Merge tag 'mmc-fixes-for-3.6-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
105
106 struct page *fault_page;
107 pfn_t fault_pfn;
108
109 inline int kvm_is_mmio_pfn(pfn_t pfn)
110 {
111 if (pfn_valid(pfn)) {
112 int reserved;
113 struct page *tail = pfn_to_page(pfn);
114 struct page *head = compound_trans_head(tail);
115 reserved = PageReserved(head);
116 if (head != tail) {
117 /*
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
125 * what we just read.
126 */
127 smp_rmb();
128 if (PageTail(tail))
129 return reserved;
130 }
131 return PageReserved(tail);
132 }
133
134 return true;
135 }
136
137 /*
138 * Switches to specified vcpu, until a matching vcpu_put()
139 */
140 void vcpu_load(struct kvm_vcpu *vcpu)
141 {
142 int cpu;
143
144 mutex_lock(&vcpu->mutex);
145 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146 /* The thread running this VCPU changed. */
147 struct pid *oldpid = vcpu->pid;
148 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149 rcu_assign_pointer(vcpu->pid, newpid);
150 synchronize_rcu();
151 put_pid(oldpid);
152 }
153 cpu = get_cpu();
154 preempt_notifier_register(&vcpu->preempt_notifier);
155 kvm_arch_vcpu_load(vcpu, cpu);
156 put_cpu();
157 }
158
159 void vcpu_put(struct kvm_vcpu *vcpu)
160 {
161 preempt_disable();
162 kvm_arch_vcpu_put(vcpu);
163 preempt_notifier_unregister(&vcpu->preempt_notifier);
164 preempt_enable();
165 mutex_unlock(&vcpu->mutex);
166 }
167
168 static void ack_flush(void *_completed)
169 {
170 }
171
172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
173 {
174 int i, cpu, me;
175 cpumask_var_t cpus;
176 bool called = true;
177 struct kvm_vcpu *vcpu;
178
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
180
181 me = get_cpu();
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
184 cpu = vcpu->cpu;
185
186 /* Set ->requests bit before we read ->mode */
187 smp_mb();
188
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
192 }
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
197 else
198 called = false;
199 put_cpu();
200 free_cpumask_var(cpus);
201 return called;
202 }
203
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
205 {
206 long dirty_count = kvm->tlbs_dirty;
207
208 smp_mb();
209 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210 ++kvm->stat.remote_tlb_flush;
211 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
212 }
213
214 void kvm_reload_remote_mmus(struct kvm *kvm)
215 {
216 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 struct page *page;
222 int r;
223
224 mutex_init(&vcpu->mutex);
225 vcpu->cpu = -1;
226 vcpu->kvm = kvm;
227 vcpu->vcpu_id = id;
228 vcpu->pid = NULL;
229 init_waitqueue_head(&vcpu->wq);
230 kvm_async_pf_vcpu_init(vcpu);
231
232 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
233 if (!page) {
234 r = -ENOMEM;
235 goto fail;
236 }
237 vcpu->run = page_address(page);
238
239 r = kvm_arch_vcpu_init(vcpu);
240 if (r < 0)
241 goto fail_free_run;
242 return 0;
243
244 fail_free_run:
245 free_page((unsigned long)vcpu->run);
246 fail:
247 return r;
248 }
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
250
251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
252 {
253 put_pid(vcpu->pid);
254 kvm_arch_vcpu_uninit(vcpu);
255 free_page((unsigned long)vcpu->run);
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
258
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
261 {
262 return container_of(mn, struct kvm, mmu_notifier);
263 }
264
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 struct mm_struct *mm,
267 unsigned long address)
268 {
269 struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 int need_tlb_flush, idx;
271
272 /*
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
280 * before returning.
281 *
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
284 *
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
289 */
290 idx = srcu_read_lock(&kvm->srcu);
291 spin_lock(&kvm->mmu_lock);
292
293 kvm->mmu_notifier_seq++;
294 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
295 /* we've to flush the tlb before the pages can be freed */
296 if (need_tlb_flush)
297 kvm_flush_remote_tlbs(kvm);
298
299 spin_unlock(&kvm->mmu_lock);
300 srcu_read_unlock(&kvm->srcu, idx);
301 }
302
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
306 pte_t pte)
307 {
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 int idx;
310
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
317 }
318
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
321 unsigned long start,
322 unsigned long end)
323 {
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
326
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
329 /*
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
333 */
334 kvm->mmu_notifier_count++;
335 for (; start < end; start += PAGE_SIZE)
336 need_tlb_flush |= kvm_unmap_hva(kvm, start);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 /* we've to flush the tlb before the pages can be freed */
339 if (need_tlb_flush)
340 kvm_flush_remote_tlbs(kvm);
341
342 spin_unlock(&kvm->mmu_lock);
343 srcu_read_unlock(&kvm->srcu, idx);
344 }
345
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
350 {
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352
353 spin_lock(&kvm->mmu_lock);
354 /*
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
357 * been freed.
358 */
359 kvm->mmu_notifier_seq++;
360 smp_wmb();
361 /*
362 * The above sequence increase must be visible before the
363 * below count decrease, which is ensured by the smp_wmb above
364 * in conjunction with the smp_rmb in mmu_notifier_retry().
365 */
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
368
369 BUG_ON(kvm->mmu_notifier_count < 0);
370 }
371
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long address)
375 {
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 int young, idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381
382 young = kvm_age_hva(kvm, address);
383 if (young)
384 kvm_flush_remote_tlbs(kvm);
385
386 spin_unlock(&kvm->mmu_lock);
387 srcu_read_unlock(&kvm->srcu, idx);
388
389 return young;
390 }
391
392 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
393 struct mm_struct *mm,
394 unsigned long address)
395 {
396 struct kvm *kvm = mmu_notifier_to_kvm(mn);
397 int young, idx;
398
399 idx = srcu_read_lock(&kvm->srcu);
400 spin_lock(&kvm->mmu_lock);
401 young = kvm_test_age_hva(kvm, address);
402 spin_unlock(&kvm->mmu_lock);
403 srcu_read_unlock(&kvm->srcu, idx);
404
405 return young;
406 }
407
408 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
409 struct mm_struct *mm)
410 {
411 struct kvm *kvm = mmu_notifier_to_kvm(mn);
412 int idx;
413
414 idx = srcu_read_lock(&kvm->srcu);
415 kvm_arch_flush_shadow(kvm);
416 srcu_read_unlock(&kvm->srcu, idx);
417 }
418
419 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
420 .invalidate_page = kvm_mmu_notifier_invalidate_page,
421 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
422 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
423 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
424 .test_young = kvm_mmu_notifier_test_young,
425 .change_pte = kvm_mmu_notifier_change_pte,
426 .release = kvm_mmu_notifier_release,
427 };
428
429 static int kvm_init_mmu_notifier(struct kvm *kvm)
430 {
431 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
432 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
433 }
434
435 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
436
437 static int kvm_init_mmu_notifier(struct kvm *kvm)
438 {
439 return 0;
440 }
441
442 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
443
444 static void kvm_init_memslots_id(struct kvm *kvm)
445 {
446 int i;
447 struct kvm_memslots *slots = kvm->memslots;
448
449 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
450 slots->id_to_index[i] = slots->memslots[i].id = i;
451 }
452
453 static struct kvm *kvm_create_vm(unsigned long type)
454 {
455 int r, i;
456 struct kvm *kvm = kvm_arch_alloc_vm();
457
458 if (!kvm)
459 return ERR_PTR(-ENOMEM);
460
461 r = kvm_arch_init_vm(kvm, type);
462 if (r)
463 goto out_err_nodisable;
464
465 r = hardware_enable_all();
466 if (r)
467 goto out_err_nodisable;
468
469 #ifdef CONFIG_HAVE_KVM_IRQCHIP
470 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
471 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
472 #endif
473
474 r = -ENOMEM;
475 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
476 if (!kvm->memslots)
477 goto out_err_nosrcu;
478 kvm_init_memslots_id(kvm);
479 if (init_srcu_struct(&kvm->srcu))
480 goto out_err_nosrcu;
481 for (i = 0; i < KVM_NR_BUSES; i++) {
482 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
483 GFP_KERNEL);
484 if (!kvm->buses[i])
485 goto out_err;
486 }
487
488 spin_lock_init(&kvm->mmu_lock);
489 kvm->mm = current->mm;
490 atomic_inc(&kvm->mm->mm_count);
491 kvm_eventfd_init(kvm);
492 mutex_init(&kvm->lock);
493 mutex_init(&kvm->irq_lock);
494 mutex_init(&kvm->slots_lock);
495 atomic_set(&kvm->users_count, 1);
496
497 r = kvm_init_mmu_notifier(kvm);
498 if (r)
499 goto out_err;
500
501 raw_spin_lock(&kvm_lock);
502 list_add(&kvm->vm_list, &vm_list);
503 raw_spin_unlock(&kvm_lock);
504
505 return kvm;
506
507 out_err:
508 cleanup_srcu_struct(&kvm->srcu);
509 out_err_nosrcu:
510 hardware_disable_all();
511 out_err_nodisable:
512 for (i = 0; i < KVM_NR_BUSES; i++)
513 kfree(kvm->buses[i]);
514 kfree(kvm->memslots);
515 kvm_arch_free_vm(kvm);
516 return ERR_PTR(r);
517 }
518
519 /*
520 * Avoid using vmalloc for a small buffer.
