c65484b471c6de9eae387d2f5341c0950d57ae64
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef CONFIG_X86
51 #include <asm/msidef.h>
52 #endif
53
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
56 #endif
57
58 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
59 #include <linux/pci.h>
60 #include <linux/interrupt.h>
61 #include "irq.h"
62 #endif
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 static int msi2intx = 1;
68 module_param(msi2intx, bool, 0);
69
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
72
73 static cpumask_var_t cpus_hardware_enabled;
74
75 struct kmem_cache *kvm_vcpu_cache;
76 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
77
78 static __read_mostly struct preempt_ops kvm_preempt_ops;
79
80 struct dentry *kvm_debugfs_dir;
81
82 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
83 unsigned long arg);
84
85 static bool kvm_rebooting;
86
87 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
88
89 #ifdef CONFIG_X86
90 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
91 {
92 int vcpu_id;
93 struct kvm_vcpu *vcpu;
94 struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
95 int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
96 >> MSI_ADDR_DEST_ID_SHIFT;
97 int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
98 >> MSI_DATA_VECTOR_SHIFT;
99 int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
100 (unsigned long *)&dev->guest_msi.address_lo);
101 int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
102 (unsigned long *)&dev->guest_msi.data);
103 int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
104 (unsigned long *)&dev->guest_msi.data);
105 u32 deliver_bitmask;
106
107 BUG_ON(!ioapic);
108
109 deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
110 dest_id, dest_mode);
111 /* IOAPIC delivery mode value is the same as MSI here */
112 switch (delivery_mode) {
113 case IOAPIC_LOWEST_PRIORITY:
114 vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
115 deliver_bitmask);
116 if (vcpu != NULL)
117 kvm_apic_set_irq(vcpu, vector, trig_mode);
118 else
119 printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
120 break;
121 case IOAPIC_FIXED:
122 for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
123 if (!(deliver_bitmask & (1 << vcpu_id)))
124 continue;
125 deliver_bitmask &= ~(1 << vcpu_id);
126 vcpu = ioapic->kvm->vcpus[vcpu_id];
127 if (vcpu)
128 kvm_apic_set_irq(vcpu, vector, trig_mode);
129 }
130 break;
131 default:
132 printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
133 }
134 }
135 #else
136 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
137 #endif
138
139 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
140 int assigned_dev_id)
141 {
142 struct list_head *ptr;
143 struct kvm_assigned_dev_kernel *match;
144
145 list_for_each(ptr, head) {
146 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
147 if (match->assigned_dev_id == assigned_dev_id)
148 return match;
149 }
150 return NULL;
151 }
152
153 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
154 {
155 struct kvm_assigned_dev_kernel *assigned_dev;
156
157 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
158 interrupt_work);
159
160 /* This is taken to safely inject irq inside the guest. When
161 * the interrupt injection (or the ioapic code) uses a
162 * finer-grained lock, update this
163 */
164 mutex_lock(&assigned_dev->kvm->lock);
165 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
166 kvm_set_irq(assigned_dev->kvm,
167 assigned_dev->irq_source_id,
168 assigned_dev->guest_irq, 1);
169 else if (assigned_dev->irq_requested_type &
170 KVM_ASSIGNED_DEV_GUEST_MSI) {
171 assigned_device_msi_dispatch(assigned_dev);
172 enable_irq(assigned_dev->host_irq);
173 assigned_dev->host_irq_disabled = false;
174 }
175 mutex_unlock(&assigned_dev->kvm->lock);
176 }
177
178 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
179 {
180 struct kvm_assigned_dev_kernel *assigned_dev =
181 (struct kvm_assigned_dev_kernel *) dev_id;
182
183 schedule_work(&assigned_dev->interrupt_work);
184
185 disable_irq_nosync(irq);
186 assigned_dev->host_irq_disabled = true;
187
188 return IRQ_HANDLED;
189 }
190
191 /* Ack the irq line for an assigned device */
192 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
193 {
194 struct kvm_assigned_dev_kernel *dev;
195
196 if (kian->gsi == -1)
197 return;
198
199 dev = container_of(kian, struct kvm_assigned_dev_kernel,
200 ack_notifier);
201
202 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
203
204 /* The guest irq may be shared so this ack may be
205 * from another device.
206 */
207 if (dev->host_irq_disabled) {
208 enable_irq(dev->host_irq);
209 dev->host_irq_disabled = false;
210 }
211 }
212
213 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
214 static void kvm_free_assigned_irq(struct kvm *kvm,
215 struct kvm_assigned_dev_kernel *assigned_dev)
216 {
217 if (!irqchip_in_kernel(kvm))
218 return;
219
220 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
221
222 if (assigned_dev->irq_source_id != -1)
223 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
224 assigned_dev->irq_source_id = -1;
225
226 if (!assigned_dev->irq_requested_type)
227 return;
228
229 /*
230 * In kvm_free_device_irq, cancel_work_sync return true if:
231 * 1. work is scheduled, and then cancelled.
232 * 2. work callback is executed.
233 *
234 * The first one ensured that the irq is disabled and no more events
235 * would happen. But for the second one, the irq may be enabled (e.g.
236 * for MSI). So we disable irq here to prevent further events.
237 *
238 * Notice this maybe result in nested disable if the interrupt type is
239 * INTx, but it's OK for we are going to free it.
240 *
241 * If this function is a part of VM destroy, please ensure that till
242 * now, the kvm state is still legal for probably we also have to wait
243 * interrupt_work done.
244 */
245 disable_irq_nosync(assigned_dev->host_irq);
246 cancel_work_sync(&assigned_dev->interrupt_work);
247
248 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
249
250 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
251 pci_disable_msi(assigned_dev->dev);
252
253 assigned_dev->irq_requested_type = 0;
254 }
255
256
257 static void kvm_free_assigned_device(struct kvm *kvm,
258 struct kvm_assigned_dev_kernel
259 *assigned_dev)
260 {
261 kvm_free_assigned_irq(kvm, assigned_dev);
262
263 pci_reset_function(assigned_dev->dev);
264
265 pci_release_regions(assigned_dev->dev);
266 pci_disable_device(assigned_dev->dev);
267 pci_dev_put(assigned_dev->dev);
268
269 list_del(&assigned_dev->list);
270 kfree(assigned_dev);
271 }
272
273 void kvm_free_all_assigned_devices(struct kvm *kvm)
274 {
275 struct list_head *ptr, *ptr2;
276 struct kvm_assigned_dev_kernel *assigned_dev;
277
278 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
279 assigned_dev = list_entry(ptr,
280 struct kvm_assigned_dev_kernel,
281 list);
282
283 kvm_free_assigned_device(kvm, assigned_dev);
284 }
285 }
286
287 static int assigned_device_update_intx(struct kvm *kvm,
288 struct kvm_assigned_dev_kernel *adev,
289 struct kvm_assigned_irq *airq)
290 {
291 adev->guest_irq = airq->guest_irq;
292 adev->ack_notifier.gsi = airq->guest_irq;
293
294 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
295 return 0;
296
297 if (irqchip_in_kernel(kvm)) {
298 if (!msi2intx &&
299 (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)) {
300 free_irq(adev->host_irq, (void *)adev);
301 pci_disable_msi(adev->dev);
302 }
303
304 if (!capable(CAP_SYS_RAWIO))
305 return -EPERM;
306
307 if (airq->host_irq)
308 adev->host_irq = airq->host_irq;
309 else
310 adev->host_irq = adev->dev->irq;
311
312 /* Even though this is PCI, we don't want to use shared
313 * interrupts. Sharing host devices with guest-assigned devices
314 * on the same interrupt line is not a happy situation: there
315 * are going to be long delays in accepting, acking, etc.
316 */
317 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
318 0, "kvm_assigned_intx_device", (void *)adev))
319 return -EIO;
320 }
321
322 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
323 KVM_ASSIGNED_DEV_HOST_INTX;
324 return 0;
325 }
326
327 #ifdef CONFIG_X86
328 static int assigned_device_update_msi(struct kvm *kvm,
329 struct kvm_assigned_dev_kernel *adev,
330 struct kvm_assigned_irq *airq)
331 {
332 int r;
333
334 if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
335 /* x86 don't care upper address of guest msi message addr */
336 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
337 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
338 adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
339 adev->guest_msi.data = airq->guest_msi.data;
340 adev->ack_notifier.gsi = -1;
341 } else if (msi2intx) {
342 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
343 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
344 adev->guest_irq = airq->guest_irq;
345 adev->ack_notifier.gsi = airq->guest_irq;
346 } else {
347 /*
348 * Guest require to disable device MSI, we disable MSI and
349 * re-enable INTx by default again. Notice it's only for
350 * non-msi2intx.
