KVM: Simplify coalesced mmio initialization
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47
48 #include <asm/processor.h>
49 #include <asm/io.h>
50 #include <asm/uaccess.h>
51 #include <asm/pgtable.h>
52 #include <asm-generic/bitops/le.h>
53
54 #include "coalesced_mmio.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/kvm.h>
58
59 MODULE_AUTHOR("Qumranet");
60 MODULE_LICENSE("GPL");
61
62 /*
63 * Ordering of locks:
64 *
65 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
66 */
67
68 DEFINE_SPINLOCK(kvm_lock);
69 LIST_HEAD(vm_list);
70
71 static cpumask_var_t cpus_hardware_enabled;
72 static int kvm_usage_count = 0;
73 static atomic_t hardware_enable_failed;
74
75 struct kmem_cache *kvm_vcpu_cache;
76 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
77
78 static __read_mostly struct preempt_ops kvm_preempt_ops;
79
80 struct dentry *kvm_debugfs_dir;
81
82 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
83 unsigned long arg);
84 static int hardware_enable_all(void);
85 static void hardware_disable_all(void);
86
87 static bool kvm_rebooting;
88
89 static bool largepages_enabled = true;
90
91 inline int kvm_is_mmio_pfn(pfn_t pfn)
92 {
93 if (pfn_valid(pfn)) {
94 struct page *page = compound_head(pfn_to_page(pfn));
95 return PageReserved(page);
96 }
97
98 return true;
99 }
100
101 /*
102 * Switches to specified vcpu, until a matching vcpu_put()
103 */
104 void vcpu_load(struct kvm_vcpu *vcpu)
105 {
106 int cpu;
107
108 mutex_lock(&vcpu->mutex);
109 cpu = get_cpu();
110 preempt_notifier_register(&vcpu->preempt_notifier);
111 kvm_arch_vcpu_load(vcpu, cpu);
112 put_cpu();
113 }
114
115 void vcpu_put(struct kvm_vcpu *vcpu)
116 {
117 preempt_disable();
118 kvm_arch_vcpu_put(vcpu);
119 preempt_notifier_unregister(&vcpu->preempt_notifier);
120 preempt_enable();
121 mutex_unlock(&vcpu->mutex);
122 }
123
124 static void ack_flush(void *_completed)
125 {
126 }
127
128 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
129 {
130 int i, cpu, me;
131 cpumask_var_t cpus;
132 bool called = true;
133 struct kvm_vcpu *vcpu;
134
135 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
136
137 spin_lock(&kvm->requests_lock);
138 me = smp_processor_id();
139 kvm_for_each_vcpu(i, vcpu, kvm) {
140 if (test_and_set_bit(req, &vcpu->requests))
141 continue;
142 cpu = vcpu->cpu;
143 if (cpus != NULL && cpu != -1 && cpu != me)
144 cpumask_set_cpu(cpu, cpus);
145 }
146 if (unlikely(cpus == NULL))
147 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
148 else if (!cpumask_empty(cpus))
149 smp_call_function_many(cpus, ack_flush, NULL, 1);
150 else
151 called = false;
152 spin_unlock(&kvm->requests_lock);
153 free_cpumask_var(cpus);
154 return called;
155 }
156
157 void kvm_flush_remote_tlbs(struct kvm *kvm)
158 {
159 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
160 ++kvm->stat.remote_tlb_flush;
161 }
162
163 void kvm_reload_remote_mmus(struct kvm *kvm)
164 {
165 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
166 }
167
168 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
169 {
170 struct page *page;
171 int r;
172
173 mutex_init(&vcpu->mutex);
174 vcpu->cpu = -1;
175 vcpu->kvm = kvm;
176 vcpu->vcpu_id = id;
177 init_waitqueue_head(&vcpu->wq);
178
179 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
180 if (!page) {
181 r = -ENOMEM;
182 goto fail;
183 }
184 vcpu->run = page_address(page);
185
186 r = kvm_arch_vcpu_init(vcpu);
187 if (r < 0)
188 goto fail_free_run;
189 return 0;
190
191 fail_free_run:
192 free_page((unsigned long)vcpu->run);
193 fail:
194 return r;
195 }
196 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
197
198 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
199 {
200 kvm_arch_vcpu_uninit(vcpu);
201 free_page((unsigned long)vcpu->run);
202 }
203 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
204
205 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
206 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
207 {
208 return container_of(mn, struct kvm, mmu_notifier);
209 }
210
211 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
212 struct mm_struct *mm,
213 unsigned long address)
214 {
215 struct kvm *kvm = mmu_notifier_to_kvm(mn);
216 int need_tlb_flush;
217
218 /*
219 * When ->invalidate_page runs, the linux pte has been zapped
220 * already but the page is still allocated until
221 * ->invalidate_page returns. So if we increase the sequence
222 * here the kvm page fault will notice if the spte can't be
223 * established because the page is going to be freed. If
224 * instead the kvm page fault establishes the spte before
225 * ->invalidate_page runs, kvm_unmap_hva will release it
226 * before returning.
227 *
228 * The sequence increase only need to be seen at spin_unlock
229 * time, and not at spin_lock time.
230 *
231 * Increasing the sequence after the spin_unlock would be
232 * unsafe because the kvm page fault could then establish the
233 * pte after kvm_unmap_hva returned, without noticing the page
234 * is going to be freed.
235 */
236 spin_lock(&kvm->mmu_lock);
237 kvm->mmu_notifier_seq++;
238 need_tlb_flush = kvm_unmap_hva(kvm, address);
239 spin_unlock(&kvm->mmu_lock);
240
241 /* we've to flush the tlb before the pages can be freed */
242 if (need_tlb_flush)
243 kvm_flush_remote_tlbs(kvm);
244
245 }
246
247 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
248 struct mm_struct *mm,
249 unsigned long address,
250 pte_t pte)
251 {
252 struct kvm *kvm = mmu_notifier_to_kvm(mn);
253
254 spin_lock(&kvm->mmu_lock);
255 kvm->mmu_notifier_seq++;
256 kvm_set_spte_hva(kvm, address, pte);
257 spin_unlock(&kvm->mmu_lock);
258 }
259
260 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
261 struct mm_struct *mm,
262 unsigned long start,
263 unsigned long end)
264 {
265 struct kvm *kvm = mmu_notifier_to_kvm(mn);
266 int need_tlb_flush = 0;
267
268 spin_lock(&kvm->mmu_lock);
269 /*
270 * The count increase must become visible at unlock time as no
271 * spte can be established without taking the mmu_lock and
272 * count is also read inside the mmu_lock critical section.
273 */
274 kvm->mmu_notifier_count++;
275 for (; start < end; start += PAGE_SIZE)
276 need_tlb_flush |= kvm_unmap_hva(kvm, start);
277 spin_unlock(&kvm->mmu_lock);
278
279 /* we've to flush the tlb before the pages can be freed */
280 if (need_tlb_flush)
281 kvm_flush_remote_tlbs(kvm);
282 }
283
284 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
285 struct mm_struct *mm,
286 unsigned long start,
287 unsigned long end)
288 {
289 struct kvm *kvm = mmu_notifier_to_kvm(mn);
290
291 spin_lock(&kvm->mmu_lock);
292 /*
293 * This sequence increase will notify the kvm page fault that
294 * the page that is going to be mapped in the spte could have
295 * been freed.
