Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71
72 /*
73 * Ordering of locks:
74 *
75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76 */
77
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
85
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90
91 struct dentry *kvm_debugfs_dir;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
93
94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
95 unsigned long arg);
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
98 unsigned long arg);
99 #endif
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
102
103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
104
105 static void kvm_release_pfn_dirty(pfn_t pfn);
106 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
107
108 __visible bool kvm_rebooting;
109 EXPORT_SYMBOL_GPL(kvm_rebooting);
110
111 static bool largepages_enabled = true;
112
113 bool kvm_is_reserved_pfn(pfn_t pfn)
114 {
115 if (pfn_valid(pfn))
116 return PageReserved(pfn_to_page(pfn));
117
118 return true;
119 }
120
121 /*
122 * Switches to specified vcpu, until a matching vcpu_put()
123 */
124 int vcpu_load(struct kvm_vcpu *vcpu)
125 {
126 int cpu;
127
128 if (mutex_lock_killable(&vcpu->mutex))
129 return -EINTR;
130 cpu = get_cpu();
131 preempt_notifier_register(&vcpu->preempt_notifier);
132 kvm_arch_vcpu_load(vcpu, cpu);
133 put_cpu();
134 return 0;
135 }
136
137 void vcpu_put(struct kvm_vcpu *vcpu)
138 {
139 preempt_disable();
140 kvm_arch_vcpu_put(vcpu);
141 preempt_notifier_unregister(&vcpu->preempt_notifier);
142 preempt_enable();
143 mutex_unlock(&vcpu->mutex);
144 }
145
146 static void ack_flush(void *_completed)
147 {
148 }
149
150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 {
152 int i, cpu, me;
153 cpumask_var_t cpus;
154 bool called = true;
155 struct kvm_vcpu *vcpu;
156
157 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158
159 me = get_cpu();
160 kvm_for_each_vcpu(i, vcpu, kvm) {
161 kvm_make_request(req, vcpu);
162 cpu = vcpu->cpu;
163
164 /* Set ->requests bit before we read ->mode */
165 smp_mb();
166
167 if (cpus != NULL && cpu != -1 && cpu != me &&
168 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
169 cpumask_set_cpu(cpu, cpus);
170 }
171 if (unlikely(cpus == NULL))
172 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
173 else if (!cpumask_empty(cpus))
174 smp_call_function_many(cpus, ack_flush, NULL, 1);
175 else
176 called = false;
177 put_cpu();
178 free_cpumask_var(cpus);
179 return called;
180 }
181
182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
183 void kvm_flush_remote_tlbs(struct kvm *kvm)
184 {
185 long dirty_count = kvm->tlbs_dirty;
186
187 smp_mb();
188 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
189 ++kvm->stat.remote_tlb_flush;
190 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
191 }
192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
193 #endif
194
195 void kvm_reload_remote_mmus(struct kvm *kvm)
196 {
197 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
198 }
199
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
201 {
202 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
203 }
204
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
206 {
207 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
208 }
209
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
211 {
212 struct page *page;
213 int r;
214
215 mutex_init(&vcpu->mutex);
216 vcpu->cpu = -1;
217 vcpu->kvm = kvm;
218 vcpu->vcpu_id = id;
219 vcpu->pid = NULL;
220 init_waitqueue_head(&vcpu->wq);
221 kvm_async_pf_vcpu_init(vcpu);
222
223 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
224 if (!page) {
225 r = -ENOMEM;
226 goto fail;
227 }
228 vcpu->run = page_address(page);
229
230 kvm_vcpu_set_in_spin_loop(vcpu, false);
231 kvm_vcpu_set_dy_eligible(vcpu, false);
232 vcpu->preempted = false;
233
234 r = kvm_arch_vcpu_init(vcpu);
235 if (r < 0)
236 goto fail_free_run;
237 return 0;
238
239 fail_free_run:
240 free_page((unsigned long)vcpu->run);
241 fail:
242 return r;
243 }
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 {
248 put_pid(vcpu->pid);
249 kvm_arch_vcpu_uninit(vcpu);
250 free_page((unsigned long)vcpu->run);
251 }
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 {
257 return container_of(mn, struct kvm, mmu_notifier);
258 }
259
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261 struct mm_struct *mm,
262 unsigned long address)
263 {
264 struct kvm *kvm = mmu_notifier_to_kvm(mn);
265 int need_tlb_flush, idx;
266
267 /*
268 * When ->invalidate_page runs, the linux pte has been zapped
269 * already but the page is still allocated until
270 * ->invalidate_page returns. So if we increase the sequence
271 * here the kvm page fault will notice if the spte can't be
272 * established because the page is going to be freed. If
273 * instead the kvm page fault establishes the spte before
274 * ->invalidate_page runs, kvm_unmap_hva will release it
275 * before returning.
276 *
277 * The sequence increase only need to be seen at spin_unlock
278 * time, and not at spin_lock time.
279 *
280 * Increasing the sequence after the spin_unlock would be
281 * unsafe because the kvm page fault could then establish the
282 * pte after kvm_unmap_hva returned, without noticing the page
283 * is going to be freed.
284 */
285 idx = srcu_read_lock(&kvm->srcu);
286 spin_lock(&kvm->mmu_lock);
287
288 kvm->mmu_notifier_seq++;
289 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290 /* we've to flush the tlb before the pages can be freed */
291 if (need_tlb_flush)
292 kvm_flush_remote_tlbs(kvm);
293
294 spin_unlock(&kvm->mmu_lock);
295
296 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
297
298 srcu_read_unlock(&kvm->srcu, idx);
299 }
300
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 struct mm_struct *mm,
303 unsigned long address,
304 pte_t pte)
305 {
306 struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 int idx;
308
309 idx = srcu_read_lock(&kvm->srcu);
310 spin_lock(&kvm->mmu_lock);
311 kvm->mmu_notifier_seq++;
312 kvm_set_spte_hva(kvm, address, pte);
313 spin_unlock(&kvm->mmu_lock);
314 srcu_read_unlock(&kvm->srcu, idx);
315 }
316
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 struct mm_struct *mm,
319 unsigned long start,
320 unsigned long end)
321 {
322 struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 int need_tlb_flush = 0, idx;
324
325 idx = srcu_read_lock(&kvm->srcu);
326 spin_lock(&kvm->mmu_lock);
327 /*
328 * The count increase must become visible at unlock time as no
329 * spte can be established without taking the mmu_lock and
330 * count is also read inside the mmu_lock critical section.
331 */
332 kvm->mmu_notifier_count++;
333 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 need_tlb_flush |= kvm->tlbs_dirty;
335 /* we've to flush the tlb before the pages can be freed */
336 if (need_tlb_flush)
337 kvm_flush_remote_tlbs(kvm);
338
339 spin_unlock(&kvm->mmu_lock);
340 srcu_read_unlock(&kvm->srcu, idx);
341 }
342
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 struct mm_struct *mm,
345 unsigned long start,
346 unsigned long end)
347 {
348 struct kvm *kvm = mmu_notifier_to_kvm(mn);
349
350 spin_lock(&kvm->mmu_lock);
351 /*
352 * This sequence increase will notify the kvm page fault that
353 * the page that is going to be mapped in the spte could have
354 * been freed.
355 */
356 kvm->mmu_notifier_seq++;
357 smp_wmb();
358 /*
359 * The above sequence increase must be visible before the
360 * below count decrease, which is ensured by the smp_wmb above
361 * in conjunction with the smp_rmb in mmu_notifier_retry().
362 */
363 kvm->mmu_notifier_count--;
364 spin_unlock(&kvm->mmu_lock);
365
366 BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 struct mm_struct *mm,
371 unsigned long start,
372 unsigned long end)
373 {
374 struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 int young, idx;
376
377 idx = srcu_read_lock(&kvm->srcu);
378 spin_lock(&kvm->mmu_lock);
379
380 young = kvm_age_hva(kvm, start, end);
381 if (young)
382 kvm_flush_remote_tlbs(kvm);
383
384 spin_unlock(&kvm->mmu_lock);
385 srcu_read_unlock(&kvm->srcu, idx);
386
387 return young;
388 }
389
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391 struct mm_struct *mm,
392 unsigned long address)
393 {
394 struct kvm *kvm = mmu_notifier_to_kvm(mn);
395 int young, idx;
396
397 idx = srcu_read_lock(&kvm->srcu);
398 spin_lock(&kvm->mmu_lock);
399 young = kvm_test_age_hva(kvm, address);
400 spin_unlock(&kvm->mmu_lock);
401 srcu_read_unlock(&kvm->srcu, idx);
402
403 return young;
404 }
405
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407 struct mm_struct *mm)
408 {
409 struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 int idx;
411
412 idx = srcu_read_lock(&kvm->srcu);
413 kvm_arch_flush_shadow_all(kvm);
414 srcu_read_unlock(&kvm->srcu, idx);
415 }
416
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418 .invalidate_page = kvm_mmu_notifier_invalidate_page,
419 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
420 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
421 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
422 .test_young = kvm_mmu_notifier_test_young,
423 .change_pte = kvm_mmu_notifier_change_pte,
424 .release = kvm_mmu_notifier_release,
425 };
426
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432
433 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437 return 0;
438 }
439
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441
442 static struct kvm_memslots *kvm_alloc_memslots(void)
443 {
444 int i;
445 struct kvm_memslots *slots;
446
447 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
448 if (!slots)
449 return NULL;
450
451 /*
452 * Init kvm generation close to the maximum to easily test the
453 * code of handling generation number wrap-around.
454 */
455 slots->generation = -150;
456 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
457 slots->id_to_index[i] = slots->memslots[i].id = i;
458
459 return slots;
460 }
461
462 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
463 {
464 if (!memslot->dirty_bitmap)
465 return;
466
467 kvfree(memslot->dirty_bitmap);
468 memslot->dirty_bitmap = NULL;
469 }
470
471 /*
472 * Free any memory in @free but not in @dont.
473 */
474 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
475 struct kvm_memory_slot *dont)
476 {
477 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
478 kvm_destroy_dirty_bitmap(free);
479
480 kvm_arch_free_memslot(kvm, free, dont);
481
482 free->npages = 0;
483 }
484
485 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
486 {
487 struct kvm_memory_slot *memslot;
488
489 if (!slots)
490 return;
491
492 kvm_for_each_memslot(memslot, slots)
493 kvm_free_memslot(kvm, memslot, NULL);
494
495 kvfree(slots);
496 }
497
498 static struct kvm *kvm_create_vm(unsigned long type)
499 {
500 int r, i;
501 struct kvm *kvm = kvm_arch_alloc_vm();
502
503 if (!kvm)
504 return ERR_PTR(-ENOMEM);
505
506 r = kvm_arch_init_vm(kvm, type);
507 if (r)
508 goto out_err_no_disable;
509
510 r = hardware_enable_all();
511 if (r)
512 goto out_err_no_disable;
513
514 #ifdef CONFIG_HAVE_KVM_IRQFD
515 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
516 #endif
517
518 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
519
520 r = -ENOMEM;
521 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
522 kvm->memslots[i] = kvm_alloc_memslots();
523 if (!kvm->memslots[i])
524 goto out_err_no_srcu;
525 }
526
527 if (init_srcu_struct(&kvm->srcu))
528 goto out_err_no_srcu;
529 if (init_srcu_struct(&kvm->irq_srcu))
530 goto out_err_no_irq_srcu;
531 for (i = 0; i < KVM_NR_BUSES; i++) {
532 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
533 GFP_KERNEL);
534 if (!kvm->buses[i])
535 goto out_err;
536 }
537
538 spin_lock_init(&kvm->mmu_lock);
539 kvm->mm = current->mm;
540 atomic_inc(&kvm->mm->mm_count);
541 kvm_eventfd_init(kvm);
542 mutex_init(&kvm->lock);
543 mutex_init(&kvm->irq_lock);
544 mutex_init(&kvm->slots_lock);
545 atomic_set(&kvm->users_count, 1);
546 INIT_LIST_HEAD(&kvm->devices);
547
548 r = kvm_init_mmu_notifier(kvm);
549 if (r)
550 goto out_err;
551
552 spin_lock(&kvm_lock);
553 list_add(&kvm->vm_list, &vm_list);
554 spin_unlock(&kvm_lock);
555
556 preempt_notifier_inc();
557
558 return kvm;
559
560 out_err:
561 cleanup_srcu_struct(&kvm->irq_srcu);
562 out_err_no_irq_srcu:
563 cleanup_srcu_struct(&kvm->srcu);
564 out_err_no_srcu:
565 hardware_disable_all();
566 out_err_no_disable:
567 for (i = 0; i < KVM_NR_BUSES; i++)
568 kfree(kvm->buses[i]);
569 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
570 kvm_free_memslots(kvm, kvm->memslots[i]);
571 kvm_arch_free_vm(kvm);
572 return ERR_PTR(r);
573 }
574
575 /*
576 * Avoid using vmalloc for a small buffer.
