Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /*
70 * Ordering of locks:
71 *
72 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 */
74
75 DEFINE_SPINLOCK(kvm_lock);
76 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
77 LIST_HEAD(vm_list);
78
79 static cpumask_var_t cpus_hardware_enabled;
80 static int kvm_usage_count = 0;
81 static atomic_t hardware_enable_failed;
82
83 struct kmem_cache *kvm_vcpu_cache;
84 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
85
86 static __read_mostly struct preempt_ops kvm_preempt_ops;
87
88 struct dentry *kvm_debugfs_dir;
89
90 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #ifdef CONFIG_COMPAT
93 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
94 unsigned long arg);
95 #endif
96 static int hardware_enable_all(void);
97 static void hardware_disable_all(void);
98
99 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
100
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 struct kvm_memory_slot *memslot, gfn_t gfn);
104
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107
108 static bool largepages_enabled = true;
109
110 bool kvm_is_reserved_pfn(pfn_t pfn)
111 {
112 if (pfn_valid(pfn))
113 return PageReserved(pfn_to_page(pfn));
114
115 return true;
116 }
117
118 /*
119 * Switches to specified vcpu, until a matching vcpu_put()
120 */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123 int cpu;
124
125 if (mutex_lock_killable(&vcpu->mutex))
126 return -EINTR;
127 cpu = get_cpu();
128 preempt_notifier_register(&vcpu->preempt_notifier);
129 kvm_arch_vcpu_load(vcpu, cpu);
130 put_cpu();
131 return 0;
132 }
133
134 void vcpu_put(struct kvm_vcpu *vcpu)
135 {
136 preempt_disable();
137 kvm_arch_vcpu_put(vcpu);
138 preempt_notifier_unregister(&vcpu->preempt_notifier);
139 preempt_enable();
140 mutex_unlock(&vcpu->mutex);
141 }
142
143 static void ack_flush(void *_completed)
144 {
145 }
146
147 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
148 {
149 int i, cpu, me;
150 cpumask_var_t cpus;
151 bool called = true;
152 struct kvm_vcpu *vcpu;
153
154 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
155
156 me = get_cpu();
157 kvm_for_each_vcpu(i, vcpu, kvm) {
158 kvm_make_request(req, vcpu);
159 cpu = vcpu->cpu;
160
161 /* Set ->requests bit before we read ->mode */
162 smp_mb();
163
164 if (cpus != NULL && cpu != -1 && cpu != me &&
165 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
166 cpumask_set_cpu(cpu, cpus);
167 }
168 if (unlikely(cpus == NULL))
169 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
170 else if (!cpumask_empty(cpus))
171 smp_call_function_many(cpus, ack_flush, NULL, 1);
172 else
173 called = false;
174 put_cpu();
175 free_cpumask_var(cpus);
176 return called;
177 }
178
179 void kvm_flush_remote_tlbs(struct kvm *kvm)
180 {
181 long dirty_count = kvm->tlbs_dirty;
182
183 smp_mb();
184 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
185 ++kvm->stat.remote_tlb_flush;
186 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
187 }
188 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
189
190 void kvm_reload_remote_mmus(struct kvm *kvm)
191 {
192 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
193 }
194
195 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
196 {
197 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
198 }
199
200 void kvm_make_scan_ioapic_request(struct kvm *kvm)
201 {
202 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
203 }
204
205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
206 {
207 struct page *page;
208 int r;
209
210 mutex_init(&vcpu->mutex);
211 vcpu->cpu = -1;
212 vcpu->kvm = kvm;
213 vcpu->vcpu_id = id;
214 vcpu->pid = NULL;
215 init_waitqueue_head(&vcpu->wq);
216 kvm_async_pf_vcpu_init(vcpu);
217
218 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
219 if (!page) {
220 r = -ENOMEM;
221 goto fail;
222 }
223 vcpu->run = page_address(page);
224
225 kvm_vcpu_set_in_spin_loop(vcpu, false);
226 kvm_vcpu_set_dy_eligible(vcpu, false);
227 vcpu->preempted = false;
228
229 r = kvm_arch_vcpu_init(vcpu);
230 if (r < 0)
231 goto fail_free_run;
232 return 0;
233
234 fail_free_run:
235 free_page((unsigned long)vcpu->run);
236 fail:
237 return r;
238 }
239 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
240
241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
242 {
243 put_pid(vcpu->pid);
244 kvm_arch_vcpu_uninit(vcpu);
245 free_page((unsigned long)vcpu->run);
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
248
249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
251 {
252 return container_of(mn, struct kvm, mmu_notifier);
253 }
254
255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
256 struct mm_struct *mm,
257 unsigned long address)
258 {
259 struct kvm *kvm = mmu_notifier_to_kvm(mn);
260 int need_tlb_flush, idx;
261
262 /*
263 * When ->invalidate_page runs, the linux pte has been zapped
264 * already but the page is still allocated until
265 * ->invalidate_page returns. So if we increase the sequence
266 * here the kvm page fault will notice if the spte can't be
267 * established because the page is going to be freed. If
268 * instead the kvm page fault establishes the spte before
269 * ->invalidate_page runs, kvm_unmap_hva will release it
270 * before returning.
271 *
272 * The sequence increase only need to be seen at spin_unlock
273 * time, and not at spin_lock time.
274 *
275 * Increasing the sequence after the spin_unlock would be
276 * unsafe because the kvm page fault could then establish the
277 * pte after kvm_unmap_hva returned, without noticing the page
278 * is going to be freed.
279 */
280 idx = srcu_read_lock(&kvm->srcu);
281 spin_lock(&kvm->mmu_lock);
282
283 kvm->mmu_notifier_seq++;
284 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
285 /* we've to flush the tlb before the pages can be freed */
286 if (need_tlb_flush)
287 kvm_flush_remote_tlbs(kvm);
288
289 spin_unlock(&kvm->mmu_lock);
290
291 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
292
293 srcu_read_unlock(&kvm->srcu, idx);
294 }
295
296 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
297 struct mm_struct *mm,
298 unsigned long address,
299 pte_t pte)
300 {
301 struct kvm *kvm = mmu_notifier_to_kvm(mn);
302 int idx;
303
304 idx = srcu_read_lock(&kvm->srcu);
305 spin_lock(&kvm->mmu_lock);
306 kvm->mmu_notifier_seq++;
307 kvm_set_spte_hva(kvm, address, pte);
308 spin_unlock(&kvm->mmu_lock);
309 srcu_read_unlock(&kvm->srcu, idx);
310 }
311
312 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
313 struct mm_struct *mm,
314 unsigned long start,
315 unsigned long end)
316 {
317 struct kvm *kvm = mmu_notifier_to_kvm(mn);
318 int need_tlb_flush = 0, idx;
319
320 idx = srcu_read_lock(&kvm->srcu);
321 spin_lock(&kvm->mmu_lock);
322 /*
323 * The count increase must become visible at unlock time as no
324 * spte can be established without taking the mmu_lock and
325 * count is also read inside the mmu_lock critical section.
326 */
327 kvm->mmu_notifier_count++;
328 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
329 need_tlb_flush |= kvm->tlbs_dirty;
330 /* we've to flush the tlb before the pages can be freed */
331 if (need_tlb_flush)
332 kvm_flush_remote_tlbs(kvm);
333
334 spin_unlock(&kvm->mmu_lock);
335 srcu_read_unlock(&kvm->srcu, idx);
336 }
337
338 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
339 struct mm_struct *mm,
340 unsigned long start,
341 unsigned long end)
342 {
343 struct kvm *kvm = mmu_notifier_to_kvm(mn);
344
345 spin_lock(&kvm->mmu_lock);
346 /*
347 * This sequence increase will notify the kvm page fault that
348 * the page that is going to be mapped in the spte could have
349 * been freed.
350 */
351 kvm->mmu_notifier_seq++;
352 smp_wmb();
353 /*
354 * The above sequence increase must be visible before the
355 * below count decrease, which is ensured by the smp_wmb above
356 * in conjunction with the smp_rmb in mmu_notifier_retry().
357 */
358 kvm->mmu_notifier_count--;
359 spin_unlock(&kvm->mmu_lock);
360
361 BUG_ON(kvm->mmu_notifier_count < 0);
362 }
363
364 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
365 struct mm_struct *mm,
366 unsigned long start,
367 unsigned long end)
368 {
369 struct kvm *kvm = mmu_notifier_to_kvm(mn);
370 int young, idx;
371
372 idx = srcu_read_lock(&kvm->srcu);
373 spin_lock(&kvm->mmu_lock);
374
375 young = kvm_age_hva(kvm, start, end);
376 if (young)
377 kvm_flush_remote_tlbs(kvm);
378
379 spin_unlock(&kvm->mmu_lock);
380 srcu_read_unlock(&kvm->srcu, idx);
381
382 return young;
383 }
384
385 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
386 struct mm_struct *mm,
387 unsigned long address)
388 {
389 struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 int young, idx;
391
392 idx = srcu_read_lock(&kvm->srcu);
393 spin_lock(&kvm->mmu_lock);
394 young = kvm_test_age_hva(kvm, address);
395 spin_unlock(&kvm->mmu_lock);
396 srcu_read_unlock(&kvm->srcu, idx);
397
398 return young;
399 }
400
401 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
402 struct mm_struct *mm)
403 {
404 struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 int idx;
406
407 idx = srcu_read_lock(&kvm->srcu);
408 kvm_arch_flush_shadow_all(kvm);
409 srcu_read_unlock(&kvm->srcu, idx);
410 }
411
412 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
413 .invalidate_page = kvm_mmu_notifier_invalidate_page,
414 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
415 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
416 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
417 .test_young = kvm_mmu_notifier_test_young,
418 .change_pte = kvm_mmu_notifier_change_pte,
419 .release = kvm_mmu_notifier_release,
420 };
421
422 static int kvm_init_mmu_notifier(struct kvm *kvm)
423 {
424 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
425 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
426 }
427
428 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
429
430 static int kvm_init_mmu_notifier(struct kvm *kvm)
431 {
432 return 0;
433 }
434
435 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
436
437 static void kvm_init_memslots_id(struct kvm *kvm)
438 {
439 int i;
440 struct kvm_memslots *slots = kvm->memslots;
441
442 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
443 slots->id_to_index[i] = slots->memslots[i].id = i;
444 }
445
446 static struct kvm *kvm_create_vm(unsigned long type)
447 {
448 int r, i;
449 struct kvm *kvm = kvm_arch_alloc_vm();
450
451 if (!kvm)
452 return ERR_PTR(-ENOMEM);
453
454 r = kvm_arch_init_vm(kvm, type);
455 if (r)
456 goto out_err_no_disable;
457
458 r = hardware_enable_all();
459 if (r)
460 goto out_err_no_disable;
461
462 #ifdef CONFIG_HAVE_KVM_IRQFD
463 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
464 #endif
465
466 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
467
468 r = -ENOMEM;
469 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
470 if (!kvm->memslots)
471 goto out_err_no_srcu;
472
473 /*
474 * Init kvm generation close to the maximum to easily test the
475 * code of handling generation number wrap-around.
