kvm, id);
1192 if (IS_ERR(vcpu))
1193 return PTR_ERR(vcpu);
1194
1195 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1196
1197 r = kvm_arch_vcpu_setup(vcpu);
1198 if (r)
1199 return r;
1200
1201 mutex_lock(&kvm->lock);
1202 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1203 r = -EINVAL;
1204 goto vcpu_destroy;
1205 }
1206
1207 kvm_for_each_vcpu(r, v, kvm)
1208 if (v->vcpu_id == id) {
1209 r = -EEXIST;
1210 goto vcpu_destroy;
1211 }
1212
1213 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1214
1215 /* Now it's all set up, let userspace reach it */
1216 kvm_get_kvm(kvm);
1217 r = create_vcpu_fd(vcpu);
1218 if (r < 0) {
1219 kvm_put_kvm(kvm);
1220 goto vcpu_destroy;
1221 }
1222
1223 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1224 smp_wmb();
1225 atomic_inc(&kvm->online_vcpus);
1226
1227 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1228 if (kvm->bsp_vcpu_id == id)
1229 kvm->bsp_vcpu = vcpu;
1230 #endif
1231 mutex_unlock(&kvm->lock);
1232 return r;
1233
1234 vcpu_destroy:
1235 mutex_unlock(&kvm->lock);
1236 kvm_arch_vcpu_destroy(vcpu);
1237 return r;
1238 }
1239
1240 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1241 {
1242 if (sigset) {
1243 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1244 vcpu->sigset_active = 1;
1245 vcpu->sigset = *sigset;
1246 } else
1247 vcpu->sigset_active = 0;
1248 return 0;
1249 }
1250
1251 static long kvm_vcpu_ioctl(struct file *filp,
1252 unsigned int ioctl, unsigned long arg)
1253 {
1254 struct kvm_vcpu *vcpu = filp->private_data;
1255 void __user *argp = (void __user *)arg;
1256 int r;
1257 struct kvm_fpu *fpu = NULL;
1258 struct kvm_sregs *kvm_sregs = NULL;
1259
1260 if (vcpu->kvm->mm != current->mm)
1261 return -EIO;
1262 switch (ioctl) {
1263 case KVM_RUN:
1264 r = -EINVAL;
1265 if (arg)
1266 goto out;
1267 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1268 break;
1269 case KVM_GET_REGS: {
1270 struct kvm_regs *kvm_regs;
1271
1272 r = -ENOMEM;
1273 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1274 if (!kvm_regs)
1275 goto out;
1276 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1277 if (r)
1278 goto out_free1;
1279 r = -EFAULT;
1280 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1281 goto out_free1;
1282 r = 0;
1283 out_free1:
1284 kfree(kvm_regs);
1285 break;
1286 }
1287 case KVM_SET_REGS: {
1288 struct kvm_regs *kvm_regs;
1289
1290 r = -ENOMEM;
1291 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1292 if (!kvm_regs)
1293 goto out;
1294 r = -EFAULT;
1295 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1296 goto out_free2;
1297 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1298 if (r)
1299 goto out_free2;
1300 r = 0;
1301 out_free2:
1302 kfree(kvm_regs);
1303 break;
1304 }
1305 case KVM_GET_SREGS: {
1306 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1307 r = -ENOMEM;
1308 if (!kvm_sregs)
1309 goto out;
1310 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1311 if (r)
1312 goto out;
1313 r = -EFAULT;
1314 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1315 goto out;
1316 r = 0;
1317 break;
1318 }
1319 case KVM_SET_SREGS: {
1320 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1321 r = -ENOMEM;
1322 if (!kvm_sregs)
1323 goto out;
1324 r = -EFAULT;
1325 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1326 goto out;
1327 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1328 if (r)
1329 goto out;