577 * Should not be used when the size is statically known.
578 */
579 void *kvm_kvzalloc(unsigned long size)
580 {
581 if (size > PAGE_SIZE)
582 return vzalloc(size);
583 else
584 return kzalloc(size, GFP_KERNEL);
585 }
586
587 static void kvm_destroy_devices(struct kvm *kvm)
588 {
589 struct list_head *node, *tmp;
590
591 list_for_each_safe(node, tmp, &kvm->devices) {
592 struct kvm_device *dev =
593 list_entry(node, struct kvm_device, vm_node);
594
595 list_del(node);
596 dev->ops->destroy(dev);
597 }
598 }
599
600 static void kvm_destroy_vm(struct kvm *kvm)
601 {
602 int i;
603 struct mm_struct *mm = kvm->mm;
604
605 kvm_arch_sync_events(kvm);
606 spin_lock(&kvm_lock);
607 list_del(&kvm->vm_list);
608 spin_unlock(&kvm_lock);
609 kvm_free_irq_routing(kvm);
610 for (i = 0; i < KVM_NR_BUSES; i++)
611 kvm_io_bus_destroy(kvm->buses[i]);
612 kvm_coalesced_mmio_free(kvm);
613 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
614 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
615 #else
616 kvm_arch_flush_shadow_all(kvm);
617 #endif
618 kvm_arch_destroy_vm(kvm);
619 kvm_destroy_devices(kvm);
620 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
621 kvm_free_memslots(kvm, kvm->memslots[i]);
622 cleanup_srcu_struct(&kvm->irq_srcu);
623 cleanup_srcu_struct(&kvm->srcu);
624 kvm_arch_free_vm(kvm);
625 preempt_notifier_dec();
626 hardware_disable_all();
627 mmdrop(mm);
628 }
629
630 void kvm_get_kvm(struct kvm *kvm)
631 {
632 atomic_inc(&kvm->users_count);
633 }
634 EXPORT_SYMBOL_GPL(kvm_get_kvm);
635
636 void kvm_put_kvm(struct kvm *kvm)
637 {
638 if (atomic_dec_and_test(&kvm->users_count))
639 kvm_destroy_vm(kvm);
640 }
641 EXPORT_SYMBOL_GPL(kvm_put_kvm);
642
643
644 static int kvm_vm_release(struct inode *inode, struct file *filp)
645 {
646 struct kvm *kvm = filp->private_data;
647
648 kvm_irqfd_release(kvm);
649
650 kvm_put_kvm(kvm);
651 return 0;
652 }
653
654 /*
655 * Allocation size is twice as large as the actual dirty bitmap size.
656 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
657 */
658 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
659 {
660 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
661
662 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
663 if (!memslot->dirty_bitmap)
664 return -ENOMEM;
665
666 return 0;
667 }
668
669 /*
670 * Insert memslot and re-sort memslots based on their GFN,
671 * so binary search could be used to lookup GFN.
672 * Sorting algorithm takes advantage of having initially
673 * sorted array and known changed memslot position.
674 */
675 static void update_memslots(struct kvm_memslots *slots,
676 struct kvm_memory_slot *new)
677 {
678 int id = new->id;
679 int i = slots->id_to_index[id];
680 struct kvm_memory_slot *mslots = slots->memslots;
681
682 WARN_ON(mslots[i].id != id);
683 if (!new->npages) {
684 WARN_ON(!mslots[i].npages);
685 if (mslots[i].npages)
686 slots->used_slots--;
687 } else {
688 if (!mslots[i].npages)
689 slots->used_slots++;
690 }
691
692 while (i < KVM_MEM_SLOTS_NUM - 1 &&
693 new->base_gfn <= mslots[i + 1].base_gfn) {
694 if (!mslots[i + 1].npages)
695 break;
696 mslots[i] = mslots[i + 1];
697 slots->id_to_index[mslots[i].id] = i;
698 i++;
699 }
700
701 /*
702 * The ">=" is needed when creating a slot with base_gfn == 0,
703 * so that it moves before all those with base_gfn == npages == 0.
704 *
705 * On the other hand, if new->npages is zero, the above loop has
706 * already left i pointing to the beginning of the empty part of
707 * mslots, and the ">=" would move the hole backwards in this
708 * case---which is wrong. So skip the loop when deleting a slot.
709 */
710 if (new->npages) {
711 while (i > 0 &&
712 new->base_gfn >= mslots[i - 1].base_gfn) {
713 mslots[i] = mslots[i - 1];
714 slots->id_to_index[mslots[i].id] = i;
715 i--;
716 }
717 } else
718 WARN_ON_ONCE(i != slots->used_slots);
719
720 mslots[i] = *new;
721 slots->id_to_index[mslots[i].id] = i;
722 }
723
724 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
725 {
726 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
727
728 #ifdef __KVM_HAVE_READONLY_MEM
729 valid_flags |= KVM_MEM_READONLY;
730 #endif
731
732 if (mem->flags & ~valid_flags)
733 return -EINVAL;
734
735 return 0;
736 }
737
738 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
739 int as_id, struct kvm_memslots *slots)
740 {
741 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
742
743 /*
744 * Set the low bit in the generation, which disables SPTE caching
745 * until the end of synchronize_srcu_expedited.
746 */
747 WARN_ON(old_memslots->generation & 1);
748 slots->generation = old_memslots->generation + 1;
749
750 rcu_assign_pointer(kvm->memslots[as_id], slots);
751 synchronize_srcu_expedited(&kvm->srcu);
752
753 /*
754 * Increment the new memslot generation a second time. This prevents
755 * vm exits that race with memslot updates from caching a memslot
756 * generation that will (potentially) be valid forever.
757 */
758 slots->generation++;
759
760 kvm_arch_memslots_updated(kvm, slots);
761
762 return old_memslots;
763 }
764
765 /*
766 * Allocate some memory and give it an address in the guest physical address
767 * space.
768 *
769 * Discontiguous memory is allowed, mostly for framebuffers.
770 *
771 * Must be called holding kvm->slots_lock for write.
772 */
773 int __kvm_set_memory_region(struct kvm *kvm,
774 const struct kvm_userspace_memory_region *mem)
775 {
776 int r;
777 gfn_t base_gfn;
778 unsigned long npages;
779 struct kvm_memory_slot *slot;
780 struct kvm_memory_slot old, new;
781 struct kvm_memslots *slots = NULL, *old_memslots;
782 int as_id, id;
783 enum kvm_mr_change change;
784
785 r = check_memory_region_flags(mem);
786 if (r)
787 goto out;
788
789 r = -EINVAL;
790 as_id = mem->slot >> 16;
791 id = (u16)mem->slot;
792
793 /* General sanity checks */
794 if (mem->memory_size & (PAGE_SIZE - 1))
795 goto out;
796 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
797 goto out;
798 /* We can read the guest memory with __xxx_user() later on. */
799 if ((id < KVM_USER_MEM_SLOTS) &&
800 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
801 !access_ok(VERIFY_WRITE,
802 (void __user *)(unsigned long)mem->userspace_addr,
803 mem->memory_size)))
804 goto out;
805 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
806 goto out;
807 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
808 goto out;
809
810 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
811 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
812 npages = mem->memory_size >> PAGE_SHIFT;
813
814 if (npages > KVM_MEM_MAX_NR_PAGES)
815 goto out;
816
817 new = old = *slot;
818
819 new.id = id;
820 new.base_gfn = base_gfn;
821 new.npages = npages;
822 new.flags = mem->flags;
823
824 if (npages) {
825 if (!old.npages)
826 change = KVM_MR_CREATE;
827 else { /* Modify an existing slot. */
828 if ((mem->userspace_addr != old.userspace_addr) ||
829 (npages != old.npages) ||
830 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
831 goto out;
832
833 if (base_gfn != old.base_gfn)
834 change = KVM_MR_MOVE;
835 else if (new.flags != old.flags)
836 change = KVM_MR_FLAGS_ONLY;
837 else { /* Nothing to change. */
838 r = 0;
839 goto out;
840 }
841 }
842 } else {
843 if (!old.npages)
844 goto out;
845
846 change = KVM_MR_DELETE;
847 new.base_gfn = 0;
848 new.flags = 0;
849 }
850
851 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
852 /* Check for overlaps */
853 r = -EEXIST;
854 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
855 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
856 (slot->id == id))
857 continue;
858 if (!((base_gfn + npages <= slot->base_gfn) ||
859 (base_gfn >= slot->base_gfn + slot->npages)))
860 goto out;
861 }
862 }
863
864 /* Free page dirty bitmap if unneeded */
865 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
866 new.dirty_bitmap = NULL;
867
868 r = -ENOMEM;
869 if (change == KVM_MR_CREATE) {
870 new.userspace_addr = mem->userspace_addr;
871
872 if (kvm_arch_create_memslot(kvm, &new, npages))
873 goto out_free;
874 }
875
876 /* Allocate page dirty bitmap if needed */
877 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
878 if (kvm_create_dirty_bitmap(&new) < 0)
879 goto out_free;
880 }
881
882 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
883 if (!slots)
884 goto out_free;
885 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
886
887 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
888 slot = id_to_memslot(slots, id);
889 slot->flags |= KVM_MEMSLOT_INVALID;
890
891 old_memslots = install_new_memslots(kvm, as_id, slots);
892
893 /* slot was deleted or moved, clear iommu mapping */
894 kvm_iommu_unmap_pages(kvm, &old);
895 /* From this point no new shadow pages pointing to a deleted,
896 * or moved, memslot will be created.
897 *
898 * validation of sp->gfn happens in:
899 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
900 * - kvm_is_visible_gfn (mmu_check_roots)
901 */
902 kvm_arch_flush_shadow_memslot(kvm, slot);
903
904 /*
905 * We can re-use the old_memslots from above, the only difference
906 * from the currently installed memslots is the invalid flag. This
907 * will get overwritten by update_memslots anyway.