476 */
477 kvm->memslots->generation = -150;
478
479 kvm_init_memslots_id(kvm);
480 if (init_srcu_struct(&kvm->srcu))
481 goto out_err_no_srcu;
482 if (init_srcu_struct(&kvm->irq_srcu))
483 goto out_err_no_irq_srcu;
484 for (i = 0; i < KVM_NR_BUSES; i++) {
485 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
486 GFP_KERNEL);
487 if (!kvm->buses[i])
488 goto out_err;
489 }
490
491 spin_lock_init(&kvm->mmu_lock);
492 kvm->mm = current->mm;
493 atomic_inc(&kvm->mm->mm_count);
494 kvm_eventfd_init(kvm);
495 mutex_init(&kvm->lock);
496 mutex_init(&kvm->irq_lock);
497 mutex_init(&kvm->slots_lock);
498 atomic_set(&kvm->users_count, 1);
499 INIT_LIST_HEAD(&kvm->devices);
500
501 r = kvm_init_mmu_notifier(kvm);
502 if (r)
503 goto out_err;
504
505 spin_lock(&kvm_lock);
506 list_add(&kvm->vm_list, &vm_list);
507 spin_unlock(&kvm_lock);
508
509 return kvm;
510
511 out_err:
512 cleanup_srcu_struct(&kvm->irq_srcu);
513 out_err_no_irq_srcu:
514 cleanup_srcu_struct(&kvm->srcu);
515 out_err_no_srcu:
516 hardware_disable_all();
517 out_err_no_disable:
518 for (i = 0; i < KVM_NR_BUSES; i++)
519 kfree(kvm->buses[i]);
520 kfree(kvm->memslots);
521 kvm_arch_free_vm(kvm);
522 return ERR_PTR(r);
523 }
524
525 /*
526 * Avoid using vmalloc for a small buffer.
527 * Should not be used when the size is statically known.
528 */
529 void *kvm_kvzalloc(unsigned long size)
530 {
531 if (size > PAGE_SIZE)
532 return vzalloc(size);
533 else
534 return kzalloc(size, GFP_KERNEL);
535 }
536
537 void kvm_kvfree(const void *addr)
538 {
539 if (is_vmalloc_addr(addr))
540 vfree(addr);
541 else
542 kfree(addr);
543 }
544
545 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
546 {
547 if (!memslot->dirty_bitmap)
548 return;
549
550 kvm_kvfree(memslot->dirty_bitmap);
551 memslot->dirty_bitmap = NULL;
552 }
553
554 /*
555 * Free any memory in @free but not in @dont.
556 */
557 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
558 struct kvm_memory_slot *dont)
559 {
560 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
561 kvm_destroy_dirty_bitmap(free);
562
563 kvm_arch_free_memslot(kvm, free, dont);
564
565 free->npages = 0;
566 }
567
568 static void kvm_free_physmem(struct kvm *kvm)
569 {
570 struct kvm_memslots *slots = kvm->memslots;
571 struct kvm_memory_slot *memslot;
572
573 kvm_for_each_memslot(memslot, slots)
574 kvm_free_physmem_slot(kvm, memslot, NULL);
575
576 kfree(kvm->memslots);
577 }
578
579 static void kvm_destroy_devices(struct kvm *kvm)
580 {
581 struct list_head *node, *tmp;
582
583 list_for_each_safe(node, tmp, &kvm->devices) {
584 struct kvm_device *dev =
585 list_entry(node, struct kvm_device, vm_node);
586
587 list_del(node);
588 dev->ops->destroy(dev);
589 }
590 }
591
592 static void kvm_destroy_vm(struct kvm *kvm)
593 {
594 int i;
595 struct mm_struct *mm = kvm->mm;
596
597 kvm_arch_sync_events(kvm);
598 spin_lock(&kvm_lock);
599 list_del(&kvm->vm_list);
600 spin_unlock(&kvm_lock);
601 kvm_free_irq_routing(kvm);
602 for (i = 0; i < KVM_NR_BUSES; i++)
603 kvm_io_bus_destroy(kvm->buses[i]);
604 kvm_coalesced_mmio_free(kvm);
605 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
606 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
607 #else
608 kvm_arch_flush_shadow_all(kvm);
609 #endif
610 kvm_arch_destroy_vm(kvm);
611 kvm_destroy_devices(kvm);
612 kvm_free_physmem(kvm);
613 cleanup_srcu_struct(&kvm->irq_srcu);
614 cleanup_srcu_struct(&kvm->srcu);
615 kvm_arch_free_vm(kvm);
616 hardware_disable_all();
617 mmdrop(mm);
618 }
619
620 void kvm_get_kvm(struct kvm *kvm)
621 {
622 atomic_inc(&kvm->users_count);
623 }
624 EXPORT_SYMBOL_GPL(kvm_get_kvm);
625
626 void kvm_put_kvm(struct kvm *kvm)
627 {
628 if (atomic_dec_and_test(&kvm->users_count))
629 kvm_destroy_vm(kvm);
630 }
631 EXPORT_SYMBOL_GPL(kvm_put_kvm);
632
633
634 static int kvm_vm_release(struct inode *inode, struct file *filp)
635 {
636 struct kvm *kvm = filp->private_data;
637
638 kvm_irqfd_release(kvm);
639
640 kvm_put_kvm(kvm);
641 return 0;
642 }
643
644 /*
645 * Allocation size is twice as large as the actual dirty bitmap size.
646 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
647 */
648 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
649 {
650 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
651
652 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
653 if (!memslot->dirty_bitmap)
654 return -ENOMEM;
655
656 return 0;
657 }
658
659 /*
660 * Insert memslot and re-sort memslots based on their GFN,
661 * so binary search could be used to lookup GFN.
662 * Sorting algorithm takes advantage of having initially
663 * sorted array and known changed memslot position.
664 */
665 static void update_memslots(struct kvm_memslots *slots,
666 struct kvm_memory_slot *new)
667 {
668 int id = new->id;
669 int i = slots->id_to_index[id];
670 struct kvm_memory_slot *mslots = slots->memslots;
671
672 WARN_ON(mslots[i].id != id);
673 if (!new->npages) {
674 new->base_gfn = 0;
675 if (mslots[i].npages)
676 slots->used_slots--;
677 } else {
678 if (!mslots[i].npages)
679 slots->used_slots++;
680 }
681
682 while (i < KVM_MEM_SLOTS_NUM - 1 &&
683 new->base_gfn <= mslots[i + 1].base_gfn) {
684 if (!mslots[i + 1].npages)
685 break;
686 mslots[i] = mslots[i + 1];
687 slots->id_to_index[mslots[i].id] = i;
688 i++;
689 }
690 while (i > 0 &&
691 new->base_gfn > mslots[i - 1].base_gfn) {
692 mslots[i] = mslots[i - 1];
693 slots->id_to_index[mslots[i].id] = i;
694 i--;
695 }
696
697 mslots[i] = *new;
698 slots->id_to_index[mslots[i].id] = i;
699 }
700
701 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
702 {
703 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
704
705 #ifdef __KVM_HAVE_READONLY_MEM
706 valid_flags |= KVM_MEM_READONLY;
707 #endif
708
709 if (mem->flags & ~valid_flags)
710 return -EINVAL;
711
712 return 0;
713 }
714
715 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
716 struct kvm_memslots *slots)
717 {
718 struct kvm_memslots *old_memslots = kvm->memslots;
719
720 /*
721 * Set the low bit in the generation, which disables SPTE caching
722 * until the end of synchronize_srcu_expedited.
723 */
724 WARN_ON(old_memslots->generation & 1);
725 slots->generation = old_memslots->generation + 1;
726
727 rcu_assign_pointer(kvm->memslots, slots);
728 synchronize_srcu_expedited(&kvm->srcu);
729
730 /*
731 * Increment the new memslot generation a second time. This prevents
732 * vm exits that race with memslot updates from caching a memslot
733 * generation that will (potentially) be valid forever.
734 */
735 slots->generation++;
736
737 kvm_arch_memslots_updated(kvm);
738
739 return old_memslots;
740 }
741
742 /*
743 * Allocate some memory and give it an address in the guest physical address
744 * space.
745 *
746 * Discontiguous memory is allowed, mostly for framebuffers.
747 *
748 * Must be called holding kvm->slots_lock for write.
749 */
750 int __kvm_set_memory_region(struct kvm *kvm,
751 struct kvm_userspace_memory_region *mem)
752 {
753 int r;
754 gfn_t base_gfn;
755 unsigned long npages;
756 struct kvm_memory_slot *slot;
757 struct kvm_memory_slot old, new;
758 struct kvm_memslots *slots = NULL, *old_memslots;
759 enum kvm_mr_change change;
760
761 r = check_memory_region_flags(mem);
762 if (r)
763 goto out;
764
765 r = -EINVAL;
766 /* General sanity checks */
767 if (mem->memory_size & (PAGE_SIZE - 1))
768 goto out;
769 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
770 goto out;
771 /* We can read the guest memory with __xxx_user() later on. */
772 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
773 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
774 !access_ok(VERIFY_WRITE,
775 (void __user *)(unsigned long)mem->userspace_addr,
776 mem->memory_size)))
777 goto out;
778 if (mem->slot >= KVM_MEM_SLOTS_NUM)
779 goto out;
780 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
781 goto out;
782
783 slot = id_to_memslot(kvm->memslots, mem->slot);
784 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
785 npages = mem->memory_size >> PAGE_SHIFT;
786
787 if (npages > KVM_MEM_MAX_NR_PAGES)
788 goto out;
789
790 if (!npages)
791 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
792
793 new = old = *slot;
794
795 new.id = mem->slot;
796 new.base_gfn = base_gfn;
797 new.npages = npages;
798 new.flags = mem->flags;
799
800 if (npages) {
801 if (!old.npages)
802 change = KVM_MR_CREATE;
803 else { /* Modify an existing slot. */
804 if ((mem->userspace_addr != old.userspace_addr) ||
805 (npages != old.npages) ||
806 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
807 goto out;
808
809 if (base_gfn != old.base_gfn)
810 change = KVM_MR_MOVE;
811 else if (new.flags != old.flags)
812 change = KVM_MR_FLAGS_ONLY;
813 else { /* Nothing to change. */
814 r = 0;
815 goto out;
816 }
817 }
818 } else if (old.npages) {
819 change = KVM_MR_DELETE;
820 } else /* Modify a non-existent slot: disallowed. */
821 goto out;
822
823 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
824 /* Check for overlaps */
825 r = -EEXIST;
826 kvm_for_each_memslot(slot, kvm->memslots) {
827 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
828 (slot->id == mem->slot))
829 continue;
830 if (!((base_gfn + npages <= slot->base_gfn) ||
831 (base_gfn >= slot->base_gfn + slot->npages)))
832 goto out;
833 }
834 }
835
836 /* Free page dirty bitmap if unneeded */
837 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
838 new.dirty_bitmap = NULL;
839
840 r = -ENOMEM;
841 if (change == KVM_MR_CREATE) {
842 new.userspace_addr = mem->userspace_addr;
843
844 if (kvm_arch_create_memslot(kvm, &new, npages))
845 goto out_free;
846 }
847
848 /* Allocate page dirty bitmap if needed */
849 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
850 if (kvm_create_dirty_bitmap(&new) < 0)
851 goto out_free;
852 }
853
854 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
855 GFP_KERNEL);
856 if (!slots)
857 goto out_free;
858
859 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
860 slot = id_to_memslot(slots, mem->slot);
861 slot->flags |= KVM_MEMSLOT_INVALID;
862
863 old_memslots = install_new_memslots(kvm, slots);
864
865 /* slot was deleted or moved, clear iommu mapping */
866 kvm_iommu_unmap_pages(kvm, &old);
867 /* From this point no new shadow pages pointing to a deleted,
868 * or moved, memslot will be created.
