KVM: Extract core of kvm_flush_remote_tlbs/kvm_reload_remote_mmus
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef CONFIG_X86
51 #include <asm/msidef.h>
52 #endif
53
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
56 #endif
57
58 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
59 #include <linux/pci.h>
60 #include <linux/interrupt.h>
61 #include "irq.h"
62 #endif
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 static int msi2intx = 1;
68 module_param(msi2intx, bool, 0);
69
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
72
73 static cpumask_t cpus_hardware_enabled;
74
75 struct kmem_cache *kvm_vcpu_cache;
76 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
77
78 static __read_mostly struct preempt_ops kvm_preempt_ops;
79
80 struct dentry *kvm_debugfs_dir;
81
82 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
83 unsigned long arg);
84
85 static bool kvm_rebooting;
86
87 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
88
89 #ifdef CONFIG_X86
90 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
91 {
92 int vcpu_id;
93 struct kvm_vcpu *vcpu;
94 struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
95 int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
96 >> MSI_ADDR_DEST_ID_SHIFT;
97 int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
98 >> MSI_DATA_VECTOR_SHIFT;
99 int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
100 (unsigned long *)&dev->guest_msi.address_lo);
101 int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
102 (unsigned long *)&dev->guest_msi.data);
103 int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
104 (unsigned long *)&dev->guest_msi.data);
105 u32 deliver_bitmask;
106
107 BUG_ON(!ioapic);
108
109 deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
110 dest_id, dest_mode);
111 /* IOAPIC delivery mode value is the same as MSI here */
112 switch (delivery_mode) {
113 case IOAPIC_LOWEST_PRIORITY:
114 vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
115 deliver_bitmask);
116 if (vcpu != NULL)
117 kvm_apic_set_irq(vcpu, vector, trig_mode);
118 else
119 printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
120 break;
121 case IOAPIC_FIXED:
122 for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
123 if (!(deliver_bitmask & (1 << vcpu_id)))
124 continue;
125 deliver_bitmask &= ~(1 << vcpu_id);
126 vcpu = ioapic->kvm->vcpus[vcpu_id];
127 if (vcpu)
128 kvm_apic_set_irq(vcpu, vector, trig_mode);
129 }
130 break;
131 default:
132 printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
133 }
134 }
135 #else
136 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
137 #endif
138
139 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
140 int assigned_dev_id)
141 {
142 struct list_head *ptr;
143 struct kvm_assigned_dev_kernel *match;
144
145 list_for_each(ptr, head) {
146 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
147 if (match->assigned_dev_id == assigned_dev_id)
148 return match;
149 }
150 return NULL;
151 }
152
153 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
154 {
155 struct kvm_assigned_dev_kernel *assigned_dev;
156
157 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
158 interrupt_work);
159
160 /* This is taken to safely inject irq inside the guest. When
161 * the interrupt injection (or the ioapic code) uses a
162 * finer-grained lock, update this
163 */
164 mutex_lock(&assigned_dev->kvm->lock);
165 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
166 kvm_set_irq(assigned_dev->kvm,
167 assigned_dev->irq_source_id,
168 assigned_dev->guest_irq, 1);
169 else if (assigned_dev->irq_requested_type &
170 KVM_ASSIGNED_DEV_GUEST_MSI) {
171 assigned_device_msi_dispatch(assigned_dev);
172 enable_irq(assigned_dev->host_irq);
173 }
174 mutex_unlock(&assigned_dev->kvm->lock);
175 kvm_put_kvm(assigned_dev->kvm);
176 }
177
178 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
179 {
180 struct kvm_assigned_dev_kernel *assigned_dev =
181 (struct kvm_assigned_dev_kernel *) dev_id;
182
183 kvm_get_kvm(assigned_dev->kvm);
184 schedule_work(&assigned_dev->interrupt_work);
185 disable_irq_nosync(irq);
186 return IRQ_HANDLED;
187 }
188
189 /* Ack the irq line for an assigned device */
190 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
191 {
192 struct kvm_assigned_dev_kernel *dev;
193
194 if (kian->gsi == -1)
195 return;
196
197 dev = container_of(kian, struct kvm_assigned_dev_kernel,
198 ack_notifier);
199 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
200 enable_irq(dev->host_irq);
201 }
202
203 static void kvm_free_assigned_irq(struct kvm *kvm,
204 struct kvm_assigned_dev_kernel *assigned_dev)
205 {
206 if (!irqchip_in_kernel(kvm))
207 return;
208
209 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
210
211 if (assigned_dev->irq_source_id != -1)
212 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
213 assigned_dev->irq_source_id = -1;
214
215 if (!assigned_dev->irq_requested_type)
216 return;
217
218 if (cancel_work_sync(&assigned_dev->interrupt_work))
219 /* We had pending work. That means we will have to take
220 * care of kvm_put_kvm.
221 */
222 kvm_put_kvm(kvm);
223
224 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
225
226 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
227 pci_disable_msi(assigned_dev->dev);
228
229 assigned_dev->irq_requested_type = 0;
230 }
231
232
233 static void kvm_free_assigned_device(struct kvm *kvm,
234 struct kvm_assigned_dev_kernel
235 *assigned_dev)
236 {
237 kvm_free_assigned_irq(kvm, assigned_dev);
238
239 pci_reset_function(assigned_dev->dev);
240
241 pci_release_regions(assigned_dev->dev);
242 pci_disable_device(assigned_dev->dev);
243 pci_dev_put(assigned_dev->dev);
244
245 list_del(&assigned_dev->list);
246 kfree(assigned_dev);
247 }
248
249 void kvm_free_all_assigned_devices(struct kvm *kvm)
250 {
251 struct list_head *ptr, *ptr2;
252 struct kvm_assigned_dev_kernel *assigned_dev;
253
254 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
255 assigned_dev = list_entry(ptr,
256 struct kvm_assigned_dev_kernel,
257 list);
258
259 kvm_free_assigned_device(kvm, assigned_dev);
260 }
261 }
262
263 static int assigned_device_update_intx(struct kvm *kvm,
264 struct kvm_assigned_dev_kernel *adev,
265 struct kvm_assigned_irq *airq)
266 {
267 adev->guest_irq = airq->guest_irq;
268 adev->ack_notifier.gsi = airq->guest_irq;
269
270 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
271 return 0;
272
273 if (irqchip_in_kernel(kvm)) {
274 if (!msi2intx &&
275 adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) {
276 free_irq(adev->host_irq, (void *)kvm);
277 pci_disable_msi(adev->dev);
278 }
279
280 if (!capable(CAP_SYS_RAWIO))
281 return -EPERM;
282
283 if (airq->host_irq)
284 adev->host_irq = airq->host_irq;
285 else
286 adev->host_irq = adev->dev->irq;
287
288 /* Even though this is PCI, we don't want to use shared
289 * interrupts. Sharing host devices with guest-assigned devices
290 * on the same interrupt line is not a happy situation: there
291 * are going to be long delays in accepting, acking, etc.