908 */
909 slots = old_memslots;
910 }
911
912 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
913 if (r)
914 goto out_slots;
915
916 /* actual memory is freed via old in kvm_free_memslot below */
917 if (change == KVM_MR_DELETE) {
918 new.dirty_bitmap = NULL;
919 memset(&new.arch, 0, sizeof(new.arch));
920 }
921
922 update_memslots(slots, &new);
923 old_memslots = install_new_memslots(kvm, as_id, slots);
924
925 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
926
927 kvm_free_memslot(kvm, &old, &new);
928 kvfree(old_memslots);
929
930 /*
931 * IOMMU mapping: New slots need to be mapped. Old slots need to be
932 * un-mapped and re-mapped if their base changes. Since base change
933 * unmapping is handled above with slot deletion, mapping alone is
934 * needed here. Anything else the iommu might care about for existing
935 * slots (size changes, userspace addr changes and read-only flag
936 * changes) is disallowed above, so any other attribute changes getting
937 * here can be skipped.
938 */
939 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
940 r = kvm_iommu_map_pages(kvm, &new);
941 return r;
942 }
943
944 return 0;
945
946 out_slots:
947 kvfree(slots);
948 out_free:
949 kvm_free_memslot(kvm, &new, &old);
950 out:
951 return r;
952 }
953 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
954
955 int kvm_set_memory_region(struct kvm *kvm,
956 const struct kvm_userspace_memory_region *mem)
957 {
958 int r;
959
960 mutex_lock(&kvm->slots_lock);
961 r = __kvm_set_memory_region(kvm, mem);
962 mutex_unlock(&kvm->slots_lock);
963 return r;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
966
967 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
968 struct kvm_userspace_memory_region *mem)
969 {
970 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
971 return -EINVAL;
972
973 return kvm_set_memory_region(kvm, mem);
974 }
975
976 int kvm_get_dirty_log(struct kvm *kvm,
977 struct kvm_dirty_log *log, int *is_dirty)
978 {
979 struct kvm_memslots *slots;
980 struct kvm_memory_slot *memslot;
981 int r, i, as_id, id;
982 unsigned long n;
983 unsigned long any = 0;
984
985 r = -EINVAL;
986 as_id = log->slot >> 16;
987 id = (u16)log->slot;
988 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
989 goto out;
990
991 slots = __kvm_memslots(kvm, as_id);
992 memslot = id_to_memslot(slots, id);
993 r = -ENOENT;
994 if (!memslot->dirty_bitmap)
995 goto out;
996
997 n = kvm_dirty_bitmap_bytes(memslot);
998
999 for (i = 0; !any && i < n/sizeof(long); ++i)
1000 any = memslot->dirty_bitmap[i];
1001
1002 r = -EFAULT;
1003 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1004 goto out;
1005
1006 if (any)
1007 *is_dirty = 1;
1008
1009 r = 0;
1010 out:
1011 return r;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1014
1015 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1016 /**
1017 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1018 * are dirty write protect them for next write.
1019 * @kvm: pointer to kvm instance
1020 * @log: slot id and address to which we copy the log
1021 * @is_dirty: flag set if any page is dirty
1022 *
1023 * We need to keep it in mind that VCPU threads can write to the bitmap
1024 * concurrently. So, to avoid losing track of dirty pages we keep the
1025 * following order:
1026 *
1027 * 1. Take a snapshot of the bit and clear it if needed.
1028 * 2. Write protect the corresponding page.
1029 * 3. Copy the snapshot to the userspace.
1030 * 4. Upon return caller flushes TLB's if needed.
1031 *
1032 * Between 2 and 4, the guest may write to the page using the remaining TLB
1033 * entry. This is not a problem because the page is reported dirty using
1034 * the snapshot taken before and step 4 ensures that writes done after
1035 * exiting to userspace will be logged for the next call.
1036 *
1037 */
1038 int kvm_get_dirty_log_protect(struct kvm *kvm,
1039 struct kvm_dirty_log *log, bool *is_dirty)
1040 {
1041 struct kvm_memslots *slots;
1042 struct kvm_memory_slot *memslot;
1043 int r, i, as_id, id;
1044 unsigned long n;
1045 unsigned long *dirty_bitmap;
1046 unsigned long *dirty_bitmap_buffer;
1047
1048 r = -EINVAL;
1049 as_id = log->slot >> 16;
1050 id = (u16)log->slot;
1051 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1052 goto out;
1053
1054 slots = __kvm_memslots(kvm, as_id);
1055 memslot = id_to_memslot(slots, id);
1056
1057 dirty_bitmap = memslot->dirty_bitmap;
1058 r = -ENOENT;
1059 if (!dirty_bitmap)
1060 goto out;
1061
1062 n = kvm_dirty_bitmap_bytes(memslot);
1063
1064 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1065 memset(dirty_bitmap_buffer, 0, n);
1066
1067 spin_lock(&kvm->mmu_lock);
1068 *is_dirty = false;
1069 for (i = 0; i < n / sizeof(long); i++) {
1070 unsigned long mask;
1071 gfn_t offset;
1072
1073 if (!dirty_bitmap[i])
1074 continue;
1075
1076 *is_dirty = true;
1077
1078 mask = xchg(&dirty_bitmap[i], 0);
1079 dirty_bitmap_buffer[i] = mask;
1080
1081 if (mask) {
1082 offset = i * BITS_PER_LONG;
1083 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1084 offset, mask);
1085 }
1086 }
1087
1088 spin_unlock(&kvm->mmu_lock);
1089
1090 r = -EFAULT;
1091 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1092 goto out;
1093
1094 r = 0;
1095 out:
1096 return r;
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1099 #endif
1100
1101 bool kvm_largepages_enabled(void)
1102 {
1103 return largepages_enabled;
1104 }
1105
1106 void kvm_disable_largepages(void)
1107 {
1108 largepages_enabled = false;
1109 }
1110 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1111
1112 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1113 {
1114 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1115 }
1116 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1117
1118 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1119 {
1120 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1121 }
1122
1123 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1124 {
1125 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1126
1127 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1128 memslot->flags & KVM_MEMSLOT_INVALID)
1129 return 0;
1130
1131 return 1;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1134
1135 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1136 {
1137 struct vm_area_struct *vma;
1138 unsigned long addr, size;
1139
1140 size = PAGE_SIZE;
1141
1142 addr = gfn_to_hva(kvm, gfn);
1143 if (kvm_is_error_hva(addr))
1144 return PAGE_SIZE;
1145
1146 down_read(&current->mm->mmap_sem);
1147 vma = find_vma(current->mm, addr);
1148 if (!vma)
1149 goto out;
1150
1151 size = vma_kernel_pagesize(vma);
1152
1153 out:
1154 up_read(&current->mm->mmap_sem);
1155
1156 return size;
1157 }
1158
1159 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1160 {
1161 return slot->flags & KVM_MEM_READONLY;
1162 }
1163
1164 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1165 gfn_t *nr_pages, bool write)
1166 {
1167 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1168 return KVM_HVA_ERR_BAD;
1169
1170 if (memslot_is_readonly(slot) && write)
1171 return KVM_HVA_ERR_RO_BAD;
1172
1173 if (nr_pages)
1174 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1175
1176 return __gfn_to_hva_memslot(slot, gfn);
1177 }
1178
1179 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1180 gfn_t *nr_pages)
1181 {
1182 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1183 }
1184
1185 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1186 gfn_t gfn)
1187 {
1188 return gfn_to_hva_many(slot, gfn, NULL);
1189 }
1190 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1191
1192 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1193 {
1194 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1195 }
1196 EXPORT_SYMBOL_GPL(gfn_to_hva);
1197
1198 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1199 {
1200 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1203
1204 /*
1205 * If writable is set to false, the hva returned by this function is only
1206 * allowed to be read.
1207 */
1208 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1209 gfn_t gfn, bool *writable)
1210 {
1211 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1212
1213 if (!kvm_is_error_hva(hva) && writable)
1214 *writable = !memslot_is_readonly(slot);
1215
1216 return hva;
1217 }
1218
1219 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1220 {
1221 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1222
1223 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1224 }
1225
1226 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1227 {
1228 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1229
1230 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1231 }
1232
1233 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1234 unsigned long start, int write, struct page **page)
1235 {
1236 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1237
1238 if (write)
1239 flags |= FOLL_WRITE;
1240
1241 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1242 }
1243
1244 static inline int check_user_page_hwpoison(unsigned long addr)
1245 {
1246 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1247
1248 rc = __get_user_pages(current, current->mm, addr, 1,
1249 flags, NULL, NULL, NULL);
1250 return rc == -EHWPOISON;
1251 }
1252
1253 /*
1254 * The atomic path to get the writable pfn which will be stored in @pfn,
1255 * true indicates success, otherwise false is returned.
1256 */
1257 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1258 bool write_fault, bool *writable, pfn_t *pfn)
1259 {
1260 struct page *page[1];
1261 int npages;
1262
1263 if (!(async || atomic))
1264 return false;
1265
1266 /*
1267 * Fast pin a writable pfn only if it is a write fault request
1268 * or the caller allows to map a writable pfn for a read fault
1269 * request.
1270 */
1271 if (!(write_fault || writable))
1272 return false;
1273
1274 npages = __get_user_pages_fast(addr, 1, 1, page);
1275 if (npages == 1) {
1276 *pfn = page_to_pfn(page[0]);
1277
1278 if (writable)
1279 *writable = true;
1280 return true;
1281 }
1282
1283 return false;
1284 }
1285
1286 /*
1287 * The slow path to get the pfn of the specified host virtual address,
1288 * 1 indicates success, -errno is returned if error is detected.
1289 */
1290 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1291 bool *writable, pfn_t *pfn)
1292 {
1293 struct page *page[1];
1294 int npages = 0;
1295
1296 might_sleep();
1297
1298 if (writable)
1299 *writable = write_fault;
1300
1301 if (async) {
1302 down_read(&current->mm->mmap_sem);
1303 npages = get_user_page_nowait(current, current->mm,
1304 addr, write_fault, page);
1305 up_read(&current->mm->mmap_sem);
1306 } else
1307 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1308 write_fault, 0, page,
1309 FOLL_TOUCH|FOLL_HWPOISON);
1310 if (npages != 1)
1311 return npages;
1312
1313 /* map read fault as writable if possible */
1314 if (unlikely(!write_fault) && writable) {
1315 struct page *wpage[1];
1316
1317 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1318 if (npages == 1) {
1319 *writable = true;
1320 put_page(page[0]);
1321 page[0] = wpage[0];
1322 }
1323
1324 npages = 1;
1325 }
1326 *pfn = page_to_pfn(page[0]);
1327 return npages;
1328 }
1329
1330 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1331 {
1332 if (unlikely(!(vma->vm_flags & VM_READ)))
1333 return false;
1334
1335 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1336 return false;
1337
1338 return true;
1339 }
1340
1341 /*
1342 * Pin guest page in memory and return its pfn.
1343 * @addr: host virtual address which maps memory to the guest
1344 * @atomic: whether this function can sleep
1345 * @async: whether this function need to wait IO complete if the
1346 * host page is not in the memory
1347 * @write_fault: whether we should get a writable host page
1348 * @writable: whether it allows to map a writable host page for !@write_fault
1349 *
1350 * The function will map a writable host page for these two cases:
1351 * 1): @write_fault = true
1352 * 2): @write_fault = false && @writable, @writable will tell the caller
1353 * whether the mapping is writable.