296 */
297 kvm->mmu_notifier_seq++;
298 /*
299 * The above sequence increase must be visible before the
300 * below count decrease but both values are read by the kvm
301 * page fault under mmu_lock spinlock so we don't need to add
302 * a smb_wmb() here in between the two.
303 */
304 kvm->mmu_notifier_count--;
305 spin_unlock(&kvm->mmu_lock);
306
307 BUG_ON(kvm->mmu_notifier_count < 0);
308 }
309
310 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
311 struct mm_struct *mm,
312 unsigned long address)
313 {
314 struct kvm *kvm = mmu_notifier_to_kvm(mn);
315 int young;
316
317 spin_lock(&kvm->mmu_lock);
318 young = kvm_age_hva(kvm, address);
319 spin_unlock(&kvm->mmu_lock);
320
321 if (young)
322 kvm_flush_remote_tlbs(kvm);
323
324 return young;
325 }
326
327 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
328 struct mm_struct *mm)
329 {
330 struct kvm *kvm = mmu_notifier_to_kvm(mn);
331 kvm_arch_flush_shadow(kvm);
332 }
333
334 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
335 .invalidate_page = kvm_mmu_notifier_invalidate_page,
336 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
337 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
338 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
339 .change_pte = kvm_mmu_notifier_change_pte,
340 .release = kvm_mmu_notifier_release,
341 };
342
343 static int kvm_init_mmu_notifier(struct kvm *kvm)
344 {
345 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
346 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
347 }
348
349 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
350
351 static int kvm_init_mmu_notifier(struct kvm *kvm)
352 {
353 return 0;
354 }
355
356 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
357
358 static struct kvm *kvm_create_vm(void)
359 {
360 int r = 0;
361 struct kvm *kvm = kvm_arch_create_vm();
362 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
363 struct page *page;
364 #endif
365
366 if (IS_ERR(kvm))
367 goto out;
368
369 r = hardware_enable_all();
370 if (r)
371 goto out_err_nodisable;
372
373 #ifdef CONFIG_HAVE_KVM_IRQCHIP
374 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
375 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
376 #endif
377
378 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
379 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
380 if (!page) {
381 r = -ENOMEM;
382 goto out_err;
383 }
384 kvm->coalesced_mmio_ring =
385 (struct kvm_coalesced_mmio_ring *)page_address(page);
386 #endif
387
388 r = kvm_init_mmu_notifier(kvm);
389 if (r) {
390 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
391 put_page(page);
392 #endif
393 goto out_err;
394 }
395
396 kvm->mm = current->mm;
397 atomic_inc(&kvm->mm->mm_count);
398 spin_lock_init(&kvm->mmu_lock);
399 spin_lock_init(&kvm->requests_lock);
400 kvm_io_bus_init(&kvm->pio_bus);
401 kvm_eventfd_init(kvm);
402 mutex_init(&kvm->lock);
403 mutex_init(&kvm->irq_lock);
404 kvm_io_bus_init(&kvm->mmio_bus);
405 init_rwsem(&kvm->slots_lock);
406 atomic_set(&kvm->users_count, 1);
407 spin_lock(&kvm_lock);
408 list_add(&kvm->vm_list, &vm_list);
409 spin_unlock(&kvm_lock);
410 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
411 kvm_coalesced_mmio_init(kvm);
412 #endif
413 out:
414 return kvm;
415
416 out_err:
417 hardware_disable_all();
418 out_err_nodisable:
419 kfree(kvm);
420 return ERR_PTR(r);
421 }
422
423 /*
424 * Free any memory in @free but not in @dont.
425 */
426 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
427 struct kvm_memory_slot *dont)
428 {
429 int i;
430
431 if (!dont || free->rmap != dont->rmap)
432 vfree(free->rmap);
433
434 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
435 vfree(free->dirty_bitmap);
436
437
438 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
439 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
440 vfree(free->lpage_info[i]);
441 free->lpage_info[i] = NULL;
442 }
443 }
444
445 free->npages = 0;
446 free->dirty_bitmap = NULL;
447 free->rmap = NULL;
448 }
449
450 void kvm_free_physmem(struct kvm *kvm)
451 {
452 int i;
453
454 for (i = 0; i < kvm->nmemslots; ++i)
455 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
456 }
457
458 static void kvm_destroy_vm(struct kvm *kvm)
459 {
460 struct mm_struct *mm = kvm->mm;
461
462 kvm_arch_sync_events(kvm);
463 spin_lock(&kvm_lock);
464 list_del(&kvm->vm_list);
465 spin_unlock(&kvm_lock);
466 kvm_free_irq_routing(kvm);
467 kvm_io_bus_destroy(&kvm->pio_bus);
468 kvm_io_bus_destroy(&kvm->mmio_bus);
469 kvm_coalesced_mmio_free(kvm);
470 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
471 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
472 #else
473 kvm_arch_flush_shadow(kvm);
474 #endif
475 kvm_arch_destroy_vm(kvm);
476 hardware_disable_all();
477 mmdrop(mm);
478 }
479
480 void kvm_get_kvm(struct kvm *kvm)
481 {
482 atomic_inc(&kvm->users_count);
483 }
484 EXPORT_SYMBOL_GPL(kvm_get_kvm);
485
486 void kvm_put_kvm(struct kvm *kvm)
487 {
488 if (atomic_dec_and_test(&kvm->users_count))
489 kvm_destroy_vm(kvm);
490 }
491 EXPORT_SYMBOL_GPL(kvm_put_kvm);
492
493
494 static int kvm_vm_release(struct inode *inode, struct file *filp)
495 {
496 struct kvm *kvm = filp->private_data;
497
498 kvm_irqfd_release(kvm);
499
500 kvm_put_kvm(kvm);
501 return 0;
502 }
503
504 /*
505 * Allocate some memory and give it an address in the guest physical address
506 * space.
507 *
508 * Discontiguous memory is allowed, mostly for framebuffers.
509 *
510 * Must be called holding mmap_sem for write.
511 */
512 int __kvm_set_memory_region(struct kvm *kvm,
513 struct kvm_userspace_memory_region *mem,
514 int user_alloc)
515 {
516 int r;
517 gfn_t base_gfn;
518 unsigned long npages;
519 unsigned long i;
520 struct kvm_memory_slot *memslot;
521 struct kvm_memory_slot old, new;
522
523 r = -EINVAL;
524 /* General sanity checks */
525 if (mem->memory_size & (PAGE_SIZE - 1))
526 goto out;
527 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
528 goto out;
529 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
530 goto out;
531 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
532 goto out;
533 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
534 goto out;
535
536 memslot = &kvm->memslots[mem->slot];
537 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
538 npages = mem->memory_size >> PAGE_SHIFT;
539
540 if (!npages)
541 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
542
543 new = old = *memslot;
544
545 new.base_gfn = base_gfn;
546 new.npages = npages;
547 new.flags = mem->flags;
548
549 /* Disallow changing a memory slot's size. */
550 r = -EINVAL;
551 if (npages && old.npages && npages != old.npages)
552 goto out_free;
553
554 /* Check for overlaps */
555 r = -EEXIST;
556 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
557 struct kvm_memory_slot *s = &kvm->memslots[i];
558
559 if (s == memslot || !s->npages)
560 continue;
561 if (!((base_gfn + npages <= s->base_gfn) ||
562 (base_gfn >= s->base_gfn + s->npages)))
563 goto out_free;
564 }
565
566 /* Free page dirty bitmap if unneeded */
567 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
568 new.dirty_bitmap = NULL;
569
570 r = -ENOMEM;
571
572 /* Allocate if a slot is being created */
573 #ifndef CONFIG_S390
574 if (npages && !new.rmap) {
575 new.rmap = vmalloc(npages * sizeof(struct page *));
576
577 if (!new.rmap)
578 goto out_free;
579
580 memset(new.rmap, 0, npages * sizeof(*new.rmap));
581
582 new.user_alloc = user_alloc;
583 /*
584 * hva_to_rmmap() serialzies with the mmu_lock and to be
585 * safe it has to ignore memslots with !user_alloc &&
586 * !userspace_addr.