521 * Should not be used when the size is statically known.
522 */
523 void *kvm_kvzalloc(unsigned long size)
524 {
525 if (size > PAGE_SIZE)
526 return vzalloc(size);
527 else
528 return kzalloc(size, GFP_KERNEL);
529 }
530
531 void kvm_kvfree(const void *addr)
532 {
533 if (is_vmalloc_addr(addr))
534 vfree(addr);
535 else
536 kfree(addr);
537 }
538
539 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
540 {
541 if (!memslot->dirty_bitmap)
542 return;
543
544 kvm_kvfree(memslot->dirty_bitmap);
545 memslot->dirty_bitmap = NULL;
546 }
547
548 /*
549 * Free any memory in @free but not in @dont.
550 */
551 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
552 struct kvm_memory_slot *dont)
553 {
554 if (!dont || free->rmap != dont->rmap)
555 vfree(free->rmap);
556
557 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
558 kvm_destroy_dirty_bitmap(free);
559
560 kvm_arch_free_memslot(free, dont);
561
562 free->npages = 0;
563 free->rmap = NULL;
564 }
565
566 void kvm_free_physmem(struct kvm *kvm)
567 {
568 struct kvm_memslots *slots = kvm->memslots;
569 struct kvm_memory_slot *memslot;
570
571 kvm_for_each_memslot(memslot, slots)
572 kvm_free_physmem_slot(memslot, NULL);
573
574 kfree(kvm->memslots);
575 }
576
577 static void kvm_destroy_vm(struct kvm *kvm)
578 {
579 int i;
580 struct mm_struct *mm = kvm->mm;
581
582 kvm_arch_sync_events(kvm);
583 raw_spin_lock(&kvm_lock);
584 list_del(&kvm->vm_list);
585 raw_spin_unlock(&kvm_lock);
586 kvm_free_irq_routing(kvm);
587 for (i = 0; i < KVM_NR_BUSES; i++)
588 kvm_io_bus_destroy(kvm->buses[i]);
589 kvm_coalesced_mmio_free(kvm);
590 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
591 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
592 #else
593 kvm_arch_flush_shadow(kvm);
594 #endif
595 kvm_arch_destroy_vm(kvm);
596 kvm_free_physmem(kvm);
597 cleanup_srcu_struct(&kvm->srcu);
598 kvm_arch_free_vm(kvm);
599 hardware_disable_all();
600 mmdrop(mm);
601 }
602
603 void kvm_get_kvm(struct kvm *kvm)
604 {
605 atomic_inc(&kvm->users_count);
606 }
607 EXPORT_SYMBOL_GPL(kvm_get_kvm);
608
609 void kvm_put_kvm(struct kvm *kvm)
610 {
611 if (atomic_dec_and_test(&kvm->users_count))
612 kvm_destroy_vm(kvm);
613 }
614 EXPORT_SYMBOL_GPL(kvm_put_kvm);
615
616
617 static int kvm_vm_release(struct inode *inode, struct file *filp)
618 {
619 struct kvm *kvm = filp->private_data;
620
621 kvm_irqfd_release(kvm);
622
623 kvm_put_kvm(kvm);
624 return 0;
625 }
626
627 /*
628 * Allocation size is twice as large as the actual dirty bitmap size.
629 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
630 */
631 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
632 {
633 #ifndef CONFIG_S390
634 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
635
636 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
637 if (!memslot->dirty_bitmap)
638 return -ENOMEM;
639
640 #endif /* !CONFIG_S390 */
641 return 0;
642 }
643
644 static int cmp_memslot(const void *slot1, const void *slot2)
645 {
646 struct kvm_memory_slot *s1, *s2;
647
648 s1 = (struct kvm_memory_slot *)slot1;
649 s2 = (struct kvm_memory_slot *)slot2;
650
651 if (s1->npages < s2->npages)
652 return 1;
653 if (s1->npages > s2->npages)
654 return -1;
655
656 return 0;
657 }
658
659 /*
660 * Sort the memslots base on its size, so the larger slots
661 * will get better fit.
662 */
663 static void sort_memslots(struct kvm_memslots *slots)
664 {
665 int i;
666
667 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
668 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
669
670 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
671 slots->id_to_index[slots->memslots[i].id] = i;
672 }
673
674 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
675 {
676 if (new) {
677 int id = new->id;
678 struct kvm_memory_slot *old = id_to_memslot(slots, id);
679 unsigned long npages = old->npages;
680
681 *old = *new;
682 if (new->npages != npages)
683 sort_memslots(slots);
684 }
685
686 slots->generation++;
687 }
688
689 /*
690 * Allocate some memory and give it an address in the guest physical address
691 * space.
692 *
693 * Discontiguous memory is allowed, mostly for framebuffers.
694 *
695 * Must be called holding mmap_sem for write.
696 */
697 int __kvm_set_memory_region(struct kvm *kvm,
698 struct kvm_userspace_memory_region *mem,
699 int user_alloc)
700 {
701 int r;
702 gfn_t base_gfn;
703 unsigned long npages;
704 unsigned long i;
705 struct kvm_memory_slot *memslot;
706 struct kvm_memory_slot old, new;
707 struct kvm_memslots *slots, *old_memslots;
708
709 r = -EINVAL;
710 /* General sanity checks */
711 if (mem->memory_size & (PAGE_SIZE - 1))
712 goto out;
713 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
714 goto out;
715 /* We can read the guest memory with __xxx_user() later on. */
716 if (user_alloc &&
717 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
718 !access_ok(VERIFY_WRITE,
719 (void __user *)(unsigned long)mem->userspace_addr,
720 mem->memory_size)))
721 goto out;
722 if (mem->slot >= KVM_MEM_SLOTS_NUM)
723 goto out;
724 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
725 goto out;
726
727 memslot = id_to_memslot(kvm->memslots, mem->slot);
728 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
729 npages = mem->memory_size >> PAGE_SHIFT;
730
731 r = -EINVAL;
732 if (npages > KVM_MEM_MAX_NR_PAGES)
733 goto out;
734
735 if (!npages)
736 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
737
738 new = old = *memslot;
739
740 new.id = mem->slot;
741 new.base_gfn = base_gfn;
742 new.npages = npages;
743 new.flags = mem->flags;
744
745 /* Disallow changing a memory slot's size. */
746 r = -EINVAL;
747 if (npages && old.npages && npages != old.npages)
748 goto out_free;
749
750 /* Check for overlaps */
751 r = -EEXIST;
752 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
753 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
754
755 if (s == memslot || !s->npages)
756 continue;
757 if (!((base_gfn + npages <= s->base_gfn) ||
758 (base_gfn >= s->base_gfn + s->npages)))
759 goto out_free;
760 }
761
762 /* Free page dirty bitmap if unneeded */
763 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
764 new.dirty_bitmap = NULL;
765
766 r = -ENOMEM;
767
768 /* Allocate if a slot is being created */
769 if (npages && !old.npages) {
770 new.user_alloc = user_alloc;
771 new.userspace_addr = mem->userspace_addr;
772 #ifndef CONFIG_S390
773 new.rmap = vzalloc(npages * sizeof(*new.rmap));
774 if (!new.rmap)
775 goto out_free;
776 #endif /* not defined CONFIG_S390 */
777 if (kvm_arch_create_memslot(&new, npages))
778 goto out_free;
779 }
780
781 /* Allocate page dirty bitmap if needed */
782 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
783 if (kvm_create_dirty_bitmap(&new) < 0)
784 goto out_free;
785 /* destroy any largepage mappings for dirty tracking */
786 }
787
788 if (!npages) {
789 struct kvm_memory_slot *slot;
790
791 r = -ENOMEM;
792 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
793 GFP_KERNEL);
794 if (!slots)
795 goto out_free;
796 slot = id_to_memslot(slots, mem->slot);
797 slot->flags |= KVM_MEMSLOT_INVALID;
798
799 update_memslots(slots, NULL);
800
801 old_memslots = kvm->memslots;
802 rcu_assign_pointer(kvm->memslots, slots);
803 synchronize_srcu_expedited(&kvm->srcu);
804 /* From this point no new shadow pages pointing to a deleted
805 * memslot will be created.
806 *
807 * validation of sp->gfn happens in:
808 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
809 * - kvm_is_visible_gfn (mmu_check_roots)
810 */
811 kvm_arch_flush_shadow(kvm);
812 kfree(old_memslots);
813 }
814
815 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
816 if (r)
817 goto out_free;
818
819 /* map/unmap the pages in iommu page table */
820 if (npages) {
821 r = kvm_iommu_map_pages(kvm, &new);
822 if (r)
823 goto out_free;
824 } else
825 kvm_iommu_unmap_pages(kvm, &old);
826
827 r = -ENOMEM;
828 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
829 GFP_KERNEL);
830 if (!slots)
831 goto out_free;
832
833 /* actual memory is freed via old in kvm_free_physmem_slot below */
834 if (!npages) {
835 new.rmap = NULL;
836 new.dirty_bitmap = NULL;
837 memset(&new.arch, 0, sizeof(new.arch));
838 }
839
840 update_memslots(slots, &new);
841 old_memslots = kvm->memslots;
842 rcu_assign_pointer(kvm->memslots, slots);
843 synchronize_srcu_expedited(&kvm->srcu);
844
845 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
846
847 /*
848 * If the new memory slot is created, we need to clear all
849 * mmio sptes.