1354 */
1355 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1356 bool write_fault, bool *writable)
1357 {
1358 struct vm_area_struct *vma;
1359 pfn_t pfn = 0;
1360 int npages;
1361
1362 /* we can do it either atomically or asynchronously, not both */
1363 BUG_ON(atomic && async);
1364
1365 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1366 return pfn;
1367
1368 if (atomic)
1369 return KVM_PFN_ERR_FAULT;
1370
1371 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1372 if (npages == 1)
1373 return pfn;
1374
1375 down_read(&current->mm->mmap_sem);
1376 if (npages == -EHWPOISON ||
1377 (!async && check_user_page_hwpoison(addr))) {
1378 pfn = KVM_PFN_ERR_HWPOISON;
1379 goto exit;
1380 }
1381
1382 vma = find_vma_intersection(current->mm, addr, addr + 1);
1383
1384 if (vma == NULL)
1385 pfn = KVM_PFN_ERR_FAULT;
1386 else if ((vma->vm_flags & VM_PFNMAP)) {
1387 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1388 vma->vm_pgoff;
1389 BUG_ON(!kvm_is_reserved_pfn(pfn));
1390 } else {
1391 if (async && vma_is_valid(vma, write_fault))
1392 *async = true;
1393 pfn = KVM_PFN_ERR_FAULT;
1394 }
1395 exit:
1396 up_read(&current->mm->mmap_sem);
1397 return pfn;
1398 }
1399
1400 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1401 bool *async, bool write_fault, bool *writable)
1402 {
1403 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1404
1405 if (addr == KVM_HVA_ERR_RO_BAD)
1406 return KVM_PFN_ERR_RO_FAULT;
1407
1408 if (kvm_is_error_hva(addr))
1409 return KVM_PFN_NOSLOT;
1410
1411 /* Do not map writable pfn in the readonly memslot. */
1412 if (writable && memslot_is_readonly(slot)) {
1413 *writable = false;
1414 writable = NULL;
1415 }
1416
1417 return hva_to_pfn(addr, atomic, async, write_fault,
1418 writable);
1419 }
1420 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1421
1422 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1423 bool *writable)
1424 {
1425 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1426 write_fault, writable);
1427 }
1428 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1429
1430 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1431 {
1432 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1433 }
1434 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1435
1436 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1437 {
1438 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1439 }
1440 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1441
1442 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1443 {
1444 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1445 }
1446 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1447
1448 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1449 {
1450 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1453
1454 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1455 {
1456 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1457 }
1458 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1459
1460 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1461 {
1462 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1465
1466 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1467 struct page **pages, int nr_pages)
1468 {
1469 unsigned long addr;
1470 gfn_t entry;
1471
1472 addr = gfn_to_hva_many(slot, gfn, &entry);
1473 if (kvm_is_error_hva(addr))
1474 return -1;
1475
1476 if (entry < nr_pages)
1477 return 0;
1478
1479 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1480 }
1481 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1482
1483 static struct page *kvm_pfn_to_page(pfn_t pfn)
1484 {
1485 if (is_error_noslot_pfn(pfn))
1486 return KVM_ERR_PTR_BAD_PAGE;
1487
1488 if (kvm_is_reserved_pfn(pfn)) {
1489 WARN_ON(1);
1490 return KVM_ERR_PTR_BAD_PAGE;
1491 }
1492
1493 return pfn_to_page(pfn);
1494 }
1495
1496 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1497 {
1498 pfn_t pfn;
1499
1500 pfn = gfn_to_pfn(kvm, gfn);
1501
1502 return kvm_pfn_to_page(pfn);
1503 }
1504 EXPORT_SYMBOL_GPL(gfn_to_page);
1505
1506 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1507 {
1508 pfn_t pfn;
1509
1510 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1511
1512 return kvm_pfn_to_page(pfn);
1513 }
1514 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1515
1516 void kvm_release_page_clean(struct page *page)
1517 {
1518 WARN_ON(is_error_page(page));
1519
1520 kvm_release_pfn_clean(page_to_pfn(page));
1521 }
1522 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1523
1524 void kvm_release_pfn_clean(pfn_t pfn)
1525 {
1526 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1527 put_page(pfn_to_page(pfn));
1528 }
1529 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1530
1531 void kvm_release_page_dirty(struct page *page)
1532 {
1533 WARN_ON(is_error_page(page));
1534
1535 kvm_release_pfn_dirty(page_to_pfn(page));
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1538
1539 static void kvm_release_pfn_dirty(pfn_t pfn)
1540 {
1541 kvm_set_pfn_dirty(pfn);
1542 kvm_release_pfn_clean(pfn);
1543 }
1544
1545 void kvm_set_pfn_dirty(pfn_t pfn)
1546 {
1547 if (!kvm_is_reserved_pfn(pfn)) {
1548 struct page *page = pfn_to_page(pfn);
1549
1550 if (!PageReserved(page))
1551 SetPageDirty(page);
1552 }
1553 }
1554 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1555
1556 void kvm_set_pfn_accessed(pfn_t pfn)
1557 {
1558 if (!kvm_is_reserved_pfn(pfn))
1559 mark_page_accessed(pfn_to_page(pfn));
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1562
1563 void kvm_get_pfn(pfn_t pfn)
1564 {
1565 if (!kvm_is_reserved_pfn(pfn))
1566 get_page(pfn_to_page(pfn));
1567 }
1568 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1569
1570 static int next_segment(unsigned long len, int offset)
1571 {
1572 if (len > PAGE_SIZE - offset)
1573 return PAGE_SIZE - offset;
1574 else
1575 return len;
1576 }
1577
1578 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1579 void *data, int offset, int len)
1580 {
1581 int r;
1582 unsigned long addr;
1583
1584 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1585 if (kvm_is_error_hva(addr))
1586 return -EFAULT;
1587 r = __copy_from_user(data, (void __user *)addr + offset, len);
1588 if (r)
1589 return -EFAULT;
1590 return 0;
1591 }
1592
1593 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1594 int len)
1595 {
1596 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1597
1598 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1599 }
1600 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1601
1602 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1603 int offset, int len)
1604 {
1605 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1606
1607 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1608 }
1609 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1610
1611 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1612 {
1613 gfn_t gfn = gpa >> PAGE_SHIFT;
1614 int seg;
1615 int offset = offset_in_page(gpa);
1616 int ret;
1617
1618 while ((seg = next_segment(len, offset)) != 0) {
1619 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1620 if (ret < 0)
1621 return ret;
1622 offset = 0;
1623 len -= seg;
1624 data += seg;
1625 ++gfn;
1626 }
1627 return 0;
1628 }
1629 EXPORT_SYMBOL_GPL(kvm_read_guest);
1630
1631 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1632 {
1633 gfn_t gfn = gpa >> PAGE_SHIFT;
1634 int seg;
1635 int offset = offset_in_page(gpa);
1636 int ret;
1637
1638 while ((seg = next_segment(len, offset)) != 0) {
1639 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1640 if (ret < 0)
1641 return ret;
1642 offset = 0;
1643 len -= seg;
1644 data += seg;
1645 ++gfn;
1646 }
1647 return 0;
1648 }
1649 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1650
1651 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1652 void *data, int offset, unsigned long len)
1653 {
1654 int r;
1655 unsigned long addr;
1656
1657 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1658 if (kvm_is_error_hva(addr))
1659 return -EFAULT;
1660 pagefault_disable();
1661 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1662 pagefault_enable();
1663 if (r)
1664 return -EFAULT;
1665 return 0;
1666 }
1667
1668 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1669 unsigned long len)
1670 {
1671 gfn_t gfn = gpa >> PAGE_SHIFT;
1672 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1673 int offset = offset_in_page(gpa);
1674
1675 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1678
1679 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1680 void *data, unsigned long len)
1681 {
1682 gfn_t gfn = gpa >> PAGE_SHIFT;
1683 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1684 int offset = offset_in_page(gpa);
1685
1686 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1689
1690 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1691 const void *data, int offset, int len)
1692 {
1693 int r;
1694 unsigned long addr;
1695
1696 addr = gfn_to_hva_memslot(memslot, gfn);
1697 if (kvm_is_error_hva(addr))
1698 return -EFAULT;
1699 r = __copy_to_user((void __user *)addr + offset, data, len);
1700 if (r)
1701 return -EFAULT;
1702 mark_page_dirty_in_slot(memslot, gfn);
1703 return 0;
1704 }
1705
1706 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1707 const void *data, int offset, int len)
1708 {
1709 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1710
1711 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1714
1715 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1716 const void *data, int offset, int len)
1717 {
1718 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1719
1720 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1721 }
1722 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1723
1724 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1725 unsigned long len)
1726 {
1727 gfn_t gfn = gpa >> PAGE_SHIFT;
1728 int seg;
1729 int offset = offset_in_page(gpa);
1730 int ret;
1731
1732 while ((seg = next_segment(len, offset)) != 0) {
1733 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1734 if (ret < 0)
1735 return ret;
1736 offset = 0;
1737 len -= seg;
1738 data += seg;
1739 ++gfn;
1740 }
1741 return 0;
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_write_guest);
1744
1745 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1746 unsigned long len)
1747 {
1748 gfn_t gfn = gpa >> PAGE_SHIFT;
1749 int seg;
1750 int offset = offset_in_page(gpa);
1751 int ret;
1752
1753 while ((seg = next_segment(len, offset)) != 0) {
1754 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1755 if (ret < 0)
1756 return ret;
1757 offset = 0;
1758 len -= seg;
1759 data += seg;
1760 ++gfn;
1761 }
1762 return 0;
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1765
1766 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1767 gpa_t gpa, unsigned long len)
1768 {
1769 struct kvm_memslots *slots = kvm_memslots(kvm);
1770 int offset = offset_in_page(gpa);
1771 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1772 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1773 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1774 gfn_t nr_pages_avail;
1775
1776 ghc->gpa = gpa;
1777 ghc->generation = slots->generation;
1778 ghc->len = len;
1779 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1780 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1781 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1782 ghc->hva += offset;
1783 } else {
1784 /*
1785 * If the requested region crosses two memslots, we still
1786 * verify that the entire region is valid here.
1787 */
1788 while (start_gfn <= end_gfn) {
1789 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1790 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1791 &nr_pages_avail);
1792 if (kvm_is_error_hva(ghc->hva))
1793 return -EFAULT;
1794 start_gfn += nr_pages_avail;
1795 }
1796 /* Use the slow path for cross page reads and writes. */
1797 ghc->memslot = NULL;
1798 }
1799 return 0;
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1802
1803 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1804 void *data, unsigned long len)
1805 {
1806 struct kvm_memslots *slots = kvm_memslots(kvm);
1807 int r;
1808
1809 BUG_ON(len > ghc->len);
1810
1811 if (slots->generation != ghc->generation)
1812 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1813
1814 if (unlikely(!ghc->memslot))
1815 return kvm_write_guest(kvm, ghc->gpa, data, len);
1816
1817 if (kvm_is_error_hva(ghc->hva))
1818 return -EFAULT;
1819
1820 r = __copy_to_user((void __user *)ghc->hva, data, len);
1821 if (r)
1822 return -EFAULT;
1823 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1824
1825 return 0;
1826 }
1827 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1828
1829 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1830 void *data, unsigned long len)
1831 {
1832 struct kvm_memslots *slots = kvm_memslots(kvm);
1833 int r;
1834
1835 BUG_ON(len > ghc->len);
1836
1837 if (slots->generation != ghc->generation)
1838 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1839
1840 if (unlikely(!ghc->memslot))
1841 return kvm_read_guest(kvm, ghc->gpa, data, len);
1842
1843 if (kvm_is_error_hva(ghc->hva))
1844 return -EFAULT;
1845
1846 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1847 if (r)
1848 return -EFAULT;
1849
1850 return 0;
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1853
1854 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1855 {
1856 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1857
1858 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1859 }
1860 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1861
1862 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1863 {
1864 gfn_t gfn = gpa >> PAGE_SHIFT;
1865 int seg;
1866 int offset = offset_in_page(gpa);
1867 int ret;
1868
1869 while ((seg = next_segment(len, offset)) != 0) {
1870 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1871 if (ret < 0)
1872 return ret;
1873 offset = 0;
1874 len -= seg;
1875 ++gfn;
1876 }
1877 return 0;
1878 }
1879 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1880
1881 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1882 gfn_t gfn)
1883 {
1884 if (memslot && memslot->dirty_bitmap) {
1885 unsigned long rel_gfn = gfn - memslot->base_gfn;
1886
1887 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1888 }
1889 }
1890
1891 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1892 {
1893 struct kvm_memory_slot *memslot;
1894
1895 memslot = gfn_to_memslot(kvm, gfn);
1896 mark_page_dirty_in_slot(memslot, gfn);
1897 }
1898 EXPORT_SYMBOL_GPL(mark_page_dirty);
1899
1900 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1901 {
1902 struct kvm_memory_slot *memslot;
1903
1904 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1905 mark_page_dirty_in_slot(memslot, gfn);
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1908
1909 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1910 {
1911 if (kvm_arch_vcpu_runnable(vcpu)) {
1912 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1913 return -EINTR;
1914 }
1915 if (kvm_cpu_has_pending_timer(vcpu))
1916 return -EINTR;
1917 if (signal_pending(current))
1918 return -EINTR;
1919
1920 return 0;
1921 }
1922
1923 /*
1924 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1925 */
1926 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1927 {
1928 ktime_t start, cur;
1929 DEFINE_WAIT(wait);
1930 bool waited = false;
1931
1932 start = cur = ktime_get();
1933 if (halt_poll_ns) {
1934 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1935
1936 do {
1937 /*
1938 * This sets KVM_REQ_UNHALT if an interrupt
1939 * arrives.