1330 r = 0;
1331 break;
1332 }
1333 case KVM_GET_MP_STATE: {
1334 struct kvm_mp_state mp_state;
1335
1336 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1337 if (r)
1338 goto out;
1339 r = -EFAULT;
1340 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1341 goto out;
1342 r = 0;
1343 break;
1344 }
1345 case KVM_SET_MP_STATE: {
1346 struct kvm_mp_state mp_state;
1347
1348 r = -EFAULT;
1349 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1350 goto out;
1351 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1352 if (r)
1353 goto out;
1354 r = 0;
1355 break;
1356 }
1357 case KVM_TRANSLATE: {
1358 struct kvm_translation tr;
1359
1360 r = -EFAULT;
1361 if (copy_from_user(&tr, argp, sizeof tr))
1362 goto out;
1363 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1364 if (r)
1365 goto out;
1366 r = -EFAULT;
1367 if (copy_to_user(argp, &tr, sizeof tr))
1368 goto out;
1369 r = 0;
1370 break;
1371 }
1372 case KVM_SET_GUEST_DEBUG: {
1373 struct kvm_guest_debug dbg;
1374
1375 r = -EFAULT;
1376 if (copy_from_user(&dbg, argp, sizeof dbg))
1377 goto out;
1378 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1379 if (r)
1380 goto out;
1381 r = 0;
1382 break;
1383 }
1384 case KVM_SET_SIGNAL_MASK: {
1385 struct kvm_signal_mask __user *sigmask_arg = argp;
1386 struct kvm_signal_mask kvm_sigmask;
1387 sigset_t sigset, *p;
1388
1389 p = NULL;
1390 if (argp) {
1391 r = -EFAULT;
1392 if (copy_from_user(&kvm_sigmask, argp,
1393 sizeof kvm_sigmask))
1394 goto out;
1395 r = -EINVAL;
1396 if (kvm_sigmask.len != sizeof sigset)
1397 goto out;
1398 r = -EFAULT;
1399 if (copy_from_user(&sigset, sigmask_arg->sigset,
1400 sizeof sigset))
1401 goto out;
1402 p = &sigset;
1403 }
1404 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1405 break;
1406 }
1407 case KVM_GET_FPU: {
1408 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1409 r = -ENOMEM;
1410 if (!fpu)
1411 goto out;
1412 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1413 if (r)
1414 goto out;
1415 r = -EFAULT;
1416 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1417 goto out;
1418 r = 0;
1419 break;
1420 }
1421 case KVM_SET_FPU: {
1422 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1423 r = -ENOMEM;
1424 if (!fpu)
1425 goto out;
1426 r = -EFAULT;
1427 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1428 goto out;
1429 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1430 if (r)
1431 goto out;
1432 r = 0;
1433 break;
1434 }
1435 default:
1436 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1437 }
1438 out:
1439 kfree(fpu);
1440 kfree(kvm_sregs);
1441 return r;
1442 }
1443
1444 static long kvm_vm_ioctl(struct file *filp,
1445 unsigned int ioctl, unsigned long arg)
1446 {
1447 struct kvm *kvm = filp->private_data;
1448 void __user *argp = (void __user *)arg;
1449 int r;
1450
1451 if (kvm->mm != current->mm)
1452 return -EIO;
1453 switch (ioctl) {
1454 case KVM_CREATE_VCPU:
1455 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1456 if (r < 0)
1457 goto out;
1458 break;
1459 case KVM_SET_USER_MEMORY_REGION: {
1460 struct kvm_userspace_memory_region kvm_userspace_mem;
1461
1462 r = -EFAULT;
1463 if (copy_from_user(&kvm_userspace_mem, argp,
1464 sizeof kvm_userspace_mem))
1465 goto out;
1466
1467 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1468 if (r)
1469 goto out;
1470 break;
1471 }
1472 case KVM_GET_DIRTY_LOG: {
1473 struct kvm_dirty_log log;
1474