292 */
293 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
294 0, "kvm_assigned_intx_device", (void *)adev))
295 return -EIO;
296 }
297
298 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
299 KVM_ASSIGNED_DEV_HOST_INTX;
300 return 0;
301 }
302
303 #ifdef CONFIG_X86
304 static int assigned_device_update_msi(struct kvm *kvm,
305 struct kvm_assigned_dev_kernel *adev,
306 struct kvm_assigned_irq *airq)
307 {
308 int r;
309
310 if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
311 /* x86 don't care upper address of guest msi message addr */
312 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
313 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
314 adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
315 adev->guest_msi.data = airq->guest_msi.data;
316 adev->ack_notifier.gsi = -1;
317 } else if (msi2intx) {
318 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
319 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
320 adev->guest_irq = airq->guest_irq;
321 adev->ack_notifier.gsi = airq->guest_irq;
322 }
323
324 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
325 return 0;
326
327 if (irqchip_in_kernel(kvm)) {
328 if (!msi2intx) {
329 if (adev->irq_requested_type &
330 KVM_ASSIGNED_DEV_HOST_INTX)
331 free_irq(adev->host_irq, (void *)adev);
332
333 r = pci_enable_msi(adev->dev);
334 if (r)
335 return r;
336 }
337
338 adev->host_irq = adev->dev->irq;
339 if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
340 "kvm_assigned_msi_device", (void *)adev))
341 return -EIO;
342 }
343
344 if (!msi2intx)
345 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
346
347 adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
348 return 0;
349 }
350 #endif
351
352 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
353 struct kvm_assigned_irq
354 *assigned_irq)
355 {
356 int r = 0;
357 struct kvm_assigned_dev_kernel *match;
358
359 mutex_lock(&kvm->lock);
360
361 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
362 assigned_irq->assigned_dev_id);
363 if (!match) {
364 mutex_unlock(&kvm->lock);
365 return -EINVAL;
366 }
367
368 if (!match->irq_requested_type) {
369 INIT_WORK(&match->interrupt_work,
370 kvm_assigned_dev_interrupt_work_handler);
371 if (irqchip_in_kernel(kvm)) {
372 /* Register ack nofitier */
373 match->ack_notifier.gsi = -1;
374 match->ack_notifier.irq_acked =
375 kvm_assigned_dev_ack_irq;
376 kvm_register_irq_ack_notifier(kvm,
377 &match->ack_notifier);
378
379 /* Request IRQ source ID */
380 r = kvm_request_irq_source_id(kvm);
381 if (r < 0)
382 goto out_release;
383 else
384 match->irq_source_id = r;
385
386 #ifdef CONFIG_X86
387 /* Determine host device irq type, we can know the
388 * result from dev->msi_enabled */
389 if (msi2intx)
390 pci_enable_msi(match->dev);
391 #endif
392 }
393 }
394
395 if ((!msi2intx &&
396 (assigned_irq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI)) ||
397 (msi2intx && match->dev->msi_enabled)) {
398 #ifdef CONFIG_X86
399 r = assigned_device_update_msi(kvm, match, assigned_irq);
400 if (r) {
401 printk(KERN_WARNING "kvm: failed to enable "
402 "MSI device!\n");
403 goto out_release;
404 }
405 #else
406 r = -ENOTTY;
407 #endif
408 } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
409 /* Host device IRQ 0 means don't support INTx */
410 if (!msi2intx) {
411 printk(KERN_WARNING
412 "kvm: wait device to enable MSI!\n");
413 r = 0;
414 } else {
415 printk(KERN_WARNING
416 "kvm: failed to enable MSI device!\n");
417 r = -ENOTTY;
418 goto out_release;
419 }
420 } else {
421 /* Non-sharing INTx mode */
422 r = assigned_device_update_intx(kvm, match, assigned_irq);
423 if (r) {
424 printk(KERN_WARNING "kvm: failed to enable "
425 "INTx device!\n");
426 goto out_release;
427 }
428 }
429
430 mutex_unlock(&kvm->lock);
431 return r;
432 out_release:
433 mutex_unlock(&kvm->lock);
434 kvm_free_assigned_device(kvm, match);
435 return r;
436 }
437
438 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
439 struct kvm_assigned_pci_dev *assigned_dev)
440 {
441 int r = 0;
442 struct kvm_assigned_dev_kernel *match;
443 struct pci_dev *dev;
444
445 mutex_lock(&kvm->lock);
446
447 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
448 assigned_dev->assigned_dev_id);
449 if (match) {
450 /* device already assigned */
451 r = -EINVAL;
452 goto out;
453 }
454
455 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
456 if (match == NULL) {
457 printk(KERN_INFO "%s: Couldn't allocate memory\n",
458 __func__);
459 r = -ENOMEM;
460 goto out;
461 }
462 dev = pci_get_bus_and_slot(assigned_dev->busnr,
463 assigned_dev->devfn);
464 if (!dev) {
465 printk(KERN_INFO "%s: host device not found\n", __func__);
466 r = -EINVAL;
467 goto out_free;
468 }
469 if (pci_enable_device(dev)) {
470 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
471 r = -EBUSY;
472 goto out_put;
473 }
474 r = pci_request_regions(dev, "kvm_assigned_device");
475 if (r) {
476 printk(KERN_INFO "%s: Could not get access to device regions\n",
477 __func__);
478 goto out_disable;
479 }
480
481 pci_reset_function(dev);
482
483 match->assigned_dev_id = assigned_dev->assigned_dev_id;
484 match->host_busnr = assigned_dev->busnr;
485 match->host_devfn = assigned_dev->devfn;
486 match->dev = dev;
487 match->irq_source_id = -1;
488 match->kvm = kvm;
489
490 list_add(&match->list, &kvm->arch.assigned_dev_head);
491
492 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
493 r = kvm_iommu_map_guest(kvm, match);
494 if (r)
495 goto out_list_del;
496 }
497
498 out:
499 mutex_unlock(&kvm->lock);
500 return r;
501 out_list_del:
502 list_del(&match->list);
503 pci_release_regions(dev);
504 out_disable:
505 pci_disable_device(dev);
506 out_put:
507 pci_dev_put(dev);
508 out_free:
509 kfree(match);
510 mutex_unlock(&kvm->lock);
511 return r;
512 }
513 #endif
514
515 static inline int valid_vcpu(int n)
516 {
517 return likely(n >= 0 && n < KVM_MAX_VCPUS);
518 }
519
520 inline int kvm_is_mmio_pfn(pfn_t pfn)
521 {
522 if (pfn_valid(pfn))
523 return PageReserved(pfn_to_page(pfn));
524
525 return true;
526 }
527
528 /*
529 * Switches to specified vcpu, until a matching vcpu_put()
530 */
531 void vcpu_load(struct kvm_vcpu *vcpu)
532 {
533 int cpu;
534
535 mutex_lock(&vcpu->mutex);
536 cpu = get_cpu();
537 preempt_notifier_register(&vcpu->preempt_notifier);
538 kvm_arch_vcpu_load(vcpu, cpu);
539 put_cpu();
540 }
541
542 void vcpu_put(struct kvm_vcpu *vcpu)
543 {
544 preempt_disable();
545 kvm_arch_vcpu_put(vcpu);
546 preempt_notifier_unregister(&vcpu->preempt_notifier);
547 preempt_enable();
548 mutex_unlock(&vcpu->mutex);
549 }
550
551 static void ack_flush(void *_completed)
552 {
553 }
554
555 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
556 {
557 int i, cpu, me;
558 cpumask_t cpus;
559 bool called = false;
560 struct kvm_vcpu *vcpu;
561
562 me = get_cpu();
563 cpus_clear(cpus);
564 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
565 vcpu = kvm->vcpus[i];
566 if (!vcpu)
567 continue;
568 if (test_and_set_bit(req, &vcpu->requests))
569 continue;
570 cpu = vcpu->cpu;
571 if (cpu != -1 && cpu != me)
572 cpu_set(cpu, cpus);
573 }
574 if (!cpus_empty(cpus)) {
575 smp_call_function_mask(cpus, ack_flush, NULL, 1);
576 called = true;
577 }
578 put_cpu();
579 return called;
580 }
581
582 void kvm_flush_remote_tlbs(struct kvm *kvm)
583 {
584 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
585 ++kvm->stat.remote_tlb_flush;
586 }
587
588 void kvm_reload_remote_mmus(struct kvm *kvm)
589 {
590 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
591 }
592
593 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
594 {
595 struct page *page;
596 int r;
597
598 mutex_init(&vcpu->mutex);
599 vcpu->cpu = -1;
600 vcpu->kvm = kvm;
601 vcpu->vcpu_id = id;
602 init_waitqueue_head(&vcpu->wq);
603
604 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
605 if (!page) {
606 r = -ENOMEM;
607 goto fail;
608 }
609 vcpu->run = page_address(page);
610
611 r = kvm_arch_vcpu_init(vcpu);
612 if (r < 0)
613 goto fail_free_run;
614 return 0;
615
616 fail_free_run:
617 free_page((unsigned long)vcpu->run);
618 fail:
619 return r;
620 }
621 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
622
623 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
624 {
625 kvm_arch_vcpu_uninit(vcpu);
626 free_page((unsigned long)vcpu->run);
627 }
628 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
629
630 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
631 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
632 {
633 return container_of(mn, struct kvm, mmu_notifier);
634 }
635
636 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
637 struct mm_struct *mm,
638 unsigned long address)
639 {
640 struct kvm *kvm = mmu_notifier_to_kvm(mn);
641 int need_tlb_flush;
642
643 /*
644 * When ->invalidate_page runs, the linux pte has been zapped
645 * already but the page is still allocated until
646 * ->invalidate_page returns. So if we increase the sequence
647 * here the kvm page fault will notice if the spte can't be
648 * established because the page is going to be freed. If
649 * instead the kvm page fault establishes the spte before
650 * ->invalidate_page runs, kvm_unmap_hva will release it
651 * before returning.
