Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129 }
130
131 /*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 int cpu;
137
138 if (mutex_lock_killable(&vcpu->mutex))
139 return -EINTR;
140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 /* The thread running this VCPU changed. */
142 struct pid *oldpid = vcpu->pid;
143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 rcu_assign_pointer(vcpu->pid, newpid);
145 synchronize_rcu();
146 put_pid(oldpid);
147 }
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 preempt_disable();
158 kvm_arch_vcpu_put(vcpu);
159 preempt_notifier_unregister(&vcpu->preempt_notifier);
160 preempt_enable();
161 mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 int i, cpu, me;
171 cpumask_var_t cpus;
172 bool called = true;
173 struct kvm_vcpu *vcpu;
174
175 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177 me = get_cpu();
178 kvm_for_each_vcpu(i, vcpu, kvm) {
179 kvm_make_request(req, vcpu);
180 cpu = vcpu->cpu;
181
182 /* Set ->requests bit before we read ->mode */
183 smp_mb();
184
185 if (cpus != NULL && cpu != -1 && cpu != me &&
186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 cpumask_set_cpu(cpu, cpus);
188 }
189 if (unlikely(cpus == NULL))
190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 else if (!cpumask_empty(cpus))
192 smp_call_function_many(cpus, ack_flush, NULL, 1);
193 else
194 called = false;
195 put_cpu();
196 free_cpumask_var(cpus);
197 return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 long dirty_count = kvm->tlbs_dirty;
203
204 smp_mb();
205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 ++kvm->stat.remote_tlb_flush;
207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
216 {
217 struct page *page;
218 int r;
219
220 mutex_init(&vcpu->mutex);
221 vcpu->cpu = -1;
222 vcpu->kvm = kvm;
223 vcpu->vcpu_id = id;
224 vcpu->pid = NULL;
225 init_waitqueue_head(&vcpu->wq);
226 kvm_async_pf_vcpu_init(vcpu);
227
228 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
229 if (!page) {
230 r = -ENOMEM;
231 goto fail;
232 }
233 vcpu->run = page_address(page);
234
235 kvm_vcpu_set_in_spin_loop(vcpu, false);
236 kvm_vcpu_set_dy_eligible(vcpu, false);
237
238 r = kvm_arch_vcpu_init(vcpu);
239 if (r < 0)
240 goto fail_free_run;
241 return 0;
242
243 fail_free_run:
244 free_page((unsigned long)vcpu->run);
245 fail:
246 return r;
247 }
248 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
249
250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
251 {
252 put_pid(vcpu->pid);
253 kvm_arch_vcpu_uninit(vcpu);
254 free_page((unsigned long)vcpu->run);
255 }
256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
257
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
260 {
261 return container_of(mn, struct kvm, mmu_notifier);
262 }
263
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
265 struct mm_struct *mm,
266 unsigned long address)
267 {
268 struct kvm *kvm = mmu_notifier_to_kvm(mn);
269 int need_tlb_flush, idx;
270
271 /*
272 * When ->invalidate_page runs, the linux pte has been zapped
273 * already but the page is still allocated until
274 * ->invalidate_page returns. So if we increase the sequence
275 * here the kvm page fault will notice if the spte can't be
276 * established because the page is going to be freed. If
277 * instead the kvm page fault establishes the spte before
278 * ->invalidate_page runs, kvm_unmap_hva will release it
279 * before returning.
280 *
281 * The sequence increase only need to be seen at spin_unlock
282 * time, and not at spin_lock time.
283 *
284 * Increasing the sequence after the spin_unlock would be
285 * unsafe because the kvm page fault could then establish the
286 * pte after kvm_unmap_hva returned, without noticing the page
287 * is going to be freed.
288 */
289 idx = srcu_read_lock(&kvm->srcu);
290 spin_lock(&kvm->mmu_lock);
291
292 kvm->mmu_notifier_seq++;
293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 /* we've to flush the tlb before the pages can be freed */
295 if (need_tlb_flush)
296 kvm_flush_remote_tlbs(kvm);
297
298 spin_unlock(&kvm->mmu_lock);
299 srcu_read_unlock(&kvm->srcu, idx);
300 }
301
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303 struct mm_struct *mm,
304 unsigned long address,
305 pte_t pte)
306 {
307 struct kvm *kvm = mmu_notifier_to_kvm(mn);
308 int idx;
309
310 idx = srcu_read_lock(&kvm->srcu);
311 spin_lock(&kvm->mmu_lock);
312 kvm->mmu_notifier_seq++;
313 kvm_set_spte_hva(kvm, address, pte);
314 spin_unlock(&kvm->mmu_lock);
315 srcu_read_unlock(&kvm->srcu, idx);
316 }
317
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319 struct mm_struct *mm,
320 unsigned long start,
321 unsigned long end)
322 {
323 struct kvm *kvm = mmu_notifier_to_kvm(mn);
324 int need_tlb_flush = 0, idx;
325
326 idx = srcu_read_lock(&kvm->srcu);
327 spin_lock(&kvm->mmu_lock);
328 /*
329 * The count increase must become visible at unlock time as no
330 * spte can be established without taking the mmu_lock and
331 * count is also read inside the mmu_lock critical section.
332 */
333 kvm->mmu_notifier_count++;
334 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335 need_tlb_flush |= kvm->tlbs_dirty;
336 /* we've to flush the tlb before the pages can be freed */
337 if (need_tlb_flush)
338 kvm_flush_remote_tlbs(kvm);
339
340 spin_unlock(&kvm->mmu_lock);
341 srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 struct mm_struct *mm,
346 unsigned long start,
347 unsigned long end)
348 {
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350
351 spin_lock(&kvm->mmu_lock);
352 /*
353 * This sequence increase will notify the kvm page fault that
354 * the page that is going to be mapped in the spte could have
355 * been freed.
356 */
357 kvm->mmu_notifier_seq++;
358 smp_wmb();
359 /*
360 * The above sequence increase must be visible before the
361 * below count decrease, which is ensured by the smp_wmb above
362 * in conjunction with the smp_rmb in mmu_notifier_retry().
363 */
364 kvm->mmu_notifier_count--;
365 spin_unlock(&kvm->mmu_lock);
366
367 BUG_ON(kvm->mmu_notifier_count < 0);
368 }
369
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long address)
373 {
374 struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 int young, idx;
376
377 idx = srcu_read_lock(&kvm->srcu);
378 spin_lock(&kvm->mmu_lock);
379
380 young = kvm_age_hva(kvm, address);
381 if (young)
382 kvm_flush_remote_tlbs(kvm);
383
384 spin_unlock(&kvm->mmu_lock);
385 srcu_read_unlock(&kvm->srcu, idx);
386
387 return young;
388 }
389
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391 struct mm_struct *mm,
392 unsigned long address)
393 {
394 struct kvm *kvm = mmu_notifier_to_kvm(mn);
395 int young, idx;
396
397 idx = srcu_read_lock(&kvm->srcu);
398 spin_lock(&kvm->mmu_lock);
399 young = kvm_test_age_hva(kvm, address);
400 spin_unlock(&kvm->mmu_lock);
401 srcu_read_unlock(&kvm->srcu, idx);
402
403 return young;
404 }
405
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407 struct mm_struct *mm)
408 {
409 struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 int idx;
411
412 idx = srcu_read_lock(&kvm->srcu);
413 kvm_arch_flush_shadow_all(kvm);
414 srcu_read_unlock(&kvm->srcu, idx);
415 }
416
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418 .invalidate_page = kvm_mmu_notifier_invalidate_page,
419 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
420 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
421 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
422 .test_young = kvm_mmu_notifier_test_young,
423 .change_pte = kvm_mmu_notifier_change_pte,
424 .release = kvm_mmu_notifier_release,
425 };
426
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432
433 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437 return 0;
438 }
439
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441
442 static void kvm_init_memslots_id(struct kvm *kvm)
443 {
444 int i;
445 struct kvm_memslots *slots = kvm->memslots;
446
447 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
448 slots->id_to_index[i] = slots->memslots[i].id = i;
449 }
450
451 static struct kvm *kvm_create_vm(unsigned long type)
452 {
453 int r, i;
454 struct kvm *kvm = kvm_arch_alloc_vm();
455
456 if (!kvm)
457 return ERR_PTR(-ENOMEM);
458
459 r = kvm_arch_init_vm(kvm, type);
460 if (r)
461 goto out_err_nodisable;
462
463 r = hardware_enable_all();
464 if (r)
465 goto out_err_nodisable;
466
467 #ifdef CONFIG_HAVE_KVM_IRQCHIP
468 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
469 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
470 #endif
471
472 r = -ENOMEM;
473 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
474 if (!kvm->memslots)
475 goto out_err_nosrcu;
476 kvm_init_memslots_id(kvm);
477 if (init_srcu_struct(&kvm->srcu))
478 goto out_err_nosrcu;
479 for (i = 0; i < KVM_NR_BUSES; i++) {
480 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
481 GFP_KERNEL);
482 if (!kvm->buses[i])
483 goto out_err;
484 }
485
486 spin_lock_init(&kvm->mmu_lock);
487 kvm->mm = current->mm;
488 atomic_inc(&kvm->mm->mm_count);
489 kvm_eventfd_init(kvm);
490 mutex_init(&kvm->lock);
491 mutex_init(&kvm->irq_lock);
492 mutex_init(&kvm->slots_lock);
493 atomic_set(&kvm->users_count, 1);
494
495 r = kvm_init_mmu_notifier(kvm);
496 if (r)
497 goto out_err;
498
499 raw_spin_lock(&kvm_lock);
500 list_add(&kvm->vm_list, &vm_list);
501 raw_spin_unlock(&kvm_lock);
502
503 return kvm;
504
505 out_err:
506 cleanup_srcu_struct(&kvm->srcu);
507 out_err_nosrcu:
508 hardware_disable_all();
509 out_err_nodisable:
510 for (i = 0; i < KVM_NR_BUSES; i++)
511 kfree(kvm->buses[i]);
512 kfree(kvm->memslots);
513 kvm_arch_free_vm(kvm);
514 return ERR_PTR(r);
515 }
516
517 /*
518 * Avoid using vmalloc for a small buffer.
