KVM: introduce irq_lock, use it to protect ioapic
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 DEFINE_SPINLOCK(kvm_lock);
66 LIST_HEAD(vm_list);
67
68 static cpumask_var_t cpus_hardware_enabled;
69
70 struct kmem_cache *kvm_vcpu_cache;
71 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
72
73 static __read_mostly struct preempt_ops kvm_preempt_ops;
74
75 struct dentry *kvm_debugfs_dir;
76
77 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
78 unsigned long arg);
79
80 static bool kvm_rebooting;
81
82 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
83 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
84 int assigned_dev_id)
85 {
86 struct list_head *ptr;
87 struct kvm_assigned_dev_kernel *match;
88
89 list_for_each(ptr, head) {
90 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
91 if (match->assigned_dev_id == assigned_dev_id)
92 return match;
93 }
94 return NULL;
95 }
96
97 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
98 *assigned_dev, int irq)
99 {
100 int i, index;
101 struct msix_entry *host_msix_entries;
102
103 host_msix_entries = assigned_dev->host_msix_entries;
104
105 index = -1;
106 for (i = 0; i < assigned_dev->entries_nr; i++)
107 if (irq == host_msix_entries[i].vector) {
108 index = i;
109 break;
110 }
111 if (index < 0) {
112 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
113 return 0;
114 }
115
116 return index;
117 }
118
119 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
120 {
121 struct kvm_assigned_dev_kernel *assigned_dev;
122 struct kvm *kvm;
123 int i;
124
125 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
126 interrupt_work);
127 kvm = assigned_dev->kvm;
128
129 /* This is taken to safely inject irq inside the guest. When
130 * the interrupt injection (or the ioapic code) uses a
131 * finer-grained lock, update this
132 */
133 mutex_lock(&kvm->lock);
134 spin_lock_irq(&assigned_dev->assigned_dev_lock);
135 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
136 struct kvm_guest_msix_entry *guest_entries =
137 assigned_dev->guest_msix_entries;
138 for (i = 0; i < assigned_dev->entries_nr; i++) {
139 if (!(guest_entries[i].flags &
140 KVM_ASSIGNED_MSIX_PENDING))
141 continue;
142 guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
143 kvm_set_irq(assigned_dev->kvm,
144 assigned_dev->irq_source_id,
145 guest_entries[i].vector, 1);
146 }
147 } else
148 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
149 assigned_dev->guest_irq, 1);
150
151 spin_unlock_irq(&assigned_dev->assigned_dev_lock);
152 mutex_unlock(&assigned_dev->kvm->lock);
153 }
154
155 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
156 {
157 unsigned long flags;
158 struct kvm_assigned_dev_kernel *assigned_dev =
159 (struct kvm_assigned_dev_kernel *) dev_id;
160
161 spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
162 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
163 int index = find_index_from_host_irq(assigned_dev, irq);
164 if (index < 0)
165 goto out;
166 assigned_dev->guest_msix_entries[index].flags |=
167 KVM_ASSIGNED_MSIX_PENDING;
168 }
169
170 schedule_work(&assigned_dev->interrupt_work);
171
172 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
173 disable_irq_nosync(irq);
174 assigned_dev->host_irq_disabled = true;
175 }
176
177 out:
178 spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
179 return IRQ_HANDLED;
180 }
181
182 /* Ack the irq line for an assigned device */
183 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
184 {
185 struct kvm_assigned_dev_kernel *dev;
186 unsigned long flags;
187
188 if (kian->gsi == -1)
189 return;
190
191 dev = container_of(kian, struct kvm_assigned_dev_kernel,
192 ack_notifier);
193
194 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
195
196 /* The guest irq may be shared so this ack may be
197 * from another device.
198 */
199 spin_lock_irqsave(&dev->assigned_dev_lock, flags);
200 if (dev->host_irq_disabled) {
201 enable_irq(dev->host_irq);
202 dev->host_irq_disabled = false;
203 }
204 spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
205 }
206
207 static void deassign_guest_irq(struct kvm *kvm,
208 struct kvm_assigned_dev_kernel *assigned_dev)
209 {
210 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
211 assigned_dev->ack_notifier.gsi = -1;
212
213 if (assigned_dev->irq_source_id != -1)
214 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
215 assigned_dev->irq_source_id = -1;
216 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
217 }
218
219 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
220 static void deassign_host_irq(struct kvm *kvm,
221 struct kvm_assigned_dev_kernel *assigned_dev)
222 {
223 /*
224 * In kvm_free_device_irq, cancel_work_sync return true if:
225 * 1. work is scheduled, and then cancelled.