351 */
352 assigned_device_update_intx(kvm, adev, airq);
353 return 0;
354 }
355
356 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
357 return 0;
358
359 if (irqchip_in_kernel(kvm)) {
360 if (!msi2intx) {
361 if (adev->irq_requested_type &
362 KVM_ASSIGNED_DEV_HOST_INTX)
363 free_irq(adev->host_irq, (void *)adev);
364
365 r = pci_enable_msi(adev->dev);
366 if (r)
367 return r;
368 }
369
370 adev->host_irq = adev->dev->irq;
371 if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
372 "kvm_assigned_msi_device", (void *)adev))
373 return -EIO;
374 }
375
376 if (!msi2intx)
377 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
378
379 adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
380 return 0;
381 }
382 #endif
383
384 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
385 struct kvm_assigned_irq
386 *assigned_irq)
387 {
388 int r = 0;
389 struct kvm_assigned_dev_kernel *match;
390 u32 current_flags = 0, changed_flags;
391
392 mutex_lock(&kvm->lock);
393
394 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
395 assigned_irq->assigned_dev_id);
396 if (!match) {
397 mutex_unlock(&kvm->lock);
398 return -EINVAL;
399 }
400
401 if (!match->irq_requested_type) {
402 INIT_WORK(&match->interrupt_work,
403 kvm_assigned_dev_interrupt_work_handler);
404 if (irqchip_in_kernel(kvm)) {
405 /* Register ack nofitier */
406 match->ack_notifier.gsi = -1;
407 match->ack_notifier.irq_acked =
408 kvm_assigned_dev_ack_irq;
409 kvm_register_irq_ack_notifier(kvm,
410 &match->ack_notifier);
411
412 /* Request IRQ source ID */
413 r = kvm_request_irq_source_id(kvm);
414 if (r < 0)
415 goto out_release;
416 else
417 match->irq_source_id = r;
418
419 #ifdef CONFIG_X86
420 /* Determine host device irq type, we can know the
421 * result from dev->msi_enabled */
422 if (msi2intx)
423 pci_enable_msi(match->dev);
424 #endif
425 }
426 }
427
428 if ((match->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) &&
429 (match->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_MSI))
430 current_flags |= KVM_DEV_IRQ_ASSIGN_ENABLE_MSI;
431
432 changed_flags = assigned_irq->flags ^ current_flags;
433
434 if ((changed_flags & KVM_DEV_IRQ_ASSIGN_MSI_ACTION) ||
435 (msi2intx && match->dev->msi_enabled)) {
436 #ifdef CONFIG_X86
437 r = assigned_device_update_msi(kvm, match, assigned_irq);
438 if (r) {
439 printk(KERN_WARNING "kvm: failed to enable "
440 "MSI device!\n");
441 goto out_release;
442 }
443 #else
444 r = -ENOTTY;
445 #endif
446 } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
447 /* Host device IRQ 0 means don't support INTx */
448 if (!msi2intx) {
449 printk(KERN_WARNING
450 "kvm: wait device to enable MSI!\n");
451 r = 0;
452 } else {
453 printk(KERN_WARNING
454 "kvm: failed to enable MSI device!\n");
455 r = -ENOTTY;
456 goto out_release;
457 }
458 } else {
459 /* Non-sharing INTx mode */
460 r = assigned_device_update_intx(kvm, match, assigned_irq);
461 if (r) {
462 printk(KERN_WARNING "kvm: failed to enable "
463 "INTx device!\n");
464 goto out_release;
465 }
466 }
467
468 mutex_unlock(&kvm->lock);
469 return r;
470 out_release:
471 mutex_unlock(&kvm->lock);
472 kvm_free_assigned_device(kvm, match);
473 return r;
474 }
475
476 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
477 struct kvm_assigned_pci_dev *assigned_dev)
478 {
479 int r = 0;
480 struct kvm_assigned_dev_kernel *match;
481 struct pci_dev *dev;
482
483 down_read(&kvm->slots_lock);
484 mutex_lock(&kvm->lock);
485
486 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
487 assigned_dev->assigned_dev_id);
488 if (match) {
489 /* device already assigned */
490 r = -EINVAL;
491 goto out;
492 }
493
494 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
495 if (match == NULL) {
496 printk(KERN_INFO "%s: Couldn't allocate memory\n",
497 __func__);
498 r = -ENOMEM;
499 goto out;
500 }
501 dev = pci_get_bus_and_slot(assigned_dev->busnr,
502 assigned_dev->devfn);
503 if (!dev) {
504 printk(KERN_INFO "%s: host device not found\n", __func__);
505 r = -EINVAL;
506 goto out_free;
507 }
508 if (pci_enable_device(dev)) {
509 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
510 r = -EBUSY;
511 goto out_put;
512 }
513 r = pci_request_regions(dev, "kvm_assigned_device");
514 if (r) {
515 printk(KERN_INFO "%s: Could not get access to device regions\n",
516 __func__);
517 goto out_disable;
518 }
519
520 pci_reset_function(dev);
521
522 match->assigned_dev_id = assigned_dev->assigned_dev_id;
523 match->host_busnr = assigned_dev->busnr;
524 match->host_devfn = assigned_dev->devfn;
525 match->flags = assigned_dev->flags;
526 match->dev = dev;
527 match->irq_source_id = -1;
528 match->kvm = kvm;
529
530 list_add(&match->list, &kvm->arch.assigned_dev_head);
531
532 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
533 if (!kvm->arch.iommu_domain) {
534 r = kvm_iommu_map_guest(kvm);
535 if (r)
536 goto out_list_del;
537 }
538 r = kvm_assign_device(kvm, match);
539 if (r)
540 goto out_list_del;
541 }
542
543 out:
544 mutex_unlock(&kvm->lock);
545 up_read(&kvm->slots_lock);
546 return r;
547 out_list_del:
548 list_del(&match->list);
549 pci_release_regions(dev);
550 out_disable:
551 pci_disable_device(dev);
552 out_put:
553 pci_dev_put(dev);
554 out_free:
555 kfree(match);
556 mutex_unlock(&kvm->lock);
557 up_read(&kvm->slots_lock);
558 return r;
559 }
560 #endif
561
562 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
563 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
564 struct kvm_assigned_pci_dev *assigned_dev)
565 {
566 int r = 0;
567 struct kvm_assigned_dev_kernel *match;
568
569 mutex_lock(&kvm->lock);
570
571 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
572 assigned_dev->assigned_dev_id);
573 if (!match) {
574 printk(KERN_INFO "%s: device hasn't been assigned before, "
575 "so cannot be deassigned\n", __func__);
576 r = -EINVAL;
577 goto out;
578 }
579
580 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
581 kvm_deassign_device(kvm, match);
582
583 kvm_free_assigned_device(kvm, match);
584
585 out:
586 mutex_unlock(&kvm->lock);
587 return r;
588 }
589 #endif
590
591 static inline int valid_vcpu(int n)
592 {
593 return likely(n >= 0 && n < KVM_MAX_VCPUS);
594 }
595
596 inline int kvm_is_mmio_pfn(pfn_t pfn)
597 {
598 if (pfn_valid(pfn))
599 return PageReserved(pfn_to_page(pfn));
600
601 return true;
602 }
603
604 /*
605 * Switches to specified vcpu, until a matching vcpu_put()
606 */
607 void vcpu_load(struct kvm_vcpu *vcpu)
608 {
609 int cpu;
610
611 mutex_lock(&vcpu->mutex);
612 cpu = get_cpu();
613 preempt_notifier_register(&vcpu->preempt_notifier);
614 kvm_arch_vcpu_load(vcpu, cpu);
615 put_cpu();
616 }
617
618 void vcpu_put(struct kvm_vcpu *vcpu)
619 {
620 preempt_disable();
621 kvm_arch_vcpu_put(vcpu);
622 preempt_notifier_unregister(&vcpu->preempt_notifier);
623 preempt_enable();
624 mutex_unlock(&vcpu->mutex);
625 }
626
627 static void ack_flush(void *_completed)
628 {
629 }
630
631 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
632 {
633 int i, cpu, me;
634 cpumask_var_t cpus;
635 bool called = true;
636 struct kvm_vcpu *vcpu;
637
638 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
639 cpumask_clear(cpus);
640
641 me = get_cpu();
642 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
643 vcpu = kvm->vcpus[i];
644 if (!vcpu)
645 continue;
646 if (test_and_set_bit(req, &vcpu->requests))
647 continue;
648 cpu = vcpu->cpu;
649 if (cpus != NULL && cpu != -1 && cpu != me)
650 cpumask_set_cpu(cpu, cpus);
651 }
652 if (unlikely(cpus == NULL))
653 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
654 else if (!cpumask_empty(cpus))
655 smp_call_function_many(cpus, ack_flush, NULL, 1);
656 else
657 called = false;
658 put_cpu();
659 free_cpumask_var(cpus);
660 return called;
661 }
662
663 void kvm_flush_remote_tlbs(struct kvm *kvm)
664 {
665 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
666 ++kvm->stat.remote_tlb_flush;
667 }
668
669 void kvm_reload_remote_mmus(struct kvm *kvm)
670 {
671 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
672 }
673
674 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
675 {
676 struct page *page;
677 int r;
678
679 mutex_init(&vcpu->mutex);
680 vcpu->cpu = -1;
681 vcpu->kvm = kvm;
682 vcpu->vcpu_id = id;
683 init_waitqueue_head(&vcpu->wq);
684
685 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
686 if (!page) {
687 r = -ENOMEM;
688 goto fail;
689 }
690 vcpu->run = page_address(page);
691
692 r = kvm_arch_vcpu_init(vcpu);
693 if (r < 0)
694 goto fail_free_run;
695 return 0;
696
697 fail_free_run:
698 free_page((unsigned long)vcpu->run);
699 fail:
700 return r;
701 }
702 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
703
704 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
705 {
706 kvm_arch_vcpu_uninit(vcpu);
707 free_page((unsigned long)vcpu->run);
708 }
709 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
710
711 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
712 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
713 {
714 return container_of(mn, struct kvm, mmu_notifier);
715 }
716
717 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
718 struct mm_struct *mm,
719 unsigned long address)
720 {
721 struct kvm *kvm = mmu_notifier_to_kvm(mn);
722 int need_tlb_flush;
723
724 /*
725 * When ->invalidate_page runs, the linux pte has been zapped
726 * already but the page is still allocated until
727 * ->invalidate_page returns. So if we increase the sequence
728 * here the kvm page fault will notice if the spte can't be
729 * established because the page is going to be freed. If
730 * instead the kvm page fault establishes the spte before
731 * ->invalidate_page runs, kvm_unmap_hva will release it
732 * before returning.