519 * Should not be used when the size is statically known.
520 */
521 void *kvm_kvzalloc(unsigned long size)
522 {
523 if (size > PAGE_SIZE)
524 return vzalloc(size);
525 else
526 return kzalloc(size, GFP_KERNEL);
527 }
528
529 void kvm_kvfree(const void *addr)
530 {
531 if (is_vmalloc_addr(addr))
532 vfree(addr);
533 else
534 kfree(addr);
535 }
536
537 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
538 {
539 if (!memslot->dirty_bitmap)
540 return;
541
542 kvm_kvfree(memslot->dirty_bitmap);
543 memslot->dirty_bitmap = NULL;
544 }
545
546 /*
547 * Free any memory in @free but not in @dont.
548 */
549 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
550 struct kvm_memory_slot *dont)
551 {
552 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
553 kvm_destroy_dirty_bitmap(free);
554
555 kvm_arch_free_memslot(free, dont);
556
557 free->npages = 0;
558 }
559
560 void kvm_free_physmem(struct kvm *kvm)
561 {
562 struct kvm_memslots *slots = kvm->memslots;
563 struct kvm_memory_slot *memslot;
564
565 kvm_for_each_memslot(memslot, slots)
566 kvm_free_physmem_slot(memslot, NULL);
567
568 kfree(kvm->memslots);
569 }
570
571 static void kvm_destroy_vm(struct kvm *kvm)
572 {
573 int i;
574 struct mm_struct *mm = kvm->mm;
575
576 kvm_arch_sync_events(kvm);
577 raw_spin_lock(&kvm_lock);
578 list_del(&kvm->vm_list);
579 raw_spin_unlock(&kvm_lock);
580 kvm_free_irq_routing(kvm);
581 for (i = 0; i < KVM_NR_BUSES; i++)
582 kvm_io_bus_destroy(kvm->buses[i]);
583 kvm_coalesced_mmio_free(kvm);
584 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
585 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
586 #else
587 kvm_arch_flush_shadow_all(kvm);
588 #endif
589 kvm_arch_destroy_vm(kvm);
590 kvm_free_physmem(kvm);
591 cleanup_srcu_struct(&kvm->srcu);
592 kvm_arch_free_vm(kvm);
593 hardware_disable_all();
594 mmdrop(mm);
595 }
596
597 void kvm_get_kvm(struct kvm *kvm)
598 {
599 atomic_inc(&kvm->users_count);
600 }
601 EXPORT_SYMBOL_GPL(kvm_get_kvm);
602
603 void kvm_put_kvm(struct kvm *kvm)
604 {
605 if (atomic_dec_and_test(&kvm->users_count))
606 kvm_destroy_vm(kvm);
607 }
608 EXPORT_SYMBOL_GPL(kvm_put_kvm);
609
610
611 static int kvm_vm_release(struct inode *inode, struct file *filp)
612 {
613 struct kvm *kvm = filp->private_data;
614
615 kvm_irqfd_release(kvm);
616
617 kvm_put_kvm(kvm);
618 return 0;
619 }
620
621 /*
622 * Allocation size is twice as large as the actual dirty bitmap size.
623 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
624 */
625 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
626 {
627 #ifndef CONFIG_S390
628 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
629
630 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
631 if (!memslot->dirty_bitmap)
632 return -ENOMEM;
633
634 #endif /* !CONFIG_S390 */
635 return 0;
636 }
637
638 static int cmp_memslot(const void *slot1, const void *slot2)
639 {
640 struct kvm_memory_slot *s1, *s2;
641
642 s1 = (struct kvm_memory_slot *)slot1;
643 s2 = (struct kvm_memory_slot *)slot2;
644
645 if (s1->npages < s2->npages)
646 return 1;
647 if (s1->npages > s2->npages)
648 return -1;
649
650 return 0;
651 }
652
653 /*
654 * Sort the memslots base on its size, so the larger slots
655 * will get better fit.
656 */
657 static void sort_memslots(struct kvm_memslots *slots)
658 {
659 int i;
660
661 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
662 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
663
664 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
665 slots->id_to_index[slots->memslots[i].id] = i;
666 }
667
668 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
669 {
670 if (new) {
671 int id = new->id;
672 struct kvm_memory_slot *old = id_to_memslot(slots, id);
673 unsigned long npages = old->npages;
674
675 *old = *new;
676 if (new->npages != npages)
677 sort_memslots(slots);
678 }
679
680 slots->generation++;
681 }
682
683 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
684 {
685 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
686
687 #ifdef KVM_CAP_READONLY_MEM
688 valid_flags |= KVM_MEM_READONLY;
689 #endif
690
691 if (mem->flags & ~valid_flags)
692 return -EINVAL;
693
694 return 0;
695 }
696
697 /*
698 * Allocate some memory and give it an address in the guest physical address
699 * space.
700 *
701 * Discontiguous memory is allowed, mostly for framebuffers.
702 *
703 * Must be called holding mmap_sem for write.
704 */
705 int __kvm_set_memory_region(struct kvm *kvm,
706 struct kvm_userspace_memory_region *mem,
707 int user_alloc)
708 {
709 int r;
710 gfn_t base_gfn;
711 unsigned long npages;
712 unsigned long i;
713 struct kvm_memory_slot *memslot;
714 struct kvm_memory_slot old, new;
715 struct kvm_memslots *slots, *old_memslots;
716
717 r = check_memory_region_flags(mem);
718 if (r)
719 goto out;
720
721 r = -EINVAL;
722 /* General sanity checks */
723 if (mem->memory_size & (PAGE_SIZE - 1))
724 goto out;
725 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
726 goto out;
727 /* We can read the guest memory with __xxx_user() later on. */
728 if (user_alloc &&
729 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
730 !access_ok(VERIFY_WRITE,
731 (void __user *)(unsigned long)mem->userspace_addr,
732 mem->memory_size)))
733 goto out;
734 if (mem->slot >= KVM_MEM_SLOTS_NUM)
735 goto out;
736 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
737 goto out;
738
739 memslot = id_to_memslot(kvm->memslots, mem->slot);
740 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
741 npages = mem->memory_size >> PAGE_SHIFT;
742
743 r = -EINVAL;
744 if (npages > KVM_MEM_MAX_NR_PAGES)
745 goto out;
746
747 if (!npages)
748 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
749
750 new = old = *memslot;
751
752 new.id = mem->slot;
753 new.base_gfn = base_gfn;
754 new.npages = npages;
755 new.flags = mem->flags;
756
757 /* Disallow changing a memory slot's size. */
758 r = -EINVAL;
759 if (npages && old.npages && npages != old.npages)
760 goto out_free;
761
762 /* Check for overlaps */
763 r = -EEXIST;
764 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
765 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
766
767 if (s == memslot || !s->npages)
768 continue;
769 if (!((base_gfn + npages <= s->base_gfn) ||
770 (base_gfn >= s->base_gfn + s->npages)))
771 goto out_free;
772 }
773
774 /* Free page dirty bitmap if unneeded */
775 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
776 new.dirty_bitmap = NULL;
777
778 r = -ENOMEM;
779
780 /* Allocate if a slot is being created */
781 if (npages && !old.npages) {
782 new.user_alloc = user_alloc;
783 new.userspace_addr = mem->userspace_addr;
784
785 if (kvm_arch_create_memslot(&new, npages))
786 goto out_free;
787 }
788
789 /* Allocate page dirty bitmap if needed */
790 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
791 if (kvm_create_dirty_bitmap(&new) < 0)
792 goto out_free;
793 /* destroy any largepage mappings for dirty tracking */
794 }
795
796 if (!npages || base_gfn != old.base_gfn) {
797 struct kvm_memory_slot *slot;
798
799 r = -ENOMEM;
800 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
801 GFP_KERNEL);
802 if (!slots)
803 goto out_free;
804 slot = id_to_memslot(slots, mem->slot);
805 slot->flags |= KVM_MEMSLOT_INVALID;
806
807 update_memslots(slots, NULL);
808
809 old_memslots = kvm->memslots;
810 rcu_assign_pointer(kvm->memslots, slots);
811 synchronize_srcu_expedited(&kvm->srcu);
812 /* From this point no new shadow pages pointing to a deleted,
813 * or moved, memslot will be created.