1475 r = -EFAULT;
1476 if (copy_from_user(&log, argp, sizeof log))
1477 goto out;
1478 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1479 if (r)
1480 goto out;
1481 break;
1482 }
1483 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1484 case KVM_REGISTER_COALESCED_MMIO: {
1485 struct kvm_coalesced_mmio_zone zone;
1486 r = -EFAULT;
1487 if (copy_from_user(&zone, argp, sizeof zone))
1488 goto out;
1489 r = -ENXIO;
1490 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1491 if (r)
1492 goto out;
1493 r = 0;
1494 break;
1495 }
1496 case KVM_UNREGISTER_COALESCED_MMIO: {
1497 struct kvm_coalesced_mmio_zone zone;
1498 r = -EFAULT;
1499 if (copy_from_user(&zone, argp, sizeof zone))
1500 goto out;
1501 r = -ENXIO;
1502 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1503 if (r)
1504 goto out;
1505 r = 0;
1506 break;
1507 }
1508 #endif
1509 case KVM_IRQFD: {
1510 struct kvm_irqfd data;
1511
1512 r = -EFAULT;
1513 if (copy_from_user(&data, argp, sizeof data))
1514 goto out;
1515 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1516 break;
1517 }
1518 case KVM_IOEVENTFD: {
1519 struct kvm_ioeventfd data;
1520
1521 r = -EFAULT;
1522 if (copy_from_user(&data, argp, sizeof data))
1523 goto out;
1524 r = kvm_ioeventfd(kvm, &data);
1525 break;
1526 }
1527 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1528 case KVM_SET_BOOT_CPU_ID:
1529 r = 0;
1530 mutex_lock(&kvm->lock);
1531 if (atomic_read(&kvm->online_vcpus) != 0)
1532 r = -EBUSY;
1533 else
1534 kvm->bsp_vcpu_id = arg;
1535 mutex_unlock(&kvm->lock);
1536 break;
1537 #endif
1538 default:
1539 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1540 if (r == -ENOTTY)
1541 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1542 }
1543 out:
1544 return r;
1545 }
1546
1547 #ifdef CONFIG_COMPAT
1548 struct compat_kvm_dirty_log {
1549 __u32 slot;
1550 __u32 padding1;
1551 union {
1552 compat_uptr_t dirty_bitmap; /* one bit per page */
1553 __u64 padding2;
1554 };
1555 };
1556
1557 static long kvm_vm_compat_ioctl(struct file *filp,
1558 unsigned int ioctl, unsigned long arg)
1559 {
1560 struct kvm *kvm = filp->private_data;
1561 int r;
1562
1563 if (kvm->mm != current->mm)
1564 return -EIO;
1565 switch (ioctl) {
1566 case KVM_GET_DIRTY_LOG: {
1567 struct compat_kvm_dirty_log compat_log;
1568 struct kvm_dirty_log log;
1569
1570 r = -EFAULT;
1571 if (copy_from_user(&compat_log, (void __user *)arg,
1572 sizeof(compat_log)))
1573 goto out;
1574 log.slot = compat_log.slot;
1575 log.padding1 = compat_log.padding1;
1576 log.padding2 = compat_log.padding2;
1577 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1578
1579 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1580 if (r)
1581 goto out;
1582 break;
1583 }
1584 default:
1585 r = kvm_vm_ioctl(filp, ioctl, arg);
1586 }
1587
1588 out:
1589 return r;
1590 }
1591 #endif
1592
1593 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1594 {
1595 struct page *page[1];
1596 unsigned long addr;
1597 int npages;
1598 gfn_t gfn = vmf->pgoff;
1599 struct kvm *kvm = vma->vm_file->private_data;
1600
1601 addr = gfn_to_hva(kvm, gfn);
1602 if (kvm_is_error_hva(addr))
1603 return VM_FAULT_SIGBUS;
1604
1605 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1606 NULL);
1607 if (unlikely(npages != 1))
1608 return VM_FAULT_SIGBUS;
1609
1610 vmf->page = page[0];
1611 return 0;
1612 }
1613
1614 static const struct vm_operations_struct kvm_vm_vm_ops = {