226 * 2. work callback is executed.
227 *
228 * The first one ensured that the irq is disabled and no more events
229 * would happen. But for the second one, the irq may be enabled (e.g.
230 * for MSI). So we disable irq here to prevent further events.
231 *
232 * Notice this maybe result in nested disable if the interrupt type is
233 * INTx, but it's OK for we are going to free it.
234 *
235 * If this function is a part of VM destroy, please ensure that till
236 * now, the kvm state is still legal for probably we also have to wait
237 * interrupt_work done.
238 */
239 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
240 int i;
241 for (i = 0; i < assigned_dev->entries_nr; i++)
242 disable_irq_nosync(assigned_dev->
243 host_msix_entries[i].vector);
244
245 cancel_work_sync(&assigned_dev->interrupt_work);
246
247 for (i = 0; i < assigned_dev->entries_nr; i++)
248 free_irq(assigned_dev->host_msix_entries[i].vector,
249 (void *)assigned_dev);
250
251 assigned_dev->entries_nr = 0;
252 kfree(assigned_dev->host_msix_entries);
253 kfree(assigned_dev->guest_msix_entries);
254 pci_disable_msix(assigned_dev->dev);
255 } else {
256 /* Deal with MSI and INTx */
257 disable_irq_nosync(assigned_dev->host_irq);
258 cancel_work_sync(&assigned_dev->interrupt_work);
259
260 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
261
262 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
263 pci_disable_msi(assigned_dev->dev);
264 }
265
266 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
267 }
268
269 static int kvm_deassign_irq(struct kvm *kvm,
270 struct kvm_assigned_dev_kernel *assigned_dev,
271 unsigned long irq_requested_type)
272 {
273 unsigned long guest_irq_type, host_irq_type;
274
275 if (!irqchip_in_kernel(kvm))
276 return -EINVAL;
277 /* no irq assignment to deassign */
278 if (!assigned_dev->irq_requested_type)
279 return -ENXIO;
280
281 host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
282 guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
283
284 if (host_irq_type)
285 deassign_host_irq(kvm, assigned_dev);
286 if (guest_irq_type)
287 deassign_guest_irq(kvm, assigned_dev);
288
289 return 0;
290 }
291
292 static void kvm_free_assigned_irq(struct kvm *kvm,
293 struct kvm_assigned_dev_kernel *assigned_dev)
294 {
295 kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
296 }
297
298 static void kvm_free_assigned_device(struct kvm *kvm,
299 struct kvm_assigned_dev_kernel
300 *assigned_dev)
301 {
302 kvm_free_assigned_irq(kvm, assigned_dev);
303
304 pci_reset_function(assigned_dev->dev);
305
306 pci_release_regions(assigned_dev->dev);
307 pci_disable_device(assigned_dev->dev);
308 pci_dev_put(assigned_dev->dev);
309
310 list_del(&assigned_dev->list);
311 kfree(assigned_dev);
312 }
313
314 void kvm_free_all_assigned_devices(struct kvm *kvm)
315 {
316 struct list_head *ptr, *ptr2;
317 struct kvm_assigned_dev_kernel *assigned_dev;
318
319 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
320 assigned_dev = list_entry(ptr,
321 struct kvm_assigned_dev_kernel,
322 list);
323
324 kvm_free_assigned_device(kvm, assigned_dev);
325 }
326 }
327
328 static int assigned_device_enable_host_intx(struct kvm *kvm,
329 struct kvm_assigned_dev_kernel *dev)
330 {
331 dev->host_irq = dev->dev->irq;
332 /* Even though this is PCI, we don't want to use shared
333 * interrupts. Sharing host devices with guest-assigned devices
334 * on the same interrupt line is not a happy situation: there
335 * are going to be long delays in accepting, acking, etc.