869 *
870 * validation of sp->gfn happens in:
871 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
872 * - kvm_is_visible_gfn (mmu_check_roots)
873 */
874 kvm_arch_flush_shadow_memslot(kvm, slot);
875
876 /*
877 * We can re-use the old_memslots from above, the only difference
878 * from the currently installed memslots is the invalid flag. This
879 * will get overwritten by update_memslots anyway.
880 */
881 slots = old_memslots;
882 }
883
884 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
885 if (r)
886 goto out_slots;
887
888 /* actual memory is freed via old in kvm_free_physmem_slot below */
889 if (change == KVM_MR_DELETE) {
890 new.dirty_bitmap = NULL;
891 memset(&new.arch, 0, sizeof(new.arch));
892 }
893
894 update_memslots(slots, &new);
895 old_memslots = install_new_memslots(kvm, slots);
896
897 kvm_arch_commit_memory_region(kvm, mem, &old, change);
898
899 kvm_free_physmem_slot(kvm, &old, &new);
900 kfree(old_memslots);
901
902 /*
903 * IOMMU mapping: New slots need to be mapped. Old slots need to be
904 * un-mapped and re-mapped if their base changes. Since base change
905 * unmapping is handled above with slot deletion, mapping alone is
906 * needed here. Anything else the iommu might care about for existing
907 * slots (size changes, userspace addr changes and read-only flag
908 * changes) is disallowed above, so any other attribute changes getting
909 * here can be skipped.
910 */
911 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
912 r = kvm_iommu_map_pages(kvm, &new);
913 return r;
914 }
915
916 return 0;
917
918 out_slots:
919 kfree(slots);
920 out_free:
921 kvm_free_physmem_slot(kvm, &new, &old);
922 out:
923 return r;
924 }
925 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
926
927 int kvm_set_memory_region(struct kvm *kvm,
928 struct kvm_userspace_memory_region *mem)
929 {
930 int r;
931
932 mutex_lock(&kvm->slots_lock);
933 r = __kvm_set_memory_region(kvm, mem);
934 mutex_unlock(&kvm->slots_lock);
935 return r;
936 }
937 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
938
939 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
940 struct kvm_userspace_memory_region *mem)
941 {
942 if (mem->slot >= KVM_USER_MEM_SLOTS)
943 return -EINVAL;
944 return kvm_set_memory_region(kvm, mem);
945 }
946
947 int kvm_get_dirty_log(struct kvm *kvm,
948 struct kvm_dirty_log *log, int *is_dirty)
949 {
950 struct kvm_memory_slot *memslot;
951 int r, i;
952 unsigned long n;
953 unsigned long any = 0;
954
955 r = -EINVAL;
956 if (log->slot >= KVM_USER_MEM_SLOTS)
957 goto out;
958
959 memslot = id_to_memslot(kvm->memslots, log->slot);
960 r = -ENOENT;
961 if (!memslot->dirty_bitmap)
962 goto out;
963
964 n = kvm_dirty_bitmap_bytes(memslot);
965
966 for (i = 0; !any && i < n/sizeof(long); ++i)
967 any = memslot->dirty_bitmap[i];
968
969 r = -EFAULT;
970 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
971 goto out;
972
973 if (any)
974 *is_dirty = 1;
975
976 r = 0;
977 out:
978 return r;
979 }
980 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
981
982 bool kvm_largepages_enabled(void)
983 {
984 return largepages_enabled;
985 }
986
987 void kvm_disable_largepages(void)
988 {
989 largepages_enabled = false;
990 }
991 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
992
993 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
994 {
995 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
996 }
997 EXPORT_SYMBOL_GPL(gfn_to_memslot);
998
999 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1000 {
1001 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1002
1003 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1004 memslot->flags & KVM_MEMSLOT_INVALID)
1005 return 0;
1006
1007 return 1;
1008 }
1009 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1010
1011 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1012 {
1013 struct vm_area_struct *vma;
1014 unsigned long addr, size;
1015
1016 size = PAGE_SIZE;
1017
1018 addr = gfn_to_hva(kvm, gfn);
1019 if (kvm_is_error_hva(addr))
1020 return PAGE_SIZE;
1021
1022 down_read(&current->mm->mmap_sem);
1023 vma = find_vma(current->mm, addr);
1024 if (!vma)
1025 goto out;
1026
1027 size = vma_kernel_pagesize(vma);
1028
1029 out:
1030 up_read(&current->mm->mmap_sem);
1031
1032 return size;
1033 }
1034
1035 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1036 {
1037 return slot->flags & KVM_MEM_READONLY;
1038 }
1039
1040 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1041 gfn_t *nr_pages, bool write)
1042 {
1043 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1044 return KVM_HVA_ERR_BAD;
1045
1046 if (memslot_is_readonly(slot) && write)
1047 return KVM_HVA_ERR_RO_BAD;
1048
1049 if (nr_pages)
1050 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1051
1052 return __gfn_to_hva_memslot(slot, gfn);
1053 }
1054
1055 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1056 gfn_t *nr_pages)
1057 {
1058 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1059 }
1060
1061 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1062 gfn_t gfn)
1063 {
1064 return gfn_to_hva_many(slot, gfn, NULL);
1065 }
1066 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1067
1068 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1069 {
1070 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1071 }
1072 EXPORT_SYMBOL_GPL(gfn_to_hva);
1073
1074 /*
1075 * If writable is set to false, the hva returned by this function is only
1076 * allowed to be read.
1077 */
1078 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1079 gfn_t gfn, bool *writable)
1080 {
1081 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1082
1083 if (!kvm_is_error_hva(hva) && writable)
1084 *writable = !memslot_is_readonly(slot);
1085
1086 return hva;
1087 }
1088
1089 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1090 {
1091 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1092
1093 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1094 }
1095
1096 static int kvm_read_hva(void *data, void __user *hva, int len)
1097 {
1098 return __copy_from_user(data, hva, len);
1099 }
1100
1101 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1102 {
1103 return __copy_from_user_inatomic(data, hva, len);
1104 }
1105
1106 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1107 unsigned long start, int write, struct page **page)
1108 {
1109 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1110
1111 if (write)
1112 flags |= FOLL_WRITE;
1113
1114 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1115 }
1116
1117 int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
1118 unsigned long addr, bool write_fault,
1119 struct page **pagep)
1120 {
1121 int npages;
1122 int locked = 1;
1123 int flags = FOLL_TOUCH | FOLL_HWPOISON |
1124 (pagep ? FOLL_GET : 0) |
1125 (write_fault ? FOLL_WRITE : 0);
1126
1127 /*
1128 * If retrying the fault, we get here *not* having allowed the filemap
1129 * to wait on the page lock. We should now allow waiting on the IO with
1130 * the mmap semaphore released.
1131 */
1132 down_read(&mm->mmap_sem);
1133 npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
1134 &locked);
1135 if (!locked) {
1136 VM_BUG_ON(npages);
1137
1138 if (!pagep)
1139 return 0;
1140
1141 /*
1142 * The previous call has now waited on the IO. Now we can
1143 * retry and complete. Pass TRIED to ensure we do not re
1144 * schedule async IO (see e.g. filemap_fault).
1145 */
1146 down_read(&mm->mmap_sem);
1147 npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
1148 pagep, NULL, NULL);
1149 }
1150 up_read(&mm->mmap_sem);
1151 return npages;
1152 }
1153
1154 static inline int check_user_page_hwpoison(unsigned long addr)
1155 {
1156 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1157
1158 rc = __get_user_pages(current, current->mm, addr, 1,
1159 flags, NULL, NULL, NULL);
1160 return rc == -EHWPOISON;
1161 }
1162
1163 /*
1164 * The atomic path to get the writable pfn which will be stored in @pfn,
1165 * true indicates success, otherwise false is returned.
1166 */
1167 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1168 bool write_fault, bool *writable, pfn_t *pfn)
1169 {
1170 struct page *page[1];
1171 int npages;
1172
1173 if (!(async || atomic))
1174 return false;
1175
1176 /*
1177 * Fast pin a writable pfn only if it is a write fault request
1178 * or the caller allows to map a writable pfn for a read fault
1179 * request.
1180 */
1181 if (!(write_fault || writable))
1182 return false;
1183
1184 npages = __get_user_pages_fast(addr, 1, 1, page);
1185 if (npages == 1) {
1186 *pfn = page_to_pfn(page[0]);
1187
1188 if (writable)
1189 *writable = true;
1190 return true;
1191 }
1192
1193 return false;
1194 }
1195
1196 /*
1197 * The slow path to get the pfn of the specified host virtual address,
1198 * 1 indicates success, -errno is returned if error is detected.
1199 */
1200 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1201 bool *writable, pfn_t *pfn)
1202 {
1203 struct page *page[1];
1204 int npages = 0;
1205
1206 might_sleep();
1207
1208 if (writable)
1209 *writable = write_fault;
1210
1211 if (async) {
1212 down_read(&current->mm->mmap_sem);
1213 npages = get_user_page_nowait(current, current->mm,
1214 addr, write_fault, page);
1215 up_read(&current->mm->mmap_sem);
1216 } else {
1217 /*
1218 * By now we have tried gup_fast, and possibly async_pf, and we
1219 * are certainly not atomic. Time to retry the gup, allowing
1220 * mmap semaphore to be relinquished in the case of IO.
1221 */
1222 npages = kvm_get_user_page_io(current, current->mm, addr,
1223 write_fault, page);
1224 }
1225 if (npages != 1)
1226 return npages;
1227
1228 /* map read fault as writable if possible */
1229 if (unlikely(!write_fault) && writable) {
1230 struct page *wpage[1];
1231
1232 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1233 if (npages == 1) {
1234 *writable = true;
1235 put_page(page[0]);
1236 page[0] = wpage[0];
1237 }
1238
1239 npages = 1;
1240 }
1241 *pfn = page_to_pfn(page[0]);
1242 return npages;
1243 }
1244
1245 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1246 {
1247 if (unlikely(!(vma->vm_flags & VM_READ)))
1248 return false;
1249
1250 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1251 return false;
1252
1253 return true;
1254 }
1255
1256 /*
1257 * Pin guest page in memory and return its pfn.
1258 * @addr: host virtual address which maps memory to the guest
1259 * @atomic: whether this function can sleep
1260 * @async: whether this function need to wait IO complete if the
1261 * host page is not in the memory
1262 * @write_fault: whether we should get a writable host page
1263 * @writable: whether it allows to map a writable host page for !@write_fault
1264 *
1265 * The function will map a writable host page for these two cases:
1266 * 1): @write_fault = true
1267 * 2): @write_fault = false && @writable, @writable will tell the caller
1268 * whether the mapping is writable.