1615 .fault = kvm_vm_fault,
1616 };
1617
1618 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1619 {
1620 vma->vm_ops = &kvm_vm_vm_ops;
1621 return 0;
1622 }
1623
1624 static struct file_operations kvm_vm_fops = {
1625 .release = kvm_vm_release,
1626 .unlocked_ioctl = kvm_vm_ioctl,
1627 #ifdef CONFIG_COMPAT
1628 .compat_ioctl = kvm_vm_compat_ioctl,
1629 #endif
1630 .mmap = kvm_vm_mmap,
1631 };
1632
1633 static int kvm_dev_ioctl_create_vm(void)
1634 {
1635 int fd;
1636 struct kvm *kvm;
1637
1638 kvm = kvm_create_vm();
1639 if (IS_ERR(kvm))
1640 return PTR_ERR(kvm);
1641 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1642 if (fd < 0)
1643 kvm_put_kvm(kvm);
1644
1645 return fd;
1646 }
1647
1648 static long kvm_dev_ioctl_check_extension_generic(long arg)
1649 {
1650 switch (arg) {
1651 case KVM_CAP_USER_MEMORY:
1652 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1653 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1654 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1655 case KVM_CAP_SET_BOOT_CPU_ID:
1656 #endif
1657 case KVM_CAP_INTERNAL_ERROR_DATA:
1658 return 1;
1659 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1660 case KVM_CAP_IRQ_ROUTING:
1661 return KVM_MAX_IRQ_ROUTES;
1662 #endif
1663 default:
1664 break;
1665 }
1666 return kvm_dev_ioctl_check_extension(arg);
1667 }
1668
1669 static long kvm_dev_ioctl(struct file *filp,
1670 unsigned int ioctl, unsigned long arg)
1671 {
1672 long r = -EINVAL;
1673
1674 switch (ioctl) {
1675 case KVM_GET_API_VERSION:
1676 r = -EINVAL;
1677 if (arg)
1678 goto out;
1679 r = KVM_API_VERSION;
1680 break;
1681 case KVM_CREATE_VM:
1682 r = -EINVAL;
1683 if (arg)
1684 goto out;
1685 r = kvm_dev_ioctl_create_vm();
1686 break;
1687 case KVM_CHECK_EXTENSION:
1688 r = kvm_dev_ioctl_check_extension_generic(arg);
1689 break;
1690 case KVM_GET_VCPU_MMAP_SIZE:
1691 r = -EINVAL;
1692 if (arg)
1693 goto out;
1694 r = PAGE_SIZE; /* struct kvm_run */
1695 #ifdef CONFIG_X86
1696 r += PAGE_SIZE; /* pio data page */
1697 #endif
1698 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1699 r += PAGE_SIZE; /* coalesced mmio ring page */
1700 #endif
1701 break;
1702 case KVM_TRACE_ENABLE:
1703 case KVM_TRACE_PAUSE:
1704 case KVM_TRACE_DISABLE:
1705 r = -EOPNOTSUPP;
1706 break;
1707 default:
1708 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1709 }
1710 out:
1711 return r;
1712 }
1713
1714 static struct file_operations kvm_chardev_ops = {
1715 .unlocked_ioctl = kvm_dev_ioctl,
1716 .compat_ioctl = kvm_dev_ioctl,
1717 };
1718
1719 static struct miscdevice kvm_dev = {
1720 KVM_MINOR,
1721 "kvm",
1722 &kvm_chardev_ops,
1723 };
1724
1725 static void hardware_enable(void *junk)
1726 {
1727 int cpu = raw_smp_processor_id();
1728 int r;
1729
1730 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1731 return;
1732
1733 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1734
1735 r = kvm_arch_hardware_enable(NULL);
1736
1737 if (r) {
1738 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1739 atomic_inc(&hardware_enable_failed);
1740 printk(KERN_INFO "kvm: enabling virtualization on "
1741 "CPU%d failed\n", cpu);
1742 }
1743 }
1744
1745 static void hardware_disable(void *junk)
1746 {
1747 int cpu = raw_smp_processor_id();
1748
1749 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1750 return;
1751 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1752 kvm_arch_hardware_disable(NULL);
