llseek: automatically add .llseek fop
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affilates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50
51 #include <asm/processor.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <asm/pgtable.h>
55 #include <asm-generic/bitops/le.h>
56
57 #include "coalesced_mmio.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/kvm.h>
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 /*
66 * Ordering of locks:
67 *
68 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
69 */
70
71 DEFINE_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
73
74 static cpumask_var_t cpus_hardware_enabled;
75 static int kvm_usage_count = 0;
76 static atomic_t hardware_enable_failed;
77
78 struct kmem_cache *kvm_vcpu_cache;
79 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
80
81 static __read_mostly struct preempt_ops kvm_preempt_ops;
82
83 struct dentry *kvm_debugfs_dir;
84
85 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
86 unsigned long arg);
87 static int hardware_enable_all(void);
88 static void hardware_disable_all(void);
89
90 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
91
92 static bool kvm_rebooting;
93
94 static bool largepages_enabled = true;
95
96 static struct page *hwpoison_page;
97 static pfn_t hwpoison_pfn;
98
99 static struct page *fault_page;
100 static pfn_t fault_pfn;
101
102 inline int kvm_is_mmio_pfn(pfn_t pfn)
103 {
104 if (pfn_valid(pfn)) {
105 struct page *page = compound_head(pfn_to_page(pfn));
106 return PageReserved(page);
107 }
108
109 return true;
110 }
111
112 /*
113 * Switches to specified vcpu, until a matching vcpu_put()
114 */
115 void vcpu_load(struct kvm_vcpu *vcpu)
116 {
117 int cpu;
118
119 mutex_lock(&vcpu->mutex);
120 cpu = get_cpu();
121 preempt_notifier_register(&vcpu->preempt_notifier);
122 kvm_arch_vcpu_load(vcpu, cpu);
123 put_cpu();
124 }
125
126 void vcpu_put(struct kvm_vcpu *vcpu)
127 {
128 preempt_disable();
129 kvm_arch_vcpu_put(vcpu);
130 preempt_notifier_unregister(&vcpu->preempt_notifier);
131 preempt_enable();
132 mutex_unlock(&vcpu->mutex);
133 }
134
135 static void ack_flush(void *_completed)
136 {
137 }
138
139 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
140 {
141 int i, cpu, me;
142 cpumask_var_t cpus;
143 bool called = true;
144 struct kvm_vcpu *vcpu;
145
146 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
147
148 raw_spin_lock(&kvm->requests_lock);
149 me = smp_processor_id();
150 kvm_for_each_vcpu(i, vcpu, kvm) {
151 if (kvm_make_check_request(req, vcpu))
152 continue;
153 cpu = vcpu->cpu;
154 if (cpus != NULL && cpu != -1 && cpu != me)
155 cpumask_set_cpu(cpu, cpus);
156 }
157 if (unlikely(cpus == NULL))
158 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
159 else if (!cpumask_empty(cpus))
160 smp_call_function_many(cpus, ack_flush, NULL, 1);
161 else
162 called = false;
163 raw_spin_unlock(&kvm->requests_lock);
164 free_cpumask_var(cpus);
165 return called;
166 }
167
168 void kvm_flush_remote_tlbs(struct kvm *kvm)
169 {
170 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
171 ++kvm->stat.remote_tlb_flush;
172 }
173
174 void kvm_reload_remote_mmus(struct kvm *kvm)
175 {
176 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
177 }
178
179 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
180 {
181 struct page *page;
182 int r;
183
184 mutex_init(&vcpu->mutex);
185 vcpu->cpu = -1;
186 vcpu->kvm = kvm;
187 vcpu->vcpu_id = id;
188 init_waitqueue_head(&vcpu->wq);
189
190 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
191 if (!page) {
192 r = -ENOMEM;
193 goto fail;
194 }
195 vcpu->run = page_address(page);
196
197 r = kvm_arch_vcpu_init(vcpu);
198 if (r < 0)
199 goto fail_free_run;
200 return 0;
201
202 fail_free_run:
203 free_page((unsigned long)vcpu->run);
204 fail:
205 return r;
206 }
207 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
208
209 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
210 {
211 kvm_arch_vcpu_uninit(vcpu);
212 free_page((unsigned long)vcpu->run);
213 }
214 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
215
216 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
217 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
218 {
219 return container_of(mn, struct kvm, mmu_notifier);
220 }
221
222 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
223 struct mm_struct *mm,
224 unsigned long address)
225 {
226 struct kvm *kvm = mmu_notifier_to_kvm(mn);
227 int need_tlb_flush, idx;
228
229 /*
230 * When ->invalidate_page runs, the linux pte has been zapped
231 * already but the page is still allocated until
232 * ->invalidate_page returns. So if we increase the sequence
233 * here the kvm page fault will notice if the spte can't be
234 * established because the page is going to be freed. If
235 * instead the kvm page fault establishes the spte before
236 * ->invalidate_page runs, kvm_unmap_hva will release it
237 * before returning.
238 *
239 * The sequence increase only need to be seen at spin_unlock
240 * time, and not at spin_lock time.
241 *
242 * Increasing the sequence after the spin_unlock would be
243 * unsafe because the kvm page fault could then establish the
244 * pte after kvm_unmap_hva returned, without noticing the page
245 * is going to be freed.
246 */
247 idx = srcu_read_lock(&kvm->srcu);
248 spin_lock(&kvm->mmu_lock);
249 kvm->mmu_notifier_seq++;
250 need_tlb_flush = kvm_unmap_hva(kvm, address);
251 spin_unlock(&kvm->mmu_lock);
252 srcu_read_unlock(&kvm->srcu, idx);
253
254 /* we've to flush the tlb before the pages can be freed */
255 if (need_tlb_flush)
256 kvm_flush_remote_tlbs(kvm);
257
258 }
259
260 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
261 struct mm_struct *mm,
262 unsigned long address,
263 pte_t pte)
264 {
265 struct kvm *kvm = mmu_notifier_to_kvm(mn);
266 int idx;
267
268 idx = srcu_read_lock(&kvm->srcu);
269 spin_lock(&kvm->mmu_lock);
270 kvm->mmu_notifier_seq++;
271 kvm_set_spte_hva(kvm, address, pte);
272 spin_unlock(&kvm->mmu_lock);
273 srcu_read_unlock(&kvm->srcu, idx);
274 }
275
276 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
277 struct mm_struct *mm,
278 unsigned long start,
279 unsigned long end)
280 {
281 struct kvm *kvm = mmu_notifier_to_kvm(mn);
282 int need_tlb_flush = 0, idx;
283
284 idx = srcu_read_lock(&kvm->srcu);
285 spin_lock(&kvm->mmu_lock);
286 /*
287 * The count increase must become visible at unlock time as no
288 * spte can be established without taking the mmu_lock and
289 * count is also read inside the mmu_lock critical section.
290 */
291 kvm->mmu_notifier_count++;
292 for (; start < end; start += PAGE_SIZE)
293 need_tlb_flush |= kvm_unmap_hva(kvm, start);
294 spin_unlock(&kvm->mmu_lock);
295 srcu_read_unlock(&kvm->srcu, idx);
296
297 /* we've to flush the tlb before the pages can be freed */
298 if (need_tlb_flush)
299 kvm_flush_remote_tlbs(kvm);
300 }
301
302 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
303 struct mm_struct *mm,
304 unsigned long start,
305 unsigned long end)
306 {
307 struct kvm *kvm = mmu_notifier_to_kvm(mn);
308
309 spin_lock(&kvm->mmu_lock);
310 /*
311 * This sequence increase will notify the kvm page fault that
312 * the page that is going to be mapped in the spte could have
313 * been freed.
314 */
315 kvm->mmu_notifier_seq++;
316 /*
317 * The above sequence increase must be visible before the
318 * below count decrease but both values are read by the kvm
319 * page fault under mmu_lock spinlock so we don't need to add
320 * a smb_wmb() here in between the two.