733 *
734 * The sequence increase only need to be seen at spin_unlock
735 * time, and not at spin_lock time.
736 *
737 * Increasing the sequence after the spin_unlock would be
738 * unsafe because the kvm page fault could then establish the
739 * pte after kvm_unmap_hva returned, without noticing the page
740 * is going to be freed.
741 */
742 spin_lock(&kvm->mmu_lock);
743 kvm->mmu_notifier_seq++;
744 need_tlb_flush = kvm_unmap_hva(kvm, address);
745 spin_unlock(&kvm->mmu_lock);
746
747 /* we've to flush the tlb before the pages can be freed */
748 if (need_tlb_flush)
749 kvm_flush_remote_tlbs(kvm);
750
751 }
752
753 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
754 struct mm_struct *mm,
755 unsigned long start,
756 unsigned long end)
757 {
758 struct kvm *kvm = mmu_notifier_to_kvm(mn);
759 int need_tlb_flush = 0;
760
761 spin_lock(&kvm->mmu_lock);
762 /*
763 * The count increase must become visible at unlock time as no
764 * spte can be established without taking the mmu_lock and
765 * count is also read inside the mmu_lock critical section.
766 */
767 kvm->mmu_notifier_count++;
768 for (; start < end; start += PAGE_SIZE)
769 need_tlb_flush |= kvm_unmap_hva(kvm, start);
770 spin_unlock(&kvm->mmu_lock);
771
772 /* we've to flush the tlb before the pages can be freed */
773 if (need_tlb_flush)
774 kvm_flush_remote_tlbs(kvm);
775 }
776
777 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
778 struct mm_struct *mm,
779 unsigned long start,
780 unsigned long end)
781 {
782 struct kvm *kvm = mmu_notifier_to_kvm(mn);
783
784 spin_lock(&kvm->mmu_lock);
785 /*
786 * This sequence increase will notify the kvm page fault that
787 * the page that is going to be mapped in the spte could have
788 * been freed.
789 */
790 kvm->mmu_notifier_seq++;
791 /*
792 * The above sequence increase must be visible before the
793 * below count decrease but both values are read by the kvm
794 * page fault under mmu_lock spinlock so we don't need to add
795 * a smb_wmb() here in between the two.
796 */
797 kvm->mmu_notifier_count--;
798 spin_unlock(&kvm->mmu_lock);
799
800 BUG_ON(kvm->mmu_notifier_count < 0);
801 }
802
803 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
804 struct mm_struct *mm,
805 unsigned long address)
806 {
807 struct kvm *kvm = mmu_notifier_to_kvm(mn);
808 int young;
809
810 spin_lock(&kvm->mmu_lock);
811 young = kvm_age_hva(kvm, address);
812 spin_unlock(&kvm->mmu_lock);
813
814 if (young)
815 kvm_flush_remote_tlbs(kvm);
816
817 return young;
818 }
819
820 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
821 struct mm_struct *mm)
822 {
823 struct kvm *kvm = mmu_notifier_to_kvm(mn);
824 kvm_arch_flush_shadow(kvm);
825 }
826
827 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
828 .invalidate_page = kvm_mmu_notifier_invalidate_page,
829 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
830 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
831 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
832 .release = kvm_mmu_notifier_release,
833 };
834 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
835
836 static struct kvm *kvm_create_vm(void)
837 {
838 struct kvm *kvm = kvm_arch_create_vm();
839 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
840 struct page *page;
841 #endif
842
843 if (IS_ERR(kvm))
844 goto out;
845 #ifdef CONFIG_HAVE_KVM_IRQCHIP
846 INIT_LIST_HEAD(&kvm->irq_routing);
847 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
848 #endif
849
850 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
851 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
852 if (!page) {
853 kfree(kvm);
854 return ERR_PTR(-ENOMEM);
855 }
856 kvm->coalesced_mmio_ring =
857 (struct kvm_coalesced_mmio_ring *)page_address(page);
858 #endif
859
860 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
861 {
862 int err;
863 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
864 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
865 if (err) {
866 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
867 put_page(page);
868 #endif
869 kfree(kvm);
870 return ERR_PTR(err);
871 }
872 }
873 #endif
874
875 kvm->mm = current->mm;
876 atomic_inc(&kvm->mm->mm_count);
877 spin_lock_init(&kvm->mmu_lock);
878 kvm_io_bus_init(&kvm->pio_bus);
879 mutex_init(&kvm->lock);
880 kvm_io_bus_init(&kvm->mmio_bus);
881 init_rwsem(&kvm->slots_lock);
882 atomic_set(&kvm->users_count, 1);
883 spin_lock(&kvm_lock);
884 list_add(&kvm->vm_list, &vm_list);
885 spin_unlock(&kvm_lock);
886 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
887 kvm_coalesced_mmio_init(kvm);
888 #endif
889 out:
890 return kvm;
891 }
892
893 /*
894 * Free any memory in @free but not in @dont.
895 */
896 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
897 struct kvm_memory_slot *dont)
898 {
899 if (!dont || free->rmap != dont->rmap)
900 vfree(free->rmap);
901
902 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
903 vfree(free->dirty_bitmap);
904
905 if (!dont || free->lpage_info != dont->lpage_info)
906 vfree(free->lpage_info);
907
908 free->npages = 0;
909 free->dirty_bitmap = NULL;
910 free->rmap = NULL;
911 free->lpage_info = NULL;
912 }
913
914 void kvm_free_physmem(struct kvm *kvm)
915 {
916 int i;
917
918 for (i = 0; i < kvm->nmemslots; ++i)
919 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
920 }
921
922 static void kvm_destroy_vm(struct kvm *kvm)
923 {
924 struct mm_struct *mm = kvm->mm;
925
926 kvm_arch_sync_events(kvm);
927 spin_lock(&kvm_lock);
928 list_del(&kvm->vm_list);
929 spin_unlock(&kvm_lock);
930 kvm_free_irq_routing(kvm);
931 kvm_io_bus_destroy(&kvm->pio_bus);
932 kvm_io_bus_destroy(&kvm->mmio_bus);
933 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
934 if (kvm->coalesced_mmio_ring != NULL)
935 free_page((unsigned long)kvm->coalesced_mmio_ring);
936 #endif
937 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
938 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
939 #endif
940 kvm_arch_destroy_vm(kvm);
941 mmdrop(mm);
942 }
943
944 void kvm_get_kvm(struct kvm *kvm)
945 {
946 atomic_inc(&kvm->users_count);
947 }
948 EXPORT_SYMBOL_GPL(kvm_get_kvm);
949
950 void kvm_put_kvm(struct kvm *kvm)
951 {
952 if (atomic_dec_and_test(&kvm->users_count))
953 kvm_destroy_vm(kvm);
954 }
955 EXPORT_SYMBOL_GPL(kvm_put_kvm);
956
957
958 static int kvm_vm_release(struct inode *inode, struct file *filp)
959 {
960 struct kvm *kvm = filp->private_data;
961
962 kvm_put_kvm(kvm);
963 return 0;
964 }
965
966 /*
967 * Allocate some memory and give it an address in the guest physical address
968 * space.