814 *
815 * validation of sp->gfn happens in:
816 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
817 * - kvm_is_visible_gfn (mmu_check_roots)
818 */
819 kvm_arch_flush_shadow_memslot(kvm, slot);
820 kfree(old_memslots);
821 }
822
823 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
824 if (r)
825 goto out_free;
826
827 /* map/unmap the pages in iommu page table */
828 if (npages) {
829 r = kvm_iommu_map_pages(kvm, &new);
830 if (r)
831 goto out_free;
832 } else
833 kvm_iommu_unmap_pages(kvm, &old);
834
835 r = -ENOMEM;
836 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837 GFP_KERNEL);
838 if (!slots)
839 goto out_free;
840
841 /* actual memory is freed via old in kvm_free_physmem_slot below */
842 if (!npages) {
843 new.dirty_bitmap = NULL;
844 memset(&new.arch, 0, sizeof(new.arch));
845 }
846
847 update_memslots(slots, &new);
848 old_memslots = kvm->memslots;
849 rcu_assign_pointer(kvm->memslots, slots);
850 synchronize_srcu_expedited(&kvm->srcu);
851
852 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
853
854 kvm_free_physmem_slot(&old, &new);
855 kfree(old_memslots);
856
857 return 0;
858
859 out_free:
860 kvm_free_physmem_slot(&new, &old);
861 out:
862 return r;
863
864 }
865 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
866
867 int kvm_set_memory_region(struct kvm *kvm,
868 struct kvm_userspace_memory_region *mem,
869 int user_alloc)
870 {
871 int r;
872
873 mutex_lock(&kvm->slots_lock);
874 r = __kvm_set_memory_region(kvm, mem, user_alloc);
875 mutex_unlock(&kvm->slots_lock);
876 return r;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
879
880 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
881 struct
882 kvm_userspace_memory_region *mem,
883 int user_alloc)
884 {
885 if (mem->slot >= KVM_MEMORY_SLOTS)
886 return -EINVAL;
887 return kvm_set_memory_region(kvm, mem, user_alloc);
888 }
889
890 int kvm_get_dirty_log(struct kvm *kvm,
891 struct kvm_dirty_log *log, int *is_dirty)
892 {
893 struct kvm_memory_slot *memslot;
894 int r, i;
895 unsigned long n;
896 unsigned long any = 0;
897
898 r = -EINVAL;
899 if (log->slot >= KVM_MEMORY_SLOTS)
900 goto out;
901
902 memslot = id_to_memslot(kvm->memslots, log->slot);
903 r = -ENOENT;
904 if (!memslot->dirty_bitmap)
905 goto out;
906
907 n = kvm_dirty_bitmap_bytes(memslot);
908
909 for (i = 0; !any && i < n/sizeof(long); ++i)
910 any = memslot->dirty_bitmap[i];
911
912 r = -EFAULT;
913 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
914 goto out;
915
916 if (any)
917 *is_dirty = 1;
918
919 r = 0;
920 out:
921 return r;
922 }
923
924 bool kvm_largepages_enabled(void)
925 {
926 return largepages_enabled;
927 }
928
929 void kvm_disable_largepages(void)
930 {
931 largepages_enabled = false;
932 }
933 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
934
935 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
936 {
937 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
938 }
939 EXPORT_SYMBOL_GPL(gfn_to_memslot);
940
941 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
942 {
943 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
944
945 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
946 memslot->flags & KVM_MEMSLOT_INVALID)
947 return 0;
948
949 return 1;
950 }
951 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
952
953 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
954 {
955 struct vm_area_struct *vma;
956 unsigned long addr, size;
957
958 size = PAGE_SIZE;
959
960 addr = gfn_to_hva(kvm, gfn);
961 if (kvm_is_error_hva(addr))
962 return PAGE_SIZE;
963
964 down_read(&current->mm->mmap_sem);
965 vma = find_vma(current->mm, addr);
966 if (!vma)
967 goto out;
968
969 size = vma_kernel_pagesize(vma);
970
971 out:
972 up_read(&current->mm->mmap_sem);
973
974 return size;
975 }
976
977 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
978 {
979 return slot->flags & KVM_MEM_READONLY;
980 }
981
982 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
983 gfn_t *nr_pages, bool write)
984 {
985 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
986 return KVM_HVA_ERR_BAD;
987
988 if (memslot_is_readonly(slot) && write)
989 return KVM_HVA_ERR_RO_BAD;
990
991 if (nr_pages)
992 *nr_pages = slot->npages - (gfn - slot->base_gfn);
993
994 return __gfn_to_hva_memslot(slot, gfn);
995 }
996
997 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
998 gfn_t *nr_pages)
999 {
1000 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1001 }
1002
1003 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1004 gfn_t gfn)
1005 {
1006 return gfn_to_hva_many(slot, gfn, NULL);
1007 }
1008 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1009
1010 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1011 {
1012 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1013 }
1014 EXPORT_SYMBOL_GPL(gfn_to_hva);
1015
1016 /*
1017 * The hva returned by this function is only allowed to be read.
1018 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1019 */
1020 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1021 {
1022 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1023 }
1024
1025 static int kvm_read_hva(void *data, void __user *hva, int len)
1026 {
1027 return __copy_from_user(data, hva, len);
1028 }
1029
1030 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1031 {
1032 return __copy_from_user_inatomic(data, hva, len);
1033 }
1034
1035 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1036 unsigned long start, int write, struct page **page)
1037 {
1038 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1039
1040 if (write)
1041 flags |= FOLL_WRITE;
1042
1043 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1044 }
1045
1046 static inline int check_user_page_hwpoison(unsigned long addr)
1047 {
1048 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1049
1050 rc = __get_user_pages(current, current->mm, addr, 1,
1051 flags, NULL, NULL, NULL);
1052 return rc == -EHWPOISON;
1053 }
1054
1055 /*
1056 * The atomic path to get the writable pfn which will be stored in @pfn,
1057 * true indicates success, otherwise false is returned.
1058 */
1059 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1060 bool write_fault, bool *writable, pfn_t *pfn)
1061 {
1062 struct page *page[1];
1063 int npages;
1064
1065 if (!(async || atomic))
1066 return false;
1067
1068 /*
1069 * Fast pin a writable pfn only if it is a write fault request
1070 * or the caller allows to map a writable pfn for a read fault
1071 * request.
1072 */
1073 if (!(write_fault || writable))
1074 return false;
1075
1076 npages = __get_user_pages_fast(addr, 1, 1, page);
1077 if (npages == 1) {
1078 *pfn = page_to_pfn(page[0]);
1079
1080 if (writable)
1081 *writable = true;
1082 return true;
1083 }
1084
1085 return false;
1086 }
1087
1088 /*
1089 * The slow path to get the pfn of the specified host virtual address,
1090 * 1 indicates success, -errno is returned if error is detected.
1091 */
1092 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1093 bool *writable, pfn_t *pfn)
1094 {
1095 struct page *page[1];
1096 int npages = 0;
1097
1098 might_sleep();
1099
1100 if (writable)
1101 *writable = write_fault;
1102
1103 if (async) {
1104 down_read(&current->mm->mmap_sem);
1105 npages = get_user_page_nowait(current, current->mm,
1106 addr, write_fault, page);
1107 up_read(&current->mm->mmap_sem);
1108 } else
1109 npages = get_user_pages_fast(addr, 1, write_fault,
1110 page);
1111 if (npages != 1)
1112 return npages;
1113
1114 /* map read fault as writable if possible */
1115 if (unlikely(!write_fault) && writable) {
1116 struct page *wpage[1];
1117
1118 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1119 if (npages == 1) {
1120 *writable = true;
1121 put_page(page[0]);
1122 page[0] = wpage[0];
1123 }
1124
1125 npages = 1;
1126 }
1127 *pfn = page_to_pfn(page[0]);
1128 return npages;
1129 }
1130
1131 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1132 {
1133 if (unlikely(!(vma->vm_flags & VM_READ)))
1134 return false;
1135
1136 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1137 return false;
1138
1139 return true;
1140 }
1141
1142 /*
1143 * Pin guest page in memory and return its pfn.
1144 * @addr: host virtual address which maps memory to the guest
1145 * @atomic: whether this function can sleep
1146 * @async: whether this function need to wait IO complete if the
1147 * host page is not in the memory
1148 * @write_fault: whether we should get a writable host page
1149 * @writable: whether it allows to map a writable host page for !@write_fault
1150 *
1151 * The function will map a writable host page for these two cases:
1152 * 1): @write_fault = true
1153 * 2): @write_fault = false && @writable, @writable will tell the caller
1154 * whether the mapping is writable.