321 */
322 kvm->mmu_notifier_count--;
323 spin_unlock(&kvm->mmu_lock);
324
325 BUG_ON(kvm->mmu_notifier_count < 0);
326 }
327
328 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
329 struct mm_struct *mm,
330 unsigned long address)
331 {
332 struct kvm *kvm = mmu_notifier_to_kvm(mn);
333 int young, idx;
334
335 idx = srcu_read_lock(&kvm->srcu);
336 spin_lock(&kvm->mmu_lock);
337 young = kvm_age_hva(kvm, address);
338 spin_unlock(&kvm->mmu_lock);
339 srcu_read_unlock(&kvm->srcu, idx);
340
341 if (young)
342 kvm_flush_remote_tlbs(kvm);
343
344 return young;
345 }
346
347 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
348 struct mm_struct *mm)
349 {
350 struct kvm *kvm = mmu_notifier_to_kvm(mn);
351 int idx;
352
353 idx = srcu_read_lock(&kvm->srcu);
354 kvm_arch_flush_shadow(kvm);
355 srcu_read_unlock(&kvm->srcu, idx);
356 }
357
358 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
359 .invalidate_page = kvm_mmu_notifier_invalidate_page,
360 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
361 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
362 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
363 .change_pte = kvm_mmu_notifier_change_pte,
364 .release = kvm_mmu_notifier_release,
365 };
366
367 static int kvm_init_mmu_notifier(struct kvm *kvm)
368 {
369 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
370 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
371 }
372
373 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
374
375 static int kvm_init_mmu_notifier(struct kvm *kvm)
376 {
377 return 0;
378 }
379
380 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
381
382 static struct kvm *kvm_create_vm(void)
383 {
384 int r = 0, i;
385 struct kvm *kvm = kvm_arch_create_vm();
386
387 if (IS_ERR(kvm))
388 goto out;
389
390 r = hardware_enable_all();
391 if (r)
392 goto out_err_nodisable;
393
394 #ifdef CONFIG_HAVE_KVM_IRQCHIP
395 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
396 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
397 #endif
398
399 r = -ENOMEM;
400 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
401 if (!kvm->memslots)
402 goto out_err;
403 if (init_srcu_struct(&kvm->srcu))
404 goto out_err;
405 for (i = 0; i < KVM_NR_BUSES; i++) {
406 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
407 GFP_KERNEL);
408 if (!kvm->buses[i]) {
409 cleanup_srcu_struct(&kvm->srcu);
410 goto out_err;
411 }
412 }
413
414 r = kvm_init_mmu_notifier(kvm);
415 if (r) {
416 cleanup_srcu_struct(&kvm->srcu);
417 goto out_err;
418 }
419
420 kvm->mm = current->mm;
421 atomic_inc(&kvm->mm->mm_count);
422 spin_lock_init(&kvm->mmu_lock);
423 raw_spin_lock_init(&kvm->requests_lock);
424 kvm_eventfd_init(kvm);
425 mutex_init(&kvm->lock);
426 mutex_init(&kvm->irq_lock);
427 mutex_init(&kvm->slots_lock);
428 atomic_set(&kvm->users_count, 1);
429 spin_lock(&kvm_lock);
430 list_add(&kvm->vm_list, &vm_list);
431 spin_unlock(&kvm_lock);
432 out:
433 return kvm;
434
435 out_err:
436 hardware_disable_all();
437 out_err_nodisable:
438 for (i = 0; i < KVM_NR_BUSES; i++)
439 kfree(kvm->buses[i]);
440 kfree(kvm->memslots);
441 kfree(kvm);
442 return ERR_PTR(r);
443 }
444
445 /*
446 * Free any memory in @free but not in @dont.
447 */
448 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
449 struct kvm_memory_slot *dont)
450 {
451 int i;
452
453 if (!dont || free->rmap != dont->rmap)
454 vfree(free->rmap);
455
456 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
457 vfree(free->dirty_bitmap);
458
459
460 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
461 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
462 vfree(free->lpage_info[i]);
463 free->lpage_info[i] = NULL;
464 }
465 }
466
467 free->npages = 0;
468 free->dirty_bitmap = NULL;
469 free->rmap = NULL;
470 }
471
472 void kvm_free_physmem(struct kvm *kvm)
473 {
474 int i;
475 struct kvm_memslots *slots = kvm->memslots;
476
477 for (i = 0; i < slots->nmemslots; ++i)
478 kvm_free_physmem_slot(&slots->memslots[i], NULL);
479
480 kfree(kvm->memslots);
481 }
482
483 static void kvm_destroy_vm(struct kvm *kvm)
484 {
485 int i;
486 struct mm_struct *mm = kvm->mm;
487
488 kvm_arch_sync_events(kvm);
489 spin_lock(&kvm_lock);
490 list_del(&kvm->vm_list);
491 spin_unlock(&kvm_lock);
492 kvm_free_irq_routing(kvm);
493 for (i = 0; i < KVM_NR_BUSES; i++)
494 kvm_io_bus_destroy(kvm->buses[i]);
495 kvm_coalesced_mmio_free(kvm);
496 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
497 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
498 #else
499 kvm_arch_flush_shadow(kvm);
500 #endif
501 kvm_arch_destroy_vm(kvm);
502 hardware_disable_all();
503 mmdrop(mm);
504 }
505
506 void kvm_get_kvm(struct kvm *kvm)
507 {
508 atomic_inc(&kvm->users_count);
509 }
510 EXPORT_SYMBOL_GPL(kvm_get_kvm);
511
512 void kvm_put_kvm(struct kvm *kvm)
513 {
514 if (atomic_dec_and_test(&kvm->users_count))
515 kvm_destroy_vm(kvm);
516 }
517 EXPORT_SYMBOL_GPL(kvm_put_kvm);
518
519
520 static int kvm_vm_release(struct inode *inode, struct file *filp)
521 {
522 struct kvm *kvm = filp->private_data;
523
524 kvm_irqfd_release(kvm);
525
526 kvm_put_kvm(kvm);
527 return 0;
528 }
529
530 /*
531 * Allocate some memory and give it an address in the guest physical address
532 * space.
533 *
534 * Discontiguous memory is allowed, mostly for framebuffers.
535 *
536 * Must be called holding mmap_sem for write.