1269 */
1270 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1271 bool write_fault, bool *writable)
1272 {
1273 struct vm_area_struct *vma;
1274 pfn_t pfn = 0;
1275 int npages;
1276
1277 /* we can do it either atomically or asynchronously, not both */
1278 BUG_ON(atomic && async);
1279
1280 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1281 return pfn;
1282
1283 if (atomic)
1284 return KVM_PFN_ERR_FAULT;
1285
1286 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1287 if (npages == 1)
1288 return pfn;
1289
1290 down_read(&current->mm->mmap_sem);
1291 if (npages == -EHWPOISON ||
1292 (!async && check_user_page_hwpoison(addr))) {
1293 pfn = KVM_PFN_ERR_HWPOISON;
1294 goto exit;
1295 }
1296
1297 vma = find_vma_intersection(current->mm, addr, addr + 1);
1298
1299 if (vma == NULL)
1300 pfn = KVM_PFN_ERR_FAULT;
1301 else if ((vma->vm_flags & VM_PFNMAP)) {
1302 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1303 vma->vm_pgoff;
1304 BUG_ON(!kvm_is_reserved_pfn(pfn));
1305 } else {
1306 if (async && vma_is_valid(vma, write_fault))
1307 *async = true;
1308 pfn = KVM_PFN_ERR_FAULT;
1309 }
1310 exit:
1311 up_read(&current->mm->mmap_sem);
1312 return pfn;
1313 }
1314
1315 static pfn_t
1316 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1317 bool *async, bool write_fault, bool *writable)
1318 {
1319 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1320
1321 if (addr == KVM_HVA_ERR_RO_BAD)
1322 return KVM_PFN_ERR_RO_FAULT;
1323
1324 if (kvm_is_error_hva(addr))
1325 return KVM_PFN_NOSLOT;
1326
1327 /* Do not map writable pfn in the readonly memslot. */
1328 if (writable && memslot_is_readonly(slot)) {
1329 *writable = false;
1330 writable = NULL;
1331 }
1332
1333 return hva_to_pfn(addr, atomic, async, write_fault,
1334 writable);
1335 }
1336
1337 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1338 bool write_fault, bool *writable)
1339 {
1340 struct kvm_memory_slot *slot;
1341
1342 if (async)
1343 *async = false;
1344
1345 slot = gfn_to_memslot(kvm, gfn);
1346
1347 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1348 writable);
1349 }
1350
1351 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1352 {
1353 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1354 }
1355 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1356
1357 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1358 bool write_fault, bool *writable)
1359 {
1360 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1361 }
1362 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1363
1364 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1365 {
1366 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1367 }
1368 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1369
1370 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1371 bool *writable)
1372 {
1373 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1374 }
1375 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1376
1377 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1378 {
1379 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1380 }
1381
1382 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1383 {
1384 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1385 }
1386 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1387
1388 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1389 int nr_pages)
1390 {
1391 unsigned long addr;
1392 gfn_t entry;
1393
1394 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1395 if (kvm_is_error_hva(addr))
1396 return -1;
1397
1398 if (entry < nr_pages)
1399 return 0;
1400
1401 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1402 }
1403 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1404
1405 static struct page *kvm_pfn_to_page(pfn_t pfn)
1406 {
1407 if (is_error_noslot_pfn(pfn))
1408 return KVM_ERR_PTR_BAD_PAGE;
1409
1410 if (kvm_is_reserved_pfn(pfn)) {
1411 WARN_ON(1);
1412 return KVM_ERR_PTR_BAD_PAGE;
1413 }
1414
1415 return pfn_to_page(pfn);
1416 }
1417
1418 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1419 {
1420 pfn_t pfn;
1421
1422 pfn = gfn_to_pfn(kvm, gfn);
1423
1424 return kvm_pfn_to_page(pfn);
1425 }
1426
1427 EXPORT_SYMBOL_GPL(gfn_to_page);
1428
1429 void kvm_release_page_clean(struct page *page)
1430 {
1431 WARN_ON(is_error_page(page));
1432
1433 kvm_release_pfn_clean(page_to_pfn(page));
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1436
1437 void kvm_release_pfn_clean(pfn_t pfn)
1438 {
1439 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1440 put_page(pfn_to_page(pfn));
1441 }
1442 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1443
1444 void kvm_release_page_dirty(struct page *page)
1445 {
1446 WARN_ON(is_error_page(page));
1447
1448 kvm_release_pfn_dirty(page_to_pfn(page));
1449 }
1450 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1451
1452 static void kvm_release_pfn_dirty(pfn_t pfn)
1453 {
1454 kvm_set_pfn_dirty(pfn);
1455 kvm_release_pfn_clean(pfn);
1456 }
1457
1458 void kvm_set_pfn_dirty(pfn_t pfn)
1459 {
1460 if (!kvm_is_reserved_pfn(pfn)) {
1461 struct page *page = pfn_to_page(pfn);
1462 if (!PageReserved(page))
1463 SetPageDirty(page);
1464 }
1465 }
1466 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1467
1468 void kvm_set_pfn_accessed(pfn_t pfn)
1469 {
1470 if (!kvm_is_reserved_pfn(pfn))
1471 mark_page_accessed(pfn_to_page(pfn));
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1474
1475 void kvm_get_pfn(pfn_t pfn)
1476 {
1477 if (!kvm_is_reserved_pfn(pfn))
1478 get_page(pfn_to_page(pfn));
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1481
1482 static int next_segment(unsigned long len, int offset)
1483 {
1484 if (len > PAGE_SIZE - offset)
1485 return PAGE_SIZE - offset;
1486 else
1487 return len;
1488 }
1489
1490 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1491 int len)
1492 {
1493 int r;
1494 unsigned long addr;
1495
1496 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1497 if (kvm_is_error_hva(addr))
1498 return -EFAULT;
1499 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1500 if (r)
1501 return -EFAULT;
1502 return 0;
1503 }
1504 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1505
1506 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1507 {
1508 gfn_t gfn = gpa >> PAGE_SHIFT;
1509 int seg;
1510 int offset = offset_in_page(gpa);
1511 int ret;
1512
1513 while ((seg = next_segment(len, offset)) != 0) {
1514 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1515 if (ret < 0)
1516 return ret;
1517 offset = 0;
1518 len -= seg;
1519 data += seg;
1520 ++gfn;
1521 }
1522 return 0;
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_read_guest);
1525
1526 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1527 unsigned long len)
1528 {
1529 int r;
1530 unsigned long addr;
1531 gfn_t gfn = gpa >> PAGE_SHIFT;
1532 int offset = offset_in_page(gpa);
1533
1534 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1535 if (kvm_is_error_hva(addr))
1536 return -EFAULT;
1537 pagefault_disable();
1538 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1539 pagefault_enable();
1540 if (r)
1541 return -EFAULT;
1542 return 0;
1543 }
1544 EXPORT_SYMBOL(kvm_read_guest_atomic);
1545
1546 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1547 int offset, int len)
1548 {
1549 int r;
1550 unsigned long addr;
1551
1552 addr = gfn_to_hva(kvm, gfn);
1553 if (kvm_is_error_hva(addr))
1554 return -EFAULT;
1555 r = __copy_to_user((void __user *)addr + offset, data, len);
1556 if (r)
1557 return -EFAULT;
1558 mark_page_dirty(kvm, gfn);
1559 return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1562
1563 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1564 unsigned long len)
1565 {
1566 gfn_t gfn = gpa >> PAGE_SHIFT;
1567 int seg;
1568 int offset = offset_in_page(gpa);
1569 int ret;
1570
1571 while ((seg = next_segment(len, offset)) != 0) {
1572 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1573 if (ret < 0)
1574 return ret;
1575 offset = 0;
1576 len -= seg;
1577 data += seg;
1578 ++gfn;
1579 }
1580 return 0;
1581 }
1582
1583 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1584 gpa_t gpa, unsigned long len)
1585 {
1586 struct kvm_memslots *slots = kvm_memslots(kvm);
1587 int offset = offset_in_page(gpa);
1588 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1589 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1590 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1591 gfn_t nr_pages_avail;
1592
1593 ghc->gpa = gpa;
1594 ghc->generation = slots->generation;
1595 ghc->len = len;
1596 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1597 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1598 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1599 ghc->hva += offset;
1600 } else {
1601 /*
1602 * If the requested region crosses two memslots, we still
1603 * verify that the entire region is valid here.
1604 */
1605 while (start_gfn <= end_gfn) {
1606 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1607 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1608 &nr_pages_avail);
1609 if (kvm_is_error_hva(ghc->hva))
1610 return -EFAULT;
1611 start_gfn += nr_pages_avail;
1612 }
1613 /* Use the slow path for cross page reads and writes. */
1614 ghc->memslot = NULL;
1615 }
1616 return 0;
1617 }
1618 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1619
1620 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1621 void *data, unsigned long len)
1622 {
1623 struct kvm_memslots *slots = kvm_memslots(kvm);
1624 int r;
1625
1626 BUG_ON(len > ghc->len);
1627
1628 if (slots->generation != ghc->generation)
1629 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1630
1631 if (unlikely(!ghc->memslot))
1632 return kvm_write_guest(kvm, ghc->gpa, data, len);
1633
1634 if (kvm_is_error_hva(ghc->hva))
1635 return -EFAULT;
1636
1637 r = __copy_to_user((void __user *)ghc->hva, data, len);
1638 if (r)
1639 return -EFAULT;
1640 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1641
1642 return 0;
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1645
1646 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1647 void *data, unsigned long len)
1648 {
1649 struct kvm_memslots *slots = kvm_memslots(kvm);
1650 int r;
1651
1652 BUG_ON(len > ghc->len);
1653
1654 if (slots->generation != ghc->generation)
1655 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1656
1657 if (unlikely(!ghc->memslot))
1658 return kvm_read_guest(kvm, ghc->gpa, data, len);
1659
1660 if (kvm_is_error_hva(ghc->hva))
1661 return -EFAULT;
1662
1663 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1664 if (r)
1665 return -EFAULT;
1666
1667 return 0;
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1670
1671 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1672 {
1673 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1674
1675 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1678
1679 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1680 {
1681 gfn_t gfn = gpa >> PAGE_SHIFT;
1682 int seg;
1683 int offset = offset_in_page(gpa);
1684 int ret;
1685
1686 while ((seg = next_segment(len, offset)) != 0) {
1687 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1688 if (ret < 0)
1689 return ret;
1690 offset = 0;
1691 len -= seg;
1692 ++gfn;
1693 }
1694 return 0;
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1697
1698 static void mark_page_dirty_in_slot(struct kvm *kvm,
1699 struct kvm_memory_slot *memslot,
1700 gfn_t gfn)
1701 {
1702 if (memslot && memslot->dirty_bitmap) {
1703 unsigned long rel_gfn = gfn - memslot->base_gfn;
1704
1705 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1706 }
1707 }
1708
1709 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1710 {
1711 struct kvm_memory_slot *memslot;
1712
1713 memslot = gfn_to_memslot(kvm, gfn);
1714 mark_page_dirty_in_slot(kvm, memslot, gfn);
1715 }
1716 EXPORT_SYMBOL_GPL(mark_page_dirty);
1717
1718 /*
1719 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1720 */
1721 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1722 {
1723 DEFINE_WAIT(wait);
1724
1725 for (;;) {
1726 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1727
1728 if (kvm_arch_vcpu_runnable(vcpu)) {
1729 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1730 break;
1731 }
1732 if (kvm_cpu_has_pending_timer(vcpu))
1733 break;
1734 if (signal_pending(current))
1735 break;
1736
1737 schedule();
1738 }
1739
1740 finish_wait(&vcpu->wq, &wait);
1741 }
1742 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1743
1744 #ifndef CONFIG_S390
1745 /*
1746 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1747 */
1748 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1749 {
1750 int me;
1751 int cpu = vcpu->cpu;
1752 wait_queue_head_t *wqp;
1753
1754 wqp = kvm_arch_vcpu_wq(vcpu);
1755 if (waitqueue_active(wqp)) {
1756 wake_up_interruptible(wqp);
1757 ++vcpu->stat.halt_wakeup;
1758 }
1759
1760 me = get_cpu();
1761 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1762 if (kvm_arch_vcpu_should_kick(vcpu))
1763 smp_send_reschedule(cpu);
1764 put_cpu();
1765 }
1766 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1767 #endif /* !CONFIG_S390 */
1768
1769 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1770 {
1771 struct pid *pid;
1772 struct task_struct *task = NULL;
1773 int ret = 0;
1774
1775 rcu_read_lock();
1776 pid = rcu_dereference(target->pid);
1777 if (pid)
1778 task = get_pid_task(pid, PIDTYPE_PID);
1779 rcu_read_unlock();
1780 if (!task)
1781 return ret;
1782 ret = yield_to(task, 1);
1783 put_task_struct(task);
1784
1785 return ret;
1786 }
1787 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1788
1789 /*
1790 * Helper that checks whether a VCPU is eligible for directed yield.