1753 }
1754
1755 static void hardware_disable_all_nolock(void)
1756 {
1757 BUG_ON(!kvm_usage_count);
1758
1759 kvm_usage_count--;
1760 if (!kvm_usage_count)
1761 on_each_cpu(hardware_disable, NULL, 1);
1762 }
1763
1764 static void hardware_disable_all(void)
1765 {
1766 spin_lock(&kvm_lock);
1767 hardware_disable_all_nolock();
1768 spin_unlock(&kvm_lock);
1769 }
1770
1771 static int hardware_enable_all(void)
1772 {
1773 int r = 0;
1774
1775 spin_lock(&kvm_lock);
1776
1777 kvm_usage_count++;
1778 if (kvm_usage_count == 1) {
1779 atomic_set(&hardware_enable_failed, 0);
1780 on_each_cpu(hardware_enable, NULL, 1);
1781
1782 if (atomic_read(&hardware_enable_failed)) {
1783 hardware_disable_all_nolock();
1784 r = -EBUSY;
1785 }
1786 }
1787
1788 spin_unlock(&kvm_lock);
1789
1790 return r;
1791 }
1792
1793 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1794 void *v)
1795 {
1796 int cpu = (long)v;
1797
1798 if (!kvm_usage_count)
1799 return NOTIFY_OK;
1800
1801 val &= ~CPU_TASKS_FROZEN;
1802 switch (val) {
1803 case CPU_DYING:
1804 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1805 cpu);
1806 hardware_disable(NULL);
1807 break;
1808 case CPU_UP_CANCELED:
1809 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1810 cpu);
1811 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1812 break;
1813 case CPU_ONLINE:
1814 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1815 cpu);
1816 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1817 break;
1818 }
1819 return NOTIFY_OK;
1820 }
1821
1822
1823 asmlinkage void kvm_handle_fault_on_reboot(void)
1824 {
1825 if (kvm_rebooting)
1826 /* spin while reset goes on */
1827 while (true)
1828 ;
1829 /* Fault while not rebooting. We want the trace. */
1830 BUG();
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1833
1834 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1835 void *v)
1836 {
1837 /*
1838 * Some (well, at least mine) BIOSes hang on reboot if
1839 * in vmx root mode.
1840 *
1841 * And Intel TXT required VMX off for all cpu when system shutdown.
1842 */
1843 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1844 kvm_rebooting = true;
1845 on_each_cpu(hardware_disable, NULL, 1);
1846 return NOTIFY_OK;
1847 }
1848
1849 static struct notifier_block kvm_reboot_notifier = {
1850 .notifier_call = kvm_reboot,
1851 .priority = 0,
1852 };
1853
1854 void kvm_io_bus_init(struct kvm_io_bus *bus)
1855 {
1856 memset(bus, 0, sizeof(*bus));
1857 }
1858
1859 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1860 {
1861 int i;
1862
1863 for (i = 0; i < bus->dev_count; i++) {
1864 struct kvm_io_device *pos = bus->devs[i];
1865
1866 kvm_iodevice_destructor(pos);
1867 }
1868 }
1869
1870 /* kvm_io_bus_write - called under kvm->slots_lock */
1871 int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
1872 int len, const void *val)
1873 {
1874 int i;
1875 for (i = 0; i < bus->dev_count; i++)
1876 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
1877 return 0;
1878 return -EOPNOTSUPP;
1879 }
1880
1881 /* kvm_io_bus_read - called under kvm->slots_lock */
1882 int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
1883 {
1884 int i;
1885 for (i = 0; i < bus->dev_count; i++)
1886 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
1887 return 0;
1888 return -EOPNOTSUPP;
1889 }
1890
1891 int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
1892 struct kvm_io_device *dev)
1893 {