652 *
653 * The sequence increase only need to be seen at spin_unlock
654 * time, and not at spin_lock time.
655 *
656 * Increasing the sequence after the spin_unlock would be
657 * unsafe because the kvm page fault could then establish the
658 * pte after kvm_unmap_hva returned, without noticing the page
659 * is going to be freed.
660 */
661 spin_lock(&kvm->mmu_lock);
662 kvm->mmu_notifier_seq++;
663 need_tlb_flush = kvm_unmap_hva(kvm, address);
664 spin_unlock(&kvm->mmu_lock);
665
666 /* we've to flush the tlb before the pages can be freed */
667 if (need_tlb_flush)
668 kvm_flush_remote_tlbs(kvm);
669
670 }
671
672 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
673 struct mm_struct *mm,
674 unsigned long start,
675 unsigned long end)
676 {
677 struct kvm *kvm = mmu_notifier_to_kvm(mn);
678 int need_tlb_flush = 0;
679
680 spin_lock(&kvm->mmu_lock);
681 /*
682 * The count increase must become visible at unlock time as no
683 * spte can be established without taking the mmu_lock and
684 * count is also read inside the mmu_lock critical section.
685 */
686 kvm->mmu_notifier_count++;
687 for (; start < end; start += PAGE_SIZE)
688 need_tlb_flush |= kvm_unmap_hva(kvm, start);
689 spin_unlock(&kvm->mmu_lock);
690
691 /* we've to flush the tlb before the pages can be freed */
692 if (need_tlb_flush)
693 kvm_flush_remote_tlbs(kvm);
694 }
695
696 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
697 struct mm_struct *mm,
698 unsigned long start,
699 unsigned long end)
700 {
701 struct kvm *kvm = mmu_notifier_to_kvm(mn);
702
703 spin_lock(&kvm->mmu_lock);
704 /*
705 * This sequence increase will notify the kvm page fault that
706 * the page that is going to be mapped in the spte could have
707 * been freed.
708 */
709 kvm->mmu_notifier_seq++;
710 /*
711 * The above sequence increase must be visible before the
712 * below count decrease but both values are read by the kvm
713 * page fault under mmu_lock spinlock so we don't need to add
714 * a smb_wmb() here in between the two.
715 */
716 kvm->mmu_notifier_count--;
717 spin_unlock(&kvm->mmu_lock);
718
719 BUG_ON(kvm->mmu_notifier_count < 0);
720 }
721
722 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
723 struct mm_struct *mm,
724 unsigned long address)
725 {
726 struct kvm *kvm = mmu_notifier_to_kvm(mn);
727 int young;
728
729 spin_lock(&kvm->mmu_lock);
730 young = kvm_age_hva(kvm, address);
731 spin_unlock(&kvm->mmu_lock);
732
733 if (young)
734 kvm_flush_remote_tlbs(kvm);
735
736 return young;
737 }
738
739 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
740 .invalidate_page = kvm_mmu_notifier_invalidate_page,
741 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
742 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
743 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
744 };
745 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
746
747 static struct kvm *kvm_create_vm(void)
748 {
749 struct kvm *kvm = kvm_arch_create_vm();
750 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
751 struct page *page;
752 #endif
753
754 if (IS_ERR(kvm))
755 goto out;
756
757 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
758 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
759 if (!page) {
760 kfree(kvm);
761 return ERR_PTR(-ENOMEM);
762 }
763 kvm->coalesced_mmio_ring =
764 (struct kvm_coalesced_mmio_ring *)page_address(page);
765 #endif
766
767 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
768 {
769 int err;
770 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
771 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
772 if (err) {
773 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
774 put_page(page);
775 #endif
776 kfree(kvm);
777 return ERR_PTR(err);
778 }
779 }
780 #endif
781
782 kvm->mm = current->mm;
783 atomic_inc(&kvm->mm->mm_count);
784 spin_lock_init(&kvm->mmu_lock);
785 kvm_io_bus_init(&kvm->pio_bus);
786 mutex_init(&kvm->lock);
787 kvm_io_bus_init(&kvm->mmio_bus);
788 init_rwsem(&kvm->slots_lock);
789 atomic_set(&kvm->users_count, 1);
790 spin_lock(&kvm_lock);
791 list_add(&kvm->vm_list, &vm_list);
792 spin_unlock(&kvm_lock);
793 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
794 kvm_coalesced_mmio_init(kvm);
795 #endif
796 out:
797 return kvm;
798 }
799
800 /*
801 * Free any memory in @free but not in @dont.
802 */
803 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
804 struct kvm_memory_slot *dont)
805 {
806 if (!dont || free->rmap != dont->rmap)
807 vfree(free->rmap);
808
809 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
810 vfree(free->dirty_bitmap);
811
812 if (!dont || free->lpage_info != dont->lpage_info)
813 vfree(free->lpage_info);
814
815 free->npages = 0;
816 free->dirty_bitmap = NULL;
817 free->rmap = NULL;
818 free->lpage_info = NULL;
819 }
820
821 void kvm_free_physmem(struct kvm *kvm)
822 {
823 int i;
824
825 for (i = 0; i < kvm->nmemslots; ++i)
826 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
827 }
828
829 static void kvm_destroy_vm(struct kvm *kvm)
830 {
831 struct mm_struct *mm = kvm->mm;
832
833 spin_lock(&kvm_lock);
834 list_del(&kvm->vm_list);
835 spin_unlock(&kvm_lock);
836 kvm_io_bus_destroy(&kvm->pio_bus);
837 kvm_io_bus_destroy(&kvm->mmio_bus);
838 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
839 if (kvm->coalesced_mmio_ring != NULL)
840 free_page((unsigned long)kvm->coalesced_mmio_ring);
841 #endif
842 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
843 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
844 #endif
845 kvm_arch_destroy_vm(kvm);
846 mmdrop(mm);
847 }
848
849 void kvm_get_kvm(struct kvm *kvm)
850 {
851 atomic_inc(&kvm->users_count);
852 }
853 EXPORT_SYMBOL_GPL(kvm_get_kvm);
854
855 void kvm_put_kvm(struct kvm *kvm)
856 {
857 if (atomic_dec_and_test(&kvm->users_count))
858 kvm_destroy_vm(kvm);
859 }
860 EXPORT_SYMBOL_GPL(kvm_put_kvm);
861
862
863 static int kvm_vm_release(struct inode *inode, struct file *filp)
864 {
865 struct kvm *kvm = filp->private_data;
866
867 kvm_put_kvm(kvm);
868 return 0;
869 }
870
871 /*
872 * Allocate some memory and give it an address in the guest physical address
873 * space.
874 *
875 * Discontiguous memory is allowed, mostly for framebuffers.