587 */
588 if (user_alloc)
589 new.userspace_addr = mem->userspace_addr;
590 else
591 new.userspace_addr = 0;
592 }
593 if (!npages)
594 goto skip_lpage;
595
596 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
597 unsigned long ugfn;
598 unsigned long j;
599 int lpages;
600 int level = i + 2;
601
602 /* Avoid unused variable warning if no large pages */
603 (void)level;
604
605 if (new.lpage_info[i])
606 continue;
607
608 lpages = 1 + (base_gfn + npages - 1) /
609 KVM_PAGES_PER_HPAGE(level);
610 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
611
612 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
613
614 if (!new.lpage_info[i])
615 goto out_free;
616
617 memset(new.lpage_info[i], 0,
618 lpages * sizeof(*new.lpage_info[i]));
619
620 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
621 new.lpage_info[i][0].write_count = 1;
622 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
623 new.lpage_info[i][lpages - 1].write_count = 1;
624 ugfn = new.userspace_addr >> PAGE_SHIFT;
625 /*
626 * If the gfn and userspace address are not aligned wrt each
627 * other, or if explicitly asked to, disable large page
628 * support for this slot
629 */
630 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
631 !largepages_enabled)
632 for (j = 0; j < lpages; ++j)
633 new.lpage_info[i][j].write_count = 1;
634 }
635
636 skip_lpage:
637
638 /* Allocate page dirty bitmap if needed */
639 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
640 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
641
642 new.dirty_bitmap = vmalloc(dirty_bytes);
643 if (!new.dirty_bitmap)
644 goto out_free;
645 memset(new.dirty_bitmap, 0, dirty_bytes);
646 if (old.npages)
647 kvm_arch_flush_shadow(kvm);
648 }
649 #else /* not defined CONFIG_S390 */
650 new.user_alloc = user_alloc;
651 if (user_alloc)
652 new.userspace_addr = mem->userspace_addr;
653 #endif /* not defined CONFIG_S390 */
654
655 if (!npages)
656 kvm_arch_flush_shadow(kvm);
657
658 spin_lock(&kvm->mmu_lock);
659 if (mem->slot >= kvm->nmemslots)
660 kvm->nmemslots = mem->slot + 1;
661
662 *memslot = new;
663 spin_unlock(&kvm->mmu_lock);
664
665 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
666 if (r) {
667 spin_lock(&kvm->mmu_lock);
668 *memslot = old;
669 spin_unlock(&kvm->mmu_lock);
670 goto out_free;
671 }
672
673 kvm_free_physmem_slot(&old, npages ? &new : NULL);
674 /* Slot deletion case: we have to update the current slot */
675 spin_lock(&kvm->mmu_lock);
676 if (!npages)
677 *memslot = old;
678 spin_unlock(&kvm->mmu_lock);
679 #ifdef CONFIG_DMAR
680 /* map the pages in iommu page table */
681 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
682 if (r)
683 goto out;
684 #endif
685 return 0;
686
687 out_free:
688 kvm_free_physmem_slot(&new, &old);
689 out:
690 return r;
691
692 }
693 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
694
695 int kvm_set_memory_region(struct kvm *kvm,
696 struct kvm_userspace_memory_region *mem,
697 int user_alloc)
698 {
699 int r;
700
701 down_write(&kvm->slots_lock);
702 r = __kvm_set_memory_region(kvm, mem, user_alloc);
703 up_write(&kvm->slots_lock);
704 return r;
705 }
706 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
707
708 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
709 struct
710 kvm_userspace_memory_region *mem,
711 int user_alloc)
712 {
713 if (mem->slot >= KVM_MEMORY_SLOTS)
714 return -EINVAL;
715 return kvm_set_memory_region(kvm, mem, user_alloc);
716 }
717
718 int kvm_get_dirty_log(struct kvm *kvm,
719 struct kvm_dirty_log *log, int *is_dirty)
720 {
721 struct kvm_memory_slot *memslot;
722 int r, i;
723 int n;
724 unsigned long any = 0;
725
726 r = -EINVAL;
727 if (log->slot >= KVM_MEMORY_SLOTS)
728 goto out;
729
730 memslot = &kvm->memslots[log->slot];
731 r = -ENOENT;
732 if (!memslot->dirty_bitmap)
733 goto out;
734
735 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
736
737 for (i = 0; !any && i < n/sizeof(long); ++i)
738 any = memslot->dirty_bitmap[i];
739
740 r = -EFAULT;
741 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
742 goto out;
743
744 if (any)
745 *is_dirty = 1;
746
747 r = 0;
748 out:
749 return r;
750 }
751
752 void kvm_disable_largepages(void)
753 {
754 largepages_enabled = false;
755 }
756 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
757
758 int is_error_page(struct page *page)
759 {
760 return page == bad_page;
761 }
762 EXPORT_SYMBOL_GPL(is_error_page);
763
764 int is_error_pfn(pfn_t pfn)
765 {
766 return pfn == bad_pfn;
767 }
768 EXPORT_SYMBOL_GPL(is_error_pfn);
769
770 static inline unsigned long bad_hva(void)
771 {
772 return PAGE_OFFSET;
773 }
774
775 int kvm_is_error_hva(unsigned long addr)
776 {
777 return addr == bad_hva();
778 }
779 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
780
781 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
782 {
783 int i;
784
785 for (i = 0; i < kvm->nmemslots; ++i) {
786 struct kvm_memory_slot *memslot = &kvm->memslots[i];
787
788 if (gfn >= memslot->base_gfn
789 && gfn < memslot->base_gfn + memslot->npages)
790 return memslot;
791 }
792 return NULL;
793 }
794 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
795
796 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
797 {
798 gfn = unalias_gfn(kvm, gfn);
799 return gfn_to_memslot_unaliased(kvm, gfn);
800 }
801
802 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
803 {
804 int i;
805
806 gfn = unalias_gfn(kvm, gfn);
807 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
808 struct kvm_memory_slot *memslot = &kvm->memslots[i];
809
810 if (gfn >= memslot->base_gfn
811 && gfn < memslot->base_gfn + memslot->npages)
812 return 1;
813 }
814 return 0;
815 }
816 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
817
818 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
819 {
820 struct kvm_memory_slot *slot;
821
822 gfn = unalias_gfn(kvm, gfn);
823 slot = gfn_to_memslot_unaliased(kvm, gfn);
824 if (!slot)
825 return bad_hva();
826 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
827 }
828 EXPORT_SYMBOL_GPL(gfn_to_hva);
829
830 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
831 {
832 struct page *page[1];
833 unsigned long addr;
834 int npages;
835 pfn_t pfn;
836
837 might_sleep();
838
839 addr = gfn_to_hva(kvm, gfn);
840 if (kvm_is_error_hva(addr)) {
841 get_page(bad_page);
842 return page_to_pfn(bad_page);
843 }
844
845 npages = get_user_pages_fast(addr, 1, 1, page);
846
847 if (unlikely(npages != 1)) {
848 struct vm_area_struct *vma;
849
850 down_read(&current->mm->mmap_sem);
851 vma = find_vma(current->mm, addr);
852
853 if (vma == NULL || addr < vma->vm_start ||
854 !(vma->vm_flags & VM_PFNMAP)) {
855 up_read(&current->mm->mmap_sem);
856 get_page(bad_page);
857 return page_to_pfn(bad_page);
858 }
859
860 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
861 up_read(&current->mm->mmap_sem);
862 BUG_ON(!kvm_is_mmio_pfn(pfn));
863 } else
864 pfn = page_to_pfn(page[0]);
865
866 return pfn;
867 }
868
869 EXPORT_SYMBOL_GPL(gfn_to_pfn);
870
871 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
872 {
873 pfn_t pfn;
874
875 pfn = gfn_to_pfn(kvm, gfn);
876 if (!kvm_is_mmio_pfn(pfn))
877 return pfn_to_page(pfn);
878
879 WARN_ON(kvm_is_mmio_pfn(pfn));
880
881 get_page(bad_page);
882 return bad_page;
883 }
884
885 EXPORT_SYMBOL_GPL(gfn_to_page);
886
887 void kvm_release_page_clean(struct page *page)