537 */
538 int __kvm_set_memory_region(struct kvm *kvm,
539 struct kvm_userspace_memory_region *mem,
540 int user_alloc)
541 {
542 int r, flush_shadow = 0;
543 gfn_t base_gfn;
544 unsigned long npages;
545 unsigned long i;
546 struct kvm_memory_slot *memslot;
547 struct kvm_memory_slot old, new;
548 struct kvm_memslots *slots, *old_memslots;
549
550 r = -EINVAL;
551 /* General sanity checks */
552 if (mem->memory_size & (PAGE_SIZE - 1))
553 goto out;
554 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
555 goto out;
556 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
557 goto out;
558 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
559 goto out;
560 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
561 goto out;
562
563 memslot = &kvm->memslots->memslots[mem->slot];
564 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
565 npages = mem->memory_size >> PAGE_SHIFT;
566
567 r = -EINVAL;
568 if (npages > KVM_MEM_MAX_NR_PAGES)
569 goto out;
570
571 if (!npages)
572 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
573
574 new = old = *memslot;
575
576 new.id = mem->slot;
577 new.base_gfn = base_gfn;
578 new.npages = npages;
579 new.flags = mem->flags;
580
581 /* Disallow changing a memory slot's size. */
582 r = -EINVAL;
583 if (npages && old.npages && npages != old.npages)
584 goto out_free;
585
586 /* Check for overlaps */
587 r = -EEXIST;
588 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
589 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
590
591 if (s == memslot || !s->npages)
592 continue;
593 if (!((base_gfn + npages <= s->base_gfn) ||
594 (base_gfn >= s->base_gfn + s->npages)))
595 goto out_free;
596 }
597
598 /* Free page dirty bitmap if unneeded */
599 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
600 new.dirty_bitmap = NULL;
601
602 r = -ENOMEM;
603
604 /* Allocate if a slot is being created */
605 #ifndef CONFIG_S390
606 if (npages && !new.rmap) {
607 new.rmap = vmalloc(npages * sizeof(*new.rmap));
608
609 if (!new.rmap)
610 goto out_free;
611
612 memset(new.rmap, 0, npages * sizeof(*new.rmap));
613
614 new.user_alloc = user_alloc;
615 new.userspace_addr = mem->userspace_addr;
616 }
617 if (!npages)
618 goto skip_lpage;
619
620 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
621 unsigned long ugfn;
622 unsigned long j;
623 int lpages;
624 int level = i + 2;
625
626 /* Avoid unused variable warning if no large pages */
627 (void)level;
628
629 if (new.lpage_info[i])
630 continue;
631
632 lpages = 1 + ((base_gfn + npages - 1)
633 >> KVM_HPAGE_GFN_SHIFT(level));
634 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
635
636 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
637
638 if (!new.lpage_info[i])
639 goto out_free;
640
641 memset(new.lpage_info[i], 0,
642 lpages * sizeof(*new.lpage_info[i]));
643
644 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
645 new.lpage_info[i][0].write_count = 1;
646 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
647 new.lpage_info[i][lpages - 1].write_count = 1;
648 ugfn = new.userspace_addr >> PAGE_SHIFT;
649 /*
650 * If the gfn and userspace address are not aligned wrt each
651 * other, or if explicitly asked to, disable large page
652 * support for this slot
653 */
654 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
655 !largepages_enabled)
656 for (j = 0; j < lpages; ++j)
657 new.lpage_info[i][j].write_count = 1;
658 }
659
660 skip_lpage:
661
662 /* Allocate page dirty bitmap if needed */
663 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
664 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
665
666 new.dirty_bitmap = vmalloc(dirty_bytes);
667 if (!new.dirty_bitmap)
668 goto out_free;
669 memset(new.dirty_bitmap, 0, dirty_bytes);
670 /* destroy any largepage mappings for dirty tracking */
671 if (old.npages)
672 flush_shadow = 1;
673 }
674 #else /* not defined CONFIG_S390 */
675 new.user_alloc = user_alloc;
676 if (user_alloc)
677 new.userspace_addr = mem->userspace_addr;
678 #endif /* not defined CONFIG_S390 */
679
680 if (!npages) {
681 r = -ENOMEM;
682 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
683 if (!slots)
684 goto out_free;
685 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
686 if (mem->slot >= slots->nmemslots)
687 slots->nmemslots = mem->slot + 1;
688 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
689
690 old_memslots = kvm->memslots;
691 rcu_assign_pointer(kvm->memslots, slots);
692 synchronize_srcu_expedited(&kvm->srcu);
693 /* From this point no new shadow pages pointing to a deleted
694 * memslot will be created.
695 *
696 * validation of sp->gfn happens in:
697 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
698 * - kvm_is_visible_gfn (mmu_check_roots)
699 */
700 kvm_arch_flush_shadow(kvm);
701 kfree(old_memslots);
702 }
703
704 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
705 if (r)
706 goto out_free;
707
708 #ifdef CONFIG_DMAR
709 /* map the pages in iommu page table */
710 if (npages) {
711 r = kvm_iommu_map_pages(kvm, &new);
712 if (r)
713 goto out_free;
714 }
715 #endif
716
717 r = -ENOMEM;
718 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
719 if (!slots)
720 goto out_free;
721 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
722 if (mem->slot >= slots->nmemslots)
723 slots->nmemslots = mem->slot + 1;
724
725 /* actual memory is freed via old in kvm_free_physmem_slot below */
726 if (!npages) {
727 new.rmap = NULL;
728 new.dirty_bitmap = NULL;
729 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
730 new.lpage_info[i] = NULL;
731 }
732
733 slots->memslots[mem->slot] = new;
734 old_memslots = kvm->memslots;
735 rcu_assign_pointer(kvm->memslots, slots);
736 synchronize_srcu_expedited(&kvm->srcu);
737
738 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
739
740 kvm_free_physmem_slot(&old, &new);
741 kfree(old_memslots);
742
743 if (flush_shadow)
744 kvm_arch_flush_shadow(kvm);
745
746 return 0;
747
748 out_free:
749 kvm_free_physmem_slot(&new, &old);
750 out:
751 return r;
752
753 }
754 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
755
756 int kvm_set_memory_region(struct kvm *kvm,
757 struct kvm_userspace_memory_region *mem,
758 int user_alloc)
759 {
760 int r;
761
762 mutex_lock(&kvm->slots_lock);
763 r = __kvm_set_memory_region(kvm, mem, user_alloc);
764 mutex_unlock(&kvm->slots_lock);
765 return r;
766 }
767 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
768
769 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
770 struct
771 kvm_userspace_memory_region *mem,
772 int user_alloc)
773 {
774 if (mem->slot >= KVM_MEMORY_SLOTS)
775 return -EINVAL;
776 return kvm_set_memory_region(kvm, mem, user_alloc);
777 }
778
779 int kvm_get_dirty_log(struct kvm *kvm,
780 struct kvm_dirty_log *log, int *is_dirty)
781 {
782 struct kvm_memory_slot *memslot;
783 int r, i;
784 unsigned long n;
785 unsigned long any = 0;
786
787 r = -EINVAL;
788 if (log->slot >= KVM_MEMORY_SLOTS)
789 goto out;
790
791 memslot = &kvm->memslots->memslots[log->slot];
792 r = -ENOENT;
793 if (!memslot->dirty_bitmap)
794 goto out;
795
796 n = kvm_dirty_bitmap_bytes(memslot);
797
798 for (i = 0; !any && i < n/sizeof(long); ++i)
799 any = memslot->dirty_bitmap[i];
800
801 r = -EFAULT;