876 *
877 * Must be called holding mmap_sem for write.
878 */
879 int __kvm_set_memory_region(struct kvm *kvm,
880 struct kvm_userspace_memory_region *mem,
881 int user_alloc)
882 {
883 int r;
884 gfn_t base_gfn;
885 unsigned long npages;
886 unsigned long i;
887 struct kvm_memory_slot *memslot;
888 struct kvm_memory_slot old, new;
889
890 r = -EINVAL;
891 /* General sanity checks */
892 if (mem->memory_size & (PAGE_SIZE - 1))
893 goto out;
894 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
895 goto out;
896 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
897 goto out;
898 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
899 goto out;
900 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
901 goto out;
902
903 memslot = &kvm->memslots[mem->slot];
904 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
905 npages = mem->memory_size >> PAGE_SHIFT;
906
907 if (!npages)
908 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
909
910 new = old = *memslot;
911
912 new.base_gfn = base_gfn;
913 new.npages = npages;
914 new.flags = mem->flags;
915
916 /* Disallow changing a memory slot's size. */
917 r = -EINVAL;
918 if (npages && old.npages && npages != old.npages)
919 goto out_free;
920
921 /* Check for overlaps */
922 r = -EEXIST;
923 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
924 struct kvm_memory_slot *s = &kvm->memslots[i];
925
926 if (s == memslot)
927 continue;
928 if (!((base_gfn + npages <= s->base_gfn) ||
929 (base_gfn >= s->base_gfn + s->npages)))
930 goto out_free;
931 }
932
933 /* Free page dirty bitmap if unneeded */
934 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
935 new.dirty_bitmap = NULL;
936
937 r = -ENOMEM;
938
939 /* Allocate if a slot is being created */
940 #ifndef CONFIG_S390
941 if (npages && !new.rmap) {
942 new.rmap = vmalloc(npages * sizeof(struct page *));
943
944 if (!new.rmap)
945 goto out_free;
946
947 memset(new.rmap, 0, npages * sizeof(*new.rmap));
948
949 new.user_alloc = user_alloc;
950 /*
951 * hva_to_rmmap() serialzies with the mmu_lock and to be
952 * safe it has to ignore memslots with !user_alloc &&
953 * !userspace_addr.
954 */
955 if (user_alloc)
956 new.userspace_addr = mem->userspace_addr;
957 else
958 new.userspace_addr = 0;
959 }
960 if (npages && !new.lpage_info) {
961 int largepages = npages / KVM_PAGES_PER_HPAGE;
962 if (npages % KVM_PAGES_PER_HPAGE)
963 largepages++;
964 if (base_gfn % KVM_PAGES_PER_HPAGE)
965 largepages++;
966
967 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
968
969 if (!new.lpage_info)
970 goto out_free;
971
972 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
973
974 if (base_gfn % KVM_PAGES_PER_HPAGE)
975 new.lpage_info[0].write_count = 1;
976 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
977 new.lpage_info[largepages-1].write_count = 1;
978 }
979
980 /* Allocate page dirty bitmap if needed */
981 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
982 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
983
984 new.dirty_bitmap = vmalloc(dirty_bytes);
985 if (!new.dirty_bitmap)
986 goto out_free;
987 memset(new.dirty_bitmap, 0, dirty_bytes);
988 }
989 #endif /* not defined CONFIG_S390 */
990
991 if (!npages)
992 kvm_arch_flush_shadow(kvm);
993
994 spin_lock(&kvm->mmu_lock);
995 if (mem->slot >= kvm->nmemslots)
996 kvm->nmemslots = mem->slot + 1;
997
998 *memslot = new;
999 spin_unlock(&kvm->mmu_lock);
1000
1001 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1002 if (r) {
1003 spin_lock(&kvm->mmu_lock);
1004 *memslot = old;
1005 spin_unlock(&kvm->mmu_lock);
1006 goto out_free;
1007 }
1008
1009 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1010 /* Slot deletion case: we have to update the current slot */
1011 if (!npages)
1012 *memslot = old;
1013 #ifdef CONFIG_DMAR
1014 /* map the pages in iommu page table */
1015 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1016 if (r)
1017 goto out;
1018 #endif
1019 return 0;
1020
1021 out_free:
1022 kvm_free_physmem_slot(&new, &old);
1023 out:
1024 return r;
1025
1026 }
1027 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1028
1029 int kvm_set_memory_region(struct kvm *kvm,
1030 struct kvm_userspace_memory_region *mem,
1031 int user_alloc)
1032 {
1033 int r;
1034
1035 down_write(&kvm->slots_lock);
1036 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1037 up_write(&kvm->slots_lock);
1038 return r;
1039 }
1040 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1041
1042 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1043 struct
1044 kvm_userspace_memory_region *mem,
1045 int user_alloc)
1046 {
1047 if (mem->slot >= KVM_MEMORY_SLOTS)
1048 return -EINVAL;
1049 return kvm_set_memory_region(kvm, mem, user_alloc);
1050 }
1051
1052 int kvm_get_dirty_log(struct kvm *kvm,
1053 struct kvm_dirty_log *log, int *is_dirty)
1054 {
1055 struct kvm_memory_slot *memslot;
1056 int r, i;
1057 int n;
1058 unsigned long any = 0;
1059
1060 r = -EINVAL;
1061 if (log->slot >= KVM_MEMORY_SLOTS)
1062 goto out;
1063
1064 memslot = &kvm->memslots[log->slot];
1065 r = -ENOENT;
1066 if (!memslot->dirty_bitmap)
1067 goto out;
1068
1069 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1070
1071 for (i = 0; !any && i < n/sizeof(long); ++i)
1072 any = memslot->dirty_bitmap[i];
1073
1074 r = -EFAULT;
1075 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1076 goto out;
1077
1078 if (any)
1079 *is_dirty = 1;
1080
1081 r = 0;
1082 out:
1083 return r;
1084 }
1085
1086 int is_error_page(struct page *page)
1087 {
1088 return page == bad_page;
1089 }
1090 EXPORT_SYMBOL_GPL(is_error_page);
1091
1092 int is_error_pfn(pfn_t pfn)
1093 {
1094 return pfn == bad_pfn;
1095 }
1096 EXPORT_SYMBOL_GPL(is_error_pfn);
1097
1098 static inline unsigned long bad_hva(void)
1099 {
1100 return PAGE_OFFSET;
1101 }
1102
1103 int kvm_is_error_hva(unsigned long addr)
1104 {
1105 return addr == bad_hva();
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1108
1109 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1110 {
1111 int i;
1112
1113 for (i = 0; i < kvm->nmemslots; ++i) {
1114 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1115
1116 if (gfn >= memslot->base_gfn
1117 && gfn < memslot->base_gfn + memslot->npages)
1118 return memslot;
1119 }
1120 return NULL;
1121 }
1122 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1123
1124 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1125 {
1126 gfn = unalias_gfn(kvm, gfn);
1127 return gfn_to_memslot_unaliased(kvm, gfn);
1128 }
1129
1130 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1131 {
1132 int i;
1133
1134 gfn = unalias_gfn(kvm, gfn);
1135 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1136 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1137
1138 if (gfn >= memslot->base_gfn
1139 && gfn < memslot->base_gfn + memslot->npages)
1140 return 1;
1141 }
1142 return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1145
1146 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1147 {
1148 struct kvm_memory_slot *slot;
1149
1150 gfn = unalias_gfn(kvm, gfn);
1151 slot = gfn_to_memslot_unaliased(kvm, gfn);
1152 if (!slot)
1153 return bad_hva();
1154 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1155 }
1156 EXPORT_SYMBOL_GPL(gfn_to_hva);
1157
1158 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1159 {
1160 struct page *page[1];
1161 unsigned long addr;
1162 int npages;
1163 pfn_t pfn;
1164
1165 might_sleep();
1166
1167 addr = gfn_to_hva(kvm, gfn);
1168 if (kvm_is_error_hva(addr)) {
1169 get_page(bad_page);
1170 return page_to_pfn(bad_page);
1171 }
1172
1173 npages = get_user_pages_fast(addr, 1, 1, page);
1174
1175 if (unlikely(npages != 1)) {
1176 struct vm_area_struct *vma;
1177
1178 down_read(&current->mm->mmap_sem);
1179 vma = find_vma(current->mm, addr);
1180
1181 if (vma == NULL || addr < vma->vm_start ||