888 {
889 kvm_release_pfn_clean(page_to_pfn(page));
890 }
891 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
892
893 void kvm_release_pfn_clean(pfn_t pfn)
894 {
895 if (!kvm_is_mmio_pfn(pfn))
896 put_page(pfn_to_page(pfn));
897 }
898 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
899
900 void kvm_release_page_dirty(struct page *page)
901 {
902 kvm_release_pfn_dirty(page_to_pfn(page));
903 }
904 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
905
906 void kvm_release_pfn_dirty(pfn_t pfn)
907 {
908 kvm_set_pfn_dirty(pfn);
909 kvm_release_pfn_clean(pfn);
910 }
911 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
912
913 void kvm_set_page_dirty(struct page *page)
914 {
915 kvm_set_pfn_dirty(page_to_pfn(page));
916 }
917 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
918
919 void kvm_set_pfn_dirty(pfn_t pfn)
920 {
921 if (!kvm_is_mmio_pfn(pfn)) {
922 struct page *page = pfn_to_page(pfn);
923 if (!PageReserved(page))
924 SetPageDirty(page);
925 }
926 }
927 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
928
929 void kvm_set_pfn_accessed(pfn_t pfn)
930 {
931 if (!kvm_is_mmio_pfn(pfn))
932 mark_page_accessed(pfn_to_page(pfn));
933 }
934 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
935
936 void kvm_get_pfn(pfn_t pfn)
937 {
938 if (!kvm_is_mmio_pfn(pfn))
939 get_page(pfn_to_page(pfn));
940 }
941 EXPORT_SYMBOL_GPL(kvm_get_pfn);
942
943 static int next_segment(unsigned long len, int offset)
944 {
945 if (len > PAGE_SIZE - offset)
946 return PAGE_SIZE - offset;
947 else
948 return len;
949 }
950
951 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
952 int len)
953 {
954 int r;
955 unsigned long addr;
956
957 addr = gfn_to_hva(kvm, gfn);
958 if (kvm_is_error_hva(addr))
959 return -EFAULT;
960 r = copy_from_user(data, (void __user *)addr + offset, len);
961 if (r)
962 return -EFAULT;
963 return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
966
967 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
968 {
969 gfn_t gfn = gpa >> PAGE_SHIFT;
970 int seg;
971 int offset = offset_in_page(gpa);
972 int ret;
973
974 while ((seg = next_segment(len, offset)) != 0) {
975 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
976 if (ret < 0)
977 return ret;
978 offset = 0;
979 len -= seg;
980 data += seg;
981 ++gfn;
982 }
983 return 0;
984 }
985 EXPORT_SYMBOL_GPL(kvm_read_guest);
986
987 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
988 unsigned long len)
989 {
990 int r;
991 unsigned long addr;
992 gfn_t gfn = gpa >> PAGE_SHIFT;
993 int offset = offset_in_page(gpa);
994
995 addr = gfn_to_hva(kvm, gfn);
996 if (kvm_is_error_hva(addr))
997 return -EFAULT;
998 pagefault_disable();
999 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1000 pagefault_enable();
1001 if (r)
1002 return -EFAULT;
1003 return 0;
1004 }
1005 EXPORT_SYMBOL(kvm_read_guest_atomic);
1006
1007 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1008 int offset, int len)
1009 {
1010 int r;
1011 unsigned long addr;
1012
1013 addr = gfn_to_hva(kvm, gfn);
1014 if (kvm_is_error_hva(addr))
1015 return -EFAULT;
1016 r = copy_to_user((void __user *)addr + offset, data, len);
1017 if (r)
1018 return -EFAULT;
1019 mark_page_dirty(kvm, gfn);
1020 return 0;
1021 }
1022 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1023
1024 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1025 unsigned long len)
1026 {
1027 gfn_t gfn = gpa >> PAGE_SHIFT;
1028 int seg;
1029 int offset = offset_in_page(gpa);
1030 int ret;
1031
1032 while ((seg = next_segment(len, offset)) != 0) {
1033 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1034 if (ret < 0)
1035 return ret;
1036 offset = 0;
1037 len -= seg;
1038 data += seg;
1039 ++gfn;
1040 }
1041 return 0;
1042 }
1043
1044 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1045 {
1046 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1047 }
1048 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1049
1050 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1051 {
1052 gfn_t gfn = gpa >> PAGE_SHIFT;
1053 int seg;
1054 int offset = offset_in_page(gpa);
1055 int ret;
1056
1057 while ((seg = next_segment(len, offset)) != 0) {
1058 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1059 if (ret < 0)
1060 return ret;
1061 offset = 0;
1062 len -= seg;
1063 ++gfn;
1064 }
1065 return 0;
1066 }
1067 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1068
1069 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1070 {
1071 struct kvm_memory_slot *memslot;
1072
1073 gfn = unalias_gfn(kvm, gfn);
1074 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1075 if (memslot && memslot->dirty_bitmap) {
1076 unsigned long rel_gfn = gfn - memslot->base_gfn;
1077
1078 /* avoid RMW */
1079 if (!generic_test_le_bit(rel_gfn, memslot->dirty_bitmap))
1080 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1081 }
1082 }
1083
1084 /*
1085 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1086 */
1087 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1088 {
1089 DEFINE_WAIT(wait);
1090
1091 for (;;) {
1092 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1093
1094 if (kvm_arch_vcpu_runnable(vcpu)) {
1095 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1096 break;
1097 }
1098 if (kvm_cpu_has_pending_timer(vcpu))
1099 break;
1100 if (signal_pending(current))
1101 break;
1102
1103 schedule();
1104 }
1105
1106 finish_wait(&vcpu->wq, &wait);
1107 }
1108
1109 void kvm_resched(struct kvm_vcpu *vcpu)
1110 {
1111 if (!need_resched())
1112 return;
1113 cond_resched();
1114 }
1115 EXPORT_SYMBOL_GPL(kvm_resched);
1116
1117 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1118 {
1119 ktime_t expires;
1120 DEFINE_WAIT(wait);
1121
1122 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1123
1124 /* Sleep for 100 us, and hope lock-holder got scheduled */
1125 expires = ktime_add_ns(ktime_get(), 100000UL);
1126 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1127
1128 finish_wait(&vcpu->wq, &wait);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1131
1132 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1133 {
1134 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1135 struct page *page;
1136
1137 if (vmf->pgoff == 0)
1138 page = virt_to_page(vcpu->run);
1139 #ifdef CONFIG_X86
1140 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1141 page = virt_to_page(vcpu->arch.pio_data);
1142 #endif
1143 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1144 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1145 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1146 #endif
1147 else
1148 return VM_FAULT_SIGBUS;
1149 get_page(page);
1150 vmf->page = page;
1151 return 0;
1152 }
1153
1154 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1155 .fault = kvm_vcpu_fault,
1156 };
1157
1158 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1159 {
1160 vma->vm_ops = &kvm_vcpu_vm_ops;
1161 return 0;
1162 }
1163
1164 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1165 {
1166 struct kvm_vcpu *vcpu = filp->private_data;
1167
1168 kvm_put_kvm(vcpu->kvm);
1169 return 0;
1170 }
1171
1172 static struct file_operations kvm_vcpu_fops = {
1173 .release = kvm_vcpu_release,
1174 .unlocked_ioctl = kvm_vcpu_ioctl,
1175 .compat_ioctl = kvm_vcpu_ioctl,
1176 .mmap = kvm_vcpu_mmap,
1177 };
1178
1179 /*
1180 * Allocates an inode for the vcpu.