1894 int ret;
1895
1896 down_write(&kvm->slots_lock);
1897 ret = __kvm_io_bus_register_dev(bus, dev);
1898 up_write(&kvm->slots_lock);
1899
1900 return ret;
1901 }
1902
1903 /* An unlocked version. Caller must have write lock on slots_lock. */
1904 int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
1905 struct kvm_io_device *dev)
1906 {
1907 if (bus->dev_count > NR_IOBUS_DEVS-1)
1908 return -ENOSPC;
1909
1910 bus->devs[bus->dev_count++] = dev;
1911
1912 return 0;
1913 }
1914
1915 void kvm_io_bus_unregister_dev(struct kvm *kvm,
1916 struct kvm_io_bus *bus,
1917 struct kvm_io_device *dev)
1918 {
1919 down_write(&kvm->slots_lock);
1920 __kvm_io_bus_unregister_dev(bus, dev);
1921 up_write(&kvm->slots_lock);
1922 }
1923
1924 /* An unlocked version. Caller must have write lock on slots_lock. */
1925 void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
1926 struct kvm_io_device *dev)
1927 {
1928 int i;
1929
1930 for (i = 0; i < bus->dev_count; i++)
1931 if (bus->devs[i] == dev) {
1932 bus->devs[i] = bus->devs[--bus->dev_count];
1933 break;
1934 }
1935 }
1936
1937 static struct notifier_block kvm_cpu_notifier = {
1938 .notifier_call = kvm_cpu_hotplug,
1939 .priority = 20, /* must be > scheduler priority */
1940 };
1941
1942 static int vm_stat_get(void *_offset, u64 *val)
1943 {
1944 unsigned offset = (long)_offset;
1945 struct kvm *kvm;
1946
1947 *val = 0;
1948 spin_lock(&kvm_lock);
1949 list_for_each_entry(kvm, &vm_list, vm_list)
1950 *val += *(u32 *)((void *)kvm + offset);
1951 spin_unlock(&kvm_lock);
1952 return 0;
1953 }
1954
1955 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1956
1957 static int vcpu_stat_get(void *_offset, u64 *val)
1958 {
1959 unsigned offset = (long)_offset;
1960 struct kvm *kvm;
1961 struct kvm_vcpu *vcpu;
1962 int i;
1963
1964 *val = 0;
1965 spin_lock(&kvm_lock);
1966 list_for_each_entry(kvm, &vm_list, vm_list)
1967 kvm_for_each_vcpu(i, vcpu, kvm)
1968 *val += *(u32 *)((void *)vcpu + offset);
1969
1970 spin_unlock(&kvm_lock);
1971 return 0;
1972 }
1973
1974 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1975
1976 static const struct file_operations *stat_fops[] = {
1977 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1978 [KVM_STAT_VM] = &vm_stat_fops,
1979 };
1980
1981 static void kvm_init_debug(void)
1982 {
1983 struct kvm_stats_debugfs_item *p;
1984
1985 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1986 for (p = debugfs_entries; p->name; ++p)
1987 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1988 (void *)(long)p->offset,
1989 stat_fops[p->kind]);
1990 }
1991
1992 static void kvm_exit_debug(void)
1993 {
1994 struct kvm_stats_debugfs_item *p;
1995
1996 for (p = debugfs_entries; p->name; ++p)
1997 debugfs_remove(p->dentry);
1998 debugfs_remove(kvm_debugfs_dir);
1999 }
2000
2001 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2002 {
2003 if (kvm_usage_count)
2004 hardware_disable(NULL);
2005 return 0;
2006 }
2007
2008 static int kvm_resume(struct sys_device *dev)
2009 {
2010 if (kvm_usage_count)
2011 hardware_enable(NULL);
2012 return 0;
2013 }
2014
2015 static struct sysdev_class kvm_sysdev_class = {
2016 .name = "kvm",
2017 .suspend = kvm_suspend,
2018 .resume = kvm_resume,
2019 };
2020
2021 static struct sys_device kvm_sysdev = {
2022 .id = 0,
2023 .cls = &kvm_sysdev_class,
2024 };
2025
2026 struct page *bad_page;
2027 pfn_t bad_pfn;
2028
2029 static inline