1182 !(vma->vm_flags & VM_PFNMAP)) {
1183 up_read(&current->mm->mmap_sem);
1184 get_page(bad_page);
1185 return page_to_pfn(bad_page);
1186 }
1187
1188 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1189 up_read(&current->mm->mmap_sem);
1190 BUG_ON(!kvm_is_mmio_pfn(pfn));
1191 } else
1192 pfn = page_to_pfn(page[0]);
1193
1194 return pfn;
1195 }
1196
1197 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1198
1199 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1200 {
1201 pfn_t pfn;
1202
1203 pfn = gfn_to_pfn(kvm, gfn);
1204 if (!kvm_is_mmio_pfn(pfn))
1205 return pfn_to_page(pfn);
1206
1207 WARN_ON(kvm_is_mmio_pfn(pfn));
1208
1209 get_page(bad_page);
1210 return bad_page;
1211 }
1212
1213 EXPORT_SYMBOL_GPL(gfn_to_page);
1214
1215 void kvm_release_page_clean(struct page *page)
1216 {
1217 kvm_release_pfn_clean(page_to_pfn(page));
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1220
1221 void kvm_release_pfn_clean(pfn_t pfn)
1222 {
1223 if (!kvm_is_mmio_pfn(pfn))
1224 put_page(pfn_to_page(pfn));
1225 }
1226 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1227
1228 void kvm_release_page_dirty(struct page *page)
1229 {
1230 kvm_release_pfn_dirty(page_to_pfn(page));
1231 }
1232 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1233
1234 void kvm_release_pfn_dirty(pfn_t pfn)
1235 {
1236 kvm_set_pfn_dirty(pfn);
1237 kvm_release_pfn_clean(pfn);
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1240
1241 void kvm_set_page_dirty(struct page *page)
1242 {
1243 kvm_set_pfn_dirty(page_to_pfn(page));
1244 }
1245 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1246
1247 void kvm_set_pfn_dirty(pfn_t pfn)
1248 {
1249 if (!kvm_is_mmio_pfn(pfn)) {
1250 struct page *page = pfn_to_page(pfn);
1251 if (!PageReserved(page))
1252 SetPageDirty(page);
1253 }
1254 }
1255 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1256
1257 void kvm_set_pfn_accessed(pfn_t pfn)
1258 {
1259 if (!kvm_is_mmio_pfn(pfn))
1260 mark_page_accessed(pfn_to_page(pfn));
1261 }
1262 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1263
1264 void kvm_get_pfn(pfn_t pfn)
1265 {
1266 if (!kvm_is_mmio_pfn(pfn))
1267 get_page(pfn_to_page(pfn));
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1270
1271 static int next_segment(unsigned long len, int offset)
1272 {
1273 if (len > PAGE_SIZE - offset)
1274 return PAGE_SIZE - offset;
1275 else
1276 return len;
1277 }
1278
1279 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1280 int len)
1281 {
1282 int r;
1283 unsigned long addr;
1284
1285 addr = gfn_to_hva(kvm, gfn);
1286 if (kvm_is_error_hva(addr))
1287 return -EFAULT;
1288 r = copy_from_user(data, (void __user *)addr + offset, len);
1289 if (r)
1290 return -EFAULT;
1291 return 0;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1294
1295 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1296 {
1297 gfn_t gfn = gpa >> PAGE_SHIFT;
1298 int seg;
1299 int offset = offset_in_page(gpa);
1300 int ret;
1301
1302 while ((seg = next_segment(len, offset)) != 0) {
1303 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1304 if (ret < 0)
1305 return ret;
1306 offset = 0;
1307 len -= seg;
1308 data += seg;
1309 ++gfn;
1310 }
1311 return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_read_guest);
1314
1315 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1316 unsigned long len)
1317 {
1318 int r;
1319 unsigned long addr;
1320 gfn_t gfn = gpa >> PAGE_SHIFT;
1321 int offset = offset_in_page(gpa);
1322
1323 addr = gfn_to_hva(kvm, gfn);
1324 if (kvm_is_error_hva(addr))
1325 return -EFAULT;
1326 pagefault_disable();
1327 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1328 pagefault_enable();
1329 if (r)
1330 return -EFAULT;
1331 return 0;
1332 }
1333 EXPORT_SYMBOL(kvm_read_guest_atomic);
1334
1335 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1336 int offset, int len)
1337 {
1338 int r;
1339 unsigned long addr;
1340
1341 addr = gfn_to_hva(kvm, gfn);
1342 if (kvm_is_error_hva(addr))
1343 return -EFAULT;
1344 r = copy_to_user((void __user *)addr + offset, data, len);
1345 if (r)
1346 return -EFAULT;
1347 mark_page_dirty(kvm, gfn);
1348 return 0;
1349 }
1350 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1351
1352 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1353 unsigned long len)
1354 {
1355 gfn_t gfn = gpa >> PAGE_SHIFT;
1356 int seg;
1357 int offset = offset_in_page(gpa);
1358 int ret;
1359
1360 while ((seg = next_segment(len, offset)) != 0) {
1361 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1362 if (ret < 0)
1363 return ret;
1364 offset = 0;
1365 len -= seg;
1366 data += seg;
1367 ++gfn;
1368 }
1369 return 0;
1370 }
1371
1372 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1373 {
1374 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1375 }
1376 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1377
1378 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1379 {
1380 gfn_t gfn = gpa >> PAGE_SHIFT;
1381 int seg;
1382 int offset = offset_in_page(gpa);
1383 int ret;
1384
1385 while ((seg = next_segment(len, offset)) != 0) {
1386 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1387 if (ret < 0)
1388 return ret;
1389 offset = 0;
1390 len -= seg;
1391 ++gfn;
1392 }
1393 return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1396
1397 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1398 {
1399 struct kvm_memory_slot *memslot;
1400
1401 gfn = unalias_gfn(kvm, gfn);
1402 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1403 if (memslot && memslot->dirty_bitmap) {
1404 unsigned long rel_gfn = gfn - memslot->base_gfn;
1405
1406 /* avoid RMW */
1407 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1408 set_bit(rel_gfn, memslot->dirty_bitmap);
1409 }
1410 }
1411
1412 /*
1413 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1414 */
1415 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1416 {
1417 DEFINE_WAIT(wait);
1418
1419 for (;;) {
1420 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1421
1422 if (kvm_cpu_has_interrupt(vcpu) ||
1423 kvm_cpu_has_pending_timer(vcpu) ||
1424 kvm_arch_vcpu_runnable(vcpu)) {
1425 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1426 break;
1427 }
1428 if (signal_pending(current))
1429 break;
1430
1431 vcpu_put(vcpu);
1432 schedule();
1433 vcpu_load(vcpu);
1434 }
1435
1436 finish_wait(&vcpu->wq, &wait);
1437 }
1438
1439 void kvm_resched(struct kvm_vcpu *vcpu)
1440 {
1441 if (!need_resched())
1442 return;
1443 cond_resched();
1444 }
1445 EXPORT_SYMBOL_GPL(kvm_resched);
1446
1447 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1448 {
1449 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1450 struct page *page;
1451
1452 if (vmf->pgoff == 0)
1453 page = virt_to_page(vcpu->run);
1454 #ifdef CONFIG_X86
1455 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1456 page = virt_to_page(vcpu->arch.pio_data);
1457 #endif
1458 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1459 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1460 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1461 #endif
1462 else
1463 return VM_FAULT_SIGBUS;
1464 get_page(page);
1465 vmf->page = page;
1466 return 0;
1467 }
1468
1469 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1470 .fault = kvm_vcpu_fault,
1471 };
1472
1473 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1474 {
1475 vma->vm_ops = &kvm_vcpu_vm_ops;
1476 return 0;
1477 }
1478
1479 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1480 {
1481 struct kvm_vcpu *vcpu = filp->private_data;
1482
1483 kvm_put_kvm(vcpu->kvm);
1484 return 0;
1485 }
1486
1487 static struct file_operations kvm_vcpu_fops = {
1488 .release = kvm_vcpu_release,
1489 .unlocked_ioctl = kvm_vcpu_ioctl,
1490 .compat_ioctl = kvm_vcpu_ioctl,
1491 .mmap = kvm_vcpu_mmap,
1492 };
1493
1494 /*
1495 * Allocates an inode for the vcpu.