1791 * Most eligible candidate to yield is decided by following heuristics:
1792 *
1793 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1794 * (preempted lock holder), indicated by @in_spin_loop.
1795 * Set at the beiginning and cleared at the end of interception/PLE handler.
1796 *
1797 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1798 * chance last time (mostly it has become eligible now since we have probably
1799 * yielded to lockholder in last iteration. This is done by toggling
1800 * @dy_eligible each time a VCPU checked for eligibility.)
1801 *
1802 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1803 * to preempted lock-holder could result in wrong VCPU selection and CPU
1804 * burning. Giving priority for a potential lock-holder increases lock
1805 * progress.
1806 *
1807 * Since algorithm is based on heuristics, accessing another VCPU data without
1808 * locking does not harm. It may result in trying to yield to same VCPU, fail
1809 * and continue with next VCPU and so on.
1810 */
1811 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1812 {
1813 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1814 bool eligible;
1815
1816 eligible = !vcpu->spin_loop.in_spin_loop ||
1817 vcpu->spin_loop.dy_eligible;
1818
1819 if (vcpu->spin_loop.in_spin_loop)
1820 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1821
1822 return eligible;
1823 #else
1824 return true;
1825 #endif
1826 }
1827
1828 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1829 {
1830 struct kvm *kvm = me->kvm;
1831 struct kvm_vcpu *vcpu;
1832 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1833 int yielded = 0;
1834 int try = 3;
1835 int pass;
1836 int i;
1837
1838 kvm_vcpu_set_in_spin_loop(me, true);
1839 /*
1840 * We boost the priority of a VCPU that is runnable but not
1841 * currently running, because it got preempted by something
1842 * else and called schedule in __vcpu_run. Hopefully that
1843 * VCPU is holding the lock that we need and will release it.
1844 * We approximate round-robin by starting at the last boosted VCPU.
1845 */
1846 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1847 kvm_for_each_vcpu(i, vcpu, kvm) {
1848 if (!pass && i <= last_boosted_vcpu) {
1849 i = last_boosted_vcpu;
1850 continue;
1851 } else if (pass && i > last_boosted_vcpu)
1852 break;
1853 if (!ACCESS_ONCE(vcpu->preempted))
1854 continue;
1855 if (vcpu == me)
1856 continue;
1857 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1858 continue;
1859 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1860 continue;
1861
1862 yielded = kvm_vcpu_yield_to(vcpu);
1863 if (yielded > 0) {
1864 kvm->last_boosted_vcpu = i;
1865 break;
1866 } else if (yielded < 0) {
1867 try--;
1868 if (!try)
1869 break;
1870 }
1871 }
1872 }
1873 kvm_vcpu_set_in_spin_loop(me, false);
1874
1875 /* Ensure vcpu is not eligible during next spinloop */
1876 kvm_vcpu_set_dy_eligible(me, false);
1877 }
1878 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1879
1880 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1881 {
1882 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1883 struct page *page;
1884
1885 if (vmf->pgoff == 0)
1886 page = virt_to_page(vcpu->run);
1887 #ifdef CONFIG_X86
1888 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1889 page = virt_to_page(vcpu->arch.pio_data);
1890 #endif
1891 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1892 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1893 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1894 #endif
1895 else
1896 return kvm_arch_vcpu_fault(vcpu, vmf);
1897 get_page(page);
1898 vmf->page = page;
1899 return 0;
1900 }
1901
1902 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1903 .fault = kvm_vcpu_fault,
1904 };
1905
1906 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1907 {
1908 vma->vm_ops = &kvm_vcpu_vm_ops;
1909 return 0;
1910 }
1911
1912 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1913 {
1914 struct kvm_vcpu *vcpu = filp->private_data;
1915
1916 kvm_put_kvm(vcpu->kvm);
1917 return 0;
1918 }
1919
1920 static struct file_operations kvm_vcpu_fops = {
1921 .release = kvm_vcpu_release,
1922 .unlocked_ioctl = kvm_vcpu_ioctl,
1923 #ifdef CONFIG_COMPAT
1924 .compat_ioctl = kvm_vcpu_compat_ioctl,
1925 #endif
1926 .mmap = kvm_vcpu_mmap,
1927 .llseek = noop_llseek,
1928 };
1929
1930 /*
1931 * Allocates an inode for the vcpu.
1932 */
1933 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1934 {
1935 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1936 }
1937
1938 /*
1939 * Creates some virtual cpus. Good luck creating more than one.
1940 */
1941 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1942 {
1943 int r;
1944 struct kvm_vcpu *vcpu, *v;
1945
1946 if (id >= KVM_MAX_VCPUS)
1947 return -EINVAL;
1948
1949 vcpu = kvm_arch_vcpu_create(kvm, id);
1950 if (IS_ERR(vcpu))
1951 return PTR_ERR(vcpu);
1952
1953 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1954
1955 r = kvm_arch_vcpu_setup(vcpu);
1956 if (r)
1957 goto vcpu_destroy;
1958
1959 mutex_lock(&kvm->lock);
1960 if (!kvm_vcpu_compatible(vcpu)) {
1961 r = -EINVAL;
1962 goto unlock_vcpu_destroy;
1963 }
1964 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1965 r = -EINVAL;
1966 goto unlock_vcpu_destroy;
1967 }
1968
1969 kvm_for_each_vcpu(r, v, kvm)
1970 if (v->vcpu_id == id) {
1971 r = -EEXIST;
1972 goto unlock_vcpu_destroy;
1973 }
1974
1975 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1976
1977 /* Now it's all set up, let userspace reach it */
1978 kvm_get_kvm(kvm);
1979 r = create_vcpu_fd(vcpu);
1980 if (r < 0) {
1981 kvm_put_kvm(kvm);
1982 goto unlock_vcpu_destroy;
1983 }
1984
1985 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1986 smp_wmb();
1987 atomic_inc(&kvm->online_vcpus);
1988
1989 mutex_unlock(&kvm->lock);
1990 kvm_arch_vcpu_postcreate(vcpu);
1991 return r;
1992
1993 unlock_vcpu_destroy:
1994 mutex_unlock(&kvm->lock);
1995 vcpu_destroy:
1996 kvm_arch_vcpu_destroy(vcpu);
1997 return r;
1998 }
1999
2000 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2001 {
2002 if (sigset) {
2003 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2004 vcpu->sigset_active = 1;
2005 vcpu->sigset = *sigset;
2006 } else
2007 vcpu->sigset_active = 0;
2008 return 0;
2009 }
2010
2011 static long kvm_vcpu_ioctl(struct file *filp,
2012 unsigned int ioctl, unsigned long arg)
2013 {
2014 struct kvm_vcpu *vcpu = filp->private_data;
2015 void __user *argp = (void __user *)arg;
2016 int r;
2017 struct kvm_fpu *fpu = NULL;
2018 struct kvm_sregs *kvm_sregs = NULL;
2019
2020 if (vcpu->kvm->mm != current->mm)
2021 return -EIO;
2022
2023 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2024 return -EINVAL;
2025
2026 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2027 /*
2028 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2029 * so vcpu_load() would break it.