2030 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2031 {
2032 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2033 }
2034
2035 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2036 {
2037 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2038
2039 kvm_arch_vcpu_load(vcpu, cpu);
2040 }
2041
2042 static void kvm_sched_out(struct preempt_notifier *pn,
2043 struct task_struct *next)
2044 {
2045 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2046
2047 kvm_arch_vcpu_put(vcpu);
2048 }
2049
2050 int kvm_init(void *opaque, unsigned int vcpu_size,
2051 struct module *module)
2052 {
2053 int r;
2054 int cpu;
2055
2056 r = kvm_arch_init(opaque);
2057 if (r)
2058 goto out_fail;
2059
2060 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2061
2062 if (bad_page == NULL) {
2063 r = -ENOMEM;
2064 goto out;
2065 }
2066
2067 bad_pfn = page_to_pfn(bad_page);
2068
2069 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2070 r = -ENOMEM;
2071 goto out_free_0;
2072 }
2073
2074 r = kvm_arch_hardware_setup();
2075 if (r < 0)
2076 goto out_free_0a;
2077
2078 for_each_online_cpu(cpu) {
2079 smp_call_function_single(cpu,
2080 kvm_arch_check_processor_compat,
2081 &r, 1);
2082 if (r < 0)
2083 goto out_free_1;
2084 }
2085
2086 r = register_cpu_notifier(&kvm_cpu_notifier);
2087 if (r)
2088 goto out_free_2;
2089 register_reboot_notifier(&kvm_reboot_notifier);
2090
2091 r = sysdev_class_register(&kvm_sysdev_class);
2092 if (r)
2093 goto out_free_3;
2094
2095 r = sysdev_register(&kvm_sysdev);
2096 if (r)
2097 goto out_free_4;
2098
2099 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2100 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2101 __alignof__(struct kvm_vcpu),
2102 0, NULL);
2103 if (!kvm_vcpu_cache) {
2104 r = -ENOMEM;
2105 goto out_free_5;
2106 }
2107
2108 kvm_chardev_ops.owner = module;
2109 kvm_vm_fops.owner = module;
2110 kvm_vcpu_fops.owner = module;
2111
2112 r = misc_register(&kvm_dev);
2113 if (r) {
2114 printk(KERN_ERR "kvm: misc device register failed\n");
2115 goto out_free;
2116 }
2117
2118 kvm_preempt_ops.sched_in = kvm_sched_in;
2119 kvm_preempt_ops.sched_out = kvm_sched_out;
2120
2121 kvm_init_debug();
2122
2123 return 0;
2124
2125 out_free:
2126 kmem_cache_destroy(kvm_vcpu_cache);
2127 out_free_5:
2128 sysdev_unregister(&kvm_sysdev);
2129 out_free_4:
2130 sysdev_class_unregister(&kvm_sysdev_class);
2131 out_free_3:
2132 unregister_reboot_notifier(&kvm_reboot_notifier);
2133 unregister_cpu_notifier(&kvm_cpu_notifier);
2134 out_free_2:
2135 out_free_1:
2136 kvm_arch_hardware_unsetup();
2137 out_free_0a:
2138 free_cpumask_var(cpus_hardware_enabled);
2139 out_free_0:
2140 __free_page(bad_page);
2141 out:
2142 kvm_arch_exit();
2143 out_fail:
2144 return r;
2145 }
2146 EXPORT_SYMBOL_GPL(kvm_init);
2147
2148 void kvm_exit(void)
2149 {
2150 tracepoint_synchronize_unregister();
2151 kvm_exit_debug();
2152 misc_deregister(&kvm_dev);
2153 kmem_cache_destroy(kvm_vcpu_cache);
2154 sysdev_unregister(&kvm_sysdev);
2155 sysdev_class_unregister(&kvm_sysdev_class);
2156 unregister_reboot_notifier(&kvm_reboot_notifier);
2157 unregister_cpu_notifier(&kvm_cpu_notifier);
2158 on_each_cpu(hardware_disable, NULL, 1);
2159 kvm_arch_hardware_unsetup();
2160 kvm_arch_exit();
2161 free_cpumask_var(cpus_hardware_enabled);
2162 __free_page(bad_page);
2163 }
2164 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.132557 seconds and 5 git commands to generate.