336 */
337 if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
338 0, "kvm_assigned_intx_device", (void *)dev))
339 return -EIO;
340 return 0;
341 }
342
343 #ifdef __KVM_HAVE_MSI
344 static int assigned_device_enable_host_msi(struct kvm *kvm,
345 struct kvm_assigned_dev_kernel *dev)
346 {
347 int r;
348
349 if (!dev->dev->msi_enabled) {
350 r = pci_enable_msi(dev->dev);
351 if (r)
352 return r;
353 }
354
355 dev->host_irq = dev->dev->irq;
356 if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
357 "kvm_assigned_msi_device", (void *)dev)) {
358 pci_disable_msi(dev->dev);
359 return -EIO;
360 }
361
362 return 0;
363 }
364 #endif
365
366 #ifdef __KVM_HAVE_MSIX
367 static int assigned_device_enable_host_msix(struct kvm *kvm,
368 struct kvm_assigned_dev_kernel *dev)
369 {
370 int i, r = -EINVAL;
371
372 /* host_msix_entries and guest_msix_entries should have been
373 * initialized */
374 if (dev->entries_nr == 0)
375 return r;
376
377 r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
378 if (r)
379 return r;
380
381 for (i = 0; i < dev->entries_nr; i++) {
382 r = request_irq(dev->host_msix_entries[i].vector,
383 kvm_assigned_dev_intr, 0,
384 "kvm_assigned_msix_device",
385 (void *)dev);
386 /* FIXME: free requested_irq's on failure */
387 if (r)
388 return r;
389 }
390
391 return 0;
392 }
393
394 #endif
395
396 static int assigned_device_enable_guest_intx(struct kvm *kvm,
397 struct kvm_assigned_dev_kernel *dev,
398 struct kvm_assigned_irq *irq)
399 {
400 dev->guest_irq = irq->guest_irq;
401 dev->ack_notifier.gsi = irq->guest_irq;
402 return 0;
403 }
404
405 #ifdef __KVM_HAVE_MSI
406 static int assigned_device_enable_guest_msi(struct kvm *kvm,
407 struct kvm_assigned_dev_kernel *dev,
408 struct kvm_assigned_irq *irq)
409 {
410 dev->guest_irq = irq->guest_irq;
411 dev->ack_notifier.gsi = -1;
412 dev->host_irq_disabled = false;
413 return 0;
414 }
415 #endif
416 #ifdef __KVM_HAVE_MSIX
417 static int assigned_device_enable_guest_msix(struct kvm *kvm,
418 struct kvm_assigned_dev_kernel *dev,
419 struct kvm_assigned_irq *irq)
420 {
421 dev->guest_irq = irq->guest_irq;
422 dev->ack_notifier.gsi = -1;
423 dev->host_irq_disabled = false;
424 return 0;
425 }
426 #endif
427
428 static int assign_host_irq(struct kvm *kvm,
429 struct kvm_assigned_dev_kernel *dev,
430 __u32 host_irq_type)
431 {
432 int r = -EEXIST;
433
434 if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
435 return r;
436
437 switch (host_irq_type) {
438 case KVM_DEV_IRQ_HOST_INTX:
439 r = assigned_device_enable_host_intx(kvm, dev);
440 break;
441 #ifdef __KVM_HAVE_MSI
442 case KVM_DEV_IRQ_HOST_MSI:
443 r = assigned_device_enable_host_msi(kvm, dev);
444 break;
445 #endif
446 #ifdef __KVM_HAVE_MSIX
447 case KVM_DEV_IRQ_HOST_MSIX:
448 r = assigned_device_enable_host_msix(kvm, dev);
449 break;
450 #endif
451 default:
452 r = -EINVAL;
453 }
454
455 if (!r)
456 dev->irq_requested_type |= host_irq_type;
457
458 return r;
459 }
460
461 static int assign_guest_irq(struct kvm *kvm,
462 struct kvm_assigned_dev_kernel *dev,
463 struct kvm_assigned_irq *irq,
464 unsigned long guest_irq_type)
465 {
466 int id;
467 int r = -EEXIST;
468
469 if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
470 return r;
471
472 id = kvm_request_irq_source_id(kvm);
473 if (id < 0)
474 return id;
475
476 dev->irq_source_id = id;
477
478 switch (guest_irq_type) {
479 case KVM_DEV_IRQ_GUEST_INTX:
480 r = assigned_device_enable_guest_intx(kvm, dev, irq);
481 break;
482 #ifdef __KVM_HAVE_MSI
483 case KVM_DEV_IRQ_GUEST_MSI:
484 r = assigned_device_enable_guest_msi(kvm, dev, irq);
485 break;
486 #endif
487 #ifdef __KVM_HAVE_MSIX