1155 */
1156 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1157 bool write_fault, bool *writable)
1158 {
1159 struct vm_area_struct *vma;
1160 pfn_t pfn = 0;
1161 int npages;
1162
1163 /* we can do it either atomically or asynchronously, not both */
1164 BUG_ON(atomic && async);
1165
1166 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1167 return pfn;
1168
1169 if (atomic)
1170 return KVM_PFN_ERR_FAULT;
1171
1172 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1173 if (npages == 1)
1174 return pfn;
1175
1176 down_read(&current->mm->mmap_sem);
1177 if (npages == -EHWPOISON ||
1178 (!async && check_user_page_hwpoison(addr))) {
1179 pfn = KVM_PFN_ERR_HWPOISON;
1180 goto exit;
1181 }
1182
1183 vma = find_vma_intersection(current->mm, addr, addr + 1);
1184
1185 if (vma == NULL)
1186 pfn = KVM_PFN_ERR_FAULT;
1187 else if ((vma->vm_flags & VM_PFNMAP)) {
1188 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1189 vma->vm_pgoff;
1190 BUG_ON(!kvm_is_mmio_pfn(pfn));
1191 } else {
1192 if (async && vma_is_valid(vma, write_fault))
1193 *async = true;
1194 pfn = KVM_PFN_ERR_FAULT;
1195 }
1196 exit:
1197 up_read(&current->mm->mmap_sem);
1198 return pfn;
1199 }
1200
1201 static pfn_t
1202 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1203 bool *async, bool write_fault, bool *writable)
1204 {
1205 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1206
1207 if (addr == KVM_HVA_ERR_RO_BAD)
1208 return KVM_PFN_ERR_RO_FAULT;
1209
1210 if (kvm_is_error_hva(addr))
1211 return KVM_PFN_ERR_BAD;
1212
1213 /* Do not map writable pfn in the readonly memslot. */
1214 if (writable && memslot_is_readonly(slot)) {
1215 *writable = false;
1216 writable = NULL;
1217 }
1218
1219 return hva_to_pfn(addr, atomic, async, write_fault,
1220 writable);
1221 }
1222
1223 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1224 bool write_fault, bool *writable)
1225 {
1226 struct kvm_memory_slot *slot;
1227
1228 if (async)
1229 *async = false;
1230
1231 slot = gfn_to_memslot(kvm, gfn);
1232
1233 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1234 writable);
1235 }
1236
1237 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1238 {
1239 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1240 }
1241 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1242
1243 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1244 bool write_fault, bool *writable)
1245 {
1246 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1247 }
1248 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1249
1250 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1251 {
1252 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1253 }
1254 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1255
1256 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1257 bool *writable)
1258 {
1259 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1260 }
1261 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1262
1263 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1264 {
1265 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1266 }
1267
1268 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1269 {
1270 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1271 }
1272 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1273
1274 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1275 int nr_pages)
1276 {
1277 unsigned long addr;
1278 gfn_t entry;
1279
1280 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1281 if (kvm_is_error_hva(addr))
1282 return -1;
1283
1284 if (entry < nr_pages)
1285 return 0;
1286
1287 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1288 }
1289 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1290
1291 static struct page *kvm_pfn_to_page(pfn_t pfn)
1292 {
1293 if (is_error_pfn(pfn))
1294 return KVM_ERR_PTR_BAD_PAGE;
1295
1296 if (kvm_is_mmio_pfn(pfn)) {
1297 WARN_ON(1);
1298 return KVM_ERR_PTR_BAD_PAGE;
1299 }
1300
1301 return pfn_to_page(pfn);
1302 }
1303
1304 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1305 {
1306 pfn_t pfn;
1307
1308 pfn = gfn_to_pfn(kvm, gfn);
1309
1310 return kvm_pfn_to_page(pfn);
1311 }
1312
1313 EXPORT_SYMBOL_GPL(gfn_to_page);
1314
1315 void kvm_release_page_clean(struct page *page)
1316 {
1317 WARN_ON(is_error_page(page));
1318
1319 kvm_release_pfn_clean(page_to_pfn(page));
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1322
1323 void kvm_release_pfn_clean(pfn_t pfn)
1324 {
1325 WARN_ON(is_error_pfn(pfn));
1326
1327 if (!kvm_is_mmio_pfn(pfn))
1328 put_page(pfn_to_page(pfn));
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1331
1332 void kvm_release_page_dirty(struct page *page)
1333 {
1334 WARN_ON(is_error_page(page));
1335
1336 kvm_release_pfn_dirty(page_to_pfn(page));
1337 }
1338 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1339
1340 void kvm_release_pfn_dirty(pfn_t pfn)
1341 {
1342 kvm_set_pfn_dirty(pfn);
1343 kvm_release_pfn_clean(pfn);
1344 }
1345 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1346
1347 void kvm_set_page_dirty(struct page *page)
1348 {
1349 kvm_set_pfn_dirty(page_to_pfn(page));
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1352
1353 void kvm_set_pfn_dirty(pfn_t pfn)
1354 {
1355 if (!kvm_is_mmio_pfn(pfn)) {
1356 struct page *page = pfn_to_page(pfn);
1357 if (!PageReserved(page))
1358 SetPageDirty(page);
1359 }
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1362
1363 void kvm_set_pfn_accessed(pfn_t pfn)
1364 {
1365 if (!kvm_is_mmio_pfn(pfn))
1366 mark_page_accessed(pfn_to_page(pfn));
1367 }
1368 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1369
1370 void kvm_get_pfn(pfn_t pfn)
1371 {
1372 if (!kvm_is_mmio_pfn(pfn))
1373 get_page(pfn_to_page(pfn));
1374 }
1375 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1376
1377 static int next_segment(unsigned long len, int offset)
1378 {
1379 if (len > PAGE_SIZE - offset)
1380 return PAGE_SIZE - offset;
1381 else
1382 return len;
1383 }
1384
1385 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1386 int len)
1387 {
1388 int r;
1389 unsigned long addr;
1390
1391 addr = gfn_to_hva_read(kvm, gfn);
1392 if (kvm_is_error_hva(addr))
1393 return -EFAULT;
1394 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1395 if (r)
1396 return -EFAULT;
1397 return 0;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1400
1401 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1402 {
1403 gfn_t gfn = gpa >> PAGE_SHIFT;
1404 int seg;
1405 int offset = offset_in_page(gpa);
1406 int ret;
1407
1408 while ((seg = next_segment(len, offset)) != 0) {
1409 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1410 if (ret < 0)
1411 return ret;
1412 offset = 0;
1413 len -= seg;
1414 data += seg;
1415 ++gfn;
1416 }
1417 return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_read_guest);
1420
1421 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1422 unsigned long len)
1423 {
1424 int r;
1425 unsigned long addr;
1426 gfn_t gfn = gpa >> PAGE_SHIFT;
1427 int offset = offset_in_page(gpa);
1428
1429 addr = gfn_to_hva_read(kvm, gfn);
1430 if (kvm_is_error_hva(addr))
1431 return -EFAULT;
1432 pagefault_disable();
1433 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1434 pagefault_enable();
1435 if (r)
1436 return -EFAULT;
1437 return 0;
1438 }
1439 EXPORT_SYMBOL(kvm_read_guest_atomic);
1440
1441 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1442 int offset, int len)
1443 {
1444 int r;
1445 unsigned long addr;
1446
1447 addr = gfn_to_hva(kvm, gfn);
1448 if (kvm_is_error_hva(addr))
1449 return -EFAULT;
1450 r = __copy_to_user((void __user *)addr + offset, data, len);
1451 if (r)
1452 return -EFAULT;
1453 mark_page_dirty(kvm, gfn);
1454 return 0;
1455 }
1456 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1457
1458 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1459 unsigned long len)
1460 {
1461 gfn_t gfn = gpa >> PAGE_SHIFT;
1462 int seg;
1463 int offset = offset_in_page(gpa);
1464 int ret;
1465
1466 while ((seg = next_segment(len, offset)) != 0) {
1467 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1468 if (ret < 0)
1469 return ret;
1470 offset = 0;
1471 len -= seg;
1472 data += seg;
1473 ++gfn;
1474 }
1475 return 0;
1476 }
1477
1478 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1479 gpa_t gpa)
1480 {
1481 struct kvm_memslots *slots = kvm_memslots(kvm);
1482 int offset = offset_in_page(gpa);
1483 gfn_t gfn = gpa >> PAGE_SHIFT;
1484
1485 ghc->gpa = gpa;
1486 ghc->generation = slots->generation;
1487 ghc->memslot = gfn_to_memslot(kvm, gfn);
1488 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1489 if (!kvm_is_error_hva(ghc->hva))
1490 ghc->hva += offset;
1491 else
1492 return -EFAULT;
1493
1494 return 0;
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1497
1498 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1499 void *data, unsigned long len)
1500 {
1501 struct kvm_memslots *slots = kvm_memslots(kvm);
1502 int r;
1503
1504 if (slots->generation != ghc->generation)
1505 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1506
1507 if (kvm_is_error_hva(ghc->hva))
1508 return -EFAULT;
1509
1510 r = __copy_to_user((void __user *)ghc->hva, data, len);
1511 if (r)
1512 return -EFAULT;
1513 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1514
1515 return 0;
1516 }
1517 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1518
1519 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1520 void *data, unsigned long len)
1521 {
1522 struct kvm_memslots *slots = kvm_memslots(kvm);
1523 int r;
1524
1525 if (slots->generation != ghc->generation)
1526 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1527
1528 if (kvm_is_error_hva(ghc->hva))
1529 return -EFAULT;
1530
1531 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1532 if (r)
1533 return -EFAULT;
1534
1535 return 0;
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1538
1539 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1540 {
1541 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1542 offset, len);
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1545
1546 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1547 {
1548 gfn_t gfn = gpa >> PAGE_SHIFT;
1549 int seg;
1550 int offset = offset_in_page(gpa);
1551 int ret;
1552
1553 while ((seg = next_segment(len, offset)) != 0) {
1554 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1555 if (ret < 0)
1556 return ret;
1557 offset = 0;
1558 len -= seg;
1559 ++gfn;
1560 }
1561 return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1564
1565 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1566 gfn_t gfn)
1567 {
1568 if (memslot && memslot->dirty_bitmap) {
1569 unsigned long rel_gfn = gfn - memslot->base_gfn;
1570
1571 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1572 }
1573 }
1574
1575 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1576 {
1577 struct kvm_memory_slot *memslot;
1578
1579 memslot = gfn_to_memslot(kvm, gfn);
1580 mark_page_dirty_in_slot(kvm, memslot, gfn);
1581 }
1582
1583 /*
1584 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1585 */
1586 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1587 {
1588 DEFINE_WAIT(wait);
1589
1590 for (;;) {
1591 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1592
1593 if (kvm_arch_vcpu_runnable(vcpu)) {
1594 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1595 break;
1596 }
1597 if (kvm_cpu_has_pending_timer(vcpu))
1598 break;
1599 if (signal_pending(current))
1600 break;
1601
1602 schedule();
1603 }
1604
1605 finish_wait(&vcpu->wq, &wait);
1606 }
1607
1608 #ifndef CONFIG_S390
1609 /*
1610 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1611 */
1612 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1613 {
1614 int me;
1615 int cpu = vcpu->cpu;
1616 wait_queue_head_t *wqp;
1617
1618 wqp = kvm_arch_vcpu_wq(vcpu);
1619 if (waitqueue_active(wqp)) {
1620 wake_up_interruptible(wqp);
1621 ++vcpu->stat.halt_wakeup;
1622 }
1623
1624 me = get_cpu();
1625 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1626 if (kvm_arch_vcpu_should_kick(vcpu))
1627 smp_send_reschedule(cpu);
1628 put_cpu();
1629 }
1630 #endif /* !CONFIG_S390 */
1631
1632 void kvm_resched(struct kvm_vcpu *vcpu)
1633 {
1634 if (!need_resched())
1635 return;
1636 cond_resched();
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_resched);
1639
1640 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1641 {
1642 struct pid *pid;
1643 struct task_struct *task = NULL;
1644
1645 rcu_read_lock();
1646 pid = rcu_dereference(target->pid);
1647 if (pid)
1648 task = get_pid_task(target->pid, PIDTYPE_PID);
1649 rcu_read_unlock();
1650 if (!task)
1651 return false;
1652 if (task->flags & PF_VCPU) {
1653 put_task_struct(task);
1654 return false;
1655 }
1656 if (yield_to(task, 1)) {
1657 put_task_struct(task);
1658 return true;
1659 }
1660 put_task_struct(task);
1661 return false;
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1664
1665 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1666 /*
1667 * Helper that checks whether a VCPU is eligible for directed yield.