850 */
851 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
852 kvm_arch_flush_shadow(kvm);
853
854 kvm_free_physmem_slot(&old, &new);
855 kfree(old_memslots);
856
857 return 0;
858
859 out_free:
860 kvm_free_physmem_slot(&new, &old);
861 out:
862 return r;
863
864 }
865 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
866
867 int kvm_set_memory_region(struct kvm *kvm,
868 struct kvm_userspace_memory_region *mem,
869 int user_alloc)
870 {
871 int r;
872
873 mutex_lock(&kvm->slots_lock);
874 r = __kvm_set_memory_region(kvm, mem, user_alloc);
875 mutex_unlock(&kvm->slots_lock);
876 return r;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
879
880 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
881 struct
882 kvm_userspace_memory_region *mem,
883 int user_alloc)
884 {
885 if (mem->slot >= KVM_MEMORY_SLOTS)
886 return -EINVAL;
887 return kvm_set_memory_region(kvm, mem, user_alloc);
888 }
889
890 int kvm_get_dirty_log(struct kvm *kvm,
891 struct kvm_dirty_log *log, int *is_dirty)
892 {
893 struct kvm_memory_slot *memslot;
894 int r, i;
895 unsigned long n;
896 unsigned long any = 0;
897
898 r = -EINVAL;
899 if (log->slot >= KVM_MEMORY_SLOTS)
900 goto out;
901
902 memslot = id_to_memslot(kvm->memslots, log->slot);
903 r = -ENOENT;
904 if (!memslot->dirty_bitmap)
905 goto out;
906
907 n = kvm_dirty_bitmap_bytes(memslot);
908
909 for (i = 0; !any && i < n/sizeof(long); ++i)
910 any = memslot->dirty_bitmap[i];
911
912 r = -EFAULT;
913 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
914 goto out;
915
916 if (any)
917 *is_dirty = 1;
918
919 r = 0;
920 out:
921 return r;
922 }
923
924 bool kvm_largepages_enabled(void)
925 {
926 return largepages_enabled;
927 }
928
929 void kvm_disable_largepages(void)
930 {
931 largepages_enabled = false;
932 }
933 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
934
935 int is_error_page(struct page *page)
936 {
937 return page == bad_page || page == hwpoison_page || page == fault_page;
938 }
939 EXPORT_SYMBOL_GPL(is_error_page);
940
941 int is_error_pfn(pfn_t pfn)
942 {
943 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
944 }
945 EXPORT_SYMBOL_GPL(is_error_pfn);
946
947 int is_hwpoison_pfn(pfn_t pfn)
948 {
949 return pfn == hwpoison_pfn;
950 }
951 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
952
953 int is_fault_pfn(pfn_t pfn)
954 {
955 return pfn == fault_pfn;
956 }
957 EXPORT_SYMBOL_GPL(is_fault_pfn);
958
959 int is_noslot_pfn(pfn_t pfn)
960 {
961 return pfn == bad_pfn;
962 }
963 EXPORT_SYMBOL_GPL(is_noslot_pfn);
964
965 int is_invalid_pfn(pfn_t pfn)
966 {
967 return pfn == hwpoison_pfn || pfn == fault_pfn;
968 }
969 EXPORT_SYMBOL_GPL(is_invalid_pfn);
970
971 static inline unsigned long bad_hva(void)
972 {
973 return PAGE_OFFSET;
974 }
975
976 int kvm_is_error_hva(unsigned long addr)
977 {
978 return addr == bad_hva();
979 }
980 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
981
982 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
983 {
984 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
985 }
986 EXPORT_SYMBOL_GPL(gfn_to_memslot);
987
988 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
989 {
990 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
991
992 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
993 memslot->flags & KVM_MEMSLOT_INVALID)
994 return 0;
995
996 return 1;
997 }
998 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
999
1000 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1001 {
1002 struct vm_area_struct *vma;
1003 unsigned long addr, size;
1004
1005 size = PAGE_SIZE;
1006
1007 addr = gfn_to_hva(kvm, gfn);
1008 if (kvm_is_error_hva(addr))
1009 return PAGE_SIZE;
1010
1011 down_read(&current->mm->mmap_sem);
1012 vma = find_vma(current->mm, addr);
1013 if (!vma)
1014 goto out;
1015
1016 size = vma_kernel_pagesize(vma);
1017
1018 out:
1019 up_read(&current->mm->mmap_sem);
1020
1021 return size;
1022 }
1023
1024 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1025 gfn_t *nr_pages)
1026 {
1027 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1028 return bad_hva();
1029
1030 if (nr_pages)
1031 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1032
1033 return gfn_to_hva_memslot(slot, gfn);
1034 }
1035
1036 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1037 {
1038 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1039 }
1040 EXPORT_SYMBOL_GPL(gfn_to_hva);
1041
1042 static pfn_t get_fault_pfn(void)
1043 {
1044 get_page(fault_page);
1045 return fault_pfn;
1046 }
1047
1048 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1049 unsigned long start, int write, struct page **page)
1050 {
1051 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1052
1053 if (write)
1054 flags |= FOLL_WRITE;
1055
1056 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1057 }
1058
1059 static inline int check_user_page_hwpoison(unsigned long addr)
1060 {
1061 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1062
1063 rc = __get_user_pages(current, current->mm, addr, 1,
1064 flags, NULL, NULL, NULL);
1065 return rc == -EHWPOISON;
1066 }
1067
1068 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1069 bool *async, bool write_fault, bool *writable)
1070 {
1071 struct page *page[1];
1072 int npages = 0;
1073 pfn_t pfn;
1074
1075 /* we can do it either atomically or asynchronously, not both */
1076 BUG_ON(atomic && async);
1077
1078 BUG_ON(!write_fault && !writable);
1079
1080 if (writable)
1081 *writable = true;
1082
1083 if (atomic || async)
1084 npages = __get_user_pages_fast(addr, 1, 1, page);
1085
1086 if (unlikely(npages != 1) && !atomic) {
1087 might_sleep();
1088
1089 if (writable)
1090 *writable = write_fault;
1091
1092 if (async) {
1093 down_read(&current->mm->mmap_sem);
1094 npages = get_user_page_nowait(current, current->mm,
1095 addr, write_fault, page);
1096 up_read(&current->mm->mmap_sem);
1097 } else
1098 npages = get_user_pages_fast(addr, 1, write_fault,
1099 page);
1100
1101 /* map read fault as writable if possible */
1102 if (unlikely(!write_fault) && npages == 1) {
1103 struct page *wpage[1];
1104
1105 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1106 if (npages == 1) {
1107 *writable = true;
1108 put_page(page[0]);
1109 page[0] = wpage[0];
1110 }
1111 npages = 1;
1112 }
1113 }
1114
1115 if (unlikely(npages != 1)) {
1116 struct vm_area_struct *vma;
1117
1118 if (atomic)
1119 return get_fault_pfn();
1120
1121 down_read(&current->mm->mmap_sem);
1122 if (npages == -EHWPOISON ||
1123 (!async && check_user_page_hwpoison(addr))) {
1124 up_read(&current->mm->mmap_sem);
1125 get_page(hwpoison_page);
1126 return page_to_pfn(hwpoison_page);
1127 }
1128
1129 vma = find_vma_intersection(current->mm, addr, addr+1);
1130
1131 if (vma == NULL)
1132 pfn = get_fault_pfn();
1133 else if ((vma->vm_flags & VM_PFNMAP)) {
1134 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1135 vma->vm_pgoff;
1136 BUG_ON(!kvm_is_mmio_pfn(pfn));
1137 } else {
1138 if (async && (vma->vm_flags & VM_WRITE))
1139 *async = true;
1140 pfn = get_fault_pfn();
1141 }
1142 up_read(&current->mm->mmap_sem);
1143 } else
1144 pfn = page_to_pfn(page[0]);
1145
1146 return pfn;
1147 }
1148
1149 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1150 {
1151 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1152 }
1153 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1154
1155 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1156 bool write_fault, bool *writable)
1157 {
1158 unsigned long addr;
1159
1160 if (async)
1161 *async = false;
1162
1163 addr = gfn_to_hva(kvm, gfn);
1164 if (kvm_is_error_hva(addr)) {
1165 get_page(bad_page);
1166 return page_to_pfn(bad_page);
1167 }
1168
1169 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1170 }
1171
1172 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1173 {
1174 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1175 }
1176 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1177
1178 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1179 bool write_fault, bool *writable)
1180 {
1181 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1182 }
1183 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1184
1185 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1186 {
1187 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1188 }
1189 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1190
1191 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1192 bool *writable)
1193 {
1194 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1195 }
1196 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1197
1198 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1199 struct kvm_memory_slot *slot, gfn_t gfn)
1200 {
1201 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1202 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1203 }
1204
1205 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1206 int nr_pages)
1207 {
1208 unsigned long addr;
1209 gfn_t entry;
1210
1211 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1212 if (kvm_is_error_hva(addr))
1213 return -1;
1214
1215 if (entry < nr_pages)
1216 return 0;
1217
1218 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1219 }
1220 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1221
1222 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1223 {
1224 pfn_t pfn;
1225
1226 pfn = gfn_to_pfn(kvm, gfn);