1181 */
1182 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1183 {
1184 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1185 }
1186
1187 /*
1188 * Creates some virtual cpus. Good luck creating more than one.
1189 */
1190 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1191 {
1192 int r;
1193 struct kvm_vcpu *vcpu, *v;
1194
1195 vcpu = kvm_arch_vcpu_create(kvm, id);
1196 if (IS_ERR(vcpu))
1197 return PTR_ERR(vcpu);
1198
1199 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1200
1201 r = kvm_arch_vcpu_setup(vcpu);
1202 if (r)
1203 return r;
1204
1205 mutex_lock(&kvm->lock);
1206 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1207 r = -EINVAL;
1208 goto vcpu_destroy;
1209 }
1210
1211 kvm_for_each_vcpu(r, v, kvm)
1212 if (v->vcpu_id == id) {
1213 r = -EEXIST;
1214 goto vcpu_destroy;
1215 }
1216
1217 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1218
1219 /* Now it's all set up, let userspace reach it */
1220 kvm_get_kvm(kvm);
1221 r = create_vcpu_fd(vcpu);
1222 if (r < 0) {
1223 kvm_put_kvm(kvm);
1224 goto vcpu_destroy;
1225 }
1226
1227 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1228 smp_wmb();
1229 atomic_inc(&kvm->online_vcpus);
1230
1231 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1232 if (kvm->bsp_vcpu_id == id)
1233 kvm->bsp_vcpu = vcpu;
1234 #endif
1235 mutex_unlock(&kvm->lock);
1236 return r;
1237
1238 vcpu_destroy:
1239 mutex_unlock(&kvm->lock);
1240 kvm_arch_vcpu_destroy(vcpu);
1241 return r;
1242 }
1243
1244 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1245 {
1246 if (sigset) {
1247 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1248 vcpu->sigset_active = 1;
1249 vcpu->sigset = *sigset;
1250 } else
1251 vcpu->sigset_active = 0;
1252 return 0;
1253 }
1254
1255 static long kvm_vcpu_ioctl(struct file *filp,
1256 unsigned int ioctl, unsigned long arg)
1257 {
1258 struct kvm_vcpu *vcpu = filp->private_data;
1259 void __user *argp = (void __user *)arg;
1260 int r;
1261 struct kvm_fpu *fpu = NULL;
1262 struct kvm_sregs *kvm_sregs = NULL;
1263
1264 if (vcpu->kvm->mm != current->mm)
1265 return -EIO;
1266 switch (ioctl) {
1267 case KVM_RUN:
1268 r = -EINVAL;
1269 if (arg)
1270 goto out;
1271 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1272 break;
1273 case KVM_GET_REGS: {
1274 struct kvm_regs *kvm_regs;
1275
1276 r = -ENOMEM;
1277 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1278 if (!kvm_regs)
1279 goto out;
1280 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1281 if (r)
1282 goto out_free1;
1283 r = -EFAULT;
1284 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1285 goto out_free1;
1286 r = 0;
1287 out_free1:
1288 kfree(kvm_regs);
1289 break;
1290 }
1291 case KVM_SET_REGS: {
1292 struct kvm_regs *kvm_regs;
1293
1294 r = -ENOMEM;
1295 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1296 if (!kvm_regs)
1297 goto out;
1298 r = -EFAULT;
1299 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1300 goto out_free2;
1301 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1302 if (r)
1303 goto out_free2;
1304 r = 0;
1305 out_free2:
1306 kfree(kvm_regs);
1307 break;
1308 }
1309 case KVM_GET_SREGS: {
1310 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1311 r = -ENOMEM;
1312 if (!kvm_sregs)
1313 goto out;
1314 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1315 if (r)
1316 goto out;
1317 r = -EFAULT;
1318 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1319 goto out;
1320 r = 0;
1321 break;
1322 }
1323 case KVM_SET_SREGS: {
1324 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1325 r = -ENOMEM;
1326 if (!kvm_sregs)
1327 goto out;
1328 r = -EFAULT;
1329 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1330 goto out;
1331 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1332 if (r)
1333 goto out;
1334 r = 0;
1335 break;
1336 }
1337 case KVM_GET_MP_STATE: {
1338 struct kvm_mp_state mp_state;
1339
1340 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1341 if (r)
1342 goto out;
1343 r = -EFAULT;
1344 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1345 goto out;
1346 r = 0;
1347 break;
1348 }
1349 case KVM_SET_MP_STATE: {
1350 struct kvm_mp_state mp_state;
1351
1352 r = -EFAULT;
1353 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1354 goto out;
1355 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1356 if (r)
1357 goto out;
1358 r = 0;
1359 break;
1360 }
1361 case KVM_TRANSLATE: {
1362 struct kvm_translation tr;
1363
1364 r = -EFAULT;
1365 if (copy_from_user(&tr, argp, sizeof tr))
1366 goto out;
1367 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1368 if (r)
1369 goto out;
1370 r = -EFAULT;
1371 if (copy_to_user(argp, &tr, sizeof tr))
1372 goto out;
1373 r = 0;
1374 break;
1375 }
1376 case KVM_SET_GUEST_DEBUG: {
1377 struct kvm_guest_debug dbg;
1378
1379 r = -EFAULT;
1380 if (copy_from_user(&dbg, argp, sizeof dbg))
1381 goto out;
1382 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1383 if (r)
1384 goto out;
1385 r = 0;
1386 break;
1387 }
1388 case KVM_SET_SIGNAL_MASK: {
1389 struct kvm_signal_mask __user *sigmask_arg = argp;
1390 struct kvm_signal_mask kvm_sigmask;
1391 sigset_t sigset, *p;
1392
1393 p = NULL;
1394 if (argp) {
1395 r = -EFAULT;
1396 if (copy_from_user(&kvm_sigmask, argp,
1397 sizeof kvm_sigmask))
1398 goto out;
1399 r = -EINVAL;
1400 if (kvm_sigmask.len != sizeof sigset)
1401 goto out;
1402 r = -EFAULT;
1403 if (copy_from_user(&sigset, sigmask_arg->sigset,
1404 sizeof sigset))
1405 goto out;
1406 p = &sigset;
1407 }
1408 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1409 break;
1410 }
1411 case KVM_GET_FPU: {
1412 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1413 r = -ENOMEM;
1414 if (!fpu)
1415 goto out;
1416 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1417 if (r)
1418 goto out;
1419 r = -EFAULT;
1420 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1421 goto out;
1422 r = 0;
1423 break;
1424 }
1425 case KVM_SET_FPU: {
1426 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1427 r = -ENOMEM;
1428 if (!fpu)
1429 goto out;
1430 r = -EFAULT;