969 *
970 * Discontiguous memory is allowed, mostly for framebuffers.
971 *
972 * Must be called holding mmap_sem for write.
973 */
974 int __kvm_set_memory_region(struct kvm *kvm,
975 struct kvm_userspace_memory_region *mem,
976 int user_alloc)
977 {
978 int r;
979 gfn_t base_gfn;
980 unsigned long npages;
981 unsigned long i;
982 struct kvm_memory_slot *memslot;
983 struct kvm_memory_slot old, new;
984
985 r = -EINVAL;
986 /* General sanity checks */
987 if (mem->memory_size & (PAGE_SIZE - 1))
988 goto out;
989 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
990 goto out;
991 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
992 goto out;
993 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
994 goto out;
995 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
996 goto out;
997
998 memslot = &kvm->memslots[mem->slot];
999 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1000 npages = mem->memory_size >> PAGE_SHIFT;
1001
1002 if (!npages)
1003 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1004
1005 new = old = *memslot;
1006
1007 new.base_gfn = base_gfn;
1008 new.npages = npages;
1009 new.flags = mem->flags;
1010
1011 /* Disallow changing a memory slot's size. */
1012 r = -EINVAL;
1013 if (npages && old.npages && npages != old.npages)
1014 goto out_free;
1015
1016 /* Check for overlaps */
1017 r = -EEXIST;
1018 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1019 struct kvm_memory_slot *s = &kvm->memslots[i];
1020
1021 if (s == memslot)
1022 continue;
1023 if (!((base_gfn + npages <= s->base_gfn) ||
1024 (base_gfn >= s->base_gfn + s->npages)))
1025 goto out_free;
1026 }
1027
1028 /* Free page dirty bitmap if unneeded */
1029 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1030 new.dirty_bitmap = NULL;
1031
1032 r = -ENOMEM;
1033
1034 /* Allocate if a slot is being created */
1035 #ifndef CONFIG_S390
1036 if (npages && !new.rmap) {
1037 new.rmap = vmalloc(npages * sizeof(struct page *));
1038
1039 if (!new.rmap)
1040 goto out_free;
1041
1042 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1043
1044 new.user_alloc = user_alloc;
1045 /*
1046 * hva_to_rmmap() serialzies with the mmu_lock and to be
1047 * safe it has to ignore memslots with !user_alloc &&
1048 * !userspace_addr.
1049 */
1050 if (user_alloc)
1051 new.userspace_addr = mem->userspace_addr;
1052 else
1053 new.userspace_addr = 0;
1054 }
1055 if (npages && !new.lpage_info) {
1056 int largepages = npages / KVM_PAGES_PER_HPAGE;
1057 if (npages % KVM_PAGES_PER_HPAGE)
1058 largepages++;
1059 if (base_gfn % KVM_PAGES_PER_HPAGE)
1060 largepages++;
1061
1062 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1063
1064 if (!new.lpage_info)
1065 goto out_free;
1066
1067 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1068
1069 if (base_gfn % KVM_PAGES_PER_HPAGE)
1070 new.lpage_info[0].write_count = 1;
1071 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1072 new.lpage_info[largepages-1].write_count = 1;
1073 }
1074
1075 /* Allocate page dirty bitmap if needed */
1076 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1077 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1078
1079 new.dirty_bitmap = vmalloc(dirty_bytes);
1080 if (!new.dirty_bitmap)
1081 goto out_free;
1082 memset(new.dirty_bitmap, 0, dirty_bytes);
1083 }
1084 #endif /* not defined CONFIG_S390 */
1085
1086 if (!npages)
1087 kvm_arch_flush_shadow(kvm);
1088
1089 spin_lock(&kvm->mmu_lock);
1090 if (mem->slot >= kvm->nmemslots)
1091 kvm->nmemslots = mem->slot + 1;
1092
1093 *memslot = new;
1094 spin_unlock(&kvm->mmu_lock);
1095
1096 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1097 if (r) {
1098 spin_lock(&kvm->mmu_lock);
1099 *memslot = old;
1100 spin_unlock(&kvm->mmu_lock);
1101 goto out_free;
1102 }
1103
1104 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1105 /* Slot deletion case: we have to update the current slot */
1106 if (!npages)
1107 *memslot = old;
1108 #ifdef CONFIG_DMAR
1109 /* map the pages in iommu page table */
1110 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1111 if (r)
1112 goto out;
1113 #endif
1114 return 0;
1115
1116 out_free:
1117 kvm_free_physmem_slot(&new, &old);
1118 out:
1119 return r;
1120
1121 }
1122 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1123
1124 int kvm_set_memory_region(struct kvm *kvm,
1125 struct kvm_userspace_memory_region *mem,
1126 int user_alloc)
1127 {
1128 int r;
1129
1130 down_write(&kvm->slots_lock);
1131 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1132 up_write(&kvm->slots_lock);
1133 return r;
1134 }
1135 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1136
1137 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1138 struct
1139 kvm_userspace_memory_region *mem,
1140 int user_alloc)
1141 {
1142 if (mem->slot >= KVM_MEMORY_SLOTS)
1143 return -EINVAL;
1144 return kvm_set_memory_region(kvm, mem, user_alloc);
1145 }
1146
1147 int kvm_get_dirty_log(struct kvm *kvm,
1148 struct kvm_dirty_log *log, int *is_dirty)
1149 {
1150 struct kvm_memory_slot *memslot;
1151 int r, i;
1152 int n;
1153 unsigned long any = 0;
1154
1155 r = -EINVAL;
1156 if (log->slot >= KVM_MEMORY_SLOTS)
1157 goto out;
1158
1159 memslot = &kvm->memslots[log->slot];
1160 r = -ENOENT;
1161 if (!memslot->dirty_bitmap)
1162 goto out;
1163
1164 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1165
1166 for (i = 0; !any && i < n/sizeof(long); ++i)
1167 any = memslot->dirty_bitmap[i];
1168
1169 r = -EFAULT;
1170 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1171 goto out;
1172
1173 if (any)
1174 *is_dirty = 1;
1175
1176 r = 0;
1177 out:
1178 return r;
1179 }
1180
1181 int is_error_page(struct page *page)
1182 {
1183 return page == bad_page;
1184 }
1185 EXPORT_SYMBOL_GPL(is_error_page);
1186
1187 int is_error_pfn(pfn_t pfn)
1188 {
1189 return pfn == bad_pfn;
1190 }
1191 EXPORT_SYMBOL_GPL(is_error_pfn);
1192
1193 static inline unsigned long bad_hva(void)
1194 {
1195 return PAGE_OFFSET;
1196 }
1197
1198 int kvm_is_error_hva(unsigned long addr)
1199 {
1200 return addr == bad_hva();
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1203
1204 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1205 {
1206 int i;
1207
1208 for (i = 0; i < kvm->nmemslots; ++i) {
1209 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1210
1211 if (gfn >= memslot->base_gfn
1212 && gfn < memslot->base_gfn + memslot->npages)
1213 return memslot;
1214 }
1215 return NULL;
1216 }
1217 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1218
1219 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1220 {
1221 gfn = unalias_gfn(kvm, gfn);
1222 return gfn_to_memslot_unaliased(kvm, gfn);
1223 }
1224
1225 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1226 {
1227 int i;
1228
1229 gfn = unalias_gfn(kvm, gfn);
1230 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1231 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1232
1233 if (gfn >= memslot->base_gfn
1234 && gfn < memslot->base_gfn + memslot->npages)
1235 return 1;
1236 }
1237 return 0;
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1240
1241 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1242 {
1243 struct kvm_memory_slot *slot;
1244
1245 gfn = unalias_gfn(kvm, gfn);
1246 slot = gfn_to_memslot_unaliased(kvm, gfn);
1247 if (!slot)
1248 return bad_hva();
1249 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1250 }
1251 EXPORT_SYMBOL_GPL(gfn_to_hva);
1252
1253 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1254 {
1255 struct page *page[1];
1256 unsigned long addr;
1257 int npages;
1258 pfn_t pfn;
1259
1260 might_sleep();
1261
1262 addr = gfn_to_hva(kvm, gfn);
1263 if (kvm_is_error_hva(addr)) {
1264 get_page(bad_page);
1265 return page_to_pfn(bad_page);
1266 }
1267
1268 npages = get_user_pages_fast(addr, 1, 1, page);
1269
1270 if (unlikely(npages != 1)) {
1271 struct vm_area_struct *vma;
1272
1273 down_read(&current->mm->mmap_sem);
1274 vma = find_vma(current->mm, addr);