1227 if (!kvm_is_mmio_pfn(pfn))
1228 return pfn_to_page(pfn);
1229
1230 WARN_ON(kvm_is_mmio_pfn(pfn));
1231
1232 get_page(bad_page);
1233 return bad_page;
1234 }
1235
1236 EXPORT_SYMBOL_GPL(gfn_to_page);
1237
1238 void kvm_release_page_clean(struct page *page)
1239 {
1240 kvm_release_pfn_clean(page_to_pfn(page));
1241 }
1242 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1243
1244 void kvm_release_pfn_clean(pfn_t pfn)
1245 {
1246 if (!kvm_is_mmio_pfn(pfn))
1247 put_page(pfn_to_page(pfn));
1248 }
1249 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1250
1251 void kvm_release_page_dirty(struct page *page)
1252 {
1253 kvm_release_pfn_dirty(page_to_pfn(page));
1254 }
1255 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1256
1257 void kvm_release_pfn_dirty(pfn_t pfn)
1258 {
1259 kvm_set_pfn_dirty(pfn);
1260 kvm_release_pfn_clean(pfn);
1261 }
1262 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1263
1264 void kvm_set_page_dirty(struct page *page)
1265 {
1266 kvm_set_pfn_dirty(page_to_pfn(page));
1267 }
1268 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1269
1270 void kvm_set_pfn_dirty(pfn_t pfn)
1271 {
1272 if (!kvm_is_mmio_pfn(pfn)) {
1273 struct page *page = pfn_to_page(pfn);
1274 if (!PageReserved(page))
1275 SetPageDirty(page);
1276 }
1277 }
1278 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1279
1280 void kvm_set_pfn_accessed(pfn_t pfn)
1281 {
1282 if (!kvm_is_mmio_pfn(pfn))
1283 mark_page_accessed(pfn_to_page(pfn));
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1286
1287 void kvm_get_pfn(pfn_t pfn)
1288 {
1289 if (!kvm_is_mmio_pfn(pfn))
1290 get_page(pfn_to_page(pfn));
1291 }
1292 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1293
1294 static int next_segment(unsigned long len, int offset)
1295 {
1296 if (len > PAGE_SIZE - offset)
1297 return PAGE_SIZE - offset;
1298 else
1299 return len;
1300 }
1301
1302 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1303 int len)
1304 {
1305 int r;
1306 unsigned long addr;
1307
1308 addr = gfn_to_hva(kvm, gfn);
1309 if (kvm_is_error_hva(addr))
1310 return -EFAULT;
1311 r = __copy_from_user(data, (void __user *)addr + offset, len);
1312 if (r)
1313 return -EFAULT;
1314 return 0;
1315 }
1316 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1317
1318 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1319 {
1320 gfn_t gfn = gpa >> PAGE_SHIFT;
1321 int seg;
1322 int offset = offset_in_page(gpa);
1323 int ret;
1324
1325 while ((seg = next_segment(len, offset)) != 0) {
1326 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1327 if (ret < 0)
1328 return ret;
1329 offset = 0;
1330 len -= seg;
1331 data += seg;
1332 ++gfn;
1333 }
1334 return 0;
1335 }
1336 EXPORT_SYMBOL_GPL(kvm_read_guest);
1337
1338 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1339 unsigned long len)
1340 {
1341 int r;
1342 unsigned long addr;
1343 gfn_t gfn = gpa >> PAGE_SHIFT;
1344 int offset = offset_in_page(gpa);
1345
1346 addr = gfn_to_hva(kvm, gfn);
1347 if (kvm_is_error_hva(addr))
1348 return -EFAULT;
1349 pagefault_disable();
1350 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1351 pagefault_enable();
1352 if (r)
1353 return -EFAULT;
1354 return 0;
1355 }
1356 EXPORT_SYMBOL(kvm_read_guest_atomic);
1357
1358 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1359 int offset, int len)
1360 {
1361 int r;
1362 unsigned long addr;
1363
1364 addr = gfn_to_hva(kvm, gfn);
1365 if (kvm_is_error_hva(addr))
1366 return -EFAULT;
1367 r = __copy_to_user((void __user *)addr + offset, data, len);
1368 if (r)
1369 return -EFAULT;
1370 mark_page_dirty(kvm, gfn);
1371 return 0;
1372 }
1373 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1374
1375 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1376 unsigned long len)
1377 {
1378 gfn_t gfn = gpa >> PAGE_SHIFT;
1379 int seg;
1380 int offset = offset_in_page(gpa);
1381 int ret;
1382
1383 while ((seg = next_segment(len, offset)) != 0) {
1384 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1385 if (ret < 0)
1386 return ret;
1387 offset = 0;
1388 len -= seg;
1389 data += seg;
1390 ++gfn;
1391 }
1392 return 0;
1393 }
1394
1395 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1396 gpa_t gpa)
1397 {
1398 struct kvm_memslots *slots = kvm_memslots(kvm);
1399 int offset = offset_in_page(gpa);
1400 gfn_t gfn = gpa >> PAGE_SHIFT;
1401
1402 ghc->gpa = gpa;
1403 ghc->generation = slots->generation;
1404 ghc->memslot = gfn_to_memslot(kvm, gfn);
1405 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1406 if (!kvm_is_error_hva(ghc->hva))
1407 ghc->hva += offset;
1408 else
1409 return -EFAULT;
1410
1411 return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1414
1415 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1416 void *data, unsigned long len)
1417 {
1418 struct kvm_memslots *slots = kvm_memslots(kvm);
1419 int r;
1420
1421 if (slots->generation != ghc->generation)
1422 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1423
1424 if (kvm_is_error_hva(ghc->hva))
1425 return -EFAULT;
1426
1427 r = __copy_to_user((void __user *)ghc->hva, data, len);
1428 if (r)
1429 return -EFAULT;
1430 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1431
1432 return 0;
1433 }
1434 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1435
1436 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1437 void *data, unsigned long len)
1438 {
1439 struct kvm_memslots *slots = kvm_memslots(kvm);
1440 int r;
1441
1442 if (slots->generation != ghc->generation)
1443 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1444
1445 if (kvm_is_error_hva(ghc->hva))
1446 return -EFAULT;
1447
1448 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1449 if (r)
1450 return -EFAULT;
1451
1452 return 0;
1453 }
1454 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1455
1456 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1457 {
1458 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1459 offset, len);
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1462
1463 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1464 {
1465 gfn_t gfn = gpa >> PAGE_SHIFT;
1466 int seg;
1467 int offset = offset_in_page(gpa);
1468 int ret;
1469
1470 while ((seg = next_segment(len, offset)) != 0) {
1471 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1472 if (ret < 0)
1473 return ret;
1474 offset = 0;
1475 len -= seg;
1476 ++gfn;
1477 }
1478 return 0;
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1481
1482 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1483 gfn_t gfn)
1484 {
1485 if (memslot && memslot->dirty_bitmap) {
1486 unsigned long rel_gfn = gfn - memslot->base_gfn;
1487
1488 /* TODO: introduce set_bit_le() and use it */
1489 test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
1490 }
1491 }
1492
1493 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1494 {
1495 struct kvm_memory_slot *memslot;
1496
1497 memslot = gfn_to_memslot(kvm, gfn);
1498 mark_page_dirty_in_slot(kvm, memslot, gfn);
1499 }
1500
1501 /*
1502 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1503 */
1504 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1505 {
1506 DEFINE_WAIT(wait);
1507
1508 for (;;) {
1509 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1510
1511 if (kvm_arch_vcpu_runnable(vcpu)) {
1512 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1513 break;
1514 }
1515 if (kvm_cpu_has_pending_timer(vcpu))
1516 break;
1517 if (signal_pending(current))
1518 break;
1519
1520 schedule();
1521 }
1522
1523 finish_wait(&vcpu->wq, &wait);
1524 }
1525
1526 #ifndef CONFIG_S390
1527 /*
1528 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1529 */
1530 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1531 {
1532 int me;
1533 int cpu = vcpu->cpu;
1534 wait_queue_head_t *wqp;
1535
1536 wqp = kvm_arch_vcpu_wq(vcpu);
1537 if (waitqueue_active(wqp)) {
1538 wake_up_interruptible(wqp);
1539 ++vcpu->stat.halt_wakeup;
1540 }
1541
1542 me = get_cpu();
1543 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1544 if (kvm_arch_vcpu_should_kick(vcpu))
1545 smp_send_reschedule(cpu);
1546 put_cpu();
1547 }
1548 #endif /* !CONFIG_S390 */
1549
1550 void kvm_resched(struct kvm_vcpu *vcpu)
1551 {
1552 if (!need_resched())
1553 return;
1554 cond_resched();
1555 }
1556 EXPORT_SYMBOL_GPL(kvm_resched);
1557
1558 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1559 {
1560 struct pid *pid;
1561 struct task_struct *task = NULL;
1562
1563 rcu_read_lock();
1564 pid = rcu_dereference(target->pid);
1565 if (pid)
1566 task = get_pid_task(target->pid, PIDTYPE_PID);
1567 rcu_read_unlock();
1568 if (!task)
1569 return false;
1570 if (task->flags & PF_VCPU) {
1571 put_task_struct(task);
1572 return false;
1573 }
1574 if (yield_to(task, 1)) {
1575 put_task_struct(task);
1576 return true;
1577 }
1578 put_task_struct(task);
1579 return false;
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1582
1583 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1584 {
1585 struct kvm *kvm = me->kvm;
1586 struct kvm_vcpu *vcpu;
1587 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1588 int yielded = 0;
1589 int pass;
1590 int i;
1591
1592 /*
1593 * We boost the priority of a VCPU that is runnable but not
1594 * currently running, because it got preempted by something
1595 * else and called schedule in __vcpu_run. Hopefully that
1596 * VCPU is holding the lock that we need and will release it.