1496 */
1497 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1498 {
1499 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1500 if (fd < 0)
1501 kvm_put_kvm(vcpu->kvm);
1502 return fd;
1503 }
1504
1505 /*
1506 * Creates some virtual cpus. Good luck creating more than one.
1507 */
1508 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1509 {
1510 int r;
1511 struct kvm_vcpu *vcpu;
1512
1513 if (!valid_vcpu(n))
1514 return -EINVAL;
1515
1516 vcpu = kvm_arch_vcpu_create(kvm, n);
1517 if (IS_ERR(vcpu))
1518 return PTR_ERR(vcpu);
1519
1520 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1521
1522 r = kvm_arch_vcpu_setup(vcpu);
1523 if (r)
1524 return r;
1525
1526 mutex_lock(&kvm->lock);
1527 if (kvm->vcpus[n]) {
1528 r = -EEXIST;
1529 goto vcpu_destroy;
1530 }
1531 kvm->vcpus[n] = vcpu;
1532 mutex_unlock(&kvm->lock);
1533
1534 /* Now it's all set up, let userspace reach it */
1535 kvm_get_kvm(kvm);
1536 r = create_vcpu_fd(vcpu);
1537 if (r < 0)
1538 goto unlink;
1539 return r;
1540
1541 unlink:
1542 mutex_lock(&kvm->lock);
1543 kvm->vcpus[n] = NULL;
1544 vcpu_destroy:
1545 mutex_unlock(&kvm->lock);
1546 kvm_arch_vcpu_destroy(vcpu);
1547 return r;
1548 }
1549
1550 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1551 {
1552 if (sigset) {
1553 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1554 vcpu->sigset_active = 1;
1555 vcpu->sigset = *sigset;
1556 } else
1557 vcpu->sigset_active = 0;
1558 return 0;
1559 }
1560
1561 static long kvm_vcpu_ioctl(struct file *filp,
1562 unsigned int ioctl, unsigned long arg)
1563 {
1564 struct kvm_vcpu *vcpu = filp->private_data;
1565 void __user *argp = (void __user *)arg;
1566 int r;
1567 struct kvm_fpu *fpu = NULL;
1568 struct kvm_sregs *kvm_sregs = NULL;
1569
1570 if (vcpu->kvm->mm != current->mm)
1571 return -EIO;
1572 switch (ioctl) {
1573 case KVM_RUN:
1574 r = -EINVAL;
1575 if (arg)
1576 goto out;
1577 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1578 break;
1579 case KVM_GET_REGS: {
1580 struct kvm_regs *kvm_regs;
1581
1582 r = -ENOMEM;
1583 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1584 if (!kvm_regs)
1585 goto out;
1586 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1587 if (r)
1588 goto out_free1;
1589 r = -EFAULT;
1590 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1591 goto out_free1;
1592 r = 0;
1593 out_free1:
1594 kfree(kvm_regs);
1595 break;
1596 }
1597 case KVM_SET_REGS: {
1598 struct kvm_regs *kvm_regs;
1599
1600 r = -ENOMEM;
1601 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1602 if (!kvm_regs)
1603 goto out;
1604 r = -EFAULT;
1605 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1606 goto out_free2;
1607 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1608 if (r)
1609 goto out_free2;
1610 r = 0;
1611 out_free2:
1612 kfree(kvm_regs);
1613 break;
1614 }
1615 case KVM_GET_SREGS: {
1616 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1617 r = -ENOMEM;
1618 if (!kvm_sregs)
1619 goto out;
1620 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1621 if (r)
1622 goto out;
1623 r = -EFAULT;
1624 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1625 goto out;
1626 r = 0;
1627 break;
1628 }
1629 case KVM_SET_SREGS: {
1630 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1631 r = -ENOMEM;
1632 if (!kvm_sregs)
1633 goto out;
1634 r = -EFAULT;
1635 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1636 goto out;
1637 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1638 if (r)
1639 goto out;
1640 r = 0;
1641 break;
1642 }
1643 case KVM_GET_MP_STATE: {
1644 struct kvm_mp_state mp_state;
1645
1646 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1647 if (r)
1648 goto out;
1649 r = -EFAULT;
1650 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1651 goto out;
1652 r = 0;
1653 break;
1654 }
1655 case KVM_SET_MP_STATE: {
1656 struct kvm_mp_state mp_state;
1657
1658 r = -EFAULT;
1659 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1660 goto out;
1661 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1662 if (r)
1663 goto out;
1664 r = 0;
1665 break;
1666 }
1667 case KVM_TRANSLATE: {
1668 struct kvm_translation tr;
1669
1670 r = -EFAULT;
1671 if (copy_from_user(&tr, argp, sizeof tr))
1672 goto out;
1673 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1674 if (r)
1675 goto out;
1676 r = -EFAULT;
1677 if (copy_to_user(argp, &tr, sizeof tr))
1678 goto out;
1679 r = 0;
1680 break;
1681 }
1682 case KVM_DEBUG_GUEST: {
1683 struct kvm_debug_guest dbg;
1684
1685 r = -EFAULT;
1686 if (copy_from_user(&dbg, argp, sizeof dbg))
1687 goto out;
1688 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1689 if (r)
1690 goto out;
1691 r = 0;
1692 break;
1693 }
1694 case KVM_SET_SIGNAL_MASK: {
1695 struct kvm_signal_mask __user *sigmask_arg = argp;
1696 struct kvm_signal_mask kvm_sigmask;
1697 sigset_t sigset, *p;
1698
1699 p = NULL;
1700 if (argp) {
1701 r = -EFAULT;
1702 if (copy_from_user(&kvm_sigmask, argp,
1703 sizeof kvm_sigmask))
1704 goto out;
1705 r = -EINVAL;
1706 if (kvm_sigmask.len != sizeof sigset)
1707 goto out;
1708 r = -EFAULT;
1709 if (copy_from_user(&sigset, sigmask_arg->sigset,
1710 sizeof sigset))
1711 goto out;
1712 p = &sigset;
1713 }
1714 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1715 break;
1716 }
1717 case KVM_GET_FPU: {
1718 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1719 r = -ENOMEM;
1720 if (!fpu)
1721 goto out;
1722 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1723 if (r)
1724 goto out;
1725 r = -EFAULT;
1726 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1727 goto out;
1728 r = 0;
1729 break;
1730 }
1731 case KVM_SET_FPU: {
1732 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1733 r = -ENOMEM;
1734 if (!fpu)
1735 goto out;
1736 r = -EFAULT;
1737 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1738 goto out;
1739 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1740 if (r)
1741 goto out;
1742 r = 0;
1743 break;
1744 }
1745 default:
1746 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1747 }
1748 out:
1749 kfree(fpu);
1750 kfree(kvm_sregs);
1751 return r;
1752 }
1753
1754 static long kvm_vm_ioctl(struct file *filp,
1755 unsigned int ioctl, unsigned long arg)
1756 {
1757 struct kvm *kvm = filp->private_data;
1758 void __user *argp = (void __user *)arg;
1759 int r;
1760
1761 if (kvm->mm != current->mm)
1762 return -EIO;