802 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
803 goto out;
804
805 if (any)
806 *is_dirty = 1;
807
808 r = 0;
809 out:
810 return r;
811 }
812
813 void kvm_disable_largepages(void)
814 {
815 largepages_enabled = false;
816 }
817 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
818
819 int is_error_page(struct page *page)
820 {
821 return page == bad_page || page == hwpoison_page || page == fault_page;
822 }
823 EXPORT_SYMBOL_GPL(is_error_page);
824
825 int is_error_pfn(pfn_t pfn)
826 {
827 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
828 }
829 EXPORT_SYMBOL_GPL(is_error_pfn);
830
831 int is_hwpoison_pfn(pfn_t pfn)
832 {
833 return pfn == hwpoison_pfn;
834 }
835 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
836
837 int is_fault_pfn(pfn_t pfn)
838 {
839 return pfn == fault_pfn;
840 }
841 EXPORT_SYMBOL_GPL(is_fault_pfn);
842
843 static inline unsigned long bad_hva(void)
844 {
845 return PAGE_OFFSET;
846 }
847
848 int kvm_is_error_hva(unsigned long addr)
849 {
850 return addr == bad_hva();
851 }
852 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
853
854 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
855 {
856 int i;
857 struct kvm_memslots *slots = kvm_memslots(kvm);
858
859 for (i = 0; i < slots->nmemslots; ++i) {
860 struct kvm_memory_slot *memslot = &slots->memslots[i];
861
862 if (gfn >= memslot->base_gfn
863 && gfn < memslot->base_gfn + memslot->npages)
864 return memslot;
865 }
866 return NULL;
867 }
868 EXPORT_SYMBOL_GPL(gfn_to_memslot);
869
870 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
871 {
872 int i;
873 struct kvm_memslots *slots = kvm_memslots(kvm);
874
875 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
876 struct kvm_memory_slot *memslot = &slots->memslots[i];
877
878 if (memslot->flags & KVM_MEMSLOT_INVALID)
879 continue;
880
881 if (gfn >= memslot->base_gfn
882 && gfn < memslot->base_gfn + memslot->npages)
883 return 1;
884 }
885 return 0;
886 }
887 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
888
889 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
890 {
891 struct vm_area_struct *vma;
892 unsigned long addr, size;
893
894 size = PAGE_SIZE;
895
896 addr = gfn_to_hva(kvm, gfn);
897 if (kvm_is_error_hva(addr))
898 return PAGE_SIZE;
899
900 down_read(&current->mm->mmap_sem);
901 vma = find_vma(current->mm, addr);
902 if (!vma)
903 goto out;
904
905 size = vma_kernel_pagesize(vma);
906
907 out:
908 up_read(&current->mm->mmap_sem);
909
910 return size;
911 }
912
913 int memslot_id(struct kvm *kvm, gfn_t gfn)
914 {
915 int i;
916 struct kvm_memslots *slots = kvm_memslots(kvm);
917 struct kvm_memory_slot *memslot = NULL;
918
919 for (i = 0; i < slots->nmemslots; ++i) {
920 memslot = &slots->memslots[i];
921
922 if (gfn >= memslot->base_gfn
923 && gfn < memslot->base_gfn + memslot->npages)
924 break;
925 }
926
927 return memslot - slots->memslots;
928 }
929
930 static unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
931 {
932 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
933 }
934
935 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
936 {
937 struct kvm_memory_slot *slot;
938
939 slot = gfn_to_memslot(kvm, gfn);
940 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
941 return bad_hva();
942 return gfn_to_hva_memslot(slot, gfn);
943 }
944 EXPORT_SYMBOL_GPL(gfn_to_hva);
945
946 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr)
947 {
948 struct page *page[1];
949 int npages;
950 pfn_t pfn;
951
952 might_sleep();
953
954 npages = get_user_pages_fast(addr, 1, 1, page);
955
956 if (unlikely(npages != 1)) {
957 struct vm_area_struct *vma;
958
959 down_read(&current->mm->mmap_sem);
960 if (is_hwpoison_address(addr)) {
961 up_read(&current->mm->mmap_sem);
962 get_page(hwpoison_page);
963 return page_to_pfn(hwpoison_page);
964 }
965
966 vma = find_vma(current->mm, addr);
967
968 if (vma == NULL || addr < vma->vm_start ||
969 !(vma->vm_flags & VM_PFNMAP)) {
970 up_read(&current->mm->mmap_sem);
971 get_page(fault_page);
972 return page_to_pfn(fault_page);
973 }
974
975 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
976 up_read(&current->mm->mmap_sem);
977 BUG_ON(!kvm_is_mmio_pfn(pfn));
978 } else
979 pfn = page_to_pfn(page[0]);
980
981 return pfn;
982 }
983
984 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
985 {
986 unsigned long addr;
987
988 addr = gfn_to_hva(kvm, gfn);
989 if (kvm_is_error_hva(addr)) {
990 get_page(bad_page);
991 return page_to_pfn(bad_page);
992 }
993
994 return hva_to_pfn(kvm, addr);
995 }
996 EXPORT_SYMBOL_GPL(gfn_to_pfn);
997
998 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
999 struct kvm_memory_slot *slot, gfn_t gfn)
1000 {
1001 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1002 return hva_to_pfn(kvm, addr);
1003 }
1004
1005 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1006 {
1007 pfn_t pfn;
1008
1009 pfn = gfn_to_pfn(kvm, gfn);
1010 if (!kvm_is_mmio_pfn(pfn))
1011 return pfn_to_page(pfn);
1012
1013 WARN_ON(kvm_is_mmio_pfn(pfn));
1014
1015 get_page(bad_page);
1016 return bad_page;
1017 }
1018
1019 EXPORT_SYMBOL_GPL(gfn_to_page);
1020
1021 void kvm_release_page_clean(struct page *page)
1022 {
1023 kvm_release_pfn_clean(page_to_pfn(page));
1024 }
1025 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1026
1027 void kvm_release_pfn_clean(pfn_t pfn)
1028 {
1029 if (!kvm_is_mmio_pfn(pfn))
1030 put_page(pfn_to_page(pfn));
1031 }
1032 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1033
1034 void kvm_release_page_dirty(struct page *page)
1035 {
1036 kvm_release_pfn_dirty(page_to_pfn(page));
1037 }
1038 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1039
1040 void kvm_release_pfn_dirty(pfn_t pfn)
1041 {
1042 kvm_set_pfn_dirty(pfn);
1043 kvm_release_pfn_clean(pfn);
1044 }
1045 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1046
1047 void kvm_set_page_dirty(struct page *page)
1048 {
1049 kvm_set_pfn_dirty(page_to_pfn(page));
1050 }
1051 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1052
1053 void kvm_set_pfn_dirty(pfn_t pfn)
1054 {
1055 if (!kvm_is_mmio_pfn(pfn)) {
1056 struct page *page = pfn_to_page(pfn);
1057 if (!PageReserved(page))
1058 SetPageDirty(page);
1059 }
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1062
1063 void kvm_set_pfn_accessed(pfn_t pfn)
1064 {
1065 if (!kvm_is_mmio_pfn(pfn))
1066 mark_page_accessed(pfn_to_page(pfn));
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1069
1070 void kvm_get_pfn(pfn_t pfn)
1071 {
1072 if (!kvm_is_mmio_pfn(pfn))
1073 get_page(pfn_to_page(pfn));
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1076
1077 static int next_segment(unsigned long len, int offset)
1078 {
1079 if (len > PAGE_SIZE - offset)
1080 return PAGE_SIZE - offset;
1081 else
1082 return len;
1083 }
1084
1085 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1086 int len)
1087 {
1088 int r;
1089 unsigned long addr;
1090
1091 addr = gfn_to_hva(kvm, gfn);
1092 if (kvm_is_error_hva(addr))
1093 return -EFAULT;
1094 r = copy_from_user(data, (void __user *)addr + offset, len);
1095 if (r)
1096 return -EFAULT;
1097 return 0;
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1100
1101 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1102 {
1103 gfn_t gfn = gpa >> PAGE_SHIFT;