1597 * We approximate round-robin by starting at the last boosted VCPU.
1598 */
1599 for (pass = 0; pass < 2 && !yielded; pass++) {
1600 kvm_for_each_vcpu(i, vcpu, kvm) {
1601 if (!pass && i <= last_boosted_vcpu) {
1602 i = last_boosted_vcpu;
1603 continue;
1604 } else if (pass && i > last_boosted_vcpu)
1605 break;
1606 if (vcpu == me)
1607 continue;
1608 if (waitqueue_active(&vcpu->wq))
1609 continue;
1610 if (kvm_vcpu_yield_to(vcpu)) {
1611 kvm->last_boosted_vcpu = i;
1612 yielded = 1;
1613 break;
1614 }
1615 }
1616 }
1617 }
1618 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1619
1620 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1621 {
1622 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1623 struct page *page;
1624
1625 if (vmf->pgoff == 0)
1626 page = virt_to_page(vcpu->run);
1627 #ifdef CONFIG_X86
1628 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1629 page = virt_to_page(vcpu->arch.pio_data);
1630 #endif
1631 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1632 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1633 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1634 #endif
1635 else
1636 return kvm_arch_vcpu_fault(vcpu, vmf);
1637 get_page(page);
1638 vmf->page = page;
1639 return 0;
1640 }
1641
1642 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1643 .fault = kvm_vcpu_fault,
1644 };
1645
1646 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1647 {
1648 vma->vm_ops = &kvm_vcpu_vm_ops;
1649 return 0;
1650 }
1651
1652 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1653 {
1654 struct kvm_vcpu *vcpu = filp->private_data;
1655
1656 kvm_put_kvm(vcpu->kvm);
1657 return 0;
1658 }
1659
1660 static struct file_operations kvm_vcpu_fops = {
1661 .release = kvm_vcpu_release,
1662 .unlocked_ioctl = kvm_vcpu_ioctl,
1663 #ifdef CONFIG_COMPAT
1664 .compat_ioctl = kvm_vcpu_compat_ioctl,
1665 #endif
1666 .mmap = kvm_vcpu_mmap,
1667 .llseek = noop_llseek,
1668 };
1669
1670 /*
1671 * Allocates an inode for the vcpu.
1672 */
1673 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1674 {
1675 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1676 }
1677
1678 /*
1679 * Creates some virtual cpus. Good luck creating more than one.
1680 */
1681 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1682 {
1683 int r;
1684 struct kvm_vcpu *vcpu, *v;
1685
1686 vcpu = kvm_arch_vcpu_create(kvm, id);
1687 if (IS_ERR(vcpu))
1688 return PTR_ERR(vcpu);
1689
1690 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1691
1692 r = kvm_arch_vcpu_setup(vcpu);
1693 if (r)
1694 goto vcpu_destroy;
1695
1696 mutex_lock(&kvm->lock);
1697 if (!kvm_vcpu_compatible(vcpu)) {
1698 r = -EINVAL;
1699 goto unlock_vcpu_destroy;
1700 }
1701 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1702 r = -EINVAL;
1703 goto unlock_vcpu_destroy;
1704 }
1705
1706 kvm_for_each_vcpu(r, v, kvm)
1707 if (v->vcpu_id == id) {
1708 r = -EEXIST;
1709 goto unlock_vcpu_destroy;
1710 }
1711
1712 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1713
1714 /* Now it's all set up, let userspace reach it */
1715 kvm_get_kvm(kvm);
1716 r = create_vcpu_fd(vcpu);
1717 if (r < 0) {
1718 kvm_put_kvm(kvm);
1719 goto unlock_vcpu_destroy;
1720 }
1721
1722 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1723 smp_wmb();
1724 atomic_inc(&kvm->online_vcpus);
1725
1726 mutex_unlock(&kvm->lock);
1727 return r;
1728
1729 unlock_vcpu_destroy:
1730 mutex_unlock(&kvm->lock);
1731 vcpu_destroy:
1732 kvm_arch_vcpu_destroy(vcpu);
1733 return r;
1734 }
1735
1736 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1737 {
1738 if (sigset) {
1739 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1740 vcpu->sigset_active = 1;
1741 vcpu->sigset = *sigset;
1742 } else
1743 vcpu->sigset_active = 0;
1744 return 0;
1745 }
1746
1747 static long kvm_vcpu_ioctl(struct file *filp,
1748 unsigned int ioctl, unsigned long arg)
1749 {
1750 struct kvm_vcpu *vcpu = filp->private_data;
1751 void __user *argp = (void __user *)arg;
1752 int r;
1753 struct kvm_fpu *fpu = NULL;
1754 struct kvm_sregs *kvm_sregs = NULL;
1755
1756 if (vcpu->kvm->mm != current->mm)
1757 return -EIO;
1758
1759 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1760 /*
1761 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1762 * so vcpu_load() would break it.
1763 */
1764 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1765 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1766 #endif
1767
1768
1769 vcpu_load(vcpu);
1770 switch (ioctl) {
1771 case KVM_RUN:
1772 r = -EINVAL;
1773 if (arg)
1774 goto out;
1775 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1776 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1777 break;
1778 case KVM_GET_REGS: {
1779 struct kvm_regs *kvm_regs;
1780
1781 r = -ENOMEM;
1782 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1783 if (!kvm_regs)
1784 goto out;
1785 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1786 if (r)
1787 goto out_free1;
1788 r = -EFAULT;
1789 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1790 goto out_free1;
1791 r = 0;
1792 out_free1:
1793 kfree(kvm_regs);
1794 break;
1795 }
1796 case KVM_SET_REGS: {
1797 struct kvm_regs *kvm_regs;
1798
1799 r = -ENOMEM;
1800 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1801 if (IS_ERR(kvm_regs)) {
1802 r = PTR_ERR(kvm_regs);
1803 goto out;
1804 }
1805 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1806 if (r)
1807 goto out_free2;
1808 r = 0;
1809 out_free2:
1810 kfree(kvm_regs);
1811 break;
1812 }
1813 case KVM_GET_SREGS: {
1814 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1815 r = -ENOMEM;
1816 if (!kvm_sregs)
1817 goto out;
1818 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1819 if (r)
1820 goto out;
1821 r = -EFAULT;
1822 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1823 goto out;
1824 r = 0;
1825 break;
1826 }
1827 case KVM_SET_SREGS: {
1828 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1829 if (IS_ERR(kvm_sregs)) {
1830 r = PTR_ERR(kvm_sregs);
1831 goto out;
1832 }
1833 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1834 if (r)
1835 goto out;
1836 r = 0;
1837 break;
1838 }
1839 case KVM_GET_MP_STATE: {
1840 struct kvm_mp_state mp_state;
1841
1842 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1843 if (r)
1844 goto out;
1845 r = -EFAULT;
1846 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1847 goto out;
1848 r = 0;
1849 break;
1850 }
1851 case KVM_SET_MP_STATE: {
1852 struct kvm_mp_state mp_state;
1853
1854 r = -EFAULT;
1855 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1856 goto out;
1857 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1858 if (r)
1859 goto out;
1860 r = 0;
1861 break;
1862 }
1863 case KVM_TRANSLATE: {
1864 struct kvm_translation tr;
1865
1866 r = -EFAULT;
1867 if (copy_from_user(&tr, argp, sizeof tr))
1868 goto out;
1869 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1870 if (r)
1871 goto out;
1872 r = -EFAULT;
1873 if (copy_to_user(argp, &tr, sizeof tr))
1874 goto out;
1875 r = 0;
1876 break;
1877 }
1878 case KVM_SET_GUEST_DEBUG: {
1879 struct kvm_guest_debug dbg;
1880
1881 r = -EFAULT;
1882 if (copy_from_user(&dbg, argp, sizeof dbg))
1883 goto out;
1884 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1885 if (r)
1886 goto out;
1887 r = 0;
1888 break;
1889 }
1890 case KVM_SET_SIGNAL_MASK: {
1891 struct kvm_signal_mask __user *sigmask_arg = argp;
1892 struct kvm_signal_mask kvm_sigmask;
1893 sigset_t sigset, *p;
1894
1895 p = NULL;
1896 if (argp) {
1897 r = -EFAULT;
1898 if (copy_from_user(&kvm_sigmask, argp,
1899 sizeof kvm_sigmask))
1900 goto out;
1901 r = -EINVAL;
1902 if (kvm_sigmask.len != sizeof sigset)
1903 goto out;
1904 r = -EFAULT;
1905 if (copy_from_user(&sigset, sigmask_arg->sigset,
1906 sizeof sigset))
1907 goto out;
1908 p = &sigset;
1909 }