488 case KVM_DEV_IRQ_GUEST_MSIX:
489 r = assigned_device_enable_guest_msix(kvm, dev, irq);
490 break;
491 #endif
492 default:
493 r = -EINVAL;
494 }
495
496 if (!r) {
497 dev->irq_requested_type |= guest_irq_type;
498 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
499 } else
500 kvm_free_irq_source_id(kvm, dev->irq_source_id);
501
502 return r;
503 }
504
505 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
506 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
507 struct kvm_assigned_irq *assigned_irq)
508 {
509 int r = -EINVAL;
510 struct kvm_assigned_dev_kernel *match;
511 unsigned long host_irq_type, guest_irq_type;
512
513 if (!capable(CAP_SYS_RAWIO))
514 return -EPERM;
515
516 if (!irqchip_in_kernel(kvm))
517 return r;
518
519 mutex_lock(&kvm->lock);
520 r = -ENODEV;
521 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
522 assigned_irq->assigned_dev_id);
523 if (!match)
524 goto out;
525
526 host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
527 guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
528
529 r = -EINVAL;
530 /* can only assign one type at a time */
531 if (hweight_long(host_irq_type) > 1)
532 goto out;
533 if (hweight_long(guest_irq_type) > 1)
534 goto out;
535 if (host_irq_type == 0 && guest_irq_type == 0)
536 goto out;
537
538 r = 0;
539 if (host_irq_type)
540 r = assign_host_irq(kvm, match, host_irq_type);
541 if (r)
542 goto out;
543
544 if (guest_irq_type)
545 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
546 out:
547 mutex_unlock(&kvm->lock);
548 return r;
549 }
550
551 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
552 struct kvm_assigned_irq
553 *assigned_irq)
554 {
555 int r = -ENODEV;
556 struct kvm_assigned_dev_kernel *match;
557
558 mutex_lock(&kvm->lock);
559
560 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
561 assigned_irq->assigned_dev_id);
562 if (!match)
563 goto out;
564
565 r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
566 out:
567 mutex_unlock(&kvm->lock);
568 return r;
569 }
570
571 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
572 struct kvm_assigned_pci_dev *assigned_dev)
573 {
574 int r = 0;
575 struct kvm_assigned_dev_kernel *match;
576 struct pci_dev *dev;
577
578 down_read(&kvm->slots_lock);
579 mutex_lock(&kvm->lock);
580
581 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
582 assigned_dev->assigned_dev_id);
583 if (match) {
584 /* device already assigned */
585 r = -EEXIST;
586 goto out;
587 }
588
589 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
590 if (match == NULL) {
591 printk(KERN_INFO "%s: Couldn't allocate memory\n",
592 __func__);
593 r = -ENOMEM;
594 goto out;
595 }
596 dev = pci_get_bus_and_slot(assigned_dev->busnr,
597 assigned_dev->devfn);
598 if (!dev) {
599 printk(KERN_INFO "%s: host device not found\n", __func__);
600 r = -EINVAL;
601 goto out_free;
602 }
603 if (pci_enable_device(dev)) {
604 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
605 r = -EBUSY;
606 goto out_put;
607 }
608 r = pci_request_regions(dev, "kvm_assigned_device");
609 if (r) {
610 printk(KERN_INFO "%s: Could not get access to device regions\n",
611 __func__);
612 goto out_disable;
613 }
614
615 pci_reset_function(dev);
616
617 match->assigned_dev_id = assigned_dev->assigned_dev_id;
618 match->host_busnr = assigned_dev->busnr;
619 match->host_devfn = assigned_dev->devfn;
620 match->flags = assigned_dev->flags;
621 match->dev = dev;
622 spin_lock_init(&match->assigned_dev_lock);
623 match->irq_source_id = -1;
624 match->kvm = kvm;
625 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
626 INIT_WORK(&match->interrupt_work,