1275
1276 if (vma == NULL || addr < vma->vm_start ||
1277 !(vma->vm_flags & VM_PFNMAP)) {
1278 up_read(&current->mm->mmap_sem);
1279 get_page(bad_page);
1280 return page_to_pfn(bad_page);
1281 }
1282
1283 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1284 up_read(&current->mm->mmap_sem);
1285 BUG_ON(!kvm_is_mmio_pfn(pfn));
1286 } else
1287 pfn = page_to_pfn(page[0]);
1288
1289 return pfn;
1290 }
1291
1292 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1293
1294 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1295 {
1296 pfn_t pfn;
1297
1298 pfn = gfn_to_pfn(kvm, gfn);
1299 if (!kvm_is_mmio_pfn(pfn))
1300 return pfn_to_page(pfn);
1301
1302 WARN_ON(kvm_is_mmio_pfn(pfn));
1303
1304 get_page(bad_page);
1305 return bad_page;
1306 }
1307
1308 EXPORT_SYMBOL_GPL(gfn_to_page);
1309
1310 void kvm_release_page_clean(struct page *page)
1311 {
1312 kvm_release_pfn_clean(page_to_pfn(page));
1313 }
1314 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1315
1316 void kvm_release_pfn_clean(pfn_t pfn)
1317 {
1318 if (!kvm_is_mmio_pfn(pfn))
1319 put_page(pfn_to_page(pfn));
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1322
1323 void kvm_release_page_dirty(struct page *page)
1324 {
1325 kvm_release_pfn_dirty(page_to_pfn(page));
1326 }
1327 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1328
1329 void kvm_release_pfn_dirty(pfn_t pfn)
1330 {
1331 kvm_set_pfn_dirty(pfn);
1332 kvm_release_pfn_clean(pfn);
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1335
1336 void kvm_set_page_dirty(struct page *page)
1337 {
1338 kvm_set_pfn_dirty(page_to_pfn(page));
1339 }
1340 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1341
1342 void kvm_set_pfn_dirty(pfn_t pfn)
1343 {
1344 if (!kvm_is_mmio_pfn(pfn)) {
1345 struct page *page = pfn_to_page(pfn);
1346 if (!PageReserved(page))
1347 SetPageDirty(page);
1348 }
1349 }
1350 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1351
1352 void kvm_set_pfn_accessed(pfn_t pfn)
1353 {
1354 if (!kvm_is_mmio_pfn(pfn))
1355 mark_page_accessed(pfn_to_page(pfn));
1356 }
1357 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1358
1359 void kvm_get_pfn(pfn_t pfn)
1360 {
1361 if (!kvm_is_mmio_pfn(pfn))
1362 get_page(pfn_to_page(pfn));
1363 }
1364 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1365
1366 static int next_segment(unsigned long len, int offset)
1367 {
1368 if (len > PAGE_SIZE - offset)
1369 return PAGE_SIZE - offset;
1370 else
1371 return len;
1372 }
1373
1374 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1375 int len)
1376 {
1377 int r;
1378 unsigned long addr;
1379
1380 addr = gfn_to_hva(kvm, gfn);
1381 if (kvm_is_error_hva(addr))
1382 return -EFAULT;
1383 r = copy_from_user(data, (void __user *)addr + offset, len);
1384 if (r)
1385 return -EFAULT;
1386 return 0;
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1389
1390 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1391 {
1392 gfn_t gfn = gpa >> PAGE_SHIFT;
1393 int seg;
1394 int offset = offset_in_page(gpa);
1395 int ret;
1396
1397 while ((seg = next_segment(len, offset)) != 0) {
1398 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1399 if (ret < 0)
1400 return ret;
1401 offset = 0;
1402 len -= seg;
1403 data += seg;
1404 ++gfn;
1405 }
1406 return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(kvm_read_guest);
1409
1410 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1411 unsigned long len)
1412 {
1413 int r;
1414 unsigned long addr;
1415 gfn_t gfn = gpa >> PAGE_SHIFT;
1416 int offset = offset_in_page(gpa);
1417
1418 addr = gfn_to_hva(kvm, gfn);
1419 if (kvm_is_error_hva(addr))
1420 return -EFAULT;
1421 pagefault_disable();
1422 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1423 pagefault_enable();
1424 if (r)
1425 return -EFAULT;
1426 return 0;
1427 }
1428 EXPORT_SYMBOL(kvm_read_guest_atomic);
1429
1430 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1431 int offset, int len)
1432 {
1433 int r;
1434 unsigned long addr;
1435
1436 addr = gfn_to_hva(kvm, gfn);
1437 if (kvm_is_error_hva(addr))
1438 return -EFAULT;
1439 r = copy_to_user((void __user *)addr + offset, data, len);
1440 if (r)
1441 return -EFAULT;
1442 mark_page_dirty(kvm, gfn);
1443 return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1446
1447 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1448 unsigned long len)
1449 {
1450 gfn_t gfn = gpa >> PAGE_SHIFT;
1451 int seg;
1452 int offset = offset_in_page(gpa);
1453 int ret;
1454
1455 while ((seg = next_segment(len, offset)) != 0) {
1456 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1457 if (ret < 0)
1458 return ret;
1459 offset = 0;
1460 len -= seg;
1461 data += seg;
1462 ++gfn;
1463 }
1464 return 0;
1465 }
1466
1467 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1468 {
1469 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1470 }
1471 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1472
1473 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1474 {
1475 gfn_t gfn = gpa >> PAGE_SHIFT;
1476 int seg;
1477 int offset = offset_in_page(gpa);
1478 int ret;
1479
1480 while ((seg = next_segment(len, offset)) != 0) {
1481 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1482 if (ret < 0)
1483 return ret;
1484 offset = 0;
1485 len -= seg;
1486 ++gfn;
1487 }
1488 return 0;
1489 }
1490 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1491
1492 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1493 {
1494 struct kvm_memory_slot *memslot;
1495
1496 gfn = unalias_gfn(kvm, gfn);
1497 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1498 if (memslot && memslot->dirty_bitmap) {
1499 unsigned long rel_gfn = gfn - memslot->base_gfn;
1500
1501 /* avoid RMW */
1502 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1503 set_bit(rel_gfn, memslot->dirty_bitmap);
1504 }
1505 }
1506
1507 /*
1508 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1509 */
1510 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1511 {
1512 DEFINE_WAIT(wait);
1513
1514 for (;;) {
1515 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1516
1517 if (kvm_cpu_has_interrupt(vcpu) ||
1518 kvm_cpu_has_pending_timer(vcpu) ||
1519 kvm_arch_vcpu_runnable(vcpu)) {
1520 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1521 break;
1522 }
1523 if (signal_pending(current))
1524 break;
1525
1526 vcpu_put(vcpu);
1527 schedule();
1528 vcpu_load(vcpu);
1529 }
1530
1531 finish_wait(&vcpu->wq, &wait);
1532 }
1533
1534 void kvm_resched(struct kvm_vcpu *vcpu)
1535 {
1536 if (!need_resched())
1537 return;
1538 cond_resched();
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_resched);
1541
1542 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1543 {
1544 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1545 struct page *page;
1546
1547 if (vmf->pgoff == 0)
1548 page = virt_to_page(vcpu->run);
1549 #ifdef CONFIG_X86
1550 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1551 page = virt_to_page(vcpu->arch.pio_data);
1552 #endif
1553 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1554 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1555 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1556 #endif
1557 else
1558 return VM_FAULT_SIGBUS;
1559 get_page(page);
1560 vmf->page = page;
1561 return 0;
1562 }
1563
1564 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1565 .fault = kvm_vcpu_fault,
1566 };
1567
1568 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1569 {
1570 vma->vm_ops = &kvm_vcpu_vm_ops;
1571 return 0;
1572 }
1573
1574 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1575 {
1576 struct kvm_vcpu *vcpu = filp->private_data;
1577
1578 kvm_put_kvm(vcpu->kvm);
1579 return 0;
1580 }
1581
1582 static struct file_operations kvm_vcpu_fops = {
1583 .release = kvm_vcpu_release,
1584 .unlocked_ioctl = kvm_vcpu_ioctl,
1585 .compat_ioctl = kvm_vcpu_ioctl,
1586 .mmap = kvm_vcpu_mmap,
1587 };
1588
1589 /*
1590 * Allocates an inode for the vcpu.