1910 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1911 break;
1912 }
1913 case KVM_GET_FPU: {
1914 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1915 r = -ENOMEM;
1916 if (!fpu)
1917 goto out;
1918 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1919 if (r)
1920 goto out;
1921 r = -EFAULT;
1922 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1923 goto out;
1924 r = 0;
1925 break;
1926 }
1927 case KVM_SET_FPU: {
1928 fpu = memdup_user(argp, sizeof(*fpu));
1929 if (IS_ERR(fpu)) {
1930 r = PTR_ERR(fpu);
1931 goto out;
1932 }
1933 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1934 if (r)
1935 goto out;
1936 r = 0;
1937 break;
1938 }
1939 default:
1940 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1941 }
1942 out:
1943 vcpu_put(vcpu);
1944 kfree(fpu);
1945 kfree(kvm_sregs);
1946 return r;
1947 }
1948
1949 #ifdef CONFIG_COMPAT
1950 static long kvm_vcpu_compat_ioctl(struct file *filp,
1951 unsigned int ioctl, unsigned long arg)
1952 {
1953 struct kvm_vcpu *vcpu = filp->private_data;
1954 void __user *argp = compat_ptr(arg);
1955 int r;
1956
1957 if (vcpu->kvm->mm != current->mm)
1958 return -EIO;
1959
1960 switch (ioctl) {
1961 case KVM_SET_SIGNAL_MASK: {
1962 struct kvm_signal_mask __user *sigmask_arg = argp;
1963 struct kvm_signal_mask kvm_sigmask;
1964 compat_sigset_t csigset;
1965 sigset_t sigset;
1966
1967 if (argp) {
1968 r = -EFAULT;
1969 if (copy_from_user(&kvm_sigmask, argp,
1970 sizeof kvm_sigmask))
1971 goto out;
1972 r = -EINVAL;
1973 if (kvm_sigmask.len != sizeof csigset)
1974 goto out;
1975 r = -EFAULT;
1976 if (copy_from_user(&csigset, sigmask_arg->sigset,
1977 sizeof csigset))
1978 goto out;
1979 sigset_from_compat(&sigset, &csigset);
1980 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1981 } else
1982 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
1983 break;
1984 }
1985 default:
1986 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1987 }
1988
1989 out:
1990 return r;
1991 }
1992 #endif
1993
1994 static long kvm_vm_ioctl(struct file *filp,
1995 unsigned int ioctl, unsigned long arg)
1996 {
1997 struct kvm *kvm = filp->private_data;
1998 void __user *argp = (void __user *)arg;
1999 int r;
2000
2001 if (kvm->mm != current->mm)
2002 return -EIO;
2003 switch (ioctl) {
2004 case KVM_CREATE_VCPU:
2005 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2006 if (r < 0)
2007 goto out;
2008 break;
2009 case KVM_SET_USER_MEMORY_REGION: {
2010 struct kvm_userspace_memory_region kvm_userspace_mem;
2011
2012 r = -EFAULT;
2013 if (copy_from_user(&kvm_userspace_mem, argp,
2014 sizeof kvm_userspace_mem))
2015 goto out;
2016
2017 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2018 if (r)
2019 goto out;
2020 break;
2021 }
2022 case KVM_GET_DIRTY_LOG: {
2023 struct kvm_dirty_log log;
2024
2025 r = -EFAULT;
2026 if (copy_from_user(&log, argp, sizeof log))
2027 goto out;
2028 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2029 if (r)
2030 goto out;
2031 break;
2032 }
2033 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2034 case KVM_REGISTER_COALESCED_MMIO: {
2035 struct kvm_coalesced_mmio_zone zone;
2036 r = -EFAULT;
2037 if (copy_from_user(&zone, argp, sizeof zone))
2038 goto out;
2039 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2040 if (r)
2041 goto out;
2042 r = 0;
2043 break;
2044 }
2045 case KVM_UNREGISTER_COALESCED_MMIO: {
2046 struct kvm_coalesced_mmio_zone zone;
2047 r = -EFAULT;
2048 if (copy_from_user(&zone, argp, sizeof zone))
2049 goto out;
2050 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2051 if (r)
2052 goto out;
2053 r = 0;
2054 break;
2055 }
2056 #endif
2057 case KVM_IRQFD: {
2058 struct kvm_irqfd data;
2059
2060 r = -EFAULT;
2061 if (copy_from_user(&data, argp, sizeof data))
2062 goto out;
2063 r = kvm_irqfd(kvm, &data);
2064 break;
2065 }
2066 case KVM_IOEVENTFD: {
2067 struct kvm_ioeventfd data;
2068
2069 r = -EFAULT;
2070 if (copy_from_user(&data, argp, sizeof data))
2071 goto out;
2072 r = kvm_ioeventfd(kvm, &data);
2073 break;
2074 }
2075 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2076 case KVM_SET_BOOT_CPU_ID:
2077 r = 0;
2078 mutex_lock(&kvm->lock);
2079 if (atomic_read(&kvm->online_vcpus) != 0)
2080 r = -EBUSY;
2081 else
2082 kvm->bsp_vcpu_id = arg;
2083 mutex_unlock(&kvm->lock);
2084 break;
2085 #endif
2086 #ifdef CONFIG_HAVE_KVM_MSI
2087 case KVM_SIGNAL_MSI: {
2088 struct kvm_msi msi;
2089
2090 r = -EFAULT;
2091 if (copy_from_user(&msi, argp, sizeof msi))
2092 goto out;
2093 r = kvm_send_userspace_msi(kvm, &msi);
2094 break;
2095 }
2096 #endif
2097 default:
2098 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2099 if (r == -ENOTTY)
2100 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2101 }
2102 out:
2103 return r;
2104 }
2105
2106 #ifdef CONFIG_COMPAT
2107 struct compat_kvm_dirty_log {
2108 __u32 slot;
2109 __u32 padding1;
2110 union {
2111 compat_uptr_t dirty_bitmap; /* one bit per page */
2112 __u64 padding2;
2113 };
2114 };
2115
2116 static long kvm_vm_compat_ioctl(struct file *filp,
2117 unsigned int ioctl, unsigned long arg)
2118 {
2119 struct kvm *kvm = filp->private_data;
2120 int r;
2121
2122 if (kvm->mm != current->mm)
2123 return -EIO;
2124 switch (ioctl) {
2125 case KVM_GET_DIRTY_LOG: {
2126 struct compat_kvm_dirty_log compat_log;
2127 struct kvm_dirty_log log;
2128
2129 r = -EFAULT;
2130 if (copy_from_user(&compat_log, (void __user *)arg,
2131 sizeof(compat_log)))
2132 goto out;
2133 log.slot = compat_log.slot;
2134 log.padding1 = compat_log.padding1;
2135 log.padding2 = compat_log.padding2;
2136 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2137
2138 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2139 if (r)
2140 goto out;
2141 break;
2142 }
2143 default:
2144 r = kvm_vm_ioctl(filp, ioctl, arg);
2145 }
2146
2147 out:
2148 return r;
2149 }
2150 #endif
2151
2152 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2153 {
2154 struct page *page[1];
2155 unsigned long addr;
2156 int npages;
2157 gfn_t gfn = vmf->pgoff;
2158 struct kvm *kvm = vma->vm_file->private_data;
2159
2160 addr = gfn_to_hva(kvm, gfn);
2161 if (kvm_is_error_hva(addr))
2162 return VM_FAULT_SIGBUS;
2163
2164 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2165 NULL);
2166 if (unlikely(npages != 1))
2167 return VM_FAULT_SIGBUS;
2168
2169 vmf->page = page[0];
2170 return 0;
2171 }
2172
2173 static const struct vm_operations_struct kvm_vm_vm_ops = {
2174 .fault = kvm_vm_fault,
2175 };
2176
2177 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2178 {
2179 vma->vm_ops = &kvm_vm_vm_ops;
2180 return 0;
2181 }
2182
2183 static struct file_operations kvm_vm_fops = {
2184 .release = kvm_vm_release,
2185 .unlocked_ioctl = kvm_vm_ioctl,
2186 #ifdef CONFIG_COMPAT
2187 .compat_ioctl = kvm_vm_compat_ioctl,
2188 #endif
2189 .mmap = kvm_vm_mmap,
2190 .llseek = noop_llseek,
2191 };
2192
2193 static int kvm_dev_ioctl_create_vm(unsigned long type)
2194 {
2195 int r;
2196 struct kvm *kvm;
2197
2198 kvm = kvm_create_vm(type);
2199 if (IS_ERR(kvm))
2200 return PTR_ERR(kvm);
2201 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2202 r = kvm_coalesced_mmio_init(kvm);
2203 if (r < 0) {
2204 kvm_put_kvm(kvm);
2205 return r;
2206 }
2207 #endif
2208 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2209 if (r < 0)
2210 kvm_put_kvm(kvm);
2211
2212 return r;
2213 }
2214
2215 static long kvm_dev_ioctl_check_extension_generic(long arg)
2216 {
2217 switch (arg) {
2218 case KVM_CAP_USER_MEMORY:
2219 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2220 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2221 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2222 case KVM_CAP_SET_BOOT_CPU_ID:
2223 #endif
2224 case KVM_CAP_INTERNAL_ERROR_DATA:
2225 #ifdef CONFIG_HAVE_KVM_MSI
2226 case KVM_CAP_SIGNAL_MSI:
2227 #endif
2228 return 1;
2229 #ifdef KVM_CAP_IRQ_ROUTING