1431 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1432 goto out;
1433 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1434 if (r)
1435 goto out;
1436 r = 0;
1437 break;
1438 }
1439 default:
1440 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1441 }
1442 out:
1443 kfree(fpu);
1444 kfree(kvm_sregs);
1445 return r;
1446 }
1447
1448 static long kvm_vm_ioctl(struct file *filp,
1449 unsigned int ioctl, unsigned long arg)
1450 {
1451 struct kvm *kvm = filp->private_data;
1452 void __user *argp = (void __user *)arg;
1453 int r;
1454
1455 if (kvm->mm != current->mm)
1456 return -EIO;
1457 switch (ioctl) {
1458 case KVM_CREATE_VCPU:
1459 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1460 if (r < 0)
1461 goto out;
1462 break;
1463 case KVM_SET_USER_MEMORY_REGION: {
1464 struct kvm_userspace_memory_region kvm_userspace_mem;
1465
1466 r = -EFAULT;
1467 if (copy_from_user(&kvm_userspace_mem, argp,
1468 sizeof kvm_userspace_mem))
1469 goto out;
1470
1471 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1472 if (r)
1473 goto out;
1474 break;
1475 }
1476 case KVM_GET_DIRTY_LOG: {
1477 struct kvm_dirty_log log;
1478
1479 r = -EFAULT;
1480 if (copy_from_user(&log, argp, sizeof log))
1481 goto out;
1482 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1483 if (r)
1484 goto out;
1485 break;
1486 }
1487 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1488 case KVM_REGISTER_COALESCED_MMIO: {
1489 struct kvm_coalesced_mmio_zone zone;
1490 r = -EFAULT;
1491 if (copy_from_user(&zone, argp, sizeof zone))
1492 goto out;
1493 r = -ENXIO;
1494 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1495 if (r)
1496 goto out;
1497 r = 0;
1498 break;
1499 }
1500 case KVM_UNREGISTER_COALESCED_MMIO: {
1501 struct kvm_coalesced_mmio_zone zone;
1502 r = -EFAULT;
1503 if (copy_from_user(&zone, argp, sizeof zone))
1504 goto out;
1505 r = -ENXIO;
1506 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1507 if (r)
1508 goto out;
1509 r = 0;
1510 break;
1511 }
1512 #endif
1513 case KVM_IRQFD: {
1514 struct kvm_irqfd data;
1515
1516 r = -EFAULT;
1517 if (copy_from_user(&data, argp, sizeof data))
1518 goto out;
1519 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1520 break;
1521 }
1522 case KVM_IOEVENTFD: {
1523 struct kvm_ioeventfd data;
1524
1525 r = -EFAULT;
1526 if (copy_from_user(&data, argp, sizeof data))
1527 goto out;
1528 r = kvm_ioeventfd(kvm, &data);
1529 break;
1530 }
1531 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1532 case KVM_SET_BOOT_CPU_ID:
1533 r = 0;
1534 mutex_lock(&kvm->lock);
1535 if (atomic_read(&kvm->online_vcpus) != 0)
1536 r = -EBUSY;
1537 else
1538 kvm->bsp_vcpu_id = arg;
1539 mutex_unlock(&kvm->lock);
1540 break;
1541 #endif
1542 default:
1543 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1544 if (r == -ENOTTY)
1545 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1546 }
1547 out:
1548 return r;
1549 }
1550
1551 #ifdef CONFIG_COMPAT
1552 struct compat_kvm_dirty_log {
1553 __u32 slot;
1554 __u32 padding1;
1555 union {
1556 compat_uptr_t dirty_bitmap; /* one bit per page */
1557 __u64 padding2;
1558 };
1559 };
1560
1561 static long kvm_vm_compat_ioctl(struct file *filp,
1562 unsigned int ioctl, unsigned long arg)
1563 {
1564 struct kvm *kvm = filp->private_data;
1565 int r;
1566
1567 if (kvm->mm != current->mm)
1568 return -EIO;
1569 switch (ioctl) {
1570 case KVM_GET_DIRTY_LOG: {
1571 struct compat_kvm_dirty_log compat_log;
1572 struct kvm_dirty_log log;
1573
1574 r = -EFAULT;
1575 if (copy_from_user(&compat_log, (void __user *)arg,
1576 sizeof(compat_log)))
1577 goto out;
1578 log.slot = compat_log.slot;
1579 log.padding1 = compat_log.padding1;
1580 log.padding2 = compat_log.padding2;
1581 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1582
1583 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1584 if (r)
1585 goto out;
1586 break;
1587 }
1588 default:
1589 r = kvm_vm_ioctl(filp, ioctl, arg);
1590 }
1591
1592 out:
1593 return r;
1594 }
1595 #endif
1596
1597 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1598 {
1599 struct page *page[1];
1600 unsigned long addr;
1601 int npages;
1602 gfn_t gfn = vmf->pgoff;
1603 struct kvm *kvm = vma->vm_file->private_data;
1604
1605 addr = gfn_to_hva(kvm, gfn);
1606 if (kvm_is_error_hva(addr))
1607 return VM_FAULT_SIGBUS;
1608
1609 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1610 NULL);
1611 if (unlikely(npages != 1))
1612 return VM_FAULT_SIGBUS;
1613
1614 vmf->page = page[0];
1615 return 0;
1616 }
1617
1618 static const struct vm_operations_struct kvm_vm_vm_ops = {
1619 .fault = kvm_vm_fault,
1620 };
1621
1622 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1623 {
1624 vma->vm_ops = &kvm_vm_vm_ops;
1625 return 0;
1626 }
1627
1628 static struct file_operations kvm_vm_fops = {
1629 .release = kvm_vm_release,
1630 .unlocked_ioctl = kvm_vm_ioctl,
1631 #ifdef CONFIG_COMPAT
1632 .compat_ioctl = kvm_vm_compat_ioctl,
1633 #endif
1634 .mmap = kvm_vm_mmap,
1635 };
1636
1637 static int kvm_dev_ioctl_create_vm(void)
1638 {
1639 int fd;
1640 struct kvm *kvm;
1641
1642 kvm = kvm_create_vm();
1643 if (IS_ERR(kvm))
1644 return PTR_ERR(kvm);
1645 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1646 if (fd < 0)
1647 kvm_put_kvm(kvm);
1648
1649 return fd;
1650 }
1651
1652 static long kvm_dev_ioctl_check_extension_generic(long arg)
1653 {
1654 switch (arg) {
1655 case KVM_CAP_USER_MEMORY:
1656 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1657 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1658 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1659 case KVM_CAP_SET_BOOT_CPU_ID:
1660 #endif
1661 case KVM_CAP_INTERNAL_ERROR_DATA:
1662 return 1;
1663 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1664 case KVM_CAP_IRQ_ROUTING:
1665 return KVM_MAX_IRQ_ROUTES;
1666 #endif
1667 default:
1668 break;
1669 }
1670 return kvm_dev_ioctl_check_extension(arg);
1671 }
1672
1673 static long kvm_dev_ioctl(struct file *filp,
1674 unsigned int ioctl, unsigned long arg)
1675 {
1676 long r = -EINVAL;
1677
1678 switch (ioctl) {
1679 case KVM_GET_API_VERSION:
1680 r = -EINVAL;
1681 if (arg)
1682 goto out;
1683 r = KVM_API_VERSION;
1684 break;
1685 case KVM_CREATE_VM:
1686 r = -EINVAL;
1687 if (arg)
1688 goto out;
1689 r = kvm_dev_ioctl_create_vm();
1690 break;
1691 case KVM_CHECK_EXTENSION:
1692 r = kvm_dev_ioctl_check_extension_generic(arg);
1693 break;
1694 case KVM_GET_VCPU_MMAP_SIZE:
1695 r = -EINVAL;
1696 if (arg)
1697 goto out;
1698 r = PAGE_SIZE; /* struct kvm_run */
1699 #ifdef CONFIG_X86
1700 r += PAGE_SIZE; /* pio data page */
1701 #endif
1702 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1703 r += PAGE_SIZE; /* coalesced mmio ring page */
1704 #endif
1705 break;
1706 case KVM_TRACE_ENABLE:
1707 case KVM_TRACE_PAUSE:
1708 case KVM_TRACE_DISABLE:
1709 r = -EOPNOTSUPP;
1710 break;
1711 default:
1712 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1713 }
1714 out:
1715 return r;
1716 }
1717
1718 static struct file_operations kvm_chardev_ops = {
1719 .unlocked_ioctl = kvm_dev_ioctl,
1720 .compat_ioctl = kvm_dev_ioctl,
1721 };
1722
1723 static struct miscdevice kvm_dev = {
1724 KVM_MINOR,
1725 "kvm",
1726 &kvm_chardev_ops,
1727 };
1728
1729 static void hardware_enable(void *junk)
1730 {
1731 int cpu = raw_smp_processor_id();
1732 int r;
1733
1734 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1735 return;
1736
1737 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1738
1739 r = kvm_arch_hardware_enable(NULL);
1740
1741 if (r) {
1742 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1743 atomic_inc(&hardware_enable_failed);
1744 printk(KERN_INFO "kvm: enabling virtualization on "
1745 "CPU%d failed\n", cpu);
1746 }
1747 }
1748
1749 static void hardware_disable(void *junk)
1750 {
1751 int cpu = raw_smp_processor_id();
1752
1753 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1754 return;
1755 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1756 kvm_arch_hardware_disable(NULL);
1757 }
1758
1759 static void hardware_disable_all_nolock(void)
1760 {
1761 BUG_ON(!kvm_usage_count);
1762
1763 kvm_usage_count--;
1764 if (!kvm_usage_count)
1765 on_each_cpu(hardware_disable, NULL, 1);
1766 }
1767
1768 static void hardware_disable_all(void)
1769 {
1770 spin_lock(&kvm_lock);
1771 hardware_disable_all_nolock();
1772 spin_unlock(&kvm_lock);
1773 }
1774
1775 static int hardware_enable_all(void)
1776 {
1777 int r = 0;
1778
1779 spin_lock(&kvm_lock);
1780
1781 kvm_usage_count++;
1782 if (kvm_usage_count == 1) {
1783 atomic_set(&hardware_enable_failed, 0);
1784 on_each_cpu(hardware_enable, NULL, 1);
1785
1786 if (atomic_read(&hardware_enable_failed)) {
1787 hardware_disable_all_nolock();
1788 r = -EBUSY;
1789 }
1790 }
1791
1792 spin_unlock(&kvm_lock);
1793
1794 return r;
1795 }
1796
1797 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1798 void *v)
1799 {
1800 int cpu = (long)v;
1801
1802 if (!kvm_usage_count)
1803 return NOTIFY_OK;
1804
1805 val &= ~CPU_TASKS_FROZEN;
1806 switch (val) {
1807 case CPU_DYING:
1808 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1809 cpu);
1810 hardware_disable(NULL);
1811 break;
1812 case CPU_UP_CANCELED:
1813 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1814 cpu);
1815 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1816 break;
1817 case CPU_ONLINE:
1818 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1819 cpu);
1820 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1821 break;
1822 }
1823 return NOTIFY_OK;
1824 }
1825
1826
1827 asmlinkage void kvm_handle_fault_on_reboot(void)
1828 {
1829 if (kvm_rebooting)
1830 /* spin while reset goes on */
1831 while (true)
1832 ;
1833 /* Fault while not rebooting. We want the trace. */
1834 BUG();
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1837
1838 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1839 void *v)
1840 {
1841 /*
1842 * Some (well, at least mine) BIOSes hang on reboot if
1843 * in vmx root mode.
1844 *
1845 * And Intel TXT required VMX off for all cpu when system shutdown.
1846 */
1847 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1848 kvm_rebooting = true;
1849 on_each_cpu(hardware_disable, NULL, 1);
1850 return NOTIFY_OK;
1851 }
1852
1853 static struct notifier_block kvm_reboot_notifier = {
1854 .notifier_call = kvm_reboot,
1855 .priority = 0,
1856 };
1857
1858 void kvm_io_bus_init(struct kvm_io_bus *bus)
1859 {
1860 memset(bus, 0, sizeof(*bus));
1861 }
1862
1863 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1864 {
1865 int i;
1866
1867 for (i = 0; i < bus->dev_count; i++) {
1868 struct kvm_io_device *pos = bus->devs[i];
1869
1870 kvm_iodevice_destructor(pos);
1871 }
1872 }
1873
1874 /* kvm_io_bus_write - called under kvm->slots_lock */
1875 int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
1876 int len, const void *val)
1877 {
1878 int i;
1879 for (i = 0; i < bus->dev_count; i++)
1880 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
1881 return 0;
1882 return -EOPNOTSUPP;
1883 }
1884
1885 /* kvm_io_bus_read - called under kvm->slots_lock */
1886 int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
1887 {
1888 int i;
1889 for (i = 0; i < bus->dev_count; i++)
1890 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
1891 return 0;
1892 return -EOPNOTSUPP;
1893 }
1894
1895 int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
1896 struct kvm_io_device *dev)
1897 {
1898 int ret;
1899
1900 down_write(&kvm->slots_lock);
1901 ret = __kvm_io_bus_register_dev(bus, dev);
1902 up_write(&kvm->slots_lock);
1903
1904 return ret;
1905 }
1906
1907 /* An unlocked version. Caller must have write lock on slots_lock. */
1908 int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
1909 struct kvm_io_device *dev)
1910 {
1911 if (bus->dev_count > NR_IOBUS_DEVS-1)
1912 return -ENOSPC;
1913
1914 bus->devs[bus->dev_count++] = dev;
1915
1916 return 0;
1917 }
1918
1919 void kvm_io_bus_unregister_dev(struct kvm *kvm,
1920 struct kvm_io_bus *bus,
1921 struct kvm_io_device *dev)
1922 {
1923 down_write(&kvm->slots_lock);
1924 __kvm_io_bus_unregister_dev(bus, dev);
1925 up_write(&kvm->slots_lock);
1926 }
1927