1591 */
1592 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1593 {
1594 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1595 if (fd < 0)
1596 kvm_put_kvm(vcpu->kvm);
1597 return fd;
1598 }
1599
1600 /*
1601 * Creates some virtual cpus. Good luck creating more than one.
1602 */
1603 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1604 {
1605 int r;
1606 struct kvm_vcpu *vcpu;
1607
1608 if (!valid_vcpu(n))
1609 return -EINVAL;
1610
1611 vcpu = kvm_arch_vcpu_create(kvm, n);
1612 if (IS_ERR(vcpu))
1613 return PTR_ERR(vcpu);
1614
1615 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1616
1617 r = kvm_arch_vcpu_setup(vcpu);
1618 if (r)
1619 return r;
1620
1621 mutex_lock(&kvm->lock);
1622 if (kvm->vcpus[n]) {
1623 r = -EEXIST;
1624 goto vcpu_destroy;
1625 }
1626 kvm->vcpus[n] = vcpu;
1627 mutex_unlock(&kvm->lock);
1628
1629 /* Now it's all set up, let userspace reach it */
1630 kvm_get_kvm(kvm);
1631 r = create_vcpu_fd(vcpu);
1632 if (r < 0)
1633 goto unlink;
1634 return r;
1635
1636 unlink:
1637 mutex_lock(&kvm->lock);
1638 kvm->vcpus[n] = NULL;
1639 vcpu_destroy:
1640 mutex_unlock(&kvm->lock);
1641 kvm_arch_vcpu_destroy(vcpu);
1642 return r;
1643 }
1644
1645 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1646 {
1647 if (sigset) {
1648 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1649 vcpu->sigset_active = 1;
1650 vcpu->sigset = *sigset;
1651 } else
1652 vcpu->sigset_active = 0;
1653 return 0;
1654 }
1655
1656 static long kvm_vcpu_ioctl(struct file *filp,
1657 unsigned int ioctl, unsigned long arg)
1658 {
1659 struct kvm_vcpu *vcpu = filp->private_data;
1660 void __user *argp = (void __user *)arg;
1661 int r;
1662 struct kvm_fpu *fpu = NULL;
1663 struct kvm_sregs *kvm_sregs = NULL;
1664
1665 if (vcpu->kvm->mm != current->mm)
1666 return -EIO;
1667 switch (ioctl) {
1668 case KVM_RUN:
1669 r = -EINVAL;
1670 if (arg)
1671 goto out;
1672 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1673 break;
1674 case KVM_GET_REGS: {
1675 struct kvm_regs *kvm_regs;
1676
1677 r = -ENOMEM;
1678 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1679 if (!kvm_regs)
1680 goto out;
1681 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1682 if (r)
1683 goto out_free1;
1684 r = -EFAULT;
1685 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1686 goto out_free1;
1687 r = 0;
1688 out_free1:
1689 kfree(kvm_regs);
1690 break;
1691 }
1692 case KVM_SET_REGS: {
1693 struct kvm_regs *kvm_regs;
1694
1695 r = -ENOMEM;
1696 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1697 if (!kvm_regs)
1698 goto out;
1699 r = -EFAULT;
1700 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1701 goto out_free2;
1702 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1703 if (r)
1704 goto out_free2;
1705 r = 0;
1706 out_free2:
1707 kfree(kvm_regs);
1708 break;
1709 }
1710 case KVM_GET_SREGS: {
1711 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1712 r = -ENOMEM;
1713 if (!kvm_sregs)
1714 goto out;
1715 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1716 if (r)
1717 goto out;
1718 r = -EFAULT;
1719 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1720 goto out;
1721 r = 0;
1722 break;
1723 }
1724 case KVM_SET_SREGS: {
1725 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1726 r = -ENOMEM;
1727 if (!kvm_sregs)
1728 goto out;
1729 r = -EFAULT;
1730 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1731 goto out;
1732 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1733 if (r)
1734 goto out;
1735 r = 0;
1736 break;
1737 }
1738 case KVM_GET_MP_STATE: {
1739 struct kvm_mp_state mp_state;
1740
1741 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1742 if (r)
1743 goto out;
1744 r = -EFAULT;
1745 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1746 goto out;
1747 r = 0;
1748 break;
1749 }
1750 case KVM_SET_MP_STATE: {
1751 struct kvm_mp_state mp_state;
1752
1753 r = -EFAULT;
1754 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1755 goto out;
1756 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1757 if (r)
1758 goto out;
1759 r = 0;
1760 break;
1761 }
1762 case KVM_TRANSLATE: {
1763 struct kvm_translation tr;
1764
1765 r = -EFAULT;
1766 if (copy_from_user(&tr, argp, sizeof tr))
1767 goto out;
1768 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1769 if (r)
1770 goto out;
1771 r = -EFAULT;
1772 if (copy_to_user(argp, &tr, sizeof tr))
1773 goto out;
1774 r = 0;
1775 break;
1776 }
1777 case KVM_SET_GUEST_DEBUG: {
1778 struct kvm_guest_debug dbg;
1779
1780 r = -EFAULT;
1781 if (copy_from_user(&dbg, argp, sizeof dbg))
1782 goto out;
1783 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1784 if (r)
1785 goto out;
1786 r = 0;
1787 break;
1788 }
1789 case KVM_SET_SIGNAL_MASK: {
1790 struct kvm_signal_mask __user *sigmask_arg = argp;
1791 struct kvm_signal_mask kvm_sigmask;
1792 sigset_t sigset, *p;
1793
1794 p = NULL;
1795 if (argp) {
1796 r = -EFAULT;
1797 if (copy_from_user(&kvm_sigmask, argp,
1798 sizeof kvm_sigmask))
1799 goto out;
1800 r = -EINVAL;
1801 if (kvm_sigmask.len != sizeof sigset)
1802 goto out;
1803 r = -EFAULT;
1804 if (copy_from_user(&sigset, sigmask_arg->sigset,
1805 sizeof sigset))
1806 goto out;
1807 p = &sigset;
1808 }
1809 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1810 break;
1811 }
1812 case KVM_GET_FPU: {
1813 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1814 r = -ENOMEM;
1815 if (!fpu)
1816 goto out;
1817 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1818 if (r)
1819 goto out;
1820 r = -EFAULT;
1821 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1822 goto out;
1823 r = 0;
1824 break;
1825 }
1826 case KVM_SET_FPU: {
1827 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1828 r = -ENOMEM;
1829 if (!fpu)
1830 goto out;
1831 r = -EFAULT;
1832 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1833 goto out;
1834 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1835 if (r)
1836 goto out;
1837 r = 0;
1838 break;
1839 }
1840 default:
1841 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1842 }
1843 out:
1844 kfree(fpu);
1845 kfree(kvm_sregs);
1846 return r;
1847 }
1848
1849 static long kvm_vm_ioctl(struct file *filp,
1850 unsigned int ioctl, unsigned long arg)
1851 {
1852 struct kvm *kvm = filp->private_data;
1853 void __user *argp = (void __user *)arg;
1854 int r;
1855
1856 if (kvm->mm != current->mm)
1857 return -EIO;
1858 switch (ioctl) {
1859 case KVM_CREATE_VCPU:
1860 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1861 if (r < 0)
1862 goto out;
1863 break;
1864 case KVM_SET_USER_MEMORY_REGION: {
1865 struct kvm_userspace_memory_region kvm_userspace_mem;
1866
1867 r = -EFAULT;
1868 if (copy_from_user(&kvm_userspace_mem, argp,
1869 sizeof kvm_userspace_mem))
1870 goto out;
1871
1872 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1873 if (r)
1874 goto out;
1875 break;
1876 }
1877 case KVM_GET_DIRTY_LOG: {
1878 struct kvm_dirty_log log;
1879
1880 r = -EFAULT;
1881 if (copy_from_user(&log, argp, sizeof log))
1882 goto out;
1883 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1884 if (r)
1885 goto out;
1886 break;
1887 }
1888 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1889 case KVM_REGISTER_COALESCED_MMIO: {