1940 */
1941 if (kvm_vcpu_check_block(vcpu) < 0) {
1942 ++vcpu->stat.halt_successful_poll;
1943 goto out;
1944 }
1945 cur = ktime_get();
1946 } while (single_task_running() && ktime_before(cur, stop));
1947 }
1948
1949 for (;;) {
1950 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1951
1952 if (kvm_vcpu_check_block(vcpu) < 0)
1953 break;
1954
1955 waited = true;
1956 schedule();
1957 }
1958
1959 finish_wait(&vcpu->wq, &wait);
1960 cur = ktime_get();
1961
1962 out:
1963 trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1966
1967 #ifndef CONFIG_S390
1968 /*
1969 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1970 */
1971 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1972 {
1973 int me;
1974 int cpu = vcpu->cpu;
1975 wait_queue_head_t *wqp;
1976
1977 wqp = kvm_arch_vcpu_wq(vcpu);
1978 if (waitqueue_active(wqp)) {
1979 wake_up_interruptible(wqp);
1980 ++vcpu->stat.halt_wakeup;
1981 }
1982
1983 me = get_cpu();
1984 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1985 if (kvm_arch_vcpu_should_kick(vcpu))
1986 smp_send_reschedule(cpu);
1987 put_cpu();
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1990 #endif /* !CONFIG_S390 */
1991
1992 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1993 {
1994 struct pid *pid;
1995 struct task_struct *task = NULL;
1996 int ret = 0;
1997
1998 rcu_read_lock();
1999 pid = rcu_dereference(target->pid);
2000 if (pid)
2001 task = get_pid_task(pid, PIDTYPE_PID);
2002 rcu_read_unlock();
2003 if (!task)
2004 return ret;
2005 ret = yield_to(task, 1);
2006 put_task_struct(task);
2007
2008 return ret;
2009 }
2010 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2011
2012 /*
2013 * Helper that checks whether a VCPU is eligible for directed yield.
2014 * Most eligible candidate to yield is decided by following heuristics:
2015 *
2016 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2017 * (preempted lock holder), indicated by @in_spin_loop.
2018 * Set at the beiginning and cleared at the end of interception/PLE handler.
2019 *
2020 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2021 * chance last time (mostly it has become eligible now since we have probably
2022 * yielded to lockholder in last iteration. This is done by toggling
2023 * @dy_eligible each time a VCPU checked for eligibility.)
2024 *
2025 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2026 * to preempted lock-holder could result in wrong VCPU selection and CPU
2027 * burning. Giving priority for a potential lock-holder increases lock
2028 * progress.
2029 *
2030 * Since algorithm is based on heuristics, accessing another VCPU data without
2031 * locking does not harm. It may result in trying to yield to same VCPU, fail
2032 * and continue with next VCPU and so on.
2033 */
2034 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2035 {
2036 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2037 bool eligible;
2038
2039 eligible = !vcpu->spin_loop.in_spin_loop ||
2040 vcpu->spin_loop.dy_eligible;
2041
2042 if (vcpu->spin_loop.in_spin_loop)
2043 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2044
2045 return eligible;
2046 #else
2047 return true;
2048 #endif
2049 }
2050
2051 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2052 {
2053 struct kvm *kvm = me->kvm;
2054 struct kvm_vcpu *vcpu;
2055 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2056 int yielded = 0;
2057 int try = 3;
2058 int pass;
2059 int i;
2060
2061 kvm_vcpu_set_in_spin_loop(me, true);
2062 /*
2063 * We boost the priority of a VCPU that is runnable but not
2064 * currently running, because it got preempted by something
2065 * else and called schedule in __vcpu_run. Hopefully that
2066 * VCPU is holding the lock that we need and will release it.
2067 * We approximate round-robin by starting at the last boosted VCPU.
2068 */
2069 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2070 kvm_for_each_vcpu(i, vcpu, kvm) {
2071 if (!pass && i <= last_boosted_vcpu) {
2072 i = last_boosted_vcpu;
2073 continue;
2074 } else if (pass && i > last_boosted_vcpu)
2075 break;
2076 if (!ACCESS_ONCE(vcpu->preempted))
2077 continue;
2078 if (vcpu == me)
2079 continue;
2080 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2081 continue;
2082 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2083 continue;
2084
2085 yielded = kvm_vcpu_yield_to(vcpu);
2086 if (yielded > 0) {
2087 kvm->last_boosted_vcpu = i;
2088 break;
2089 } else if (yielded < 0) {
2090 try--;
2091 if (!try)
2092 break;
2093 }
2094 }
2095 }
2096 kvm_vcpu_set_in_spin_loop(me, false);
2097
2098 /* Ensure vcpu is not eligible during next spinloop */
2099 kvm_vcpu_set_dy_eligible(me, false);
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2102
2103 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2104 {
2105 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2106 struct page *page;
2107
2108 if (vmf->pgoff == 0)
2109 page = virt_to_page(vcpu->run);
2110 #ifdef CONFIG_X86
2111 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2112 page = virt_to_page(vcpu->arch.pio_data);
2113 #endif
2114 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2115 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2116 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2117 #endif
2118 else
2119 return kvm_arch_vcpu_fault(vcpu, vmf);
2120 get_page(page);
2121 vmf->page = page;
2122 return 0;
2123 }
2124
2125 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2126 .fault = kvm_vcpu_fault,
2127 };
2128
2129 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2130 {
2131 vma->vm_ops = &kvm_vcpu_vm_ops;
2132 return 0;
2133 }
2134
2135 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2136 {
2137 struct kvm_vcpu *vcpu = filp->private_data;
2138
2139 kvm_put_kvm(vcpu->kvm);
2140 return 0;
2141 }
2142
2143 static struct file_operations kvm_vcpu_fops = {
2144 .release = kvm_vcpu_release,
2145 .unlocked_ioctl = kvm_vcpu_ioctl,
2146 #ifdef CONFIG_KVM_COMPAT
2147 .compat_ioctl = kvm_vcpu_compat_ioctl,
2148 #endif
2149 .mmap = kvm_vcpu_mmap,
2150 .llseek = noop_llseek,
2151 };
2152
2153 /*
2154 * Allocates an inode for the vcpu.
2155 */
2156 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2157 {
2158 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2159 }
2160
2161 /*
2162 * Creates some virtual cpus. Good luck creating more than one.
2163 */
2164 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2165 {
2166 int r;
2167 struct kvm_vcpu *vcpu, *v;
2168
2169 if (id >= KVM_MAX_VCPUS)
2170 return -EINVAL;
2171
2172 vcpu = kvm_arch_vcpu_create(kvm, id);
2173 if (IS_ERR(vcpu))
2174 return PTR_ERR(vcpu);
2175
2176 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2177
2178 r = kvm_arch_vcpu_setup(vcpu);
2179 if (r)
2180 goto vcpu_destroy;
2181
2182 mutex_lock(&kvm->lock);
2183 if (!kvm_vcpu_compatible(vcpu)) {
2184 r = -EINVAL;
2185 goto unlock_vcpu_destroy;
2186 }
2187 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2188 r = -EINVAL;
2189 goto unlock_vcpu_destroy;
2190 }
2191
2192 kvm_for_each_vcpu(r, v, kvm)
2193 if (v->vcpu_id == id) {
2194 r = -EEXIST;
2195 goto unlock_vcpu_destroy;
2196 }
2197
2198 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2199
2200 /* Now it's all set up, let userspace reach it */
2201 kvm_get_kvm(kvm);
2202 r = create_vcpu_fd(vcpu);
2203 if (r < 0) {
2204 kvm_put_kvm(kvm);
2205 goto unlock_vcpu_destroy;
2206 }
2207
2208 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2209
2210 /*
2211 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2212 * before kvm->online_vcpu's incremented value.
2213 */
2214 smp_wmb();
2215 atomic_inc(&kvm->online_vcpus);
2216
2217 mutex_unlock(&kvm->lock);
2218 kvm_arch_vcpu_postcreate(vcpu);
2219 return r;
2220
2221 unlock_vcpu_destroy:
2222 mutex_unlock(&kvm->lock);
2223 vcpu_destroy:
2224 kvm_arch_vcpu_destroy(vcpu);
2225 return r;
2226 }
2227
2228 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2229 {
2230 if (sigset) {
2231 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2232 vcpu->sigset_active = 1;
2233 vcpu->sigset = *sigset;
2234 } else
2235 vcpu->sigset_active = 0;
2236 return 0;
2237 }
2238
2239 static long kvm_vcpu_ioctl(struct file *filp,
2240 unsigned int ioctl, unsigned long arg)
2241 {
2242 struct kvm_vcpu *vcpu = filp->private_data;
2243 void __user *argp = (void __user *)arg;
2244 int r;
2245 struct kvm_fpu *fpu = NULL;
2246 struct kvm_sregs *kvm_sregs = NULL;
2247
2248 if (vcpu->kvm->mm != current->mm)
2249 return -EIO;
2250
2251 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2252 return -EINVAL;
2253
2254 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2255 /*
2256 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2257 * so vcpu_load() would break it.