627 kvm_assigned_dev_interrupt_work_handler);
628
629 list_add(&match->list, &kvm->arch.assigned_dev_head);
630
631 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
632 if (!kvm->arch.iommu_domain) {
633 r = kvm_iommu_map_guest(kvm);
634 if (r)
635 goto out_list_del;
636 }
637 r = kvm_assign_device(kvm, match);
638 if (r)
639 goto out_list_del;
640 }
641
642 out:
643 mutex_unlock(&kvm->lock);
644 up_read(&kvm->slots_lock);
645 return r;
646 out_list_del:
647 list_del(&match->list);
648 pci_release_regions(dev);
649 out_disable:
650 pci_disable_device(dev);
651 out_put:
652 pci_dev_put(dev);
653 out_free:
654 kfree(match);
655 mutex_unlock(&kvm->lock);
656 up_read(&kvm->slots_lock);
657 return r;
658 }
659 #endif
660
661 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
662 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
663 struct kvm_assigned_pci_dev *assigned_dev)
664 {
665 int r = 0;
666 struct kvm_assigned_dev_kernel *match;
667
668 mutex_lock(&kvm->lock);
669
670 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
671 assigned_dev->assigned_dev_id);
672 if (!match) {
673 printk(KERN_INFO "%s: device hasn't been assigned before, "
674 "so cannot be deassigned\n", __func__);
675 r = -EINVAL;
676 goto out;
677 }
678
679 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
680 kvm_deassign_device(kvm, match);
681
682 kvm_free_assigned_device(kvm, match);
683
684 out:
685 mutex_unlock(&kvm->lock);
686 return r;
687 }
688 #endif
689
690 static inline int valid_vcpu(int n)
691 {
692 return likely(n >= 0 && n < KVM_MAX_VCPUS);
693 }
694
695 inline int kvm_is_mmio_pfn(pfn_t pfn)
696 {
697 if (pfn_valid(pfn)) {
698 struct page *page = compound_head(pfn_to_page(pfn));
699 return PageReserved(page);
700 }
701
702 return true;
703 }
704
705 /*
706 * Switches to specified vcpu, until a matching vcpu_put()
707 */
708 void vcpu_load(struct kvm_vcpu *vcpu)
709 {
710 int cpu;
711
712 mutex_lock(&vcpu->mutex);
713 cpu = get_cpu();
714 preempt_notifier_register(&vcpu->preempt_notifier);
715 kvm_arch_vcpu_load(vcpu, cpu);
716 put_cpu();
717 }
718
719 void vcpu_put(struct kvm_vcpu *vcpu)
720 {
721 preempt_disable();
722 kvm_arch_vcpu_put(vcpu);
723 preempt_notifier_unregister(&vcpu->preempt_notifier);
724 preempt_enable();
725 mutex_unlock(&vcpu->mutex);
726 }
727
728 static void ack_flush(void *_completed)
729 {
730 }
731
732 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
733 {
734 int i, cpu, me;
735 cpumask_var_t cpus;
736 bool called = true;
737 struct kvm_vcpu *vcpu;
738
739 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
740 cpumask_clear(cpus);
741
742 me = get_cpu();
743 spin_lock(&kvm->requests_lock);
744 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
745 vcpu = kvm->vcpus[i];
746 if (!vcpu)
747 continue;
748 if (test_and_set_bit(req, &vcpu->requests))
749 continue;
750 cpu = vcpu->cpu;
751 if (cpus != NULL && cpu != -1 && cpu != me)
752 cpumask_set_cpu(cpu, cpus);
753 }
754 if (unlikely(cpus == NULL))
755 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
756 else if (!cpumask_empty(cpus))
757 smp_call_function_many(cpus, ack_flush, NULL, 1);
758 else
759 called = false;
760 spin_unlock(&kvm->requests_lock);
761 put_cpu();
762 free_cpumask_var(cpus);
763 return called;
764 }
765
766 void kvm_flush_remote_tlbs(struct kvm *kvm)
767 {
768 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
769 ++kvm->stat.remote_tlb_flush;
770 }
771
772 void kvm_reload_remote_mmus(struct kvm *kvm)
773 {
774 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
775 }
776
777 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
778 {