1668 * Most eligible candidate to yield is decided by following heuristics:
1669 *
1670 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1671 * (preempted lock holder), indicated by @in_spin_loop.
1672 * Set at the beiginning and cleared at the end of interception/PLE handler.
1673 *
1674 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1675 * chance last time (mostly it has become eligible now since we have probably
1676 * yielded to lockholder in last iteration. This is done by toggling
1677 * @dy_eligible each time a VCPU checked for eligibility.)
1678 *
1679 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1680 * to preempted lock-holder could result in wrong VCPU selection and CPU
1681 * burning. Giving priority for a potential lock-holder increases lock
1682 * progress.
1683 *
1684 * Since algorithm is based on heuristics, accessing another VCPU data without
1685 * locking does not harm. It may result in trying to yield to same VCPU, fail
1686 * and continue with next VCPU and so on.
1687 */
1688 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1689 {
1690 bool eligible;
1691
1692 eligible = !vcpu->spin_loop.in_spin_loop ||
1693 (vcpu->spin_loop.in_spin_loop &&
1694 vcpu->spin_loop.dy_eligible);
1695
1696 if (vcpu->spin_loop.in_spin_loop)
1697 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1698
1699 return eligible;
1700 }
1701 #endif
1702 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1703 {
1704 struct kvm *kvm = me->kvm;
1705 struct kvm_vcpu *vcpu;
1706 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1707 int yielded = 0;
1708 int pass;
1709 int i;
1710
1711 kvm_vcpu_set_in_spin_loop(me, true);
1712 /*
1713 * We boost the priority of a VCPU that is runnable but not
1714 * currently running, because it got preempted by something
1715 * else and called schedule in __vcpu_run. Hopefully that
1716 * VCPU is holding the lock that we need and will release it.
1717 * We approximate round-robin by starting at the last boosted VCPU.
1718 */
1719 for (pass = 0; pass < 2 && !yielded; pass++) {
1720 kvm_for_each_vcpu(i, vcpu, kvm) {
1721 if (!pass && i <= last_boosted_vcpu) {
1722 i = last_boosted_vcpu;
1723 continue;
1724 } else if (pass && i > last_boosted_vcpu)
1725 break;
1726 if (vcpu == me)
1727 continue;
1728 if (waitqueue_active(&vcpu->wq))
1729 continue;
1730 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1731 continue;
1732 if (kvm_vcpu_yield_to(vcpu)) {
1733 kvm->last_boosted_vcpu = i;
1734 yielded = 1;
1735 break;
1736 }
1737 }
1738 }
1739 kvm_vcpu_set_in_spin_loop(me, false);
1740
1741 /* Ensure vcpu is not eligible during next spinloop */
1742 kvm_vcpu_set_dy_eligible(me, false);
1743 }
1744 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1745
1746 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1747 {
1748 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1749 struct page *page;
1750
1751 if (vmf->pgoff == 0)
1752 page = virt_to_page(vcpu->run);
1753 #ifdef CONFIG_X86
1754 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1755 page = virt_to_page(vcpu->arch.pio_data);
1756 #endif
1757 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1758 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1759 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1760 #endif
1761 else
1762 return kvm_arch_vcpu_fault(vcpu, vmf);
1763 get_page(page);
1764 vmf->page = page;
1765 return 0;
1766 }
1767
1768 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1769 .fault = kvm_vcpu_fault,
1770 };
1771
1772 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1773 {
1774 vma->vm_ops = &kvm_vcpu_vm_ops;
1775 return 0;
1776 }
1777
1778 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1779 {
1780 struct kvm_vcpu *vcpu = filp->private_data;
1781
1782 kvm_put_kvm(vcpu->kvm);
1783 return 0;
1784 }
1785
1786 static struct file_operations kvm_vcpu_fops = {
1787 .release = kvm_vcpu_release,
1788 .unlocked_ioctl = kvm_vcpu_ioctl,
1789 #ifdef CONFIG_COMPAT
1790 .compat_ioctl = kvm_vcpu_compat_ioctl,
1791 #endif
1792 .mmap = kvm_vcpu_mmap,
1793 .llseek = noop_llseek,
1794 };
1795
1796 /*
1797 * Allocates an inode for the vcpu.
1798 */
1799 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1800 {
1801 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1802 }
1803
1804 /*
1805 * Creates some virtual cpus. Good luck creating more than one.
1806 */
1807 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1808 {
1809 int r;
1810 struct kvm_vcpu *vcpu, *v;
1811
1812 vcpu = kvm_arch_vcpu_create(kvm, id);
1813 if (IS_ERR(vcpu))
1814 return PTR_ERR(vcpu);
1815
1816 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1817
1818 r = kvm_arch_vcpu_setup(vcpu);
1819 if (r)
1820 goto vcpu_destroy;
1821
1822 mutex_lock(&kvm->lock);
1823 if (!kvm_vcpu_compatible(vcpu)) {
1824 r = -EINVAL;
1825 goto unlock_vcpu_destroy;
1826 }
1827 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1828 r = -EINVAL;
1829 goto unlock_vcpu_destroy;
1830 }
1831
1832 kvm_for_each_vcpu(r, v, kvm)
1833 if (v->vcpu_id == id) {
1834 r = -EEXIST;
1835 goto unlock_vcpu_destroy;
1836 }
1837
1838 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1839
1840 /* Now it's all set up, let userspace reach it */
1841 kvm_get_kvm(kvm);
1842 r = create_vcpu_fd(vcpu);
1843 if (r < 0) {
1844 kvm_put_kvm(kvm);
1845 goto unlock_vcpu_destroy;
1846 }
1847
1848 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1849 smp_wmb();
1850 atomic_inc(&kvm->online_vcpus);
1851
1852 mutex_unlock(&kvm->lock);
1853 return r;
1854
1855 unlock_vcpu_destroy:
1856 mutex_unlock(&kvm->lock);
1857 vcpu_destroy:
1858 kvm_arch_vcpu_destroy(vcpu);
1859 return r;
1860 }
1861
1862 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1863 {
1864 if (sigset) {
1865 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1866 vcpu->sigset_active = 1;
1867 vcpu->sigset = *sigset;
1868 } else
1869 vcpu->sigset_active = 0;
1870 return 0;
1871 }
1872
1873 static long kvm_vcpu_ioctl(struct file *filp,
1874 unsigned int ioctl, unsigned long arg)
1875 {
1876 struct kvm_vcpu *vcpu = filp->private_data;
1877 void __user *argp = (void __user *)arg;
1878 int r;
1879 struct kvm_fpu *fpu = NULL;
1880 struct kvm_sregs *kvm_sregs = NULL;
1881
1882 if (vcpu->kvm->mm != current->mm)
1883 return -EIO;
1884
1885 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1886 /*
1887 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1888 * so vcpu_load() would break it.