1104 int seg;
1105 int offset = offset_in_page(gpa);
1106 int ret;
1107
1108 while ((seg = next_segment(len, offset)) != 0) {
1109 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1110 if (ret < 0)
1111 return ret;
1112 offset = 0;
1113 len -= seg;
1114 data += seg;
1115 ++gfn;
1116 }
1117 return 0;
1118 }
1119 EXPORT_SYMBOL_GPL(kvm_read_guest);
1120
1121 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1122 unsigned long len)
1123 {
1124 int r;
1125 unsigned long addr;
1126 gfn_t gfn = gpa >> PAGE_SHIFT;
1127 int offset = offset_in_page(gpa);
1128
1129 addr = gfn_to_hva(kvm, gfn);
1130 if (kvm_is_error_hva(addr))
1131 return -EFAULT;
1132 pagefault_disable();
1133 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1134 pagefault_enable();
1135 if (r)
1136 return -EFAULT;
1137 return 0;
1138 }
1139 EXPORT_SYMBOL(kvm_read_guest_atomic);
1140
1141 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1142 int offset, int len)
1143 {
1144 int r;
1145 unsigned long addr;
1146
1147 addr = gfn_to_hva(kvm, gfn);
1148 if (kvm_is_error_hva(addr))
1149 return -EFAULT;
1150 r = copy_to_user((void __user *)addr + offset, data, len);
1151 if (r)
1152 return -EFAULT;
1153 mark_page_dirty(kvm, gfn);
1154 return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1157
1158 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1159 unsigned long len)
1160 {
1161 gfn_t gfn = gpa >> PAGE_SHIFT;
1162 int seg;
1163 int offset = offset_in_page(gpa);
1164 int ret;
1165
1166 while ((seg = next_segment(len, offset)) != 0) {
1167 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1168 if (ret < 0)
1169 return ret;
1170 offset = 0;
1171 len -= seg;
1172 data += seg;
1173 ++gfn;
1174 }
1175 return 0;
1176 }
1177
1178 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1179 {
1180 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1181 }
1182 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1183
1184 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1185 {
1186 gfn_t gfn = gpa >> PAGE_SHIFT;
1187 int seg;
1188 int offset = offset_in_page(gpa);
1189 int ret;
1190
1191 while ((seg = next_segment(len, offset)) != 0) {
1192 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1193 if (ret < 0)
1194 return ret;
1195 offset = 0;
1196 len -= seg;
1197 ++gfn;
1198 }
1199 return 0;
1200 }
1201 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1202
1203 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1204 {
1205 struct kvm_memory_slot *memslot;
1206
1207 memslot = gfn_to_memslot(kvm, gfn);
1208 if (memslot && memslot->dirty_bitmap) {
1209 unsigned long rel_gfn = gfn - memslot->base_gfn;
1210
1211 generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
1212 }
1213 }
1214
1215 /*
1216 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1217 */
1218 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1219 {
1220 DEFINE_WAIT(wait);
1221
1222 for (;;) {
1223 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1224
1225 if (kvm_arch_vcpu_runnable(vcpu)) {
1226 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1227 break;
1228 }
1229 if (kvm_cpu_has_pending_timer(vcpu))
1230 break;
1231 if (signal_pending(current))
1232 break;
1233
1234 schedule();
1235 }
1236
1237 finish_wait(&vcpu->wq, &wait);
1238 }
1239
1240 void kvm_resched(struct kvm_vcpu *vcpu)
1241 {
1242 if (!need_resched())
1243 return;
1244 cond_resched();
1245 }
1246 EXPORT_SYMBOL_GPL(kvm_resched);
1247
1248 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1249 {
1250 ktime_t expires;
1251 DEFINE_WAIT(wait);
1252
1253 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1254
1255 /* Sleep for 100 us, and hope lock-holder got scheduled */
1256 expires = ktime_add_ns(ktime_get(), 100000UL);
1257 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1258
1259 finish_wait(&vcpu->wq, &wait);
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1262
1263 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1264 {
1265 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1266 struct page *page;
1267
1268 if (vmf->pgoff == 0)
1269 page = virt_to_page(vcpu->run);
1270 #ifdef CONFIG_X86
1271 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1272 page = virt_to_page(vcpu->arch.pio_data);
1273 #endif
1274 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1275 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1276 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1277 #endif
1278 else
1279 return VM_FAULT_SIGBUS;
1280 get_page(page);
1281 vmf->page = page;
1282 return 0;
1283 }
1284
1285 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1286 .fault = kvm_vcpu_fault,
1287 };
1288
1289 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1290 {
1291 vma->vm_ops = &kvm_vcpu_vm_ops;
1292 return 0;
1293 }
1294
1295 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1296 {
1297 struct kvm_vcpu *vcpu = filp->private_data;
1298
1299 kvm_put_kvm(vcpu->kvm);
1300 return 0;
1301 }
1302
1303 static struct file_operations kvm_vcpu_fops = {
1304 .release = kvm_vcpu_release,
1305 .unlocked_ioctl = kvm_vcpu_ioctl,
1306 .compat_ioctl = kvm_vcpu_ioctl,
1307 .mmap = kvm_vcpu_mmap,
1308 .llseek = noop_llseek,
1309 };
1310
1311 /*
1312 * Allocates an inode for the vcpu.
1313 */
1314 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1315 {
1316 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1317 }
1318
1319 /*
1320 * Creates some virtual cpus. Good luck creating more than one.
1321 */
1322 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1323 {
1324 int r;
1325 struct kvm_vcpu *vcpu, *v;
1326
1327 vcpu = kvm_arch_vcpu_create(kvm, id);
1328 if (IS_ERR(vcpu))
1329 return PTR_ERR(vcpu);
1330
1331 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1332
1333 r = kvm_arch_vcpu_setup(vcpu);
1334 if (r)
1335 return r;
1336
1337 mutex_lock(&kvm->lock);
1338 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1339 r = -EINVAL;
1340 goto vcpu_destroy;
1341 }
1342
1343 kvm_for_each_vcpu(r, v, kvm)
1344 if (v->vcpu_id == id) {
1345 r = -EEXIST;
1346 goto vcpu_destroy;
1347 }
1348
1349 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1350
1351 /* Now it's all set up, let userspace reach it */
1352 kvm_get_kvm(kvm);
1353 r = create_vcpu_fd(vcpu);
1354 if (r < 0) {
1355 kvm_put_kvm(kvm);
1356 goto vcpu_destroy;
1357 }
1358
1359 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1360 smp_wmb();
1361 atomic_inc(&kvm->online_vcpus);
1362
1363 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1364 if (kvm->bsp_vcpu_id == id)
1365 kvm->bsp_vcpu = vcpu;
1366 #endif
1367 mutex_unlock(&kvm->lock);
1368 return r;
1369
1370 vcpu_destroy:
1371 mutex_unlock(&kvm->lock);
1372 kvm_arch_vcpu_destroy(vcpu);
1373 return r;
1374 }
1375
1376 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1377 {
1378 if (sigset) {
1379 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1380 vcpu->sigset_active = 1;
1381 vcpu->sigset = *sigset;
1382 } else
1383 vcpu->sigset_active = 0;
1384 return 0;
1385 }
1386
1387 static long kvm_vcpu_ioctl(struct file *filp,
1388 unsigned int ioctl, unsigned long arg)
1389 {
1390 struct kvm_vcpu *vcpu = filp->private_data;
1391 void __user *argp = (void __user *)arg;
1392 int r;
1393 struct kvm_fpu *fpu = NULL;