2230 case KVM_CAP_IRQ_ROUTING:
2231 return KVM_MAX_IRQ_ROUTES;
2232 #endif
2233 default:
2234 break;
2235 }
2236 return kvm_dev_ioctl_check_extension(arg);
2237 }
2238
2239 static long kvm_dev_ioctl(struct file *filp,
2240 unsigned int ioctl, unsigned long arg)
2241 {
2242 long r = -EINVAL;
2243
2244 switch (ioctl) {
2245 case KVM_GET_API_VERSION:
2246 r = -EINVAL;
2247 if (arg)
2248 goto out;
2249 r = KVM_API_VERSION;
2250 break;
2251 case KVM_CREATE_VM:
2252 r = kvm_dev_ioctl_create_vm(arg);
2253 break;
2254 case KVM_CHECK_EXTENSION:
2255 r = kvm_dev_ioctl_check_extension_generic(arg);
2256 break;
2257 case KVM_GET_VCPU_MMAP_SIZE:
2258 r = -EINVAL;
2259 if (arg)
2260 goto out;
2261 r = PAGE_SIZE; /* struct kvm_run */
2262 #ifdef CONFIG_X86
2263 r += PAGE_SIZE; /* pio data page */
2264 #endif
2265 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2266 r += PAGE_SIZE; /* coalesced mmio ring page */
2267 #endif
2268 break;
2269 case KVM_TRACE_ENABLE:
2270 case KVM_TRACE_PAUSE:
2271 case KVM_TRACE_DISABLE:
2272 r = -EOPNOTSUPP;
2273 break;
2274 default:
2275 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2276 }
2277 out:
2278 return r;
2279 }
2280
2281 static struct file_operations kvm_chardev_ops = {
2282 .unlocked_ioctl = kvm_dev_ioctl,
2283 .compat_ioctl = kvm_dev_ioctl,
2284 .llseek = noop_llseek,
2285 };
2286
2287 static struct miscdevice kvm_dev = {
2288 KVM_MINOR,
2289 "kvm",
2290 &kvm_chardev_ops,
2291 };
2292
2293 static void hardware_enable_nolock(void *junk)
2294 {
2295 int cpu = raw_smp_processor_id();
2296 int r;
2297
2298 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2299 return;
2300
2301 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2302
2303 r = kvm_arch_hardware_enable(NULL);
2304
2305 if (r) {
2306 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2307 atomic_inc(&hardware_enable_failed);
2308 printk(KERN_INFO "kvm: enabling virtualization on "
2309 "CPU%d failed\n", cpu);
2310 }
2311 }
2312
2313 static void hardware_enable(void *junk)
2314 {
2315 raw_spin_lock(&kvm_lock);
2316 hardware_enable_nolock(junk);
2317 raw_spin_unlock(&kvm_lock);
2318 }
2319
2320 static void hardware_disable_nolock(void *junk)
2321 {
2322 int cpu = raw_smp_processor_id();
2323
2324 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2325 return;
2326 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2327 kvm_arch_hardware_disable(NULL);
2328 }
2329
2330 static void hardware_disable(void *junk)
2331 {
2332 raw_spin_lock(&kvm_lock);
2333 hardware_disable_nolock(junk);
2334 raw_spin_unlock(&kvm_lock);
2335 }
2336
2337 static void hardware_disable_all_nolock(void)
2338 {
2339 BUG_ON(!kvm_usage_count);
2340
2341 kvm_usage_count--;
2342 if (!kvm_usage_count)
2343 on_each_cpu(hardware_disable_nolock, NULL, 1);
2344 }
2345
2346 static void hardware_disable_all(void)
2347 {
2348 raw_spin_lock(&kvm_lock);
2349 hardware_disable_all_nolock();
2350 raw_spin_unlock(&kvm_lock);
2351 }
2352
2353 static int hardware_enable_all(void)
2354 {
2355 int r = 0;
2356
2357 raw_spin_lock(&kvm_lock);
2358
2359 kvm_usage_count++;
2360 if (kvm_usage_count == 1) {
2361 atomic_set(&hardware_enable_failed, 0);
2362 on_each_cpu(hardware_enable_nolock, NULL, 1);
2363
2364 if (atomic_read(&hardware_enable_failed)) {
2365 hardware_disable_all_nolock();
2366 r = -EBUSY;
2367 }
2368 }
2369
2370 raw_spin_unlock(&kvm_lock);
2371
2372 return r;
2373 }
2374
2375 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2376 void *v)
2377 {
2378 int cpu = (long)v;
2379
2380 if (!kvm_usage_count)
2381 return NOTIFY_OK;
2382
2383 val &= ~CPU_TASKS_FROZEN;
2384 switch (val) {
2385 case CPU_DYING:
2386 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2387 cpu);
2388 hardware_disable(NULL);
2389 break;
2390 case CPU_STARTING:
2391 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2392 cpu);
2393 hardware_enable(NULL);
2394 break;
2395 }
2396 return NOTIFY_OK;
2397 }
2398
2399
2400 asmlinkage void kvm_spurious_fault(void)
2401 {
2402 /* Fault while not rebooting. We want the trace. */
2403 BUG();
2404 }
2405 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2406
2407 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2408 void *v)
2409 {
2410 /*
2411 * Some (well, at least mine) BIOSes hang on reboot if
2412 * in vmx root mode.
2413 *
2414 * And Intel TXT required VMX off for all cpu when system shutdown.
2415 */
2416 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2417 kvm_rebooting = true;
2418 on_each_cpu(hardware_disable_nolock, NULL, 1);
2419 return NOTIFY_OK;
2420 }
2421
2422 static struct notifier_block kvm_reboot_notifier = {
2423 .notifier_call = kvm_reboot,
2424 .priority = 0,
2425 };
2426
2427 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2428 {
2429 int i;
2430
2431 for (i = 0; i < bus->dev_count; i++) {
2432 struct kvm_io_device *pos = bus->range[i].dev;
2433
2434 kvm_iodevice_destructor(pos);
2435 }
2436 kfree(bus);
2437 }
2438
2439 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2440 {
2441 const struct kvm_io_range *r1 = p1;
2442 const struct kvm_io_range *r2 = p2;
2443
2444 if (r1->addr < r2->addr)
2445 return -1;
2446 if (r1->addr + r1->len > r2->addr + r2->len)
2447 return 1;
2448 return 0;
2449 }
2450
2451 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2452 gpa_t addr, int len)
2453 {
2454 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2455 .addr = addr,
2456 .len = len,
2457 .dev = dev,
2458 };
2459
2460 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2461 kvm_io_bus_sort_cmp, NULL);
2462
2463 return 0;
2464 }
2465
2466 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2467 gpa_t addr, int len)
2468 {
2469 struct kvm_io_range *range, key;
2470 int off;
2471
2472 key = (struct kvm_io_range) {
2473 .addr = addr,
2474 .len = len,
2475 };
2476
2477 range = bsearch(&key, bus->range, bus->dev_count,
2478 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2479 if (range == NULL)
2480 return -ENOENT;
2481
2482 off = range - bus->range;
2483
2484 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2485 off--;
2486
2487 return off;
2488 }
2489
2490 /* kvm_io_bus_write - called under kvm->slots_lock */
2491 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2492 int len, const void *val)
2493 {
2494 int idx;
2495 struct kvm_io_bus *bus;
2496 struct kvm_io_range range;
2497
2498 range = (struct kvm_io_range) {
2499 .addr = addr,
2500 .len = len,
2501 };
2502
2503 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2504 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2505 if (idx < 0)
2506 return -EOPNOTSUPP;
2507
2508 while (idx < bus->dev_count &&
2509 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2510 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2511 return 0;
2512 idx++;
2513 }
2514
2515 return -EOPNOTSUPP;
2516 }
2517
2518 /* kvm_io_bus_read - called under kvm->slots_lock */
2519 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2520 int len, void *val)
2521 {
2522 int idx;
2523 struct kvm_io_bus *bus;
2524 struct kvm_io_range range;
2525
2526 range = (struct kvm_io_range) {
2527 .addr = addr,
2528 .len = len,
2529 };
2530
2531 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2532 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2533 if (idx < 0)
2534 return -EOPNOTSUPP;
2535
2536 while (idx < bus->dev_count &&
2537 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2538 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2539 return 0;
2540 idx++;
2541 }
2542
2543 return -EOPNOTSUPP;
2544 }
2545
2546 /* Caller must hold slots_lock. */
2547 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2548 int len, struct kvm_io_device *dev)
2549 {
2550 struct kvm_io_bus *new_bus, *bus;
2551
2552 bus = kvm->buses[bus_idx];
2553 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2554 return -ENOSPC;