1890 struct kvm_coalesced_mmio_zone zone;
1891 r = -EFAULT;
1892 if (copy_from_user(&zone, argp, sizeof zone))
1893 goto out;
1894 r = -ENXIO;
1895 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1896 if (r)
1897 goto out;
1898 r = 0;
1899 break;
1900 }
1901 case KVM_UNREGISTER_COALESCED_MMIO: {
1902 struct kvm_coalesced_mmio_zone zone;
1903 r = -EFAULT;
1904 if (copy_from_user(&zone, argp, sizeof zone))
1905 goto out;
1906 r = -ENXIO;
1907 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1908 if (r)
1909 goto out;
1910 r = 0;
1911 break;
1912 }
1913 #endif
1914 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1915 case KVM_ASSIGN_PCI_DEVICE: {
1916 struct kvm_assigned_pci_dev assigned_dev;
1917
1918 r = -EFAULT;
1919 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1920 goto out;
1921 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1922 if (r)
1923 goto out;
1924 break;
1925 }
1926 case KVM_ASSIGN_IRQ: {
1927 struct kvm_assigned_irq assigned_irq;
1928
1929 r = -EFAULT;
1930 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1931 goto out;
1932 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1933 if (r)
1934 goto out;
1935 break;
1936 }
1937 #endif
1938 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
1939 case KVM_DEASSIGN_PCI_DEVICE: {
1940 struct kvm_assigned_pci_dev assigned_dev;
1941
1942 r = -EFAULT;
1943 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1944 goto out;
1945 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
1946 if (r)
1947 goto out;
1948 break;
1949 }
1950 #endif
1951 #ifdef KVM_CAP_IRQ_ROUTING
1952 case KVM_SET_GSI_ROUTING: {
1953 struct kvm_irq_routing routing;
1954 struct kvm_irq_routing __user *urouting;
1955 struct kvm_irq_routing_entry *entries;
1956
1957 r = -EFAULT;
1958 if (copy_from_user(&routing, argp, sizeof(routing)))
1959 goto out;
1960 r = -EINVAL;
1961 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
1962 goto out;
1963 if (routing.flags)
1964 goto out;
1965 r = -ENOMEM;
1966 entries = vmalloc(routing.nr * sizeof(*entries));
1967 if (!entries)
1968 goto out;
1969 r = -EFAULT;
1970 urouting = argp;
1971 if (copy_from_user(entries, urouting->entries,
1972 routing.nr * sizeof(*entries)))
1973 goto out_free_irq_routing;
1974 r = kvm_set_irq_routing(kvm, entries, routing.nr,
1975 routing.flags);
1976 out_free_irq_routing:
1977 vfree(entries);
1978 break;
1979 }
1980 #endif
1981 default:
1982 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1983 }
1984 out:
1985 return r;
1986 }
1987
1988 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1989 {
1990 struct page *page[1];
1991 unsigned long addr;
1992 int npages;
1993 gfn_t gfn = vmf->pgoff;
1994 struct kvm *kvm = vma->vm_file->private_data;
1995
1996 addr = gfn_to_hva(kvm, gfn);
1997 if (kvm_is_error_hva(addr))
1998 return VM_FAULT_SIGBUS;
1999
2000 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2001 NULL);
2002 if (unlikely(npages != 1))
2003 return VM_FAULT_SIGBUS;
2004
2005 vmf->page = page[0];
2006 return 0;
2007 }
2008
2009 static struct vm_operations_struct kvm_vm_vm_ops = {
2010 .fault = kvm_vm_fault,
2011 };
2012
2013 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2014 {
2015 vma->vm_ops = &kvm_vm_vm_ops;
2016 return 0;
2017 }
2018
2019 static struct file_operations kvm_vm_fops = {
2020 .release = kvm_vm_release,
2021 .unlocked_ioctl = kvm_vm_ioctl,
2022 .compat_ioctl = kvm_vm_ioctl,
2023 .mmap = kvm_vm_mmap,
2024 };
2025
2026 static int kvm_dev_ioctl_create_vm(void)
2027 {
2028 int fd;
2029 struct kvm *kvm;
2030
2031 kvm = kvm_create_vm();
2032 if (IS_ERR(kvm))
2033 return PTR_ERR(kvm);
2034 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2035 if (fd < 0)
2036 kvm_put_kvm(kvm);
2037
2038 return fd;
2039 }
2040
2041 static long kvm_dev_ioctl_check_extension_generic(long arg)
2042 {
2043 switch (arg) {
2044 case KVM_CAP_USER_MEMORY:
2045 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2046 return 1;
2047 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2048 case KVM_CAP_IRQ_ROUTING:
2049 return 1;
2050 #endif
2051 default:
2052 break;
2053 }
2054 return kvm_dev_ioctl_check_extension(arg);
2055 }
2056
2057 static long kvm_dev_ioctl(struct file *filp,
2058 unsigned int ioctl, unsigned long arg)
2059 {
2060 long r = -EINVAL;
2061
2062 switch (ioctl) {
2063 case KVM_GET_API_VERSION:
2064 r = -EINVAL;
2065 if (arg)
2066 goto out;
2067 r = KVM_API_VERSION;
2068 break;
2069 case KVM_CREATE_VM:
2070 r = -EINVAL;
2071 if (arg)
2072 goto out;
2073 r = kvm_dev_ioctl_create_vm();
2074 break;
2075 case KVM_CHECK_EXTENSION:
2076 r = kvm_dev_ioctl_check_extension_generic(arg);
2077 break;
2078 case KVM_GET_VCPU_MMAP_SIZE:
2079 r = -EINVAL;
2080 if (arg)
2081 goto out;
2082 r = PAGE_SIZE; /* struct kvm_run */
2083 #ifdef CONFIG_X86
2084 r += PAGE_SIZE; /* pio data page */
2085 #endif
2086 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2087 r += PAGE_SIZE; /* coalesced mmio ring page */
2088 #endif
2089 break;
2090 case KVM_TRACE_ENABLE:
2091 case KVM_TRACE_PAUSE:
2092 case KVM_TRACE_DISABLE:
2093 r = kvm_trace_ioctl(ioctl, arg);
2094 break;
2095 default:
2096 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2097 }
2098 out:
2099 return r;
2100 }
2101
2102 static struct file_operations kvm_chardev_ops = {
2103 .unlocked_ioctl = kvm_dev_ioctl,
2104 .compat_ioctl = kvm_dev_ioctl,
2105 };
2106
2107 static struct miscdevice kvm_dev = {
2108 KVM_MINOR,
2109 "kvm",
2110 &kvm_chardev_ops,
2111 };
2112
2113 static void hardware_enable(void *junk)
2114 {
2115 int cpu = raw_smp_processor_id();
2116
2117 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2118 return;
2119 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2120 kvm_arch_hardware_enable(NULL);
2121 }
2122
2123 static void hardware_disable(void *junk)
2124 {
2125 int cpu = raw_smp_processor_id();
2126
2127 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2128 return;
2129 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2130 kvm_arch_hardware_disable(NULL);
2131 }
2132
2133 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2134 void *v)
2135 {
2136 int cpu = (long)v;
2137
2138 val &= ~CPU_TASKS_FROZEN;
2139 switch (val) {
2140 case CPU_DYING:
2141 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2142 cpu);
2143 hardware_disable(NULL);
2144 break;
2145 case CPU_UP_CANCELED:
2146 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2147 cpu);
2148 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2149 break;
2150 case CPU_ONLINE:
2151 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2152 cpu);
2153 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2154 break;
2155 }
2156 return NOTIFY_OK;
2157 }
2158
2159
2160 asmlinkage void kvm_handle_fault_on_reboot(void)
2161 {
2162 if (kvm_rebooting)
2163 /* spin while reset goes on */
2164 while (true)
2165 ;
2166 /* Fault while not rebooting. We want the trace. */
2167 BUG();
2168 }
2169 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2170
2171 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2172 void *v)
2173 {
2174 if (val == SYS_RESTART) {
2175 /*
2176 * Some (well, at least mine) BIOSes hang on reboot if
2177 * in vmx root mode.