2258 */
2259 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2260 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2261 #endif
2262
2263
2264 r = vcpu_load(vcpu);
2265 if (r)
2266 return r;
2267 switch (ioctl) {
2268 case KVM_RUN:
2269 r = -EINVAL;
2270 if (arg)
2271 goto out;
2272 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2273 /* The thread running this VCPU changed. */
2274 struct pid *oldpid = vcpu->pid;
2275 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2276
2277 rcu_assign_pointer(vcpu->pid, newpid);
2278 if (oldpid)
2279 synchronize_rcu();
2280 put_pid(oldpid);
2281 }
2282 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2283 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2284 break;
2285 case KVM_GET_REGS: {
2286 struct kvm_regs *kvm_regs;
2287
2288 r = -ENOMEM;
2289 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2290 if (!kvm_regs)
2291 goto out;
2292 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2293 if (r)
2294 goto out_free1;
2295 r = -EFAULT;
2296 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2297 goto out_free1;
2298 r = 0;
2299 out_free1:
2300 kfree(kvm_regs);
2301 break;
2302 }
2303 case KVM_SET_REGS: {
2304 struct kvm_regs *kvm_regs;
2305
2306 r = -ENOMEM;
2307 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2308 if (IS_ERR(kvm_regs)) {
2309 r = PTR_ERR(kvm_regs);
2310 goto out;
2311 }
2312 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2313 kfree(kvm_regs);
2314 break;
2315 }
2316 case KVM_GET_SREGS: {
2317 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2318 r = -ENOMEM;
2319 if (!kvm_sregs)
2320 goto out;
2321 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2322 if (r)
2323 goto out;
2324 r = -EFAULT;
2325 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2326 goto out;
2327 r = 0;
2328 break;
2329 }
2330 case KVM_SET_SREGS: {
2331 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2332 if (IS_ERR(kvm_sregs)) {
2333 r = PTR_ERR(kvm_sregs);
2334 kvm_sregs = NULL;
2335 goto out;
2336 }
2337 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2338 break;
2339 }
2340 case KVM_GET_MP_STATE: {
2341 struct kvm_mp_state mp_state;
2342
2343 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2344 if (r)
2345 goto out;
2346 r = -EFAULT;
2347 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2348 goto out;
2349 r = 0;
2350 break;
2351 }
2352 case KVM_SET_MP_STATE: {
2353 struct kvm_mp_state mp_state;
2354
2355 r = -EFAULT;
2356 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2357 goto out;
2358 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2359 break;
2360 }
2361 case KVM_TRANSLATE: {
2362 struct kvm_translation tr;
2363
2364 r = -EFAULT;
2365 if (copy_from_user(&tr, argp, sizeof(tr)))
2366 goto out;
2367 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2368 if (r)
2369 goto out;
2370 r = -EFAULT;
2371 if (copy_to_user(argp, &tr, sizeof(tr)))
2372 goto out;
2373 r = 0;
2374 break;
2375 }
2376 case KVM_SET_GUEST_DEBUG: {
2377 struct kvm_guest_debug dbg;
2378
2379 r = -EFAULT;
2380 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2381 goto out;
2382 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2383 break;
2384 }
2385 case KVM_SET_SIGNAL_MASK: {
2386 struct kvm_signal_mask __user *sigmask_arg = argp;
2387 struct kvm_signal_mask kvm_sigmask;
2388 sigset_t sigset, *p;
2389
2390 p = NULL;
2391 if (argp) {
2392 r = -EFAULT;
2393 if (copy_from_user(&kvm_sigmask, argp,
2394 sizeof(kvm_sigmask)))
2395 goto out;
2396 r = -EINVAL;
2397 if (kvm_sigmask.len != sizeof(sigset))
2398 goto out;
2399 r = -EFAULT;
2400 if (copy_from_user(&sigset, sigmask_arg->sigset,
2401 sizeof(sigset)))
2402 goto out;
2403 p = &sigset;
2404 }
2405 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2406 break;
2407 }
2408 case KVM_GET_FPU: {
2409 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2410 r = -ENOMEM;
2411 if (!fpu)
2412 goto out;
2413 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2414 if (r)
2415 goto out;
2416 r = -EFAULT;
2417 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2418 goto out;
2419 r = 0;
2420 break;
2421 }
2422 case KVM_SET_FPU: {
2423 fpu = memdup_user(argp, sizeof(*fpu));
2424 if (IS_ERR(fpu)) {
2425 r = PTR_ERR(fpu);
2426 fpu = NULL;
2427 goto out;
2428 }
2429 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2430 break;
2431 }
2432 default:
2433 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2434 }
2435 out:
2436 vcpu_put(vcpu);
2437 kfree(fpu);
2438 kfree(kvm_sregs);
2439 return r;
2440 }
2441
2442 #ifdef CONFIG_KVM_COMPAT
2443 static long kvm_vcpu_compat_ioctl(struct file *filp,
2444 unsigned int ioctl, unsigned long arg)
2445 {
2446 struct kvm_vcpu *vcpu = filp->private_data;
2447 void __user *argp = compat_ptr(arg);
2448 int r;
2449
2450 if (vcpu->kvm->mm != current->mm)
2451 return -EIO;
2452
2453 switch (ioctl) {
2454 case KVM_SET_SIGNAL_MASK: {
2455 struct kvm_signal_mask __user *sigmask_arg = argp;
2456 struct kvm_signal_mask kvm_sigmask;
2457 compat_sigset_t csigset;
2458 sigset_t sigset;
2459
2460 if (argp) {
2461 r = -EFAULT;
2462 if (copy_from_user(&kvm_sigmask, argp,
2463 sizeof(kvm_sigmask)))
2464 goto out;
2465 r = -EINVAL;
2466 if (kvm_sigmask.len != sizeof(csigset))
2467 goto out;
2468 r = -EFAULT;
2469 if (copy_from_user(&csigset, sigmask_arg->sigset,
2470 sizeof(csigset)))
2471 goto out;
2472 sigset_from_compat(&sigset, &csigset);
2473 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2474 } else
2475 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2476 break;
2477 }
2478 default:
2479 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2480 }
2481
2482 out:
2483 return r;
2484 }
2485 #endif
2486
2487 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2488 int (*accessor)(struct kvm_device *dev,
2489 struct kvm_device_attr *attr),
2490 unsigned long arg)
2491 {
2492 struct kvm_device_attr attr;
2493
2494 if (!accessor)
2495 return -EPERM;
2496
2497 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2498 return -EFAULT;
2499
2500 return accessor(dev, &attr);
2501 }
2502
2503 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2504 unsigned long arg)
2505 {
2506 struct kvm_device *dev = filp->private_data;
2507
2508 switch (ioctl) {
2509 case KVM_SET_DEVICE_ATTR:
2510 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2511 case KVM_GET_DEVICE_ATTR:
2512 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2513 case KVM_HAS_DEVICE_ATTR:
2514 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2515 default:
2516 if (dev->ops->ioctl)
2517 return dev->ops->ioctl(dev, ioctl, arg);
2518
2519 return -ENOTTY;
2520 }
2521 }
2522
2523 static int kvm_device_release(struct inode *inode, struct file *filp)
2524 {
2525 struct kvm_device *dev = filp->private_data;
2526 struct kvm *kvm = dev->kvm;
2527
2528 kvm_put_kvm(kvm);
2529 return 0;
2530 }
2531
2532 static const struct file_operations kvm_device_fops = {
2533 .unlocked_ioctl = kvm_device_ioctl,
2534 #ifdef CONFIG_KVM_COMPAT
2535 .compat_ioctl = kvm_device_ioctl,
2536 #endif
2537 .release = kvm_device_release,
2538 };
2539
2540 struct kvm_device *kvm_device_from_filp(struct file *filp)
2541 {
2542 if (filp->f_op != &kvm_device_fops)
2543 return NULL;
2544
2545 return filp->private_data;
2546 }
2547
2548 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2549 #ifdef CONFIG_KVM_MPIC
2550 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2551 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2552 #endif
2553
2554 #ifdef CONFIG_KVM_XICS
2555 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2556 #endif
2557 };
2558
2559 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2560 {
2561 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2562 return -ENOSPC;
2563
2564 if (kvm_device_ops_table[type] != NULL)
2565 return -EEXIST;
2566
2567 kvm_device_ops_table[type] = ops;
2568 return 0;
2569 }
2570
2571 void kvm_unregister_device_ops(u32 type)
2572 {
2573 if (kvm_device_ops_table[type] != NULL)
2574 kvm_device_ops_table[type] = NULL;
2575 }
2576
2577 static int kvm_ioctl_create_device(struct kvm *kvm,
2578 struct kvm_create_device *cd)
2579 {
2580 struct kvm_device_ops *ops = NULL;
2581 struct kvm_device *dev;
2582 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2583 int ret;
2584
2585 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2586 return -ENODEV;
2587
2588 ops = kvm_device_ops_table[cd->type];
2589 if (ops == NULL)
2590 return -ENODEV;
2591
2592 if (test)
2593 return 0;
2594
2595 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2596 if (!dev)
2597 return -ENOMEM;
2598
2599 dev->ops = ops;
2600 dev->kvm = kvm;
2601
2602 ret = ops->create(dev, cd->type);
2603 if (ret < 0) {
2604 kfree(dev);
2605 return ret;
2606 }
2607
2608 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2609 if (ret < 0) {
2610 ops->destroy(dev);
2611 return ret;
2612 }
2613
2614 list_add(&dev->vm_node, &kvm->devices);
2615 kvm_get_kvm(kvm);
2616 cd->fd = ret;
2617 return 0;
2618 }
2619
2620 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2621 {
2622 switch (arg) {
2623 case KVM_CAP_USER_MEMORY:
2624 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2625 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2626 case KVM_CAP_INTERNAL_ERROR_DATA:
2627 #ifdef CONFIG_HAVE_KVM_MSI
2628 case KVM_CAP_SIGNAL_MSI:
2629 #endif
2630 #ifdef CONFIG_HAVE_KVM_IRQFD
2631 case KVM_CAP_IRQFD:
2632 case KVM_CAP_IRQFD_RESAMPLE:
2633 #endif
2634 case KVM_CAP_CHECK_EXTENSION_VM:
2635 return 1;
2636 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2637 case KVM_CAP_IRQ_ROUTING:
2638 return KVM_MAX_IRQ_ROUTES;
2639 #endif
2640 #if KVM_ADDRESS_SPACE_NUM > 1
2641 case KVM_CAP_MULTI_ADDRESS_SPACE:
2642 return KVM_ADDRESS_SPACE_NUM;
2643 #endif
2644 default:
2645 break;
2646 }
2647 return kvm_vm_ioctl_check_extension(kvm, arg);
2648 }
2649
2650 static long kvm_vm_ioctl(struct file *filp,
2651 unsigned int ioctl, unsigned long arg)
2652 {
2653 struct kvm *kvm = filp->private_data;
2654 void __user *argp = (void __user *)arg;
2655 int r;
2656
2657 if (kvm->mm != current->mm)
2658 return -EIO;
2659 switch (ioctl) {
2660 case KVM_CREATE_VCPU:
2661 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2662 break;
2663 case KVM_SET_USER_MEMORY_REGION: {
2664 struct kvm_userspace_memory_region kvm_userspace_mem;
2665
2666 r = -EFAULT;
2667 if (copy_from_user(&kvm_userspace_mem, argp,
2668 sizeof(kvm_userspace_mem)))
2669 goto out;
2670
2671 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2672 break;
2673 }
2674 case KVM_GET_DIRTY_LOG: {
2675 struct kvm_dirty_log log;
2676
2677 r = -EFAULT;
2678 if (copy_from_user(&log, argp, sizeof(log)))
2679 goto out;
2680 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2681 break;
2682 }
2683 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2684 case KVM_REGISTER_COALESCED_MMIO: {
2685 struct kvm_coalesced_mmio_zone zone;
2686
2687 r = -EFAULT;
2688 if (copy_from_user(&zone, argp, sizeof(zone)))
2689 goto out;
2690 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2691 break;
2692 }
2693 case KVM_UNREGISTER_COALESCED_MMIO: {
2694 struct kvm_coalesced_mmio_zone zone;
2695
2696 r = -EFAULT;
2697 if (copy_from_user(&zone, argp, sizeof(zone)))
2698 goto out;
2699 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2700 break;
2701 }
2702 #endif
2703 case KVM_IRQFD: {
2704 struct kvm_irqfd data;
2705
2706 r = -EFAULT;
2707 if (copy_from_user(&data, argp, sizeof(data)))
2708 goto out;
2709 r = kvm_irqfd(kvm, &data);
2710 break;
2711 }
2712 case KVM_IOEVENTFD: {