2555
2556 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2557 sizeof(struct kvm_io_range)), GFP_KERNEL);
2558 if (!new_bus)
2559 return -ENOMEM;
2560 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2561 sizeof(struct kvm_io_range)));
2562 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2563 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2564 synchronize_srcu_expedited(&kvm->srcu);
2565 kfree(bus);
2566
2567 return 0;
2568 }
2569
2570 /* Caller must hold slots_lock. */
2571 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2572 struct kvm_io_device *dev)
2573 {
2574 int i, r;
2575 struct kvm_io_bus *new_bus, *bus;
2576
2577 bus = kvm->buses[bus_idx];
2578 r = -ENOENT;
2579 for (i = 0; i < bus->dev_count; i++)
2580 if (bus->range[i].dev == dev) {
2581 r = 0;
2582 break;
2583 }
2584
2585 if (r)
2586 return r;
2587
2588 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2589 sizeof(struct kvm_io_range)), GFP_KERNEL);
2590 if (!new_bus)
2591 return -ENOMEM;
2592
2593 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2594 new_bus->dev_count--;
2595 memcpy(new_bus->range + i, bus->range + i + 1,
2596 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2597
2598 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2599 synchronize_srcu_expedited(&kvm->srcu);
2600 kfree(bus);
2601 return r;
2602 }
2603
2604 static struct notifier_block kvm_cpu_notifier = {
2605 .notifier_call = kvm_cpu_hotplug,
2606 };
2607
2608 static int vm_stat_get(void *_offset, u64 *val)
2609 {
2610 unsigned offset = (long)_offset;
2611 struct kvm *kvm;
2612
2613 *val = 0;
2614 raw_spin_lock(&kvm_lock);
2615 list_for_each_entry(kvm, &vm_list, vm_list)
2616 *val += *(u32 *)((void *)kvm + offset);
2617 raw_spin_unlock(&kvm_lock);
2618 return 0;
2619 }
2620
2621 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2622
2623 static int vcpu_stat_get(void *_offset, u64 *val)
2624 {
2625 unsigned offset = (long)_offset;
2626 struct kvm *kvm;
2627 struct kvm_vcpu *vcpu;
2628 int i;
2629
2630 *val = 0;
2631 raw_spin_lock(&kvm_lock);
2632 list_for_each_entry(kvm, &vm_list, vm_list)
2633 kvm_for_each_vcpu(i, vcpu, kvm)
2634 *val += *(u32 *)((void *)vcpu + offset);
2635
2636 raw_spin_unlock(&kvm_lock);
2637 return 0;
2638 }
2639
2640 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2641
2642 static const struct file_operations *stat_fops[] = {
2643 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2644 [KVM_STAT_VM] = &vm_stat_fops,
2645 };
2646
2647 static int kvm_init_debug(void)
2648 {
2649 int r = -EFAULT;
2650 struct kvm_stats_debugfs_item *p;
2651
2652 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2653 if (kvm_debugfs_dir == NULL)
2654 goto out;
2655
2656 for (p = debugfs_entries; p->name; ++p) {
2657 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2658 (void *)(long)p->offset,
2659 stat_fops[p->kind]);
2660 if (p->dentry == NULL)
2661 goto out_dir;
2662 }
2663
2664 return 0;
2665
2666 out_dir:
2667 debugfs_remove_recursive(kvm_debugfs_dir);
2668 out:
2669 return r;
2670 }
2671
2672 static void kvm_exit_debug(void)
2673 {
2674 struct kvm_stats_debugfs_item *p;
2675
2676 for (p = debugfs_entries; p->name; ++p)
2677 debugfs_remove(p->dentry);
2678 debugfs_remove(kvm_debugfs_dir);
2679 }
2680
2681 static int kvm_suspend(void)
2682 {
2683 if (kvm_usage_count)
2684 hardware_disable_nolock(NULL);
2685 return 0;
2686 }
2687
2688 static void kvm_resume(void)
2689 {
2690 if (kvm_usage_count) {
2691 WARN_ON(raw_spin_is_locked(&kvm_lock));
2692 hardware_enable_nolock(NULL);
2693 }
2694 }
2695
2696 static struct syscore_ops kvm_syscore_ops = {
2697 .suspend = kvm_suspend,
2698 .resume = kvm_resume,
2699 };
2700
2701 struct page *bad_page;
2702 pfn_t bad_pfn;
2703
2704 static inline
2705 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2706 {
2707 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2708 }
2709
2710 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2711 {
2712 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2713
2714 kvm_arch_vcpu_load(vcpu, cpu);
2715 }
2716
2717 static void kvm_sched_out(struct preempt_notifier *pn,
2718 struct task_struct *next)
2719 {
2720 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2721
2722 kvm_arch_vcpu_put(vcpu);
2723 }
2724
2725 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2726 struct module *module)
2727 {
2728 int r;
2729 int cpu;
2730
2731 r = kvm_arch_init(opaque);
2732 if (r)
2733 goto out_fail;
2734
2735 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2736
2737 if (bad_page == NULL) {
2738 r = -ENOMEM;
2739 goto out;
2740 }
2741
2742 bad_pfn = page_to_pfn(bad_page);
2743
2744 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2745
2746 if (hwpoison_page == NULL) {
2747 r = -ENOMEM;
2748 goto out_free_0;
2749 }
2750
2751 hwpoison_pfn = page_to_pfn(hwpoison_page);
2752
2753 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2754
2755 if (fault_page == NULL) {
2756 r = -ENOMEM;
2757 goto out_free_0;
2758 }
2759
2760 fault_pfn = page_to_pfn(fault_page);
2761
2762 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2763 r = -ENOMEM;
2764 goto out_free_0;
2765 }
2766
2767 r = kvm_arch_hardware_setup();
2768 if (r < 0)
2769 goto out_free_0a;
2770
2771 for_each_online_cpu(cpu) {
2772 smp_call_function_single(cpu,
2773 kvm_arch_check_processor_compat,
2774 &r, 1);
2775 if (r < 0)
2776 goto out_free_1;
2777 }
2778
2779 r = register_cpu_notifier(&kvm_cpu_notifier);
2780 if (r)
2781 goto out_free_2;
2782 register_reboot_notifier(&kvm_reboot_notifier);
2783
2784 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2785 if (!vcpu_align)
2786 vcpu_align = __alignof__(struct kvm_vcpu);
2787 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2788 0, NULL);
2789 if (!kvm_vcpu_cache) {
2790 r = -ENOMEM;
2791 goto out_free_3;
2792 }
2793
2794 r = kvm_async_pf_init();
2795 if (r)
2796 goto out_free;
2797
2798 kvm_chardev_ops.owner = module;
2799 kvm_vm_fops.owner = module;
2800 kvm_vcpu_fops.owner = module;
2801
2802 r = misc_register(&kvm_dev);
2803 if (r) {
2804 printk(KERN_ERR "kvm: misc device register failed\n");
2805 goto out_unreg;
2806 }
2807
2808 register_syscore_ops(&kvm_syscore_ops);
2809
2810 kvm_preempt_ops.sched_in = kvm_sched_in;
2811 kvm_preempt_ops.sched_out = kvm_sched_out;
2812
2813 r = kvm_init_debug();
2814 if (r) {
2815 printk(KERN_ERR "kvm: create debugfs files failed\n");
2816 goto out_undebugfs;
2817 }
2818
2819 return 0;
2820
2821 out_undebugfs:
2822 unregister_syscore_ops(&kvm_syscore_ops);
2823 out_unreg:
2824 kvm_async_pf_deinit();
2825 out_free:
2826 kmem_cache_destroy(kvm_vcpu_cache);
2827 out_free_3:
2828 unregister_reboot_notifier(&kvm_reboot_notifier);
2829 unregister_cpu_notifier(&kvm_cpu_notifier);
2830 out_free_2:
2831 out_free_1:
2832 kvm_arch_hardware_unsetup();
2833 out_free_0a:
2834 free_cpumask_var(cpus_hardware_enabled);
2835 out_free_0:
2836 if (fault_page)
2837 __free_page(fault_page);
2838 if (hwpoison_page)
2839 __free_page(hwpoison_page);
2840 __free_page(bad_page);
2841 out:
2842 kvm_arch_exit();
2843 out_fail:
2844 return r;
2845 }
2846 EXPORT_SYMBOL_GPL(kvm_init);
2847
2848 void kvm_exit(void)
2849 {
2850 kvm_exit_debug();
2851 misc_deregister(&kvm_dev);
2852 kmem_cache_destroy(kvm_vcpu_cache);
2853 kvm_async_pf_deinit();
2854 unregister_syscore_ops(&kvm_syscore_ops);
2855 unregister_reboot_notifier(&kvm_reboot_notifier);
2856 unregister_cpu_notifier(&kvm_cpu_notifier);
2857 on_each_cpu(hardware_disable_nolock, NULL, 1);
2858 kvm_arch_hardware_unsetup();
2859 kvm_arch_exit();
2860 free_cpumask_var(cpus_hardware_enabled);
2861 __free_page(fault_page);
2862 __free_page(hwpoison_page);
2863 __free_page(bad_page);
2864 }
2865 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.088481 seconds and 6 git commands to generate.