1394 struct kvm_sregs *kvm_sregs = NULL;
1395
1396 if (vcpu->kvm->mm != current->mm)
1397 return -EIO;
1398
1399 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1400 /*
1401 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1402 * so vcpu_load() would break it.
1403 */
1404 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1405 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1406 #endif
1407
1408
1409 vcpu_load(vcpu);
1410 switch (ioctl) {
1411 case KVM_RUN:
1412 r = -EINVAL;
1413 if (arg)
1414 goto out;
1415 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1416 break;
1417 case KVM_GET_REGS: {
1418 struct kvm_regs *kvm_regs;
1419
1420 r = -ENOMEM;
1421 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1422 if (!kvm_regs)
1423 goto out;
1424 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1425 if (r)
1426 goto out_free1;
1427 r = -EFAULT;
1428 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1429 goto out_free1;
1430 r = 0;
1431 out_free1:
1432 kfree(kvm_regs);
1433 break;
1434 }
1435 case KVM_SET_REGS: {
1436 struct kvm_regs *kvm_regs;
1437
1438 r = -ENOMEM;
1439 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1440 if (!kvm_regs)
1441 goto out;
1442 r = -EFAULT;
1443 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1444 goto out_free2;
1445 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1446 if (r)
1447 goto out_free2;
1448 r = 0;
1449 out_free2:
1450 kfree(kvm_regs);
1451 break;
1452 }
1453 case KVM_GET_SREGS: {
1454 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1455 r = -ENOMEM;
1456 if (!kvm_sregs)
1457 goto out;
1458 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1459 if (r)
1460 goto out;
1461 r = -EFAULT;
1462 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1463 goto out;
1464 r = 0;
1465 break;
1466 }
1467 case KVM_SET_SREGS: {
1468 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1469 r = -ENOMEM;
1470 if (!kvm_sregs)
1471 goto out;
1472 r = -EFAULT;
1473 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1474 goto out;
1475 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1476 if (r)
1477 goto out;
1478 r = 0;
1479 break;
1480 }
1481 case KVM_GET_MP_STATE: {
1482 struct kvm_mp_state mp_state;
1483
1484 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1485 if (r)
1486 goto out;
1487 r = -EFAULT;
1488 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1489 goto out;
1490 r = 0;
1491 break;
1492 }
1493 case KVM_SET_MP_STATE: {
1494 struct kvm_mp_state mp_state;
1495
1496 r = -EFAULT;
1497 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1498 goto out;
1499 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1500 if (r)
1501 goto out;
1502 r = 0;
1503 break;
1504 }
1505 case KVM_TRANSLATE: {
1506 struct kvm_translation tr;
1507
1508 r = -EFAULT;
1509 if (copy_from_user(&tr, argp, sizeof tr))
1510 goto out;
1511 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1512 if (r)
1513 goto out;
1514 r = -EFAULT;
1515 if (copy_to_user(argp, &tr, sizeof tr))
1516 goto out;
1517 r = 0;
1518 break;
1519 }
1520 case KVM_SET_GUEST_DEBUG: {
1521 struct kvm_guest_debug dbg;
1522
1523 r = -EFAULT;
1524 if (copy_from_user(&dbg, argp, sizeof dbg))
1525 goto out;
1526 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1527 if (r)
1528 goto out;
1529 r = 0;
1530 break;
1531 }
1532 case KVM_SET_SIGNAL_MASK: {
1533 struct kvm_signal_mask __user *sigmask_arg = argp;
1534 struct kvm_signal_mask kvm_sigmask;
1535 sigset_t sigset, *p;
1536
1537 p = NULL;
1538 if (argp) {
1539 r = -EFAULT;
1540 if (copy_from_user(&kvm_sigmask, argp,
1541 sizeof kvm_sigmask))
1542 goto out;
1543 r = -EINVAL;
1544 if (kvm_sigmask.len != sizeof sigset)
1545 goto out;
1546 r = -EFAULT;
1547 if (copy_from_user(&sigset, sigmask_arg->sigset,
1548 sizeof sigset))
1549 goto out;
1550 p = &sigset;
1551 }
1552 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1553 break;
1554 }
1555 case KVM_GET_FPU: {
1556 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1557 r = -ENOMEM;
1558 if (!fpu)
1559 goto out;
1560 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1561 if (r)
1562 goto out;
1563 r = -EFAULT;
1564 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1565 goto out;
1566 r = 0;
1567 break;
1568 }
1569 case KVM_SET_FPU: {
1570 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1571 r = -ENOMEM;
1572 if (!fpu)
1573 goto out;
1574 r = -EFAULT;
1575 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1576 goto out;
1577 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1578 if (r)
1579 goto out;
1580 r = 0;
1581 break;
1582 }
1583 default:
1584 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1585 }
1586 out:
1587 vcpu_put(vcpu);
1588 kfree(fpu);
1589 kfree(kvm_sregs);
1590 return r;
1591 }
1592
1593 static long kvm_vm_ioctl(struct file *filp,
1594 unsigned int ioctl, unsigned long arg)
1595 {
1596 struct kvm *kvm = filp->private_data;
1597 void __user *argp = (void __user *)arg;
1598 int r;
1599
1600 if (kvm->mm != current->mm)
1601 return -EIO;
1602 switch (ioctl) {
1603 case KVM_CREATE_VCPU:
1604 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1605 if (r < 0)
1606 goto out;
1607 break;
1608 case KVM_SET_USER_MEMORY_REGION: {
1609 struct kvm_userspace_memory_region kvm_userspace_mem;
1610
1611 r = -EFAULT;
1612 if (copy_from_user(&kvm_userspace_mem, argp,
1613 sizeof kvm_userspace_mem))
1614 goto out;
1615
1616 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1617 if (r)
1618 goto out;
1619 break;
1620 }
1621 case KVM_GET_DIRTY_LOG: {
1622 struct kvm_dirty_log log;
1623
1624 r = -EFAULT;
1625 if (copy_from_user(&log, argp, sizeof log))
1626 goto out;
1627 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1628 if (r)
1629 goto out;
1630 break;
1631 }
1632 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1633 case KVM_REGISTER_COALESCED_MMIO: {
1634 struct kvm_coalesced_mmio_zone zone;
1635 r = -EFAULT;
1636 if (copy_from_user(&zone, argp, sizeof zone))
1637 goto out;
1638 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1639 if (r)
1640 goto out;
1641 r = 0;
1642 break;
1643 }
1644 case KVM_UNREGISTER_COALESCED_MMIO: {
1645 struct kvm_coalesced_mmio_zone zone;
1646 r = -EFAULT;
1647 if (copy_from_user(&zone, argp, sizeof zone))
1648 goto out;
1649 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1650 if (r)
1651 goto out;
1652 r = 0;
1653 break;
1654 }
1655 #endif
1656 case KVM_IRQFD: {
1657 struct kvm_irqfd data;
1658
1659 r = -EFAULT;
1660 if (copy_from_user(&data, argp, sizeof data))
1661 goto out;
1662 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1663 break;
1664 }
1665 case KVM_IOEVENTFD: {
1666 struct kvm_ioeventfd data;
1667
1668 r = -EFAULT;
1669 if (copy_from_user(&data, argp, sizeof data))
1670 goto out;
1671 r = kvm_ioeventfd(kvm, &data);
1672 break;
1673 }
1674 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1675 case KVM_SET_BOOT_CPU_ID:
1676 r = 0;
1677 mutex_lock(&kvm->lock);
1678 if (atomic_read(&kvm->online_vcpus) != 0)
1679 r = -EBUSY;
1680 else
1681 kvm->bsp_vcpu_id = arg;
1682 mutex_unlock(&kvm->lock);
1683 break;
1684 #endif
1685 default:
1686 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1687 if (r == -ENOTTY)