1889 */
1890 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1891 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1892 #endif
1893
1894
1895 r = vcpu_load(vcpu);
1896 if (r)
1897 return r;
1898 switch (ioctl) {
1899 case KVM_RUN:
1900 r = -EINVAL;
1901 if (arg)
1902 goto out;
1903 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1904 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1905 break;
1906 case KVM_GET_REGS: {
1907 struct kvm_regs *kvm_regs;
1908
1909 r = -ENOMEM;
1910 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1911 if (!kvm_regs)
1912 goto out;
1913 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1914 if (r)
1915 goto out_free1;
1916 r = -EFAULT;
1917 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1918 goto out_free1;
1919 r = 0;
1920 out_free1:
1921 kfree(kvm_regs);
1922 break;
1923 }
1924 case KVM_SET_REGS: {
1925 struct kvm_regs *kvm_regs;
1926
1927 r = -ENOMEM;
1928 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1929 if (IS_ERR(kvm_regs)) {
1930 r = PTR_ERR(kvm_regs);
1931 goto out;
1932 }
1933 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1934 if (r)
1935 goto out_free2;
1936 r = 0;
1937 out_free2:
1938 kfree(kvm_regs);
1939 break;
1940 }
1941 case KVM_GET_SREGS: {
1942 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1943 r = -ENOMEM;
1944 if (!kvm_sregs)
1945 goto out;
1946 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1947 if (r)
1948 goto out;
1949 r = -EFAULT;
1950 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1951 goto out;
1952 r = 0;
1953 break;
1954 }
1955 case KVM_SET_SREGS: {
1956 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1957 if (IS_ERR(kvm_sregs)) {
1958 r = PTR_ERR(kvm_sregs);
1959 goto out;
1960 }
1961 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1962 if (r)
1963 goto out;
1964 r = 0;
1965 break;
1966 }
1967 case KVM_GET_MP_STATE: {
1968 struct kvm_mp_state mp_state;
1969
1970 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1971 if (r)
1972 goto out;
1973 r = -EFAULT;
1974 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1975 goto out;
1976 r = 0;
1977 break;
1978 }
1979 case KVM_SET_MP_STATE: {
1980 struct kvm_mp_state mp_state;
1981
1982 r = -EFAULT;
1983 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1984 goto out;
1985 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1986 if (r)
1987 goto out;
1988 r = 0;
1989 break;
1990 }
1991 case KVM_TRANSLATE: {
1992 struct kvm_translation tr;
1993
1994 r = -EFAULT;
1995 if (copy_from_user(&tr, argp, sizeof tr))
1996 goto out;
1997 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1998 if (r)
1999 goto out;
2000 r = -EFAULT;
2001 if (copy_to_user(argp, &tr, sizeof tr))
2002 goto out;
2003 r = 0;
2004 break;
2005 }
2006 case KVM_SET_GUEST_DEBUG: {
2007 struct kvm_guest_debug dbg;
2008
2009 r = -EFAULT;
2010 if (copy_from_user(&dbg, argp, sizeof dbg))
2011 goto out;
2012 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2013 if (r)
2014 goto out;
2015 r = 0;
2016 break;
2017 }
2018 case KVM_SET_SIGNAL_MASK: {
2019 struct kvm_signal_mask __user *sigmask_arg = argp;
2020 struct kvm_signal_mask kvm_sigmask;
2021 sigset_t sigset, *p;
2022
2023 p = NULL;
2024 if (argp) {
2025 r = -EFAULT;
2026 if (copy_from_user(&kvm_sigmask, argp,
2027 sizeof kvm_sigmask))
2028 goto out;
2029 r = -EINVAL;
2030 if (kvm_sigmask.len != sizeof sigset)
2031 goto out;
2032 r = -EFAULT;
2033 if (copy_from_user(&sigset, sigmask_arg->sigset,
2034 sizeof sigset))
2035 goto out;
2036 p = &sigset;
2037 }
2038 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2039 break;
2040 }
2041 case KVM_GET_FPU: {
2042 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2043 r = -ENOMEM;
2044 if (!fpu)
2045 goto out;
2046 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2047 if (r)
2048 goto out;
2049 r = -EFAULT;
2050 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2051 goto out;
2052 r = 0;
2053 break;
2054 }
2055 case KVM_SET_FPU: {
2056 fpu = memdup_user(argp, sizeof(*fpu));
2057 if (IS_ERR(fpu)) {
2058 r = PTR_ERR(fpu);
2059 goto out;
2060 }
2061 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2062 if (r)
2063 goto out;
2064 r = 0;
2065 break;
2066 }
2067 default:
2068 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2069 }
2070 out:
2071 vcpu_put(vcpu);
2072 kfree(fpu);
2073 kfree(kvm_sregs);
2074 return r;
2075 }
2076
2077 #ifdef CONFIG_COMPAT
2078 static long kvm_vcpu_compat_ioctl(struct file *filp,
2079 unsigned int ioctl, unsigned long arg)
2080 {
2081 struct kvm_vcpu *vcpu = filp->private_data;
2082 void __user *argp = compat_ptr(arg);
2083 int r;
2084
2085 if (vcpu->kvm->mm != current->mm)
2086 return -EIO;
2087
2088 switch (ioctl) {
2089 case KVM_SET_SIGNAL_MASK: {
2090 struct kvm_signal_mask __user *sigmask_arg = argp;
2091 struct kvm_signal_mask kvm_sigmask;
2092 compat_sigset_t csigset;
2093 sigset_t sigset;
2094
2095 if (argp) {
2096 r = -EFAULT;
2097 if (copy_from_user(&kvm_sigmask, argp,
2098 sizeof kvm_sigmask))
2099 goto out;
2100 r = -EINVAL;
2101 if (kvm_sigmask.len != sizeof csigset)
2102 goto out;
2103 r = -EFAULT;
2104 if (copy_from_user(&csigset, sigmask_arg->sigset,
2105 sizeof csigset))
2106 goto out;
2107 sigset_from_compat(&sigset, &csigset);
2108 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2109 } else
2110 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2111 break;
2112 }
2113 default:
2114 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2115 }
2116
2117 out:
2118 return r;
2119 }
2120 #endif
2121
2122 static long kvm_vm_ioctl(struct file *filp,
2123 unsigned int ioctl, unsigned long arg)
2124 {
2125 struct kvm *kvm = filp->private_data;
2126 void __user *argp = (void __user *)arg;
2127 int r;
2128
2129 if (kvm->mm != current->mm)
2130 return -EIO;
2131 switch (ioctl) {
2132 case KVM_CREATE_VCPU:
2133 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2134 if (r < 0)
2135 goto out;
2136 break;
2137 case KVM_SET_USER_MEMORY_REGION: {
2138 struct kvm_userspace_memory_region kvm_userspace_mem;
2139
2140 r = -EFAULT;
2141 if (copy_from_user(&kvm_userspace_mem, argp,
2142 sizeof kvm_userspace_mem))
2143 goto out;
2144
2145 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2146 if (r)
2147 goto out;
2148 break;
2149 }
2150 case KVM_GET_DIRTY_LOG: {
2151 struct kvm_dirty_log log;
2152
2153 r = -EFAULT;
2154 if (copy_from_user(&log, argp, sizeof log))
2155 goto out;
2156 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2157 if (r)
2158 goto out;
2159 break;
2160 }
2161 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2162 case KVM_REGISTER_COALESCED_MMIO: {
2163 struct kvm_coalesced_mmio_zone zone;
2164 r = -EFAULT;
2165 if (copy_from_user(&zone, argp, sizeof zone))
2166 goto out;
2167 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2168 if (r)
2169 goto out;
2170 r = 0;
2171 break;
2172 }
2173 case KVM_UNREGISTER_COALESCED_MMIO: {
2174 struct kvm_coalesced_mmio_zone zone;
2175 r = -EFAULT;
2176 if (copy_from_user(&zone, argp, sizeof zone))
2177 goto out;
2178 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2179 if (r)
2180 goto out;
2181 r = 0;
2182 break;
2183 }
2184 #endif
2185 case KVM_IRQFD: {
2186 struct kvm_irqfd data;
2187
2188 r = -EFAULT;
2189 if (copy_from_user(&data, argp, sizeof data))
2190 goto out;
2191 r = kvm_irqfd(kvm, &data);
2192 break;
2193 }
2194 case KVM_IOEVENTFD: {
2195 struct kvm_ioeventfd data;
2196
2197 r = -EFAULT;
2198 if (copy_from_user(&data, argp, sizeof data))
2199 goto out;
2200 r = kvm_ioeventfd(kvm, &data);
2201 break;
2202 }
2203 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2204 case KVM_SET_BOOT_CPU_ID:
2205 r = 0;
2206 mutex_lock(&kvm->lock);
2207 if (atomic_read(&kvm->online_vcpus) != 0)
2208 r = -EBUSY;
2209 else
2210 kvm->bsp_vcpu_id = arg;
2211 mutex_unlock(&kvm->lock);
2212 break;
2213 #endif
2214 #ifdef CONFIG_HAVE_KVM_MSI
2215 case KVM_SIGNAL_MSI: {
2216 struct kvm_msi msi;
2217
2218 r = -EFAULT;
2219 if (copy_from_user(&msi, argp, sizeof msi))
2220 goto out;
2221 r = kvm_send_userspace_msi(kvm, &msi);
2222 break;
2223 }
2224 #endif
2225 #ifdef __KVM_HAVE_IRQ_LINE