2030 */
2031 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2032 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2033 #endif
2034
2035
2036 r = vcpu_load(vcpu);
2037 if (r)
2038 return r;
2039 switch (ioctl) {
2040 case KVM_RUN:
2041 r = -EINVAL;
2042 if (arg)
2043 goto out;
2044 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2045 /* The thread running this VCPU changed. */
2046 struct pid *oldpid = vcpu->pid;
2047 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2048 rcu_assign_pointer(vcpu->pid, newpid);
2049 if (oldpid)
2050 synchronize_rcu();
2051 put_pid(oldpid);
2052 }
2053 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2054 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2055 break;
2056 case KVM_GET_REGS: {
2057 struct kvm_regs *kvm_regs;
2058
2059 r = -ENOMEM;
2060 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2061 if (!kvm_regs)
2062 goto out;
2063 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2064 if (r)
2065 goto out_free1;
2066 r = -EFAULT;
2067 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2068 goto out_free1;
2069 r = 0;
2070 out_free1:
2071 kfree(kvm_regs);
2072 break;
2073 }
2074 case KVM_SET_REGS: {
2075 struct kvm_regs *kvm_regs;
2076
2077 r = -ENOMEM;
2078 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2079 if (IS_ERR(kvm_regs)) {
2080 r = PTR_ERR(kvm_regs);
2081 goto out;
2082 }
2083 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2084 kfree(kvm_regs);
2085 break;
2086 }
2087 case KVM_GET_SREGS: {
2088 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2089 r = -ENOMEM;
2090 if (!kvm_sregs)
2091 goto out;
2092 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2093 if (r)
2094 goto out;
2095 r = -EFAULT;
2096 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2097 goto out;
2098 r = 0;
2099 break;
2100 }
2101 case KVM_SET_SREGS: {
2102 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2103 if (IS_ERR(kvm_sregs)) {
2104 r = PTR_ERR(kvm_sregs);
2105 kvm_sregs = NULL;
2106 goto out;
2107 }
2108 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2109 break;
2110 }
2111 case KVM_GET_MP_STATE: {
2112 struct kvm_mp_state mp_state;
2113
2114 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2115 if (r)
2116 goto out;
2117 r = -EFAULT;
2118 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2119 goto out;
2120 r = 0;
2121 break;
2122 }
2123 case KVM_SET_MP_STATE: {
2124 struct kvm_mp_state mp_state;
2125
2126 r = -EFAULT;
2127 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2128 goto out;
2129 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2130 break;
2131 }
2132 case KVM_TRANSLATE: {
2133 struct kvm_translation tr;
2134
2135 r = -EFAULT;
2136 if (copy_from_user(&tr, argp, sizeof tr))
2137 goto out;
2138 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2139 if (r)
2140 goto out;
2141 r = -EFAULT;
2142 if (copy_to_user(argp, &tr, sizeof tr))
2143 goto out;
2144 r = 0;
2145 break;
2146 }
2147 case KVM_SET_GUEST_DEBUG: {
2148 struct kvm_guest_debug dbg;
2149
2150 r = -EFAULT;
2151 if (copy_from_user(&dbg, argp, sizeof dbg))
2152 goto out;
2153 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2154 break;
2155 }
2156 case KVM_SET_SIGNAL_MASK: {
2157 struct kvm_signal_mask __user *sigmask_arg = argp;
2158 struct kvm_signal_mask kvm_sigmask;
2159 sigset_t sigset, *p;
2160
2161 p = NULL;
2162 if (argp) {
2163 r = -EFAULT;
2164 if (copy_from_user(&kvm_sigmask, argp,
2165 sizeof kvm_sigmask))
2166 goto out;
2167 r = -EINVAL;
2168 if (kvm_sigmask.len != sizeof sigset)
2169 goto out;
2170 r = -EFAULT;
2171 if (copy_from_user(&sigset, sigmask_arg->sigset,
2172 sizeof sigset))
2173 goto out;
2174 p = &sigset;
2175 }
2176 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2177 break;
2178 }
2179 case KVM_GET_FPU: {
2180 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2181 r = -ENOMEM;
2182 if (!fpu)
2183 goto out;
2184 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2185 if (r)
2186 goto out;
2187 r = -EFAULT;
2188 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2189 goto out;
2190 r = 0;
2191 break;
2192 }
2193 case KVM_SET_FPU: {
2194 fpu = memdup_user(argp, sizeof(*fpu));
2195 if (IS_ERR(fpu)) {
2196 r = PTR_ERR(fpu);
2197 fpu = NULL;
2198 goto out;
2199 }
2200 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2201 break;
2202 }
2203 default:
2204 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2205 }
2206 out:
2207 vcpu_put(vcpu);
2208 kfree(fpu);
2209 kfree(kvm_sregs);
2210 return r;
2211 }
2212
2213 #ifdef CONFIG_COMPAT
2214 static long kvm_vcpu_compat_ioctl(struct file *filp,
2215 unsigned int ioctl, unsigned long arg)
2216 {
2217 struct kvm_vcpu *vcpu = filp->private_data;
2218 void __user *argp = compat_ptr(arg);
2219 int r;
2220
2221 if (vcpu->kvm->mm != current->mm)
2222 return -EIO;
2223
2224 switch (ioctl) {
2225 case KVM_SET_SIGNAL_MASK: {
2226 struct kvm_signal_mask __user *sigmask_arg = argp;
2227 struct kvm_signal_mask kvm_sigmask;
2228 compat_sigset_t csigset;
2229 sigset_t sigset;
2230
2231 if (argp) {
2232 r = -EFAULT;
2233 if (copy_from_user(&kvm_sigmask, argp,
2234 sizeof kvm_sigmask))
2235 goto out;
2236 r = -EINVAL;
2237 if (kvm_sigmask.len != sizeof csigset)
2238 goto out;
2239 r = -EFAULT;
2240 if (copy_from_user(&csigset, sigmask_arg->sigset,
2241 sizeof csigset))
2242 goto out;
2243 sigset_from_compat(&sigset, &csigset);
2244 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2245 } else
2246 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2247 break;
2248 }
2249 default:
2250 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2251 }
2252
2253 out:
2254 return r;
2255 }
2256 #endif
2257
2258 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2259 int (*accessor)(struct kvm_device *dev,
2260 struct kvm_device_attr *attr),
2261 unsigned long arg)
2262 {
2263 struct kvm_device_attr attr;
2264
2265 if (!accessor)
2266 return -EPERM;
2267
2268 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2269 return -EFAULT;
2270
2271 return accessor(dev, &attr);
2272 }
2273
2274 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2275 unsigned long arg)
2276 {
2277 struct kvm_device *dev = filp->private_data;
2278
2279 switch (ioctl) {
2280 case KVM_SET_DEVICE_ATTR:
2281 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2282 case KVM_GET_DEVICE_ATTR:
2283 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2284 case KVM_HAS_DEVICE_ATTR:
2285 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2286 default:
2287 if (dev->ops->ioctl)
2288 return dev->ops->ioctl(dev, ioctl, arg);
2289
2290 return -ENOTTY;
2291 }
2292 }
2293
2294 static int kvm_device_release(struct inode *inode, struct file *filp)
2295 {
2296 struct kvm_device *dev = filp->private_data;
2297 struct kvm *kvm = dev->kvm;
2298
2299 kvm_put_kvm(kvm);
2300 return 0;
2301 }
2302
2303 static const struct file_operations kvm_device_fops = {
2304 .unlocked_ioctl = kvm_device_ioctl,
2305 #ifdef CONFIG_COMPAT
2306 .compat_ioctl = kvm_device_ioctl,
2307 #endif
2308 .release = kvm_device_release,
2309 };
2310
2311 struct kvm_device *kvm_device_from_filp(struct file *filp)
2312 {
2313 if (filp->f_op != &kvm_device_fops)
2314 return NULL;
2315
2316 return filp->private_data;
2317 }
2318
2319 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2320 #ifdef CONFIG_KVM_MPIC
2321 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2322 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2323 #endif
2324
2325 #ifdef CONFIG_KVM_XICS
2326 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2327 #endif
2328 };
2329
2330 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2331 {
2332 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2333 return -ENOSPC;
2334
2335 if (kvm_device_ops_table[type] != NULL)
2336 return -EEXIST;
2337
2338 kvm_device_ops_table[type] = ops;
2339 return 0;
2340 }
2341
2342 void kvm_unregister_device_ops(u32 type)
2343 {
2344 if (kvm_device_ops_table[type] != NULL)
2345 kvm_device_ops_table[type] = NULL;
2346 }
2347
2348 static int kvm_ioctl_create_device(struct kvm *kvm,
2349 struct kvm_create_device *cd)
2350 {
2351 struct kvm_device_ops *ops = NULL;
2352 struct kvm_device *dev;
2353 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2354 int ret;
2355
2356 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2357 return -ENODEV;
2358
2359 ops = kvm_device_ops_table[cd->type];
2360 if (ops == NULL)
2361 return -ENODEV;
2362
2363 if (test)
2364 return 0;
2365
2366 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2367 if (!dev)
2368 return -ENOMEM;
2369
2370 dev->ops = ops;
2371 dev->kvm = kvm;
2372
2373 ret = ops->create(dev, cd->type);
2374 if (ret < 0) {
2375 kfree(dev);
2376 return ret;
2377 }
2378
2379 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2380 if (ret < 0) {
2381 ops->destroy(dev);
2382 return ret;
2383 }
2384
2385 list_add(&dev->vm_node, &kvm->devices);
2386 kvm_get_kvm(kvm);
2387 cd->fd = ret;
2388 return 0;
2389 }
2390
2391 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2392 {
2393 switch (arg) {
2394 case KVM_CAP_USER_MEMORY:
2395 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2396 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2397 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2398 case KVM_CAP_SET_BOOT_CPU_ID:
2399 #endif
2400 case KVM_CAP_INTERNAL_ERROR_DATA:
2401 #ifdef CONFIG_HAVE_KVM_MSI
2402 case KVM_CAP_SIGNAL_MSI:
2403 #endif
2404 #ifdef CONFIG_HAVE_KVM_IRQFD
2405 case KVM_CAP_IRQFD_RESAMPLE:
2406 #endif
2407 case KVM_CAP_CHECK_EXTENSION_VM:
2408 return 1;
2409 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2410 case KVM_CAP_IRQ_ROUTING:
2411 return KVM_MAX_IRQ_ROUTES;
2412 #endif
2413 default:
2414 break;
2415 }
2416 return kvm_vm_ioctl_check_extension(kvm, arg);
2417 }
2418
2419 static long kvm_vm_ioctl(struct file *filp,
2420 unsigned int ioctl, unsigned long arg)
2421 {
2422 struct kvm *kvm = filp->private_data;
2423 void __user *argp = (void __user *)arg;
2424 int r;
2425
2426 if (kvm->mm != current->mm)
2427 return -EIO;
2428 switch (ioctl) {
2429 case KVM_CREATE_VCPU:
2430 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2431 break;
2432 case KVM_SET_USER_MEMORY_REGION: {
2433 struct kvm_userspace_memory_region kvm_userspace_mem;
2434
2435 r = -EFAULT;
2436 if (copy_from_user(&kvm_userspace_mem, argp,
2437 sizeof kvm_userspace_mem))
2438 goto out;
2439
2440 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2441 break;
2442 }
2443 case KVM_GET_DIRTY_LOG: {
2444 struct kvm_dirty_log log;
2445
2446 r = -EFAULT;
2447 if (copy_from_user(&log, argp, sizeof log))
2448 goto out;
2449 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2450 break;
2451 }
2452 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2453 case KVM_REGISTER_COALESCED_MMIO: {
2454 struct kvm_coalesced_mmio_zone zone;
2455 r = -EFAULT;
2456 if (copy_from_user(&zone, argp, sizeof zone))
2457 goto out;
2458 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2459 break;
2460 }
2461 case KVM_UNREGISTER_COALESCED_MMIO: {
2462 struct kvm_coalesced_mmio_zone zone;
2463 r = -EFAULT;
2464 if (copy_from_user(&zone, argp, sizeof zone))
2465 goto out;
2466 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2467 break;
2468 }
2469 #endif
2470 case KVM_IRQFD: {
2471 struct kvm_irqfd data;
2472
2473 r = -EFAULT;
2474 if (copy_from_user(&data, argp, sizeof data))
2475 goto out;
2476 r = kvm_irqfd(kvm, &data);
2477 break;
2478 }
2479 case KVM_IOEVENTFD: {
2480 struct kvm_ioeventfd data;
2481
2482 r = -EFAULT;
2483 if (copy_from_user(&data, argp, sizeof data))
2484 goto out;
2485 r = kvm_ioeventfd(kvm, &data);
2486 break;
2487 }
2488 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2489 case KVM_SET_BOOT_CPU_ID:
2490 r = 0;