1763 switch (ioctl) {
1764 case KVM_CREATE_VCPU:
1765 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1766 if (r < 0)
1767 goto out;
1768 break;
1769 case KVM_SET_USER_MEMORY_REGION: {
1770 struct kvm_userspace_memory_region kvm_userspace_mem;
1771
1772 r = -EFAULT;
1773 if (copy_from_user(&kvm_userspace_mem, argp,
1774 sizeof kvm_userspace_mem))
1775 goto out;
1776
1777 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1778 if (r)
1779 goto out;
1780 break;
1781 }
1782 case KVM_GET_DIRTY_LOG: {
1783 struct kvm_dirty_log log;
1784
1785 r = -EFAULT;
1786 if (copy_from_user(&log, argp, sizeof log))
1787 goto out;
1788 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1789 if (r)
1790 goto out;
1791 break;
1792 }
1793 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1794 case KVM_REGISTER_COALESCED_MMIO: {
1795 struct kvm_coalesced_mmio_zone zone;
1796 r = -EFAULT;
1797 if (copy_from_user(&zone, argp, sizeof zone))
1798 goto out;
1799 r = -ENXIO;
1800 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1801 if (r)
1802 goto out;
1803 r = 0;
1804 break;
1805 }
1806 case KVM_UNREGISTER_COALESCED_MMIO: {
1807 struct kvm_coalesced_mmio_zone zone;
1808 r = -EFAULT;
1809 if (copy_from_user(&zone, argp, sizeof zone))
1810 goto out;
1811 r = -ENXIO;
1812 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1813 if (r)
1814 goto out;
1815 r = 0;
1816 break;
1817 }
1818 #endif
1819 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1820 case KVM_ASSIGN_PCI_DEVICE: {
1821 struct kvm_assigned_pci_dev assigned_dev;
1822
1823 r = -EFAULT;
1824 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1825 goto out;
1826 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1827 if (r)
1828 goto out;
1829 break;
1830 }
1831 case KVM_ASSIGN_IRQ: {
1832 struct kvm_assigned_irq assigned_irq;
1833
1834 r = -EFAULT;
1835 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1836 goto out;
1837 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1838 if (r)
1839 goto out;
1840 break;
1841 }
1842 #endif
1843 default:
1844 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1845 }
1846 out:
1847 return r;
1848 }
1849
1850 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1851 {
1852 struct page *page[1];
1853 unsigned long addr;
1854 int npages;
1855 gfn_t gfn = vmf->pgoff;
1856 struct kvm *kvm = vma->vm_file->private_data;
1857
1858 addr = gfn_to_hva(kvm, gfn);
1859 if (kvm_is_error_hva(addr))
1860 return VM_FAULT_SIGBUS;
1861
1862 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1863 NULL);
1864 if (unlikely(npages != 1))
1865 return VM_FAULT_SIGBUS;
1866
1867 vmf->page = page[0];
1868 return 0;
1869 }
1870
1871 static struct vm_operations_struct kvm_vm_vm_ops = {
1872 .fault = kvm_vm_fault,
1873 };
1874
1875 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1876 {
1877 vma->vm_ops = &kvm_vm_vm_ops;
1878 return 0;
1879 }
1880
1881 static struct file_operations kvm_vm_fops = {
1882 .release = kvm_vm_release,
1883 .unlocked_ioctl = kvm_vm_ioctl,
1884 .compat_ioctl = kvm_vm_ioctl,
1885 .mmap = kvm_vm_mmap,
1886 };
1887
1888 static int kvm_dev_ioctl_create_vm(void)
1889 {
1890 int fd;
1891 struct kvm *kvm;
1892
1893 kvm = kvm_create_vm();
1894 if (IS_ERR(kvm))
1895 return PTR_ERR(kvm);
1896 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1897 if (fd < 0)
1898 kvm_put_kvm(kvm);
1899
1900 return fd;
1901 }
1902
1903 static long kvm_dev_ioctl(struct file *filp,
1904 unsigned int ioctl, unsigned long arg)
1905 {
1906 long r = -EINVAL;
1907
1908 switch (ioctl) {
1909 case KVM_GET_API_VERSION:
1910 r = -EINVAL;
1911 if (arg)
1912 goto out;
1913 r = KVM_API_VERSION;
1914 break;
1915 case KVM_CREATE_VM:
1916 r = -EINVAL;
1917 if (arg)
1918 goto out;
1919 r = kvm_dev_ioctl_create_vm();
1920 break;
1921 case KVM_CHECK_EXTENSION:
1922 r = kvm_dev_ioctl_check_extension(arg);
1923 break;
1924 case KVM_GET_VCPU_MMAP_SIZE:
1925 r = -EINVAL;
1926 if (arg)
1927 goto out;
1928 r = PAGE_SIZE; /* struct kvm_run */
1929 #ifdef CONFIG_X86
1930 r += PAGE_SIZE; /* pio data page */
1931 #endif
1932 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1933 r += PAGE_SIZE; /* coalesced mmio ring page */
1934 #endif
1935 break;
1936 case KVM_TRACE_ENABLE:
1937 case KVM_TRACE_PAUSE:
1938 case KVM_TRACE_DISABLE:
1939 r = kvm_trace_ioctl(ioctl, arg);
1940 break;
1941 default:
1942 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1943 }
1944 out:
1945 return r;
1946 }
1947
1948 static struct file_operations kvm_chardev_ops = {
1949 .unlocked_ioctl = kvm_dev_ioctl,
1950 .compat_ioctl = kvm_dev_ioctl,
1951 };
1952
1953 static struct miscdevice kvm_dev = {
1954 KVM_MINOR,
1955 "kvm",
1956 &kvm_chardev_ops,
1957 };
1958
1959 static void hardware_enable(void *junk)
1960 {
1961 int cpu = raw_smp_processor_id();
1962
1963 if (cpu_isset(cpu, cpus_hardware_enabled))
1964 return;
1965 cpu_set(cpu, cpus_hardware_enabled);
1966 kvm_arch_hardware_enable(NULL);
1967 }
1968
1969 static void hardware_disable(void *junk)
1970 {
1971 int cpu = raw_smp_processor_id();
1972
1973 if (!cpu_isset(cpu, cpus_hardware_enabled))
1974 return;
1975 cpu_clear(cpu, cpus_hardware_enabled);
1976 kvm_arch_hardware_disable(NULL);
1977 }
1978
1979 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1980 void *v)
1981 {
1982 int cpu = (long)v;
1983
1984 val &= ~CPU_TASKS_FROZEN;
1985 switch (val) {
1986 case CPU_DYING:
1987 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1988 cpu);
1989 hardware_disable(NULL);
1990 break;
1991 case CPU_UP_CANCELED:
1992 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1993 cpu);
1994 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1995 break;
1996 case CPU_ONLINE:
1997 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1998 cpu);
1999 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2000 break;
2001 }
2002 return NOTIFY_OK;
2003 }
2004
2005
2006 asmlinkage void kvm_handle_fault_on_reboot(void)
2007 {
2008 if (kvm_rebooting)
2009 /* spin while reset goes on */
2010 while (true)
2011 ;
2012 /* Fault while not rebooting. We want the trace. */
2013 BUG();
2014 }
2015 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2016
2017 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2018 void *v)
2019 {
2020 if (val == SYS_RESTART) {
2021 /*
2022 * Some (well, at least mine) BIOSes hang on reboot if
2023 * in vmx root mode.