779 struct page *page;
780 int r;
781
782 mutex_init(&vcpu->mutex);
783 vcpu->cpu = -1;
784 vcpu->kvm = kvm;
785 vcpu->vcpu_id = id;
786 init_waitqueue_head(&vcpu->wq);
787
788 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
789 if (!page) {
790 r = -ENOMEM;
791 goto fail;
792 }
793 vcpu->run = page_address(page);
794
795 r = kvm_arch_vcpu_init(vcpu);
796 if (r < 0)
797 goto fail_free_run;
798 return 0;
799
800 fail_free_run:
801 free_page((unsigned long)vcpu->run);
802 fail:
803 return r;
804 }
805 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
806
807 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
808 {
809 kvm_arch_vcpu_uninit(vcpu);
810 free_page((unsigned long)vcpu->run);
811 }
812 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
813
814 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
815 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
816 {
817 return container_of(mn, struct kvm, mmu_notifier);
818 }
819
820 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
821 struct mm_struct *mm,
822 unsigned long address)
823 {
824 struct kvm *kvm = mmu_notifier_to_kvm(mn);
825 int need_tlb_flush;
826
827 /*
828 * When ->invalidate_page runs, the linux pte has been zapped
829 * already but the page is still allocated until
830 * ->invalidate_page returns. So if we increase the sequence
831 * here the kvm page fault will notice if the spte can't be
832 * established because the page is going to be freed. If
833 * instead the kvm page fault establishes the spte before
834 * ->invalidate_page runs, kvm_unmap_hva will release it
835 * before returning.
836 *
837 * The sequence increase only need to be seen at spin_unlock
838 * time, and not at spin_lock time.
839 *
840 * Increasing the sequence after the spin_unlock would be
841 * unsafe because the kvm page fault could then establish the
842 * pte after kvm_unmap_hva returned, without noticing the page
843 * is going to be freed.
844 */
845 spin_lock(&kvm->mmu_lock);
846 kvm->mmu_notifier_seq++;
847 need_tlb_flush = kvm_unmap_hva(kvm, address);
848 spin_unlock(&kvm->mmu_lock);
849
850 /* we've to flush the tlb before the pages can be freed */
851 if (need_tlb_flush)
852 kvm_flush_remote_tlbs(kvm);
853
854 }
855
856 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
857 struct mm_struct *mm,
858 unsigned long start,
859 unsigned long end)
860 {
861 struct kvm *kvm = mmu_notifier_to_kvm(mn);
862 int need_tlb_flush = 0;
863
864 spin_lock(&kvm->mmu_lock);
865 /*
866 * The count increase must become visible at unlock time as no
867 * spte can be established without taking the mmu_lock and
868 * count is also read inside the mmu_lock critical section.
869 */
870 kvm->mmu_notifier_count++;
871 for (; start < end; start += PAGE_SIZE)
872 need_tlb_flush |= kvm_unmap_hva(kvm, start);
873 spin_unlock(&kvm->mmu_lock);
874
875 /* we've to flush the tlb before the pages can be freed */
876 if (need_tlb_flush)
877 kvm_flush_remote_tlbs(kvm);
878 }
879
880 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
881 struct mm_struct *mm,
882 unsigned long start,
883 unsigned long end)
884 {
885 struct kvm *kvm = mmu_notifier_to_kvm(mn);
886
887 spin_lock(&kvm->mmu_lock);
888 /*
889 * This sequence increase will notify the kvm page fault that
890 * the page that is going to be mapped in the spte could have
891 * been freed.
892 */
893 kvm->mmu_notifier_seq++;
894 /*
895 * The above sequence increase must be visible before the
896 * below count decrease but both values are read by the kvm
897 * page fault under mmu_lock spinlock so we don't need to add
898 * a smb_wmb() here in between the two.