2491 mutex_lock(&kvm->lock);
2492 if (atomic_read(&kvm->online_vcpus) != 0)
2493 r = -EBUSY;
2494 else
2495 kvm->bsp_vcpu_id = arg;
2496 mutex_unlock(&kvm->lock);
2497 break;
2498 #endif
2499 #ifdef CONFIG_HAVE_KVM_MSI
2500 case KVM_SIGNAL_MSI: {
2501 struct kvm_msi msi;
2502
2503 r = -EFAULT;
2504 if (copy_from_user(&msi, argp, sizeof msi))
2505 goto out;
2506 r = kvm_send_userspace_msi(kvm, &msi);
2507 break;
2508 }
2509 #endif
2510 #ifdef __KVM_HAVE_IRQ_LINE
2511 case KVM_IRQ_LINE_STATUS:
2512 case KVM_IRQ_LINE: {
2513 struct kvm_irq_level irq_event;
2514
2515 r = -EFAULT;
2516 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2517 goto out;
2518
2519 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2520 ioctl == KVM_IRQ_LINE_STATUS);
2521 if (r)
2522 goto out;
2523
2524 r = -EFAULT;
2525 if (ioctl == KVM_IRQ_LINE_STATUS) {
2526 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2527 goto out;
2528 }
2529
2530 r = 0;
2531 break;
2532 }
2533 #endif
2534 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2535 case KVM_SET_GSI_ROUTING: {
2536 struct kvm_irq_routing routing;
2537 struct kvm_irq_routing __user *urouting;
2538 struct kvm_irq_routing_entry *entries;
2539
2540 r = -EFAULT;
2541 if (copy_from_user(&routing, argp, sizeof(routing)))
2542 goto out;
2543 r = -EINVAL;
2544 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2545 goto out;
2546 if (routing.flags)
2547 goto out;
2548 r = -ENOMEM;
2549 entries = vmalloc(routing.nr * sizeof(*entries));
2550 if (!entries)
2551 goto out;
2552 r = -EFAULT;
2553 urouting = argp;
2554 if (copy_from_user(entries, urouting->entries,
2555 routing.nr * sizeof(*entries)))
2556 goto out_free_irq_routing;
2557 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2558 routing.flags);
2559 out_free_irq_routing:
2560 vfree(entries);
2561 break;
2562 }
2563 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2564 case KVM_CREATE_DEVICE: {
2565 struct kvm_create_device cd;
2566
2567 r = -EFAULT;
2568 if (copy_from_user(&cd, argp, sizeof(cd)))
2569 goto out;
2570
2571 r = kvm_ioctl_create_device(kvm, &cd);
2572 if (r)
2573 goto out;
2574
2575 r = -EFAULT;
2576 if (copy_to_user(argp, &cd, sizeof(cd)))
2577 goto out;
2578
2579 r = 0;
2580 break;
2581 }
2582 case KVM_CHECK_EXTENSION:
2583 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2584 break;
2585 default:
2586 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2587 }
2588 out:
2589 return r;
2590 }
2591
2592 #ifdef CONFIG_COMPAT
2593 struct compat_kvm_dirty_log {
2594 __u32 slot;
2595 __u32 padding1;
2596 union {
2597 compat_uptr_t dirty_bitmap; /* one bit per page */
2598 __u64 padding2;
2599 };
2600 };
2601
2602 static long kvm_vm_compat_ioctl(struct file *filp,
2603 unsigned int ioctl, unsigned long arg)
2604 {
2605 struct kvm *kvm = filp->private_data;
2606 int r;
2607
2608 if (kvm->mm != current->mm)
2609 return -EIO;
2610 switch (ioctl) {
2611 case KVM_GET_DIRTY_LOG: {
2612 struct compat_kvm_dirty_log compat_log;
2613 struct kvm_dirty_log log;
2614
2615 r = -EFAULT;
2616 if (copy_from_user(&compat_log, (void __user *)arg,
2617 sizeof(compat_log)))
2618 goto out;
2619 log.slot = compat_log.slot;
2620 log.padding1 = compat_log.padding1;
2621 log.padding2 = compat_log.padding2;
2622 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2623
2624 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2625 break;
2626 }
2627 default:
2628 r = kvm_vm_ioctl(filp, ioctl, arg);
2629 }
2630
2631 out:
2632 return r;
2633 }
2634 #endif
2635
2636 static struct file_operations kvm_vm_fops = {
2637 .release = kvm_vm_release,
2638 .unlocked_ioctl = kvm_vm_ioctl,
2639 #ifdef CONFIG_COMPAT
2640 .compat_ioctl = kvm_vm_compat_ioctl,
2641 #endif
2642 .llseek = noop_llseek,
2643 };
2644
2645 static int kvm_dev_ioctl_create_vm(unsigned long type)
2646 {
2647 int r;
2648 struct kvm *kvm;
2649
2650 kvm = kvm_create_vm(type);
2651 if (IS_ERR(kvm))
2652 return PTR_ERR(kvm);
2653 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2654 r = kvm_coalesced_mmio_init(kvm);
2655 if (r < 0) {
2656 kvm_put_kvm(kvm);
2657 return r;
2658 }
2659 #endif
2660 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2661 if (r < 0)
2662 kvm_put_kvm(kvm);
2663
2664 return r;
2665 }
2666
2667 static long kvm_dev_ioctl(struct file *filp,
2668 unsigned int ioctl, unsigned long arg)
2669 {
2670 long r = -EINVAL;
2671
2672 switch (ioctl) {
2673 case KVM_GET_API_VERSION:
2674 if (arg)
2675 goto out;
2676 r = KVM_API_VERSION;
2677 break;
2678 case KVM_CREATE_VM:
2679 r = kvm_dev_ioctl_create_vm(arg);
2680 break;
2681 case KVM_CHECK_EXTENSION:
2682 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2683 break;
2684 case KVM_GET_VCPU_MMAP_SIZE:
2685 if (arg)
2686 goto out;
2687 r = PAGE_SIZE; /* struct kvm_run */
2688 #ifdef CONFIG_X86
2689 r += PAGE_SIZE; /* pio data page */
2690 #endif
2691 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2692 r += PAGE_SIZE; /* coalesced mmio ring page */
2693 #endif
2694 break;
2695 case KVM_TRACE_ENABLE:
2696 case KVM_TRACE_PAUSE:
2697 case KVM_TRACE_DISABLE:
2698 r = -EOPNOTSUPP;
2699 break;
2700 default:
2701 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2702 }
2703 out:
2704 return r;
2705 }
2706
2707 static struct file_operations kvm_chardev_ops = {
2708 .unlocked_ioctl = kvm_dev_ioctl,
2709 .compat_ioctl = kvm_dev_ioctl,
2710 .llseek = noop_llseek,
2711 };
2712
2713 static struct miscdevice kvm_dev = {
2714 KVM_MINOR,
2715 "kvm",
2716 &kvm_chardev_ops,
2717 };
2718
2719 static void hardware_enable_nolock(void *junk)
2720 {
2721 int cpu = raw_smp_processor_id();
2722 int r;
2723
2724 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2725 return;
2726
2727 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2728
2729 r = kvm_arch_hardware_enable();
2730
2731 if (r) {
2732 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2733 atomic_inc(&hardware_enable_failed);
2734 printk(KERN_INFO "kvm: enabling virtualization on "
2735 "CPU%d failed\n", cpu);
2736 }
2737 }
2738
2739 static void hardware_enable(void)
2740 {
2741 raw_spin_lock(&kvm_count_lock);
2742 if (kvm_usage_count)
2743 hardware_enable_nolock(NULL);
2744 raw_spin_unlock(&kvm_count_lock);
2745 }
2746
2747 static void hardware_disable_nolock(void *junk)
2748 {
2749 int cpu = raw_smp_processor_id();
2750
2751 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2752 return;
2753 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2754 kvm_arch_hardware_disable();
2755 }
2756
2757 static void hardware_disable(void)
2758 {
2759 raw_spin_lock(&kvm_count_lock);
2760 if (kvm_usage_count)
2761 hardware_disable_nolock(NULL);
2762 raw_spin_unlock(&kvm_count_lock);
2763 }
2764
2765 static void hardware_disable_all_nolock(void)
2766 {
2767 BUG_ON(!kvm_usage_count);
2768
2769 kvm_usage_count--;
2770 if (!kvm_usage_count)
2771 on_each_cpu(hardware_disable_nolock, NULL, 1);
2772 }
2773
2774 static void hardware_disable_all(void)
2775 {
2776 raw_spin_lock(&kvm_count_lock);
2777 hardware_disable_all_nolock();
2778 raw_spin_unlock(&kvm_count_lock);
2779 }
2780
2781 static int hardware_enable_all(void)
2782 {
2783 int r = 0;
2784
2785 raw_spin_lock(&kvm_count_lock);
2786
2787 kvm_usage_count++;
2788 if (kvm_usage_count == 1) {
2789 atomic_set(&hardware_enable_failed, 0);
2790 on_each_cpu(hardware_enable_nolock, NULL, 1);
2791
2792 if (atomic_read(&hardware_enable_failed)) {
2793 hardware_disable_all_nolock();
2794 r = -EBUSY;
2795 }
2796 }
2797
2798 raw_spin_unlock(&kvm_count_lock);
2799
2800 return r;
2801 }
2802
2803 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2804 void *v)
2805 {
2806 int cpu = (long)v;
2807
2808 val &= ~CPU_TASKS_FROZEN;
2809 switch (val) {
2810 case CPU_DYING:
2811 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2812 cpu);
2813 hardware_disable();
2814 break;
2815 case CPU_STARTING:
2816 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2817 cpu);
2818 hardware_enable();
2819 break;
2820 }
2821 return NOTIFY_OK;
2822 }
2823
2824 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2825 void *v)
2826 {
2827 /*
2828 * Some (well, at least mine) BIOSes hang on reboot if
2829 * in vmx root mode.
2830 *
2831 * And Intel TXT required VMX off for all cpu when system shutdown.
2832 */
2833 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2834 kvm_rebooting = true;
2835 on_each_cpu(hardware_disable_nolock, NULL, 1);
2836 return NOTIFY_OK;
2837 }
2838
2839 static struct notifier_block kvm_reboot_notifier = {
2840 .notifier_call = kvm_reboot,
2841 .priority = 0,
2842 };
2843
2844 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2845 {
2846 int i;
2847
2848 for (i = 0; i < bus->dev_count; i++) {
2849 struct kvm_io_device *pos = bus->range[i].dev;
2850
2851 kvm_iodevice_destructor(pos);
2852 }
2853 kfree(bus);
2854 }
2855
2856 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2857 const struct kvm_io_range *r2)
2858 {
2859 if (r1->addr < r2->addr)
2860 return -1;
2861 if (r1->addr + r1->len > r2->addr + r2->len)
2862 return 1;
2863 return 0;
2864 }
2865
2866 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2867 {
2868 return kvm_io_bus_cmp(p1, p2);
2869 }
2870
2871 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2872 gpa_t addr, int len)
2873 {
2874 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2875 .addr = addr,
2876 .len = len,
2877 .dev = dev,
2878 };
2879
2880 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2881 kvm_io_bus_sort_cmp, NULL);
2882
2883 return 0;
2884 }
2885
2886 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2887 gpa_t addr, int len)
2888 {
2889 struct kvm_io_range *range, key;
2890 int off;
2891
2892 key = (struct kvm_io_range) {
2893 .addr = addr,
2894 .len = len,
2895 };
2896
2897 range = bsearch(&key, bus->range, bus->dev_count,
2898 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2899 if (range == NULL)
2900 return -ENOENT;
2901
2902 off = range - bus->range;
2903
2904 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2905 off--;
2906
2907 return off;
2908 }
2909
2910 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2911 struct kvm_io_range *range, const void *val)
2912 {
2913 int idx;
2914
2915 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2916 if (idx < 0)
2917 return -EOPNOTSUPP;
2918
2919 while (idx < bus->dev_count &&
2920 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2921 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2922 range->len, val))
2923 return idx;
2924 idx++;
2925 }
2926
2927 return -EOPNOTSUPP;
2928 }
2929
2930 /* kvm_io_bus_write - called under kvm->slots_lock */
2931 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2932 int len, const void *val)
2933 {
2934 struct kvm_io_bus *bus;
2935 struct kvm_io_range range;
2936 int r;
2937
2938 range = (struct kvm_io_range) {
2939 .addr = addr,
2940 .len = len,
2941 };
2942
2943 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2944 r = __kvm_io_bus_write(bus, &range, val);
2945 return r < 0 ? r : 0;
2946 }
2947
2948 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2949 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2950 int len, const void *val, long cookie)
2951 {
2952 struct kvm_io_bus *bus;
2953 struct kvm_io_range range;
2954
2955 range = (struct kvm_io_range) {
2956 .addr = addr,
2957 .len = len,
2958 };
2959
2960 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2961
2962 /* First try the device referenced by cookie. */
2963 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2964 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2965 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2966 val))
2967 return cookie;
2968
2969 /*
2970 * cookie contained garbage; fall back to search and return the
2971 * correct cookie value.