2024 */
2025 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2026 kvm_rebooting = true;
2027 on_each_cpu(hardware_disable, NULL, 1);
2028 }
2029 return NOTIFY_OK;
2030 }
2031
2032 static struct notifier_block kvm_reboot_notifier = {
2033 .notifier_call = kvm_reboot,
2034 .priority = 0,
2035 };
2036
2037 void kvm_io_bus_init(struct kvm_io_bus *bus)
2038 {
2039 memset(bus, 0, sizeof(*bus));
2040 }
2041
2042 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2043 {
2044 int i;
2045
2046 for (i = 0; i < bus->dev_count; i++) {
2047 struct kvm_io_device *pos = bus->devs[i];
2048
2049 kvm_iodevice_destructor(pos);
2050 }
2051 }
2052
2053 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2054 gpa_t addr, int len, int is_write)
2055 {
2056 int i;
2057
2058 for (i = 0; i < bus->dev_count; i++) {
2059 struct kvm_io_device *pos = bus->devs[i];
2060
2061 if (pos->in_range(pos, addr, len, is_write))
2062 return pos;
2063 }
2064
2065 return NULL;
2066 }
2067
2068 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2069 {
2070 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2071
2072 bus->devs[bus->dev_count++] = dev;
2073 }
2074
2075 static struct notifier_block kvm_cpu_notifier = {
2076 .notifier_call = kvm_cpu_hotplug,
2077 .priority = 20, /* must be > scheduler priority */
2078 };
2079
2080 static int vm_stat_get(void *_offset, u64 *val)
2081 {
2082 unsigned offset = (long)_offset;
2083 struct kvm *kvm;
2084
2085 *val = 0;
2086 spin_lock(&kvm_lock);
2087 list_for_each_entry(kvm, &vm_list, vm_list)
2088 *val += *(u32 *)((void *)kvm + offset);
2089 spin_unlock(&kvm_lock);
2090 return 0;
2091 }
2092
2093 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2094
2095 static int vcpu_stat_get(void *_offset, u64 *val)
2096 {
2097 unsigned offset = (long)_offset;
2098 struct kvm *kvm;
2099 struct kvm_vcpu *vcpu;
2100 int i;
2101
2102 *val = 0;
2103 spin_lock(&kvm_lock);
2104 list_for_each_entry(kvm, &vm_list, vm_list)
2105 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2106 vcpu = kvm->vcpus[i];
2107 if (vcpu)
2108 *val += *(u32 *)((void *)vcpu + offset);
2109 }
2110 spin_unlock(&kvm_lock);
2111 return 0;
2112 }
2113
2114 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2115
2116 static struct file_operations *stat_fops[] = {
2117 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2118 [KVM_STAT_VM] = &vm_stat_fops,
2119 };
2120
2121 static void kvm_init_debug(void)
2122 {
2123 struct kvm_stats_debugfs_item *p;
2124
2125 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2126 for (p = debugfs_entries; p->name; ++p)
2127 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2128 (void *)(long)p->offset,
2129 stat_fops[p->kind]);
2130 }
2131
2132 static void kvm_exit_debug(void)
2133 {
2134 struct kvm_stats_debugfs_item *p;
2135
2136 for (p = debugfs_entries; p->name; ++p)
2137 debugfs_remove(p->dentry);
2138 debugfs_remove(kvm_debugfs_dir);
2139 }
2140
2141 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2142 {
2143 hardware_disable(NULL);
2144 return 0;
2145 }
2146
2147 static int kvm_resume(struct sys_device *dev)
2148 {
2149 hardware_enable(NULL);
2150 return 0;
2151 }
2152
2153 static struct sysdev_class kvm_sysdev_class = {
2154 .name = "kvm",
2155 .suspend = kvm_suspend,
2156 .resume = kvm_resume,
2157 };
2158
2159 static struct sys_device kvm_sysdev = {
2160 .id = 0,
2161 .cls = &kvm_sysdev_class,
2162 };
2163
2164 struct page *bad_page;
2165 pfn_t bad_pfn;
2166
2167 static inline
2168 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2169 {
2170 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2171 }
2172
2173 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2174 {
2175 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2176
2177 kvm_arch_vcpu_load(vcpu, cpu);
2178 }
2179
2180 static void kvm_sched_out(struct preempt_notifier *pn,
2181 struct task_struct *next)
2182 {
2183 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2184
2185 kvm_arch_vcpu_put(vcpu);
2186 }
2187
2188 int kvm_init(void *opaque, unsigned int vcpu_size,
2189 struct module *module)
2190 {
2191 int r;
2192 int cpu;
2193
2194 kvm_init_debug();
2195
2196 r = kvm_arch_init(opaque);
2197 if (r)
2198 goto out_fail;
2199
2200 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2201
2202 if (bad_page == NULL) {
2203 r = -ENOMEM;
2204 goto out;
2205 }
2206
2207 bad_pfn = page_to_pfn(bad_page);
2208
2209 r = kvm_arch_hardware_setup();
2210 if (r < 0)
2211 goto out_free_0;
2212
2213 for_each_online_cpu(cpu) {
2214 smp_call_function_single(cpu,
2215 kvm_arch_check_processor_compat,
2216 &r, 1);
2217 if (r < 0)
2218 goto out_free_1;
2219 }
2220
2221 on_each_cpu(hardware_enable, NULL, 1);
2222 r = register_cpu_notifier(&kvm_cpu_notifier);
2223 if (r)
2224 goto out_free_2;
2225 register_reboot_notifier(&kvm_reboot_notifier);
2226
2227 r = sysdev_class_register(&kvm_sysdev_class);
2228 if (r)
2229 goto out_free_3;
2230
2231 r = sysdev_register(&kvm_sysdev);
2232 if (r)
2233 goto out_free_4;
2234
2235 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2236 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2237 __alignof__(struct kvm_vcpu),
2238 0, NULL);
2239 if (!kvm_vcpu_cache) {
2240 r = -ENOMEM;
2241 goto out_free_5;
2242 }
2243
2244 kvm_chardev_ops.owner = module;
2245 kvm_vm_fops.owner = module;
2246 kvm_vcpu_fops.owner = module;
2247
2248 r = misc_register(&kvm_dev);
2249 if (r) {
2250 printk(KERN_ERR "kvm: misc device register failed\n");
2251 goto out_free;
2252 }
2253
2254 kvm_preempt_ops.sched_in = kvm_sched_in;
2255 kvm_preempt_ops.sched_out = kvm_sched_out;
2256 #ifndef CONFIG_X86
2257 msi2intx = 0;
2258 #endif
2259
2260 return 0;
2261
2262 out_free:
2263 kmem_cache_destroy(kvm_vcpu_cache);
2264 out_free_5:
2265 sysdev_unregister(&kvm_sysdev);
2266 out_free_4:
2267 sysdev_class_unregister(&kvm_sysdev_class);
2268 out_free_3:
2269 unregister_reboot_notifier(&kvm_reboot_notifier);
2270 unregister_cpu_notifier(&kvm_cpu_notifier);
2271 out_free_2:
2272 on_each_cpu(hardware_disable, NULL, 1);
2273 out_free_1:
2274 kvm_arch_hardware_unsetup();
2275 out_free_0:
2276 __free_page(bad_page);
2277 out:
2278 kvm_arch_exit();
2279 kvm_exit_debug();
2280 out_fail:
2281 return r;
2282 }
2283 EXPORT_SYMBOL_GPL(kvm_init);
2284
2285 void kvm_exit(void)
2286 {
2287 kvm_trace_cleanup();
2288 misc_deregister(&kvm_dev);
2289 kmem_cache_destroy(kvm_vcpu_cache);
2290 sysdev_unregister(&kvm_sysdev);
2291 sysdev_class_unregister(&kvm_sysdev_class);
2292 unregister_reboot_notifier(&kvm_reboot_notifier);
2293 unregister_cpu_notifier(&kvm_cpu_notifier);
2294 on_each_cpu(hardware_disable, NULL, 1);
2295 kvm_arch_hardware_unsetup();
2296 kvm_arch_exit();
2297 kvm_exit_debug();
2298 __free_page(bad_page);
2299 }
2300 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.081486 seconds and 6 git commands to generate.