1928 /* An unlocked version. Caller must have write lock on slots_lock. */
1929 void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
1930 struct kvm_io_device *dev)
1931 {
1932 int i;
1933
1934 for (i = 0; i < bus->dev_count; i++)
1935 if (bus->devs[i] == dev) {
1936 bus->devs[i] = bus->devs[--bus->dev_count];
1937 break;
1938 }
1939 }
1940
1941 static struct notifier_block kvm_cpu_notifier = {
1942 .notifier_call = kvm_cpu_hotplug,
1943 .priority = 20, /* must be > scheduler priority */
1944 };
1945
1946 static int vm_stat_get(void *_offset, u64 *val)
1947 {
1948 unsigned offset = (long)_offset;
1949 struct kvm *kvm;
1950
1951 *val = 0;
1952 spin_lock(&kvm_lock);
1953 list_for_each_entry(kvm, &vm_list, vm_list)
1954 *val += *(u32 *)((void *)kvm + offset);
1955 spin_unlock(&kvm_lock);
1956 return 0;
1957 }
1958
1959 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1960
1961 static int vcpu_stat_get(void *_offset, u64 *val)
1962 {
1963 unsigned offset = (long)_offset;
1964 struct kvm *kvm;
1965 struct kvm_vcpu *vcpu;
1966 int i;
1967
1968 *val = 0;
1969 spin_lock(&kvm_lock);
1970 list_for_each_entry(kvm, &vm_list, vm_list)
1971 kvm_for_each_vcpu(i, vcpu, kvm)
1972 *val += *(u32 *)((void *)vcpu + offset);
1973
1974 spin_unlock(&kvm_lock);
1975 return 0;
1976 }
1977
1978 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1979
1980 static const struct file_operations *stat_fops[] = {
1981 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1982 [KVM_STAT_VM] = &vm_stat_fops,
1983 };
1984
1985 static void kvm_init_debug(void)
1986 {
1987 struct kvm_stats_debugfs_item *p;
1988
1989 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1990 for (p = debugfs_entries; p->name; ++p)
1991 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1992 (void *)(long)p->offset,
1993 stat_fops[p->kind]);
1994 }
1995
1996 static void kvm_exit_debug(void)
1997 {
1998 struct kvm_stats_debugfs_item *p;
1999
2000 for (p = debugfs_entries; p->name; ++p)
2001 debugfs_remove(p->dentry);
2002 debugfs_remove(kvm_debugfs_dir);
2003 }
2004
2005 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2006 {
2007 if (kvm_usage_count)
2008 hardware_disable(NULL);
2009 return 0;
2010 }
2011
2012 static int kvm_resume(struct sys_device *dev)
2013 {
2014 if (kvm_usage_count)
2015 hardware_enable(NULL);
2016 return 0;
2017 }
2018
2019 static struct sysdev_class kvm_sysdev_class = {
2020 .name = "kvm",
2021 .suspend = kvm_suspend,
2022 .resume = kvm_resume,
2023 };
2024
2025 static struct sys_device kvm_sysdev = {
2026 .id = 0,
2027 .cls = &kvm_sysdev_class,
2028 };
2029
2030 struct page *bad_page;
2031 pfn_t bad_pfn;
2032
2033 static inline
2034 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2035 {
2036 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2037 }
2038
2039 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2040 {
2041 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2042
2043 kvm_arch_vcpu_load(vcpu, cpu);
2044 }
2045
2046 static void kvm_sched_out(struct preempt_notifier *pn,
2047 struct task_struct *next)
2048 {
2049 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2050
2051 kvm_arch_vcpu_put(vcpu);
2052 }
2053
2054 int kvm_init(void *opaque, unsigned int vcpu_size,
2055 struct module *module)
2056 {
2057 int r;
2058 int cpu;
2059
2060 r = kvm_arch_init(opaque);
2061 if (r)
2062 goto out_fail;
2063
2064 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2065
2066 if (bad_page == NULL) {
2067 r = -ENOMEM;
2068 goto out;
2069 }
2070
2071 bad_pfn = page_to_pfn(bad_page);
2072
2073 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2074 r = -ENOMEM;
2075 goto out_free_0;
2076 }
2077
2078 r = kvm_arch_hardware_setup();
2079 if (r < 0)
2080 goto out_free_0a;
2081
2082 for_each_online_cpu(cpu) {
2083 smp_call_function_single(cpu,
2084 kvm_arch_check_processor_compat,
2085 &r, 1);
2086 if (r < 0)
2087 goto out_free_1;
2088 }
2089
2090 r = register_cpu_notifier(&kvm_cpu_notifier);
2091 if (r)
2092 goto out_free_2;
2093 register_reboot_notifier(&kvm_reboot_notifier);
2094
2095 r = sysdev_class_register(&kvm_sysdev_class);
2096 if (r)
2097 goto out_free_3;
2098
2099 r = sysdev_register(&kvm_sysdev);
2100 if (r)
2101 goto out_free_4;
2102
2103 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2104 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2105 __alignof__(struct kvm_vcpu),
2106 0, NULL);
2107 if (!kvm_vcpu_cache) {
2108 r = -ENOMEM;
2109 goto out_free_5;
2110 }
2111
2112 kvm_chardev_ops.owner = module;
2113 kvm_vm_fops.owner = module;
2114 kvm_vcpu_fops.owner = module;
2115
2116 r = misc_register(&kvm_dev);
2117 if (r) {
2118 printk(KERN_ERR "kvm: misc device register failed\n");
2119 goto out_free;
2120 }
2121
2122 kvm_preempt_ops.sched_in = kvm_sched_in;
2123 kvm_preempt_ops.sched_out = kvm_sched_out;
2124
2125 kvm_init_debug();
2126
2127 return 0;
2128
2129 out_free:
2130 kmem_cache_destroy(kvm_vcpu_cache);
2131 out_free_5:
2132 sysdev_unregister(&kvm_sysdev);
2133 out_free_4:
2134 sysdev_class_unregister(&kvm_sysdev_class);
2135 out_free_3:
2136 unregister_reboot_notifier(&kvm_reboot_notifier);
2137 unregister_cpu_notifier(&kvm_cpu_notifier);
2138 out_free_2:
2139 out_free_1:
2140 kvm_arch_hardware_unsetup();
2141 out_free_0a:
2142 free_cpumask_var(cpus_hardware_enabled);
2143 out_free_0:
2144 __free_page(bad_page);
2145 out:
2146 kvm_arch_exit();
2147 out_fail:
2148 return r;
2149 }
2150 EXPORT_SYMBOL_GPL(kvm_init);
2151
2152 void kvm_exit(void)
2153 {
2154 tracepoint_synchronize_unregister();
2155 kvm_exit_debug();
2156 misc_deregister(&kvm_dev);
2157 kmem_cache_destroy(kvm_vcpu_cache);
2158 sysdev_unregister(&kvm_sysdev);
2159 sysdev_class_unregister(&kvm_sysdev_class);
2160 unregister_reboot_notifier(&kvm_reboot_notifier);
2161 unregister_cpu_notifier(&kvm_cpu_notifier);
2162 on_each_cpu(hardware_disable, NULL, 1);
2163 kvm_arch_hardware_unsetup();
2164 kvm_arch_exit();
2165 free_cpumask_var(cpus_hardware_enabled);
2166 __free_page(bad_page);
2167 }
2168 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.077453 seconds and 5 git commands to generate.