2972 */
2973 return __kvm_io_bus_write(bus, &range, val);
2974 }
2975
2976 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2977 void *val)
2978 {
2979 int idx;
2980
2981 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2982 if (idx < 0)
2983 return -EOPNOTSUPP;
2984
2985 while (idx < bus->dev_count &&
2986 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2987 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2988 range->len, val))
2989 return idx;
2990 idx++;
2991 }
2992
2993 return -EOPNOTSUPP;
2994 }
2995 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
2996
2997 /* kvm_io_bus_read - called under kvm->slots_lock */
2998 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2999 int len, void *val)
3000 {
3001 struct kvm_io_bus *bus;
3002 struct kvm_io_range range;
3003 int r;
3004
3005 range = (struct kvm_io_range) {
3006 .addr = addr,
3007 .len = len,
3008 };
3009
3010 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3011 r = __kvm_io_bus_read(bus, &range, val);
3012 return r < 0 ? r : 0;
3013 }
3014
3015
3016 /* Caller must hold slots_lock. */
3017 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3018 int len, struct kvm_io_device *dev)
3019 {
3020 struct kvm_io_bus *new_bus, *bus;
3021
3022 bus = kvm->buses[bus_idx];
3023 /* exclude ioeventfd which is limited by maximum fd */
3024 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3025 return -ENOSPC;
3026
3027 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3028 sizeof(struct kvm_io_range)), GFP_KERNEL);
3029 if (!new_bus)
3030 return -ENOMEM;
3031 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3032 sizeof(struct kvm_io_range)));
3033 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3034 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3035 synchronize_srcu_expedited(&kvm->srcu);
3036 kfree(bus);
3037
3038 return 0;
3039 }
3040
3041 /* Caller must hold slots_lock. */
3042 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3043 struct kvm_io_device *dev)
3044 {
3045 int i, r;
3046 struct kvm_io_bus *new_bus, *bus;
3047
3048 bus = kvm->buses[bus_idx];
3049 r = -ENOENT;
3050 for (i = 0; i < bus->dev_count; i++)
3051 if (bus->range[i].dev == dev) {
3052 r = 0;
3053 break;
3054 }
3055
3056 if (r)
3057 return r;
3058
3059 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3060 sizeof(struct kvm_io_range)), GFP_KERNEL);
3061 if (!new_bus)
3062 return -ENOMEM;
3063
3064 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3065 new_bus->dev_count--;
3066 memcpy(new_bus->range + i, bus->range + i + 1,
3067 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3068
3069 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3070 synchronize_srcu_expedited(&kvm->srcu);
3071 kfree(bus);
3072 return r;
3073 }
3074
3075 static struct notifier_block kvm_cpu_notifier = {
3076 .notifier_call = kvm_cpu_hotplug,
3077 };
3078
3079 static int vm_stat_get(void *_offset, u64 *val)
3080 {
3081 unsigned offset = (long)_offset;
3082 struct kvm *kvm;
3083
3084 *val = 0;
3085 spin_lock(&kvm_lock);
3086 list_for_each_entry(kvm, &vm_list, vm_list)
3087 *val += *(u32 *)((void *)kvm + offset);
3088 spin_unlock(&kvm_lock);
3089 return 0;
3090 }
3091
3092 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3093
3094 static int vcpu_stat_get(void *_offset, u64 *val)
3095 {
3096 unsigned offset = (long)_offset;
3097 struct kvm *kvm;
3098 struct kvm_vcpu *vcpu;
3099 int i;
3100
3101 *val = 0;
3102 spin_lock(&kvm_lock);
3103 list_for_each_entry(kvm, &vm_list, vm_list)
3104 kvm_for_each_vcpu(i, vcpu, kvm)
3105 *val += *(u32 *)((void *)vcpu + offset);
3106
3107 spin_unlock(&kvm_lock);
3108 return 0;
3109 }
3110
3111 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3112
3113 static const struct file_operations *stat_fops[] = {
3114 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3115 [KVM_STAT_VM] = &vm_stat_fops,
3116 };
3117
3118 static int kvm_init_debug(void)
3119 {
3120 int r = -EEXIST;
3121 struct kvm_stats_debugfs_item *p;
3122
3123 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3124 if (kvm_debugfs_dir == NULL)
3125 goto out;
3126
3127 for (p = debugfs_entries; p->name; ++p) {
3128 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3129 (void *)(long)p->offset,
3130 stat_fops[p->kind]);
3131 if (p->dentry == NULL)
3132 goto out_dir;
3133 }
3134
3135 return 0;
3136
3137 out_dir:
3138 debugfs_remove_recursive(kvm_debugfs_dir);
3139 out:
3140 return r;
3141 }
3142
3143 static void kvm_exit_debug(void)
3144 {
3145 struct kvm_stats_debugfs_item *p;
3146
3147 for (p = debugfs_entries; p->name; ++p)
3148 debugfs_remove(p->dentry);
3149 debugfs_remove(kvm_debugfs_dir);
3150 }
3151
3152 static int kvm_suspend(void)
3153 {
3154 if (kvm_usage_count)
3155 hardware_disable_nolock(NULL);
3156 return 0;
3157 }
3158
3159 static void kvm_resume(void)
3160 {
3161 if (kvm_usage_count) {
3162 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3163 hardware_enable_nolock(NULL);
3164 }
3165 }
3166
3167 static struct syscore_ops kvm_syscore_ops = {
3168 .suspend = kvm_suspend,
3169 .resume = kvm_resume,
3170 };
3171
3172 static inline
3173 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3174 {
3175 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3176 }
3177
3178 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3179 {
3180 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3181 if (vcpu->preempted)
3182 vcpu->preempted = false;
3183
3184 kvm_arch_sched_in(vcpu, cpu);
3185
3186 kvm_arch_vcpu_load(vcpu, cpu);
3187 }
3188
3189 static void kvm_sched_out(struct preempt_notifier *pn,
3190 struct task_struct *next)
3191 {
3192 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3193
3194 if (current->state == TASK_RUNNING)
3195 vcpu->preempted = true;
3196 kvm_arch_vcpu_put(vcpu);
3197 }
3198
3199 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3200 struct module *module)
3201 {
3202 int r;
3203 int cpu;
3204
3205 r = kvm_arch_init(opaque);
3206 if (r)
3207 goto out_fail;
3208
3209 /*
3210 * kvm_arch_init makes sure there's at most one caller
3211 * for architectures that support multiple implementations,
3212 * like intel and amd on x86.
3213 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3214 * conflicts in case kvm is already setup for another implementation.
3215 */
3216 r = kvm_irqfd_init();
3217 if (r)
3218 goto out_irqfd;
3219
3220 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3221 r = -ENOMEM;
3222 goto out_free_0;
3223 }
3224
3225 r = kvm_arch_hardware_setup();
3226 if (r < 0)
3227 goto out_free_0a;
3228
3229 for_each_online_cpu(cpu) {
3230 smp_call_function_single(cpu,
3231 kvm_arch_check_processor_compat,
3232 &r, 1);
3233 if (r < 0)
3234 goto out_free_1;
3235 }
3236
3237 r = register_cpu_notifier(&kvm_cpu_notifier);
3238 if (r)
3239 goto out_free_2;
3240 register_reboot_notifier(&kvm_reboot_notifier);
3241
3242 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3243 if (!vcpu_align)
3244 vcpu_align = __alignof__(struct kvm_vcpu);
3245 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3246 0, NULL);
3247 if (!kvm_vcpu_cache) {
3248 r = -ENOMEM;
3249 goto out_free_3;
3250 }
3251
3252 r = kvm_async_pf_init();
3253 if (r)
3254 goto out_free;
3255
3256 kvm_chardev_ops.owner = module;
3257 kvm_vm_fops.owner = module;
3258 kvm_vcpu_fops.owner = module;
3259
3260 r = misc_register(&kvm_dev);
3261 if (r) {
3262 printk(KERN_ERR "kvm: misc device register failed\n");
3263 goto out_unreg;
3264 }
3265
3266 register_syscore_ops(&kvm_syscore_ops);
3267
3268 kvm_preempt_ops.sched_in = kvm_sched_in;
3269 kvm_preempt_ops.sched_out = kvm_sched_out;
3270
3271 r = kvm_init_debug();
3272 if (r) {
3273 printk(KERN_ERR "kvm: create debugfs files failed\n");
3274 goto out_undebugfs;
3275 }
3276
3277 r = kvm_vfio_ops_init();
3278 WARN_ON(r);
3279
3280 return 0;
3281
3282 out_undebugfs:
3283 unregister_syscore_ops(&kvm_syscore_ops);
3284 misc_deregister(&kvm_dev);
3285 out_unreg:
3286 kvm_async_pf_deinit();
3287 out_free:
3288 kmem_cache_destroy(kvm_vcpu_cache);
3289 out_free_3:
3290 unregister_reboot_notifier(&kvm_reboot_notifier);
3291 unregister_cpu_notifier(&kvm_cpu_notifier);
3292 out_free_2:
3293 out_free_1:
3294 kvm_arch_hardware_unsetup();
3295 out_free_0a:
3296 free_cpumask_var(cpus_hardware_enabled);
3297 out_free_0:
3298 kvm_irqfd_exit();
3299 out_irqfd:
3300 kvm_arch_exit();
3301 out_fail:
3302 return r;
3303 }
3304 EXPORT_SYMBOL_GPL(kvm_init);
3305
3306 void kvm_exit(void)
3307 {
3308 kvm_exit_debug();
3309 misc_deregister(&kvm_dev);
3310 kmem_cache_destroy(kvm_vcpu_cache);
3311 kvm_async_pf_deinit();
3312 unregister_syscore_ops(&kvm_syscore_ops);
3313 unregister_reboot_notifier(&kvm_reboot_notifier);
3314 unregister_cpu_notifier(&kvm_cpu_notifier);
3315 on_each_cpu(hardware_disable_nolock, NULL, 1);
3316 kvm_arch_hardware_unsetup();
3317 kvm_arch_exit();
3318 kvm_irqfd_exit();
3319 free_cpumask_var(cpus_hardware_enabled);
3320 kvm_vfio_ops_exit();
3321 }
3322 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.098925 seconds and 5 git commands to generate.