1688 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1689 }
1690 out:
1691 return r;
1692 }
1693
1694 #ifdef CONFIG_COMPAT
1695 struct compat_kvm_dirty_log {
1696 __u32 slot;
1697 __u32 padding1;
1698 union {
1699 compat_uptr_t dirty_bitmap; /* one bit per page */
1700 __u64 padding2;
1701 };
1702 };
1703
1704 static long kvm_vm_compat_ioctl(struct file *filp,
1705 unsigned int ioctl, unsigned long arg)
1706 {
1707 struct kvm *kvm = filp->private_data;
1708 int r;
1709
1710 if (kvm->mm != current->mm)
1711 return -EIO;
1712 switch (ioctl) {
1713 case KVM_GET_DIRTY_LOG: {
1714 struct compat_kvm_dirty_log compat_log;
1715 struct kvm_dirty_log log;
1716
1717 r = -EFAULT;
1718 if (copy_from_user(&compat_log, (void __user *)arg,
1719 sizeof(compat_log)))
1720 goto out;
1721 log.slot = compat_log.slot;
1722 log.padding1 = compat_log.padding1;
1723 log.padding2 = compat_log.padding2;
1724 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1725
1726 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1727 if (r)
1728 goto out;
1729 break;
1730 }
1731 default:
1732 r = kvm_vm_ioctl(filp, ioctl, arg);
1733 }
1734
1735 out:
1736 return r;
1737 }
1738 #endif
1739
1740 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1741 {
1742 struct page *page[1];
1743 unsigned long addr;
1744 int npages;
1745 gfn_t gfn = vmf->pgoff;
1746 struct kvm *kvm = vma->vm_file->private_data;
1747
1748 addr = gfn_to_hva(kvm, gfn);
1749 if (kvm_is_error_hva(addr))
1750 return VM_FAULT_SIGBUS;
1751
1752 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1753 NULL);
1754 if (unlikely(npages != 1))
1755 return VM_FAULT_SIGBUS;
1756
1757 vmf->page = page[0];
1758 return 0;
1759 }
1760
1761 static const struct vm_operations_struct kvm_vm_vm_ops = {
1762 .fault = kvm_vm_fault,
1763 };
1764
1765 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1766 {
1767 vma->vm_ops = &kvm_vm_vm_ops;
1768 return 0;
1769 }
1770
1771 static struct file_operations kvm_vm_fops = {
1772 .release = kvm_vm_release,
1773 .unlocked_ioctl = kvm_vm_ioctl,
1774 #ifdef CONFIG_COMPAT
1775 .compat_ioctl = kvm_vm_compat_ioctl,
1776 #endif
1777 .mmap = kvm_vm_mmap,
1778 .llseek = noop_llseek,
1779 };
1780
1781 static int kvm_dev_ioctl_create_vm(void)
1782 {
1783 int fd, r;
1784 struct kvm *kvm;
1785
1786 kvm = kvm_create_vm();
1787 if (IS_ERR(kvm))
1788 return PTR_ERR(kvm);
1789 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1790 r = kvm_coalesced_mmio_init(kvm);
1791 if (r < 0) {
1792 kvm_put_kvm(kvm);
1793 return r;
1794 }
1795 #endif
1796 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
1797 if (fd < 0)
1798 kvm_put_kvm(kvm);
1799
1800 return fd;
1801 }
1802
1803 static long kvm_dev_ioctl_check_extension_generic(long arg)
1804 {
1805 switch (arg) {
1806 case KVM_CAP_USER_MEMORY:
1807 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1808 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1809 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1810 case KVM_CAP_SET_BOOT_CPU_ID:
1811 #endif
1812 case KVM_CAP_INTERNAL_ERROR_DATA:
1813 return 1;
1814 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1815 case KVM_CAP_IRQ_ROUTING:
1816 return KVM_MAX_IRQ_ROUTES;
1817 #endif
1818 default:
1819 break;
1820 }
1821 return kvm_dev_ioctl_check_extension(arg);
1822 }
1823
1824 static long kvm_dev_ioctl(struct file *filp,
1825 unsigned int ioctl, unsigned long arg)
1826 {
1827 long r = -EINVAL;
1828
1829 switch (ioctl) {
1830 case KVM_GET_API_VERSION:
1831 r = -EINVAL;
1832 if (arg)
1833 goto out;
1834 r = KVM_API_VERSION;
1835 break;
1836 case KVM_CREATE_VM:
1837 r = -EINVAL;
1838 if (arg)
1839 goto out;
1840 r = kvm_dev_ioctl_create_vm();
1841 break;
1842 case KVM_CHECK_EXTENSION:
1843 r = kvm_dev_ioctl_check_extension_generic(arg);
1844 break;
1845 case KVM_GET_VCPU_MMAP_SIZE:
1846 r = -EINVAL;
1847 if (arg)
1848 goto out;
1849 r = PAGE_SIZE; /* struct kvm_run */
1850 #ifdef CONFIG_X86
1851 r += PAGE_SIZE; /* pio data page */
1852 #endif
1853 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1854 r += PAGE_SIZE; /* coalesced mmio ring page */
1855 #endif
1856 break;
1857 case KVM_TRACE_ENABLE:
1858 case KVM_TRACE_PAUSE:
1859 case KVM_TRACE_DISABLE:
1860 r = -EOPNOTSUPP;
1861 break;
1862 default:
1863 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1864 }
1865 out:
1866 return r;
1867 }
1868
1869 static struct file_operations kvm_chardev_ops = {
1870 .unlocked_ioctl = kvm_dev_ioctl,
1871 .compat_ioctl = kvm_dev_ioctl,
1872 .llseek = noop_llseek,
1873 };
1874
1875 static struct miscdevice kvm_dev = {
1876 KVM_MINOR,
1877 "kvm",
1878 &kvm_chardev_ops,
1879 };
1880
1881 static void hardware_enable(void *junk)
1882 {
1883 int cpu = raw_smp_processor_id();
1884 int r;
1885
1886 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1887 return;
1888
1889 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1890
1891 r = kvm_arch_hardware_enable(NULL);
1892
1893 if (r) {
1894 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1895 atomic_inc(&hardware_enable_failed);
1896 printk(KERN_INFO "kvm: enabling virtualization on "
1897 "CPU%d failed\n", cpu);
1898 }
1899 }
1900
1901 static void hardware_disable(void *junk)
1902 {
1903 int cpu = raw_smp_processor_id();
1904
1905 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1906 return;
1907 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1908 kvm_arch_hardware_disable(NULL);
1909 }
1910
1911 static void hardware_disable_all_nolock(void)
1912 {
1913 BUG_ON(!kvm_usage_count);
1914
1915 kvm_usage_count--;
1916 if (!kvm_usage_count)
1917 on_each_cpu(hardware_disable, NULL, 1);
1918 }
1919
1920 static void hardware_disable_all(void)
1921 {
1922 spin_lock(&kvm_lock);
1923 hardware_disable_all_nolock();
1924 spin_unlock(&kvm_lock);
1925 }
1926
1927 static int hardware_enable_all(void)
1928 {
1929 int r = 0;
1930
1931 spin_lock(&kvm_lock);
1932
1933 kvm_usage_count++;
1934 if (kvm_usage_count == 1) {
1935 atomic_set(&hardware_enable_failed, 0);
1936 on_each_cpu(hardware_enable, NULL, 1);
1937
1938 if (atomic_read(&hardware_enable_failed)) {
1939 hardware_disable_all_nolock();
1940 r = -EBUSY;
1941 }
1942 }
1943
1944 spin_unlock(&kvm_lock);
1945
1946 return r;
1947 }
1948
1949 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1950 void *v)
1951 {
1952 int cpu = (long)v;
1953
1954 if (!kvm_usage_count)
1955 return NOTIFY_OK;
1956
1957 val &= ~CPU_TASKS_FROZEN;
1958 switch (val) {
1959 case CPU_DYING:
1960 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1961 cpu);
1962 hardware_disable(NULL);
1963 break;
1964 case CPU_STARTING:
1965 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1966 cpu);
1967 hardware_enable(NULL);
1968 break;
1969 }
1970 return NOTIFY_OK;
1971 }
1972
1973
1974 asmlinkage void kvm_handle_fault_on_reboot(void)
1975 {
1976 if (kvm_rebooting)
1977 /* spin while reset goes on */
1978 while (true)
1979 ;
1980 /* Fault while not rebooting. We want the trace. */
1981 BUG();
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1984
1985 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1986 void *v)
1987 {
1988 /*
1989 * Some (well, at least mine) BIOSes hang on reboot if
1990 * in vmx root mode.
1991 *
1992 * And Intel TXT required VMX off for all cpu when system shutdown.