2713 struct kvm_ioeventfd data;
2714
2715 r = -EFAULT;
2716 if (copy_from_user(&data, argp, sizeof(data)))
2717 goto out;
2718 r = kvm_ioeventfd(kvm, &data);
2719 break;
2720 }
2721 #ifdef CONFIG_HAVE_KVM_MSI
2722 case KVM_SIGNAL_MSI: {
2723 struct kvm_msi msi;
2724
2725 r = -EFAULT;
2726 if (copy_from_user(&msi, argp, sizeof(msi)))
2727 goto out;
2728 r = kvm_send_userspace_msi(kvm, &msi);
2729 break;
2730 }
2731 #endif
2732 #ifdef __KVM_HAVE_IRQ_LINE
2733 case KVM_IRQ_LINE_STATUS:
2734 case KVM_IRQ_LINE: {
2735 struct kvm_irq_level irq_event;
2736
2737 r = -EFAULT;
2738 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2739 goto out;
2740
2741 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2742 ioctl == KVM_IRQ_LINE_STATUS);
2743 if (r)
2744 goto out;
2745
2746 r = -EFAULT;
2747 if (ioctl == KVM_IRQ_LINE_STATUS) {
2748 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2749 goto out;
2750 }
2751
2752 r = 0;
2753 break;
2754 }
2755 #endif
2756 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2757 case KVM_SET_GSI_ROUTING: {
2758 struct kvm_irq_routing routing;
2759 struct kvm_irq_routing __user *urouting;
2760 struct kvm_irq_routing_entry *entries;
2761
2762 r = -EFAULT;
2763 if (copy_from_user(&routing, argp, sizeof(routing)))
2764 goto out;
2765 r = -EINVAL;
2766 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2767 goto out;
2768 if (routing.flags)
2769 goto out;
2770 r = -ENOMEM;
2771 entries = vmalloc(routing.nr * sizeof(*entries));
2772 if (!entries)
2773 goto out;
2774 r = -EFAULT;
2775 urouting = argp;
2776 if (copy_from_user(entries, urouting->entries,
2777 routing.nr * sizeof(*entries)))
2778 goto out_free_irq_routing;
2779 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2780 routing.flags);
2781 out_free_irq_routing:
2782 vfree(entries);
2783 break;
2784 }
2785 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2786 case KVM_CREATE_DEVICE: {
2787 struct kvm_create_device cd;
2788
2789 r = -EFAULT;
2790 if (copy_from_user(&cd, argp, sizeof(cd)))
2791 goto out;
2792
2793 r = kvm_ioctl_create_device(kvm, &cd);
2794 if (r)
2795 goto out;
2796
2797 r = -EFAULT;
2798 if (copy_to_user(argp, &cd, sizeof(cd)))
2799 goto out;
2800
2801 r = 0;
2802 break;
2803 }
2804 case KVM_CHECK_EXTENSION:
2805 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2806 break;
2807 default:
2808 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2809 }
2810 out:
2811 return r;
2812 }
2813
2814 #ifdef CONFIG_KVM_COMPAT
2815 struct compat_kvm_dirty_log {
2816 __u32 slot;
2817 __u32 padding1;
2818 union {
2819 compat_uptr_t dirty_bitmap; /* one bit per page */
2820 __u64 padding2;
2821 };
2822 };
2823
2824 static long kvm_vm_compat_ioctl(struct file *filp,
2825 unsigned int ioctl, unsigned long arg)
2826 {
2827 struct kvm *kvm = filp->private_data;
2828 int r;
2829
2830 if (kvm->mm != current->mm)
2831 return -EIO;
2832 switch (ioctl) {
2833 case KVM_GET_DIRTY_LOG: {
2834 struct compat_kvm_dirty_log compat_log;
2835 struct kvm_dirty_log log;
2836
2837 r = -EFAULT;
2838 if (copy_from_user(&compat_log, (void __user *)arg,
2839 sizeof(compat_log)))
2840 goto out;
2841 log.slot = compat_log.slot;
2842 log.padding1 = compat_log.padding1;
2843 log.padding2 = compat_log.padding2;
2844 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2845
2846 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2847 break;
2848 }
2849 default:
2850 r = kvm_vm_ioctl(filp, ioctl, arg);
2851 }
2852
2853 out:
2854 return r;
2855 }
2856 #endif
2857
2858 static struct file_operations kvm_vm_fops = {
2859 .release = kvm_vm_release,
2860 .unlocked_ioctl = kvm_vm_ioctl,
2861 #ifdef CONFIG_KVM_COMPAT
2862 .compat_ioctl = kvm_vm_compat_ioctl,
2863 #endif
2864 .llseek = noop_llseek,
2865 };
2866
2867 static int kvm_dev_ioctl_create_vm(unsigned long type)
2868 {
2869 int r;
2870 struct kvm *kvm;
2871
2872 kvm = kvm_create_vm(type);
2873 if (IS_ERR(kvm))
2874 return PTR_ERR(kvm);
2875 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2876 r = kvm_coalesced_mmio_init(kvm);
2877 if (r < 0) {
2878 kvm_put_kvm(kvm);
2879 return r;
2880 }
2881 #endif
2882 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2883 if (r < 0)
2884 kvm_put_kvm(kvm);
2885
2886 return r;
2887 }
2888
2889 static long kvm_dev_ioctl(struct file *filp,
2890 unsigned int ioctl, unsigned long arg)
2891 {
2892 long r = -EINVAL;
2893
2894 switch (ioctl) {
2895 case KVM_GET_API_VERSION:
2896 if (arg)
2897 goto out;
2898 r = KVM_API_VERSION;
2899 break;
2900 case KVM_CREATE_VM:
2901 r = kvm_dev_ioctl_create_vm(arg);
2902 break;
2903 case KVM_CHECK_EXTENSION:
2904 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2905 break;
2906 case KVM_GET_VCPU_MMAP_SIZE:
2907 if (arg)
2908 goto out;
2909 r = PAGE_SIZE; /* struct kvm_run */
2910 #ifdef CONFIG_X86
2911 r += PAGE_SIZE; /* pio data page */
2912 #endif
2913 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2914 r += PAGE_SIZE; /* coalesced mmio ring page */
2915 #endif
2916 break;
2917 case KVM_TRACE_ENABLE:
2918 case KVM_TRACE_PAUSE:
2919 case KVM_TRACE_DISABLE:
2920 r = -EOPNOTSUPP;
2921 break;
2922 default:
2923 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2924 }
2925 out:
2926 return r;
2927 }
2928
2929 static struct file_operations kvm_chardev_ops = {
2930 .unlocked_ioctl = kvm_dev_ioctl,
2931 .compat_ioctl = kvm_dev_ioctl,
2932 .llseek = noop_llseek,
2933 };
2934
2935 static struct miscdevice kvm_dev = {
2936 KVM_MINOR,
2937 "kvm",
2938 &kvm_chardev_ops,
2939 };
2940
2941 static void hardware_enable_nolock(void *junk)
2942 {
2943 int cpu = raw_smp_processor_id();
2944 int r;
2945
2946 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2947 return;
2948
2949 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2950
2951 r = kvm_arch_hardware_enable();
2952
2953 if (r) {
2954 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2955 atomic_inc(&hardware_enable_failed);
2956 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2957 }
2958 }
2959
2960 static void hardware_enable(void)
2961 {
2962 raw_spin_lock(&kvm_count_lock);
2963 if (kvm_usage_count)
2964 hardware_enable_nolock(NULL);
2965 raw_spin_unlock(&kvm_count_lock);
2966 }
2967
2968 static void hardware_disable_nolock(void *junk)
2969 {
2970 int cpu = raw_smp_processor_id();
2971
2972 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2973 return;
2974 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2975 kvm_arch_hardware_disable();
2976 }
2977
2978 static void hardware_disable(void)
2979 {
2980 raw_spin_lock(&kvm_count_lock);
2981 if (kvm_usage_count)
2982 hardware_disable_nolock(NULL);
2983 raw_spin_unlock(&kvm_count_lock);
2984 }
2985
2986 static void hardware_disable_all_nolock(void)
2987 {
2988 BUG_ON(!kvm_usage_count);
2989
2990 kvm_usage_count--;
2991 if (!kvm_usage_count)
2992 on_each_cpu(hardware_disable_nolock, NULL, 1);
2993 }
2994
2995 static void hardware_disable_all(void)
2996 {
2997 raw_spin_lock(&kvm_count_lock);
2998 hardware_disable_all_nolock();
2999 raw_spin_unlock(&kvm_count_lock);
3000 }
3001
3002 static int hardware_enable_all(void)
3003 {
3004 int r = 0;
3005
3006 raw_spin_lock(&kvm_count_lock);
3007
3008 kvm_usage_count++;
3009 if (kvm_usage_count == 1) {
3010 atomic_set(&hardware_enable_failed, 0);
3011 on_each_cpu(hardware_enable_nolock, NULL, 1);
3012
3013 if (atomic_read(&hardware_enable_failed)) {
3014 hardware_disable_all_nolock();
3015 r = -EBUSY;
3016 }
3017 }
3018
3019 raw_spin_unlock(&kvm_count_lock);
3020
3021 return r;
3022 }
3023
3024 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3025 void *v)
3026 {
3027 val &= ~CPU_TASKS_FROZEN;
3028 switch (val) {
3029 case CPU_DYING:
3030 hardware_disable();
3031 break;
3032 case CPU_STARTING:
3033 hardware_enable();
3034 break;
3035 }
3036 return NOTIFY_OK;
3037 }
3038
3039 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3040 void *v)
3041 {
3042 /*
3043 * Some (well, at least mine) BIOSes hang on reboot if
3044 * in vmx root mode.
3045 *
3046 * And Intel TXT required VMX off for all cpu when system shutdown.
3047 */
3048 pr_info("kvm: exiting hardware virtualization\n");
3049 kvm_rebooting = true;
3050 on_each_cpu(hardware_disable_nolock, NULL, 1);
3051 return NOTIFY_OK;
3052 }
3053
3054 static struct notifier_block kvm_reboot_notifier = {
3055 .notifier_call = kvm_reboot,
3056 .priority = 0,
3057 };
3058
3059 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3060 {
3061 int i;
3062
3063 for (i = 0; i < bus->dev_count; i++) {
3064 struct kvm_io_device *pos = bus->range[i].dev;
3065
3066 kvm_iodevice_destructor(pos);
3067 }
3068 kfree(bus);
3069 }
3070
3071 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3072 const struct kvm_io_range *r2)
3073 {
3074 if (r1->addr < r2->addr)
3075 return -1;
3076 if (r1->addr + r1->len > r2->addr + r2->len)
3077 return 1;
3078 return 0;
3079 }
3080
3081 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3082 {
3083 return kvm_io_bus_cmp(p1, p2);
3084 }
3085
3086 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3087 gpa_t addr, int len)
3088 {
3089 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3090 .addr = addr,
3091 .len = len,
3092 .dev = dev,
3093 };
3094
3095 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3096 kvm_io_bus_sort_cmp, NULL);
3097
3098 return 0;
3099 }
3100
3101 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3102 gpa_t addr, int len)
3103 {
3104 struct kvm_io_range *range, key;
3105 int off;
3106
3107 key = (struct kvm_io_range) {
3108 .addr = addr,
3109 .len = len,
3110 };
3111
3112 range = bsearch(&key, bus->range, bus->dev_count,
3113 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3114 if (range == NULL)
3115 return -ENOENT;
3116
3117 off = range - bus->range;
3118
3119 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3120 off--;
3121
3122 return off;
3123 }
3124
3125 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3126 struct kvm_io_range *range, const void *val)
3127 {
3128 int idx;
3129
3130 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3131 if (idx < 0)
3132 return -EOPNOTSUPP;
3133
3134 while (idx < bus->dev_count &&
3135 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3136 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3137 range->len, val))
3138 return idx;
3139 idx++;
3140 }
3141
3142 return -EOPNOTSUPP;
3143 }
3144
3145 /* kvm_io_bus_write - called under kvm->slots_lock */
3146 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3147 int len, const void *val)
3148 {
3149 struct kvm_io_bus *bus;
3150 struct kvm_io_range range;
3151 int r;
3152
3153 range = (struct kvm_io_range) {
3154 .addr = addr,
3155 .len = len,
3156 };
3157
3158 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3159 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3160 return r < 0 ? r : 0;
3161 }
3162
3163 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3164 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3165 gpa_t addr, int len, const void *val, long cookie)
3166 {
3167 struct kvm_io_bus *bus;
3168 struct kvm_io_range range;
3169
3170 range = (struct kvm_io_range) {
3171 .addr = addr,
3172 .len = len,
3173 };
3174
3175 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3176
3177 /* First try the device referenced by cookie. */
3178 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3179 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3180 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3181 val))
3182 return cookie;
3183
3184 /*
3185 * cookie contained garbage; fall back to search and return the
3186 * correct cookie value.