2226 case KVM_IRQ_LINE_STATUS:
2227 case KVM_IRQ_LINE: {
2228 struct kvm_irq_level irq_event;
2229
2230 r = -EFAULT;
2231 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2232 goto out;
2233
2234 r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2235 if (r)
2236 goto out;
2237
2238 r = -EFAULT;
2239 if (ioctl == KVM_IRQ_LINE_STATUS) {
2240 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2241 goto out;
2242 }
2243
2244 r = 0;
2245 break;
2246 }
2247 #endif
2248 default:
2249 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2250 if (r == -ENOTTY)
2251 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2252 }
2253 out:
2254 return r;
2255 }
2256
2257 #ifdef CONFIG_COMPAT
2258 struct compat_kvm_dirty_log {
2259 __u32 slot;
2260 __u32 padding1;
2261 union {
2262 compat_uptr_t dirty_bitmap; /* one bit per page */
2263 __u64 padding2;
2264 };
2265 };
2266
2267 static long kvm_vm_compat_ioctl(struct file *filp,
2268 unsigned int ioctl, unsigned long arg)
2269 {
2270 struct kvm *kvm = filp->private_data;
2271 int r;
2272
2273 if (kvm->mm != current->mm)
2274 return -EIO;
2275 switch (ioctl) {
2276 case KVM_GET_DIRTY_LOG: {
2277 struct compat_kvm_dirty_log compat_log;
2278 struct kvm_dirty_log log;
2279
2280 r = -EFAULT;
2281 if (copy_from_user(&compat_log, (void __user *)arg,
2282 sizeof(compat_log)))
2283 goto out;
2284 log.slot = compat_log.slot;
2285 log.padding1 = compat_log.padding1;
2286 log.padding2 = compat_log.padding2;
2287 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2288
2289 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2290 if (r)
2291 goto out;
2292 break;
2293 }
2294 default:
2295 r = kvm_vm_ioctl(filp, ioctl, arg);
2296 }
2297
2298 out:
2299 return r;
2300 }
2301 #endif
2302
2303 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2304 {
2305 struct page *page[1];
2306 unsigned long addr;
2307 int npages;
2308 gfn_t gfn = vmf->pgoff;
2309 struct kvm *kvm = vma->vm_file->private_data;
2310
2311 addr = gfn_to_hva(kvm, gfn);
2312 if (kvm_is_error_hva(addr))
2313 return VM_FAULT_SIGBUS;
2314
2315 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2316 NULL);
2317 if (unlikely(npages != 1))
2318 return VM_FAULT_SIGBUS;
2319
2320 vmf->page = page[0];
2321 return 0;
2322 }
2323
2324 static const struct vm_operations_struct kvm_vm_vm_ops = {
2325 .fault = kvm_vm_fault,
2326 };
2327
2328 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2329 {
2330 vma->vm_ops = &kvm_vm_vm_ops;
2331 return 0;
2332 }
2333
2334 static struct file_operations kvm_vm_fops = {
2335 .release = kvm_vm_release,
2336 .unlocked_ioctl = kvm_vm_ioctl,
2337 #ifdef CONFIG_COMPAT
2338 .compat_ioctl = kvm_vm_compat_ioctl,
2339 #endif
2340 .mmap = kvm_vm_mmap,
2341 .llseek = noop_llseek,
2342 };
2343
2344 static int kvm_dev_ioctl_create_vm(unsigned long type)
2345 {
2346 int r;
2347 struct kvm *kvm;
2348
2349 kvm = kvm_create_vm(type);
2350 if (IS_ERR(kvm))
2351 return PTR_ERR(kvm);
2352 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2353 r = kvm_coalesced_mmio_init(kvm);
2354 if (r < 0) {
2355 kvm_put_kvm(kvm);
2356 return r;
2357 }
2358 #endif
2359 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2360 if (r < 0)
2361 kvm_put_kvm(kvm);
2362
2363 return r;
2364 }
2365
2366 static long kvm_dev_ioctl_check_extension_generic(long arg)
2367 {
2368 switch (arg) {
2369 case KVM_CAP_USER_MEMORY:
2370 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2371 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2372 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2373 case KVM_CAP_SET_BOOT_CPU_ID:
2374 #endif
2375 case KVM_CAP_INTERNAL_ERROR_DATA:
2376 #ifdef CONFIG_HAVE_KVM_MSI
2377 case KVM_CAP_SIGNAL_MSI:
2378 #endif
2379 return 1;
2380 #ifdef KVM_CAP_IRQ_ROUTING
2381 case KVM_CAP_IRQ_ROUTING:
2382 return KVM_MAX_IRQ_ROUTES;
2383 #endif
2384 default:
2385 break;
2386 }
2387 return kvm_dev_ioctl_check_extension(arg);
2388 }
2389
2390 static long kvm_dev_ioctl(struct file *filp,
2391 unsigned int ioctl, unsigned long arg)
2392 {
2393 long r = -EINVAL;
2394
2395 switch (ioctl) {
2396 case KVM_GET_API_VERSION:
2397 r = -EINVAL;
2398 if (arg)
2399 goto out;
2400 r = KVM_API_VERSION;
2401 break;
2402 case KVM_CREATE_VM:
2403 r = kvm_dev_ioctl_create_vm(arg);
2404 break;
2405 case KVM_CHECK_EXTENSION:
2406 r = kvm_dev_ioctl_check_extension_generic(arg);
2407 break;
2408 case KVM_GET_VCPU_MMAP_SIZE:
2409 r = -EINVAL;
2410 if (arg)
2411 goto out;
2412 r = PAGE_SIZE; /* struct kvm_run */
2413 #ifdef CONFIG_X86
2414 r += PAGE_SIZE; /* pio data page */
2415 #endif
2416 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2417 r += PAGE_SIZE; /* coalesced mmio ring page */
2418 #endif
2419 break;
2420 case KVM_TRACE_ENABLE:
2421 case KVM_TRACE_PAUSE:
2422 case KVM_TRACE_DISABLE:
2423 r = -EOPNOTSUPP;
2424 break;
2425 default:
2426 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2427 }
2428 out:
2429 return r;
2430 }
2431
2432 static struct file_operations kvm_chardev_ops = {
2433 .unlocked_ioctl = kvm_dev_ioctl,
2434 .compat_ioctl = kvm_dev_ioctl,
2435 .llseek = noop_llseek,
2436 };
2437
2438 static struct miscdevice kvm_dev = {
2439 KVM_MINOR,
2440 "kvm",
2441 &kvm_chardev_ops,
2442 };
2443
2444 static void hardware_enable_nolock(void *junk)
2445 {
2446 int cpu = raw_smp_processor_id();
2447 int r;
2448
2449 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2450 return;
2451
2452 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2453
2454 r = kvm_arch_hardware_enable(NULL);
2455
2456 if (r) {
2457 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2458 atomic_inc(&hardware_enable_failed);
2459 printk(KERN_INFO "kvm: enabling virtualization on "
2460 "CPU%d failed\n", cpu);
2461 }
2462 }
2463
2464 static void hardware_enable(void *junk)
2465 {
2466 raw_spin_lock(&kvm_lock);
2467 hardware_enable_nolock(junk);
2468 raw_spin_unlock(&kvm_lock);
2469 }
2470
2471 static void hardware_disable_nolock(void *junk)
2472 {
2473 int cpu = raw_smp_processor_id();
2474
2475 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2476 return;
2477 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2478 kvm_arch_hardware_disable(NULL);
2479 }
2480
2481 static void hardware_disable(void *junk)
2482 {
2483 raw_spin_lock(&kvm_lock);
2484 hardware_disable_nolock(junk);
2485 raw_spin_unlock(&kvm_lock);
2486 }
2487
2488 static void hardware_disable_all_nolock(void)
2489 {
2490 BUG_ON(!kvm_usage_count);
2491
2492 kvm_usage_count--;
2493 if (!kvm_usage_count)
2494 on_each_cpu(hardware_disable_nolock, NULL, 1);
2495 }
2496
2497 static void hardware_disable_all(void)
2498 {
2499 raw_spin_lock(&kvm_lock);
2500 hardware_disable_all_nolock();
2501 raw_spin_unlock(&kvm_lock);
2502 }
2503
2504 static int hardware_enable_all(void)
2505 {
2506 int r = 0;
2507
2508 raw_spin_lock(&kvm_lock);
2509
2510 kvm_usage_count++;
2511 if (kvm_usage_count == 1) {
2512 atomic_set(&hardware_enable_failed, 0);
2513 on_each_cpu(hardware_enable_nolock, NULL, 1);
2514
2515 if (atomic_read(&hardware_enable_failed)) {
2516 hardware_disable_all_nolock();
2517 r = -EBUSY;
2518 }
2519 }
2520
2521 raw_spin_unlock(&kvm_lock);
2522
2523 return r;
2524 }
2525
2526 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2527 void *v)
2528 {
2529 int cpu = (long)v;
2530
2531 if (!kvm_usage_count)
2532 return NOTIFY_OK;
2533
2534 val &= ~CPU_TASKS_FROZEN;
2535 switch (val) {
2536 case CPU_DYING:
2537 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2538 cpu);
2539 hardware_disable(NULL);
2540 break;
2541 case CPU_STARTING:
2542 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2543 cpu);
2544 hardware_enable(NULL);
2545 break;
2546 }
2547 return NOTIFY_OK;
2548 }
2549
2550
2551 asmlinkage void kvm_spurious_fault(void)
2552 {
2553 /* Fault while not rebooting. We want the trace. */
2554 BUG();
2555 }
2556 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2557
2558 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2559 void *v)
2560 {
2561 /*
2562 * Some (well, at least mine) BIOSes hang on reboot if
2563 * in vmx root mode.
2564 *
2565 * And Intel TXT required VMX off for all cpu when system shutdown.