2178 */
2179 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2180 kvm_rebooting = true;
2181 on_each_cpu(hardware_disable, NULL, 1);
2182 }
2183 return NOTIFY_OK;
2184 }
2185
2186 static struct notifier_block kvm_reboot_notifier = {
2187 .notifier_call = kvm_reboot,
2188 .priority = 0,
2189 };
2190
2191 void kvm_io_bus_init(struct kvm_io_bus *bus)
2192 {
2193 memset(bus, 0, sizeof(*bus));
2194 }
2195
2196 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2197 {
2198 int i;
2199
2200 for (i = 0; i < bus->dev_count; i++) {
2201 struct kvm_io_device *pos = bus->devs[i];
2202
2203 kvm_iodevice_destructor(pos);
2204 }
2205 }
2206
2207 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2208 gpa_t addr, int len, int is_write)
2209 {
2210 int i;
2211
2212 for (i = 0; i < bus->dev_count; i++) {
2213 struct kvm_io_device *pos = bus->devs[i];
2214
2215 if (pos->in_range(pos, addr, len, is_write))
2216 return pos;
2217 }
2218
2219 return NULL;
2220 }
2221
2222 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2223 {
2224 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2225
2226 bus->devs[bus->dev_count++] = dev;
2227 }
2228
2229 static struct notifier_block kvm_cpu_notifier = {
2230 .notifier_call = kvm_cpu_hotplug,
2231 .priority = 20, /* must be > scheduler priority */
2232 };
2233
2234 static int vm_stat_get(void *_offset, u64 *val)
2235 {
2236 unsigned offset = (long)_offset;
2237 struct kvm *kvm;
2238
2239 *val = 0;
2240 spin_lock(&kvm_lock);
2241 list_for_each_entry(kvm, &vm_list, vm_list)
2242 *val += *(u32 *)((void *)kvm + offset);
2243 spin_unlock(&kvm_lock);
2244 return 0;
2245 }
2246
2247 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2248
2249 static int vcpu_stat_get(void *_offset, u64 *val)
2250 {
2251 unsigned offset = (long)_offset;
2252 struct kvm *kvm;
2253 struct kvm_vcpu *vcpu;
2254 int i;
2255
2256 *val = 0;
2257 spin_lock(&kvm_lock);
2258 list_for_each_entry(kvm, &vm_list, vm_list)
2259 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2260 vcpu = kvm->vcpus[i];
2261 if (vcpu)
2262 *val += *(u32 *)((void *)vcpu + offset);
2263 }
2264 spin_unlock(&kvm_lock);
2265 return 0;
2266 }
2267
2268 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2269
2270 static struct file_operations *stat_fops[] = {
2271 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2272 [KVM_STAT_VM] = &vm_stat_fops,
2273 };
2274
2275 static void kvm_init_debug(void)
2276 {
2277 struct kvm_stats_debugfs_item *p;
2278
2279 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2280 for (p = debugfs_entries; p->name; ++p)
2281 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2282 (void *)(long)p->offset,
2283 stat_fops[p->kind]);
2284 }
2285
2286 static void kvm_exit_debug(void)
2287 {
2288 struct kvm_stats_debugfs_item *p;
2289
2290 for (p = debugfs_entries; p->name; ++p)
2291 debugfs_remove(p->dentry);
2292 debugfs_remove(kvm_debugfs_dir);
2293 }
2294
2295 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2296 {
2297 hardware_disable(NULL);
2298 return 0;
2299 }
2300
2301 static int kvm_resume(struct sys_device *dev)
2302 {
2303 hardware_enable(NULL);
2304 return 0;
2305 }
2306
2307 static struct sysdev_class kvm_sysdev_class = {
2308 .name = "kvm",
2309 .suspend = kvm_suspend,
2310 .resume = kvm_resume,
2311 };
2312
2313 static struct sys_device kvm_sysdev = {
2314 .id = 0,
2315 .cls = &kvm_sysdev_class,
2316 };
2317
2318 struct page *bad_page;
2319 pfn_t bad_pfn;
2320
2321 static inline
2322 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2323 {
2324 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2325 }
2326
2327 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2328 {
2329 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2330
2331 kvm_arch_vcpu_load(vcpu, cpu);
2332 }
2333
2334 static void kvm_sched_out(struct preempt_notifier *pn,
2335 struct task_struct *next)
2336 {
2337 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2338
2339 kvm_arch_vcpu_put(vcpu);
2340 }
2341
2342 int kvm_init(void *opaque, unsigned int vcpu_size,
2343 struct module *module)
2344 {
2345 int r;
2346 int cpu;
2347
2348 kvm_init_debug();
2349
2350 r = kvm_arch_init(opaque);
2351 if (r)
2352 goto out_fail;
2353
2354 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2355
2356 if (bad_page == NULL) {
2357 r = -ENOMEM;
2358 goto out;
2359 }
2360
2361 bad_pfn = page_to_pfn(bad_page);
2362
2363 if (!alloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2364 r = -ENOMEM;
2365 goto out_free_0;
2366 }
2367
2368 r = kvm_arch_hardware_setup();
2369 if (r < 0)
2370 goto out_free_0a;
2371
2372 for_each_online_cpu(cpu) {
2373 smp_call_function_single(cpu,
2374 kvm_arch_check_processor_compat,
2375 &r, 1);
2376 if (r < 0)
2377 goto out_free_1;
2378 }
2379
2380 on_each_cpu(hardware_enable, NULL, 1);
2381 r = register_cpu_notifier(&kvm_cpu_notifier);
2382 if (r)
2383 goto out_free_2;
2384 register_reboot_notifier(&kvm_reboot_notifier);
2385
2386 r = sysdev_class_register(&kvm_sysdev_class);
2387 if (r)
2388 goto out_free_3;
2389
2390 r = sysdev_register(&kvm_sysdev);
2391 if (r)
2392 goto out_free_4;
2393
2394 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2395 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2396 __alignof__(struct kvm_vcpu),
2397 0, NULL);
2398 if (!kvm_vcpu_cache) {
2399 r = -ENOMEM;
2400 goto out_free_5;
2401 }
2402
2403 kvm_chardev_ops.owner = module;
2404 kvm_vm_fops.owner = module;
2405 kvm_vcpu_fops.owner = module;
2406
2407 r = misc_register(&kvm_dev);
2408 if (r) {
2409 printk(KERN_ERR "kvm: misc device register failed\n");
2410 goto out_free;
2411 }
2412
2413 kvm_preempt_ops.sched_in = kvm_sched_in;
2414 kvm_preempt_ops.sched_out = kvm_sched_out;
2415 #ifndef CONFIG_X86
2416 msi2intx = 0;
2417 #endif
2418
2419 return 0;
2420
2421 out_free:
2422 kmem_cache_destroy(kvm_vcpu_cache);
2423 out_free_5:
2424 sysdev_unregister(&kvm_sysdev);
2425 out_free_4:
2426 sysdev_class_unregister(&kvm_sysdev_class);
2427 out_free_3:
2428 unregister_reboot_notifier(&kvm_reboot_notifier);
2429 unregister_cpu_notifier(&kvm_cpu_notifier);
2430 out_free_2:
2431 on_each_cpu(hardware_disable, NULL, 1);
2432 out_free_1:
2433 kvm_arch_hardware_unsetup();
2434 out_free_0a:
2435 free_cpumask_var(cpus_hardware_enabled);
2436 out_free_0:
2437 __free_page(bad_page);
2438 out:
2439 kvm_arch_exit();
2440 kvm_exit_debug();
2441 out_fail:
2442 return r;
2443 }
2444 EXPORT_SYMBOL_GPL(kvm_init);
2445
2446 void kvm_exit(void)
2447 {
2448 kvm_trace_cleanup();
2449 misc_deregister(&kvm_dev);
2450 kmem_cache_destroy(kvm_vcpu_cache);
2451 sysdev_unregister(&kvm_sysdev);
2452 sysdev_class_unregister(&kvm_sysdev_class);
2453 unregister_reboot_notifier(&kvm_reboot_notifier);
2454 unregister_cpu_notifier(&kvm_cpu_notifier);
2455 on_each_cpu(hardware_disable, NULL, 1);
2456 kvm_arch_hardware_unsetup();
2457 kvm_arch_exit();
2458 kvm_exit_debug();
2459 free_cpumask_var(cpus_hardware_enabled);
2460 __free_page(bad_page);
2461 }
2462 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.078999 seconds and 4 git commands to generate.