3187 */
3188 return __kvm_io_bus_write(vcpu, bus, &range, val);
3189 }
3190
3191 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3192 struct kvm_io_range *range, void *val)
3193 {
3194 int idx;
3195
3196 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3197 if (idx < 0)
3198 return -EOPNOTSUPP;
3199
3200 while (idx < bus->dev_count &&
3201 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3202 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3203 range->len, val))
3204 return idx;
3205 idx++;
3206 }
3207
3208 return -EOPNOTSUPP;
3209 }
3210 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3211
3212 /* kvm_io_bus_read - called under kvm->slots_lock */
3213 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3214 int len, void *val)
3215 {
3216 struct kvm_io_bus *bus;
3217 struct kvm_io_range range;
3218 int r;
3219
3220 range = (struct kvm_io_range) {
3221 .addr = addr,
3222 .len = len,
3223 };
3224
3225 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3226 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3227 return r < 0 ? r : 0;
3228 }
3229
3230
3231 /* Caller must hold slots_lock. */
3232 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3233 int len, struct kvm_io_device *dev)
3234 {
3235 struct kvm_io_bus *new_bus, *bus;
3236
3237 bus = kvm->buses[bus_idx];
3238 /* exclude ioeventfd which is limited by maximum fd */
3239 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3240 return -ENOSPC;
3241
3242 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3243 sizeof(struct kvm_io_range)), GFP_KERNEL);
3244 if (!new_bus)
3245 return -ENOMEM;
3246 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3247 sizeof(struct kvm_io_range)));
3248 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3249 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3250 synchronize_srcu_expedited(&kvm->srcu);
3251 kfree(bus);
3252
3253 return 0;
3254 }
3255
3256 /* Caller must hold slots_lock. */
3257 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3258 struct kvm_io_device *dev)
3259 {
3260 int i, r;
3261 struct kvm_io_bus *new_bus, *bus;
3262
3263 bus = kvm->buses[bus_idx];
3264 r = -ENOENT;
3265 for (i = 0; i < bus->dev_count; i++)
3266 if (bus->range[i].dev == dev) {
3267 r = 0;
3268 break;
3269 }
3270
3271 if (r)
3272 return r;
3273
3274 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3275 sizeof(struct kvm_io_range)), GFP_KERNEL);
3276 if (!new_bus)
3277 return -ENOMEM;
3278
3279 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3280 new_bus->dev_count--;
3281 memcpy(new_bus->range + i, bus->range + i + 1,
3282 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3283
3284 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3285 synchronize_srcu_expedited(&kvm->srcu);
3286 kfree(bus);
3287 return r;
3288 }
3289
3290 static struct notifier_block kvm_cpu_notifier = {
3291 .notifier_call = kvm_cpu_hotplug,
3292 };
3293
3294 static int vm_stat_get(void *_offset, u64 *val)
3295 {
3296 unsigned offset = (long)_offset;
3297 struct kvm *kvm;
3298
3299 *val = 0;
3300 spin_lock(&kvm_lock);
3301 list_for_each_entry(kvm, &vm_list, vm_list)
3302 *val += *(u32 *)((void *)kvm + offset);
3303 spin_unlock(&kvm_lock);
3304 return 0;
3305 }
3306
3307 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3308
3309 static int vcpu_stat_get(void *_offset, u64 *val)
3310 {
3311 unsigned offset = (long)_offset;
3312 struct kvm *kvm;
3313 struct kvm_vcpu *vcpu;
3314 int i;
3315
3316 *val = 0;
3317 spin_lock(&kvm_lock);
3318 list_for_each_entry(kvm, &vm_list, vm_list)
3319 kvm_for_each_vcpu(i, vcpu, kvm)
3320 *val += *(u32 *)((void *)vcpu + offset);
3321
3322 spin_unlock(&kvm_lock);
3323 return 0;
3324 }
3325
3326 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3327
3328 static const struct file_operations *stat_fops[] = {
3329 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3330 [KVM_STAT_VM] = &vm_stat_fops,
3331 };
3332
3333 static int kvm_init_debug(void)
3334 {
3335 int r = -EEXIST;
3336 struct kvm_stats_debugfs_item *p;
3337
3338 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3339 if (kvm_debugfs_dir == NULL)
3340 goto out;
3341
3342 for (p = debugfs_entries; p->name; ++p) {
3343 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3344 (void *)(long)p->offset,
3345 stat_fops[p->kind]);
3346 if (p->dentry == NULL)
3347 goto out_dir;
3348 }
3349
3350 return 0;
3351
3352 out_dir:
3353 debugfs_remove_recursive(kvm_debugfs_dir);
3354 out:
3355 return r;
3356 }
3357
3358 static void kvm_exit_debug(void)
3359 {
3360 struct kvm_stats_debugfs_item *p;
3361
3362 for (p = debugfs_entries; p->name; ++p)
3363 debugfs_remove(p->dentry);
3364 debugfs_remove(kvm_debugfs_dir);
3365 }
3366
3367 static int kvm_suspend(void)
3368 {
3369 if (kvm_usage_count)
3370 hardware_disable_nolock(NULL);
3371 return 0;
3372 }
3373
3374 static void kvm_resume(void)
3375 {
3376 if (kvm_usage_count) {
3377 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3378 hardware_enable_nolock(NULL);
3379 }
3380 }
3381
3382 static struct syscore_ops kvm_syscore_ops = {
3383 .suspend = kvm_suspend,
3384 .resume = kvm_resume,
3385 };
3386
3387 static inline
3388 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3389 {
3390 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3391 }
3392
3393 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3394 {
3395 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3396
3397 if (vcpu->preempted)
3398 vcpu->preempted = false;
3399
3400 kvm_arch_sched_in(vcpu, cpu);
3401
3402 kvm_arch_vcpu_load(vcpu, cpu);
3403 }
3404
3405 static void kvm_sched_out(struct preempt_notifier *pn,
3406 struct task_struct *next)
3407 {
3408 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3409
3410 if (current->state == TASK_RUNNING)
3411 vcpu->preempted = true;
3412 kvm_arch_vcpu_put(vcpu);
3413 }
3414
3415 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3416 struct module *module)
3417 {
3418 int r;
3419 int cpu;
3420
3421 r = kvm_arch_init(opaque);
3422 if (r)
3423 goto out_fail;
3424
3425 /*
3426 * kvm_arch_init makes sure there's at most one caller
3427 * for architectures that support multiple implementations,
3428 * like intel and amd on x86.
3429 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3430 * conflicts in case kvm is already setup for another implementation.
3431 */
3432 r = kvm_irqfd_init();
3433 if (r)
3434 goto out_irqfd;
3435
3436 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3437 r = -ENOMEM;
3438 goto out_free_0;
3439 }
3440
3441 r = kvm_arch_hardware_setup();
3442 if (r < 0)
3443 goto out_free_0a;
3444
3445 for_each_online_cpu(cpu) {
3446 smp_call_function_single(cpu,
3447 kvm_arch_check_processor_compat,
3448 &r, 1);
3449 if (r < 0)
3450 goto out_free_1;
3451 }
3452
3453 r = register_cpu_notifier(&kvm_cpu_notifier);
3454 if (r)
3455 goto out_free_2;
3456 register_reboot_notifier(&kvm_reboot_notifier);
3457
3458 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3459 if (!vcpu_align)
3460 vcpu_align = __alignof__(struct kvm_vcpu);
3461 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3462 0, NULL);
3463 if (!kvm_vcpu_cache) {
3464 r = -ENOMEM;
3465 goto out_free_3;
3466 }
3467
3468 r = kvm_async_pf_init();
3469 if (r)
3470 goto out_free;
3471
3472 kvm_chardev_ops.owner = module;
3473 kvm_vm_fops.owner = module;
3474 kvm_vcpu_fops.owner = module;
3475
3476 r = misc_register(&kvm_dev);
3477 if (r) {
3478 pr_err("kvm: misc device register failed\n");
3479 goto out_unreg;
3480 }
3481
3482 register_syscore_ops(&kvm_syscore_ops);
3483
3484 kvm_preempt_ops.sched_in = kvm_sched_in;
3485 kvm_preempt_ops.sched_out = kvm_sched_out;
3486
3487 r = kvm_init_debug();
3488 if (r) {
3489 pr_err("kvm: create debugfs files failed\n");
3490 goto out_undebugfs;
3491 }
3492
3493 r = kvm_vfio_ops_init();
3494 WARN_ON(r);
3495
3496 return 0;
3497
3498 out_undebugfs:
3499 unregister_syscore_ops(&kvm_syscore_ops);
3500 misc_deregister(&kvm_dev);
3501 out_unreg:
3502 kvm_async_pf_deinit();
3503 out_free:
3504 kmem_cache_destroy(kvm_vcpu_cache);
3505 out_free_3:
3506 unregister_reboot_notifier(&kvm_reboot_notifier);
3507 unregister_cpu_notifier(&kvm_cpu_notifier);
3508 out_free_2:
3509 out_free_1:
3510 kvm_arch_hardware_unsetup();
3511 out_free_0a:
3512 free_cpumask_var(cpus_hardware_enabled);
3513 out_free_0:
3514 kvm_irqfd_exit();
3515 out_irqfd:
3516 kvm_arch_exit();
3517 out_fail:
3518 return r;
3519 }
3520 EXPORT_SYMBOL_GPL(kvm_init);
3521
3522 void kvm_exit(void)
3523 {
3524 kvm_exit_debug();
3525 misc_deregister(&kvm_dev);
3526 kmem_cache_destroy(kvm_vcpu_cache);
3527 kvm_async_pf_deinit();
3528 unregister_syscore_ops(&kvm_syscore_ops);
3529 unregister_reboot_notifier(&kvm_reboot_notifier);
3530 unregister_cpu_notifier(&kvm_cpu_notifier);
3531 on_each_cpu(hardware_disable_nolock, NULL, 1);
3532 kvm_arch_hardware_unsetup();
3533 kvm_arch_exit();
3534 kvm_irqfd_exit();
3535 free_cpumask_var(cpus_hardware_enabled);
3536 kvm_vfio_ops_exit();
3537 }
3538 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.148236 seconds and 5 git commands to generate.