1993 */
1994 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1995 kvm_rebooting = true;
1996 on_each_cpu(hardware_disable, NULL, 1);
1997 return NOTIFY_OK;
1998 }
1999
2000 static struct notifier_block kvm_reboot_notifier = {
2001 .notifier_call = kvm_reboot,
2002 .priority = 0,
2003 };
2004
2005 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2006 {
2007 int i;
2008
2009 for (i = 0; i < bus->dev_count; i++) {
2010 struct kvm_io_device *pos = bus->devs[i];
2011
2012 kvm_iodevice_destructor(pos);
2013 }
2014 kfree(bus);
2015 }
2016
2017 /* kvm_io_bus_write - called under kvm->slots_lock */
2018 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2019 int len, const void *val)
2020 {
2021 int i;
2022 struct kvm_io_bus *bus;
2023
2024 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2025 for (i = 0; i < bus->dev_count; i++)
2026 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2027 return 0;
2028 return -EOPNOTSUPP;
2029 }
2030
2031 /* kvm_io_bus_read - called under kvm->slots_lock */
2032 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2033 int len, void *val)
2034 {
2035 int i;
2036 struct kvm_io_bus *bus;
2037
2038 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2039 for (i = 0; i < bus->dev_count; i++)
2040 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2041 return 0;
2042 return -EOPNOTSUPP;
2043 }
2044
2045 /* Caller must hold slots_lock. */
2046 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2047 struct kvm_io_device *dev)
2048 {
2049 struct kvm_io_bus *new_bus, *bus;
2050
2051 bus = kvm->buses[bus_idx];
2052 if (bus->dev_count > NR_IOBUS_DEVS-1)
2053 return -ENOSPC;
2054
2055 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2056 if (!new_bus)
2057 return -ENOMEM;
2058 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2059 new_bus->devs[new_bus->dev_count++] = dev;
2060 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2061 synchronize_srcu_expedited(&kvm->srcu);
2062 kfree(bus);
2063
2064 return 0;
2065 }
2066
2067 /* Caller must hold slots_lock. */
2068 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2069 struct kvm_io_device *dev)
2070 {
2071 int i, r;
2072 struct kvm_io_bus *new_bus, *bus;
2073
2074 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2075 if (!new_bus)
2076 return -ENOMEM;
2077
2078 bus = kvm->buses[bus_idx];
2079 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2080
2081 r = -ENOENT;
2082 for (i = 0; i < new_bus->dev_count; i++)
2083 if (new_bus->devs[i] == dev) {
2084 r = 0;
2085 new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2086 break;
2087 }
2088
2089 if (r) {
2090 kfree(new_bus);
2091 return r;
2092 }
2093
2094 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2095 synchronize_srcu_expedited(&kvm->srcu);
2096 kfree(bus);
2097 return r;
2098 }
2099
2100 static struct notifier_block kvm_cpu_notifier = {
2101 .notifier_call = kvm_cpu_hotplug,
2102 };
2103
2104 static int vm_stat_get(void *_offset, u64 *val)
2105 {
2106 unsigned offset = (long)_offset;
2107 struct kvm *kvm;
2108
2109 *val = 0;
2110 spin_lock(&kvm_lock);
2111 list_for_each_entry(kvm, &vm_list, vm_list)
2112 *val += *(u32 *)((void *)kvm + offset);
2113 spin_unlock(&kvm_lock);
2114 return 0;
2115 }
2116
2117 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2118
2119 static int vcpu_stat_get(void *_offset, u64 *val)
2120 {
2121 unsigned offset = (long)_offset;
2122 struct kvm *kvm;
2123 struct kvm_vcpu *vcpu;
2124 int i;
2125
2126 *val = 0;
2127 spin_lock(&kvm_lock);
2128 list_for_each_entry(kvm, &vm_list, vm_list)
2129 kvm_for_each_vcpu(i, vcpu, kvm)
2130 *val += *(u32 *)((void *)vcpu + offset);
2131
2132 spin_unlock(&kvm_lock);
2133 return 0;
2134 }
2135
2136 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2137
2138 static const struct file_operations *stat_fops[] = {
2139 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2140 [KVM_STAT_VM] = &vm_stat_fops,
2141 };
2142
2143 static void kvm_init_debug(void)
2144 {
2145 struct kvm_stats_debugfs_item *p;
2146
2147 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2148 for (p = debugfs_entries; p->name; ++p)
2149 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2150 (void *)(long)p->offset,
2151 stat_fops[p->kind]);
2152 }
2153
2154 static void kvm_exit_debug(void)
2155 {
2156 struct kvm_stats_debugfs_item *p;
2157
2158 for (p = debugfs_entries; p->name; ++p)
2159 debugfs_remove(p->dentry);
2160 debugfs_remove(kvm_debugfs_dir);
2161 }
2162
2163 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2164 {
2165 if (kvm_usage_count)
2166 hardware_disable(NULL);
2167 return 0;
2168 }
2169
2170 static int kvm_resume(struct sys_device *dev)
2171 {
2172 if (kvm_usage_count)
2173 hardware_enable(NULL);
2174 return 0;
2175 }
2176
2177 static struct sysdev_class kvm_sysdev_class = {
2178 .name = "kvm",
2179 .suspend = kvm_suspend,
2180 .resume = kvm_resume,
2181 };
2182
2183 static struct sys_device kvm_sysdev = {
2184 .id = 0,
2185 .cls = &kvm_sysdev_class,
2186 };
2187
2188 struct page *bad_page;
2189 pfn_t bad_pfn;
2190
2191 static inline
2192 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2193 {
2194 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2195 }
2196
2197 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2198 {
2199 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2200
2201 kvm_arch_vcpu_load(vcpu, cpu);
2202 }
2203
2204 static void kvm_sched_out(struct preempt_notifier *pn,
2205 struct task_struct *next)
2206 {
2207 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2208
2209 kvm_arch_vcpu_put(vcpu);
2210 }
2211
2212 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2213 struct module *module)
2214 {
2215 int r;
2216 int cpu;
2217
2218 r = kvm_arch_init(opaque);
2219 if (r)
2220 goto out_fail;
2221
2222 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2223
2224 if (bad_page == NULL) {
2225 r = -ENOMEM;
2226 goto out;
2227 }
2228
2229 bad_pfn = page_to_pfn(bad_page);
2230
2231 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2232
2233 if (hwpoison_page == NULL) {
2234 r = -ENOMEM;
2235 goto out_free_0;
2236 }
2237
2238 hwpoison_pfn = page_to_pfn(hwpoison_page);
2239
2240 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2241
2242 if (fault_page == NULL) {
2243 r = -ENOMEM;
2244 goto out_free_0;
2245 }
2246
2247 fault_pfn = page_to_pfn(fault_page);
2248
2249 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2250 r = -ENOMEM;
2251 goto out_free_0;
2252 }
2253
2254 r = kvm_arch_hardware_setup();
2255 if (r < 0)
2256 goto out_free_0a;
2257
2258 for_each_online_cpu(cpu) {
2259 smp_call_function_single(cpu,
2260 kvm_arch_check_processor_compat,
2261 &r, 1);
2262 if (r < 0)
2263 goto out_free_1;
2264 }
2265
2266 r = register_cpu_notifier(&kvm_cpu_notifier);
2267 if (r)
2268 goto out_free_2;
2269 register_reboot_notifier(&kvm_reboot_notifier);
2270
2271 r = sysdev_class_register(&kvm_sysdev_class);
2272 if (r)
2273 goto out_free_3;
2274
2275 r = sysdev_register(&kvm_sysdev);
2276 if (r)
2277 goto out_free_4;
2278
2279 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2280 if (!vcpu_align)
2281 vcpu_align = __alignof__(struct kvm_vcpu);
2282 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2283 0, NULL);
2284 if (!kvm_vcpu_cache) {
2285 r = -ENOMEM;
2286 goto out_free_5;
2287 }
2288
2289 kvm_chardev_ops.owner = module;
2290 kvm_vm_fops.owner = module;
2291 kvm_vcpu_fops.owner = module;
2292
2293 r = misc_register(&kvm_dev);
2294 if (r) {
2295 printk(KERN_ERR "kvm: misc device register failed\n");
2296 goto out_free;
2297 }
2298
2299 kvm_preempt_ops.sched_in = kvm_sched_in;
2300 kvm_preempt_ops.sched_out = kvm_sched_out;
2301
2302 kvm_init_debug();
2303
2304 return 0;
2305
2306 out_free:
2307 kmem_cache_destroy(kvm_vcpu_cache);
2308 out_free_5:
2309 sysdev_unregister(&kvm_sysdev);
2310 out_free_4:
2311 sysdev_class_unregister(&kvm_sysdev_class);
2312 out_free_3:
2313 unregister_reboot_notifier(&kvm_reboot_notifier);
2314 unregister_cpu_notifier(&kvm_cpu_notifier);
2315 out_free_2:
2316 out_free_1:
2317 kvm_arch_hardware_unsetup();
2318 out_free_0a:
2319 free_cpumask_var(cpus_hardware_enabled);
2320 out_free_0:
2321 if (fault_page)
2322 __free_page(fault_page);
2323 if (hwpoison_page)
2324 __free_page(hwpoison_page);
2325 __free_page(bad_page);
2326 out:
2327 kvm_arch_exit();
2328 out_fail:
2329 return r;
2330 }
2331 EXPORT_SYMBOL_GPL(kvm_init);
2332
2333 void kvm_exit(void)
2334 {
2335 kvm_exit_debug();
2336 misc_deregister(&kvm_dev);
2337 kmem_cache_destroy(kvm_vcpu_cache);
2338 sysdev_unregister(&kvm_sysdev);
2339 sysdev_class_unregister(&kvm_sysdev_class);
2340 unregister_reboot_notifier(&kvm_reboot_notifier);
2341 unregister_cpu_notifier(&kvm_cpu_notifier);
2342 on_each_cpu(hardware_disable, NULL, 1);
2343 kvm_arch_hardware_unsetup();
2344 kvm_arch_exit();
2345 free_cpumask_var(cpus_hardware_enabled);
2346 __free_page(hwpoison_page);
2347 __free_page(bad_page);
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.112811 seconds and 5 git commands to generate.