2566 */
2567 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2568 kvm_rebooting = true;
2569 on_each_cpu(hardware_disable_nolock, NULL, 1);
2570 return NOTIFY_OK;
2571 }
2572
2573 static struct notifier_block kvm_reboot_notifier = {
2574 .notifier_call = kvm_reboot,
2575 .priority = 0,
2576 };
2577
2578 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2579 {
2580 int i;
2581
2582 for (i = 0; i < bus->dev_count; i++) {
2583 struct kvm_io_device *pos = bus->range[i].dev;
2584
2585 kvm_iodevice_destructor(pos);
2586 }
2587 kfree(bus);
2588 }
2589
2590 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2591 {
2592 const struct kvm_io_range *r1 = p1;
2593 const struct kvm_io_range *r2 = p2;
2594
2595 if (r1->addr < r2->addr)
2596 return -1;
2597 if (r1->addr + r1->len > r2->addr + r2->len)
2598 return 1;
2599 return 0;
2600 }
2601
2602 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2603 gpa_t addr, int len)
2604 {
2605 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2606 .addr = addr,
2607 .len = len,
2608 .dev = dev,
2609 };
2610
2611 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2612 kvm_io_bus_sort_cmp, NULL);
2613
2614 return 0;
2615 }
2616
2617 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2618 gpa_t addr, int len)
2619 {
2620 struct kvm_io_range *range, key;
2621 int off;
2622
2623 key = (struct kvm_io_range) {
2624 .addr = addr,
2625 .len = len,
2626 };
2627
2628 range = bsearch(&key, bus->range, bus->dev_count,
2629 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2630 if (range == NULL)
2631 return -ENOENT;
2632
2633 off = range - bus->range;
2634
2635 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2636 off--;
2637
2638 return off;
2639 }
2640
2641 /* kvm_io_bus_write - called under kvm->slots_lock */
2642 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2643 int len, const void *val)
2644 {
2645 int idx;
2646 struct kvm_io_bus *bus;
2647 struct kvm_io_range range;
2648
2649 range = (struct kvm_io_range) {
2650 .addr = addr,
2651 .len = len,
2652 };
2653
2654 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2655 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2656 if (idx < 0)
2657 return -EOPNOTSUPP;
2658
2659 while (idx < bus->dev_count &&
2660 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2661 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2662 return 0;
2663 idx++;
2664 }
2665
2666 return -EOPNOTSUPP;
2667 }
2668
2669 /* kvm_io_bus_read - called under kvm->slots_lock */
2670 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2671 int len, void *val)
2672 {
2673 int idx;
2674 struct kvm_io_bus *bus;
2675 struct kvm_io_range range;
2676
2677 range = (struct kvm_io_range) {
2678 .addr = addr,
2679 .len = len,
2680 };
2681
2682 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2683 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2684 if (idx < 0)
2685 return -EOPNOTSUPP;
2686
2687 while (idx < bus->dev_count &&
2688 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2689 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2690 return 0;
2691 idx++;
2692 }
2693
2694 return -EOPNOTSUPP;
2695 }
2696
2697 /* Caller must hold slots_lock. */
2698 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2699 int len, struct kvm_io_device *dev)
2700 {
2701 struct kvm_io_bus *new_bus, *bus;
2702
2703 bus = kvm->buses[bus_idx];
2704 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2705 return -ENOSPC;
2706
2707 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2708 sizeof(struct kvm_io_range)), GFP_KERNEL);
2709 if (!new_bus)
2710 return -ENOMEM;
2711 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2712 sizeof(struct kvm_io_range)));
2713 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2714 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2715 synchronize_srcu_expedited(&kvm->srcu);
2716 kfree(bus);
2717
2718 return 0;
2719 }
2720
2721 /* Caller must hold slots_lock. */
2722 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2723 struct kvm_io_device *dev)
2724 {
2725 int i, r;
2726 struct kvm_io_bus *new_bus, *bus;
2727
2728 bus = kvm->buses[bus_idx];
2729 r = -ENOENT;
2730 for (i = 0; i < bus->dev_count; i++)
2731 if (bus->range[i].dev == dev) {
2732 r = 0;
2733 break;
2734 }
2735
2736 if (r)
2737 return r;
2738
2739 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2740 sizeof(struct kvm_io_range)), GFP_KERNEL);
2741 if (!new_bus)
2742 return -ENOMEM;
2743
2744 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2745 new_bus->dev_count--;
2746 memcpy(new_bus->range + i, bus->range + i + 1,
2747 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2748
2749 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2750 synchronize_srcu_expedited(&kvm->srcu);
2751 kfree(bus);
2752 return r;
2753 }
2754
2755 static struct notifier_block kvm_cpu_notifier = {
2756 .notifier_call = kvm_cpu_hotplug,
2757 };
2758
2759 static int vm_stat_get(void *_offset, u64 *val)
2760 {
2761 unsigned offset = (long)_offset;
2762 struct kvm *kvm;
2763
2764 *val = 0;
2765 raw_spin_lock(&kvm_lock);
2766 list_for_each_entry(kvm, &vm_list, vm_list)
2767 *val += *(u32 *)((void *)kvm + offset);
2768 raw_spin_unlock(&kvm_lock);
2769 return 0;
2770 }
2771
2772 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2773
2774 static int vcpu_stat_get(void *_offset, u64 *val)
2775 {
2776 unsigned offset = (long)_offset;
2777 struct kvm *kvm;
2778 struct kvm_vcpu *vcpu;
2779 int i;
2780
2781 *val = 0;
2782 raw_spin_lock(&kvm_lock);
2783 list_for_each_entry(kvm, &vm_list, vm_list)
2784 kvm_for_each_vcpu(i, vcpu, kvm)
2785 *val += *(u32 *)((void *)vcpu + offset);
2786
2787 raw_spin_unlock(&kvm_lock);
2788 return 0;
2789 }
2790
2791 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2792
2793 static const struct file_operations *stat_fops[] = {
2794 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2795 [KVM_STAT_VM] = &vm_stat_fops,
2796 };
2797
2798 static int kvm_init_debug(void)
2799 {
2800 int r = -EFAULT;
2801 struct kvm_stats_debugfs_item *p;
2802
2803 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2804 if (kvm_debugfs_dir == NULL)
2805 goto out;
2806
2807 for (p = debugfs_entries; p->name; ++p) {
2808 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2809 (void *)(long)p->offset,
2810 stat_fops[p->kind]);
2811 if (p->dentry == NULL)
2812 goto out_dir;
2813 }
2814
2815 return 0;
2816
2817 out_dir:
2818 debugfs_remove_recursive(kvm_debugfs_dir);
2819 out:
2820 return r;
2821 }
2822
2823 static void kvm_exit_debug(void)
2824 {
2825 struct kvm_stats_debugfs_item *p;
2826
2827 for (p = debugfs_entries; p->name; ++p)
2828 debugfs_remove(p->dentry);
2829 debugfs_remove(kvm_debugfs_dir);
2830 }
2831
2832 static int kvm_suspend(void)
2833 {
2834 if (kvm_usage_count)
2835 hardware_disable_nolock(NULL);
2836 return 0;
2837 }
2838
2839 static void kvm_resume(void)
2840 {
2841 if (kvm_usage_count) {
2842 WARN_ON(raw_spin_is_locked(&kvm_lock));
2843 hardware_enable_nolock(NULL);
2844 }
2845 }
2846
2847 static struct syscore_ops kvm_syscore_ops = {
2848 .suspend = kvm_suspend,
2849 .resume = kvm_resume,
2850 };
2851
2852 static inline
2853 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2854 {
2855 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2856 }
2857
2858 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2859 {
2860 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2861
2862 kvm_arch_vcpu_load(vcpu, cpu);
2863 }
2864
2865 static void kvm_sched_out(struct preempt_notifier *pn,
2866 struct task_struct *next)
2867 {
2868 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2869
2870 kvm_arch_vcpu_put(vcpu);
2871 }
2872
2873 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2874 struct module *module)
2875 {
2876 int r;
2877 int cpu;
2878
2879 r = kvm_arch_init(opaque);
2880 if (r)
2881 goto out_fail;
2882
2883 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2884 r = -ENOMEM;
2885 goto out_free_0;
2886 }
2887
2888 r = kvm_arch_hardware_setup();
2889 if (r < 0)
2890 goto out_free_0a;
2891
2892 for_each_online_cpu(cpu) {
2893 smp_call_function_single(cpu,
2894 kvm_arch_check_processor_compat,
2895 &r, 1);
2896 if (r < 0)
2897 goto out_free_1;
2898 }
2899
2900 r = register_cpu_notifier(&kvm_cpu_notifier);
2901 if (r)
2902 goto out_free_2;
2903 register_reboot_notifier(&kvm_reboot_notifier);
2904
2905 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2906 if (!vcpu_align)
2907 vcpu_align = __alignof__(struct kvm_vcpu);
2908 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2909 0, NULL);
2910 if (!kvm_vcpu_cache) {
2911 r = -ENOMEM;
2912 goto out_free_3;
2913 }
2914
2915 r = kvm_async_pf_init();
2916 if (r)
2917 goto out_free;
2918
2919 kvm_chardev_ops.owner = module;
2920 kvm_vm_fops.owner = module;
2921 kvm_vcpu_fops.owner = module;
2922
2923 r = misc_register(&kvm_dev);
2924 if (r) {
2925 printk(KERN_ERR "kvm: misc device register failed\n");
2926 goto out_unreg;
2927 }
2928
2929 register_syscore_ops(&kvm_syscore_ops);
2930
2931 kvm_preempt_ops.sched_in = kvm_sched_in;
2932 kvm_preempt_ops.sched_out = kvm_sched_out;
2933
2934 r = kvm_init_debug();
2935 if (r) {
2936 printk(KERN_ERR "kvm: create debugfs files failed\n");
2937 goto out_undebugfs;
2938 }
2939
2940 return 0;
2941
2942 out_undebugfs:
2943 unregister_syscore_ops(&kvm_syscore_ops);
2944 out_unreg:
2945 kvm_async_pf_deinit();
2946 out_free:
2947 kmem_cache_destroy(kvm_vcpu_cache);
2948 out_free_3:
2949 unregister_reboot_notifier(&kvm_reboot_notifier);
2950 unregister_cpu_notifier(&kvm_cpu_notifier);
2951 out_free_2:
2952 out_free_1:
2953 kvm_arch_hardware_unsetup();
2954 out_free_0a:
2955 free_cpumask_var(cpus_hardware_enabled);
2956 out_free_0:
2957 kvm_arch_exit();
2958 out_fail:
2959 return r;
2960 }
2961 EXPORT_SYMBOL_GPL(kvm_init);
2962
2963 void kvm_exit(void)
2964 {
2965 kvm_exit_debug();
2966 misc_deregister(&kvm_dev);
2967 kmem_cache_destroy(kvm_vcpu_cache);
2968 kvm_async_pf_deinit();
2969 unregister_syscore_ops(&kvm_syscore_ops);
2970 unregister_reboot_notifier(&kvm_reboot_notifier);
2971 unregister_cpu_notifier(&kvm_cpu_notifier);
2972 on_each_cpu(hardware_disable_nolock, NULL, 1);
2973 kvm_arch_hardware_unsetup();
2974 kvm_arch_exit();
2975 free_cpumask_var(cpus_hardware_enabled);
2976 }
2977 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.091388 seconds and 6 git commands to generate.