899 */
900 kvm->mmu_notifier_count--;
901 spin_unlock(&kvm->mmu_lock);
902
903 BUG_ON(kvm->mmu_notifier_count < 0);
904 }
905
906 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
907 struct mm_struct *mm,
908 unsigned long address)
909 {
910 struct kvm *kvm = mmu_notifier_to_kvm(mn);
911 int young;
912
913 spin_lock(&kvm->mmu_lock);
914 young = kvm_age_hva(kvm, address);
915 spin_unlock(&kvm->mmu_lock);
916
917 if (young)
918 kvm_flush_remote_tlbs(kvm);
919
920 return young;
921 }
922
923 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
924 struct mm_struct *mm)
925 {
926 struct kvm *kvm = mmu_notifier_to_kvm(mn);
927 kvm_arch_flush_shadow(kvm);
928 }
929
930 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
931 .invalidate_page = kvm_mmu_notifier_invalidate_page,
932 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
933 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
934 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
935 .release = kvm_mmu_notifier_release,
936 };
937 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
938
939 static struct kvm *kvm_create_vm(void)
940 {
941 struct kvm *kvm = kvm_arch_create_vm();
942 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
943 struct page *page;
944 #endif
945
946 if (IS_ERR(kvm))
947 goto out;
948 #ifdef CONFIG_HAVE_KVM_IRQCHIP
949 INIT_LIST_HEAD(&kvm->irq_routing);
950 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
951 #endif
952
953 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
954 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
955 if (!page) {
956 kfree(kvm);
957 return ERR_PTR(-ENOMEM);
958 }
959 kvm->coalesced_mmio_ring =
960 (struct kvm_coalesced_mmio_ring *)page_address(page);
961 #endif
962
963 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
964 {
965 int err;
966 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
967 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
968 if (err) {
969 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
970 put_page(page);
971 #endif
972 kfree(kvm);
973 return ERR_PTR(err);
974 }
975 }
976 #endif
977
978 kvm->mm = current->mm;
979 atomic_inc(&kvm->mm->mm_count);
980 spin_lock_init(&kvm->mmu_lock);
981 spin_lock_init(&kvm->requests_lock);
982 kvm_io_bus_init(&kvm->pio_bus);
983 kvm_irqfd_init(kvm);
984 mutex_init(&kvm->lock);
985 mutex_init(&kvm->irq_lock);
986 kvm_io_bus_init(&kvm->mmio_bus);
987 init_rwsem(&kvm->slots_lock);
988 atomic_set(&kvm->users_count, 1);
989 spin_lock(&kvm_lock);
990 list_add(&kvm->vm_list, &vm_list);
991 spin_unlock(&kvm_lock);
992 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
993 kvm_coalesced_mmio_init(kvm);
994 #endif
995 out:
996 return kvm;
997 }
998
999 /*
1000 * Free any memory in @free but not in @dont.
1001 */
1002 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1003 struct kvm_memory_slot *dont)
1004 {
1005 if (!dont || free->rmap != dont->rmap)
1006 vfree(free->rmap);
1007
1008 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1009 vfree(free->dirty_bitmap);
1010
1011 if (!dont || free->lpage_info != dont->lpage_info)
1012 vfree(free->lpage_info);
1013
1014 free->npages = 0;
1015 free->dirty_bitmap = NULL;
1016 free->rmap = NULL;
1017 free->lpage_info = NULL;
1018 }
1019
1020 void kvm_free_physmem(struct kvm *kvm)
1021 {
1022 int i;
1023
1024 for (i = 0; i < kvm->nmemslots; ++i)
1025 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1026 }
1027
1028 static void kvm_destroy_vm(struct kvm *kvm)
1029 {
1030 struct mm_struct *mm = kvm->mm;
1031
1032 kvm_arch_sync_events(kvm);
1033 spin_lock(&kvm_lock);
1034 list_del(&kvm->vm_list);
1035 spin_unlock(&kvm_lock);
1036 kvm_free_irq_routing(kvm);
1037 kvm_io_bus_destroy(&kvm->pio_bus);
1038 kvm_io_bus_destroy(&kvm->mmio_bus);
1039 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1040 if (kvm->coalesced_mmio_ring != NULL)
1041 free_page((unsigned long)kvm->coalesced_mmio_ring);
1042 #endif
1043 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1044 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1045 #else
1046 kvm_arch_flush_shadow(kvm);
1047 #endif
1048 kvm_arch_destroy_vm(kvm);
1049 mmdrop(mm);
1050 }
1051
1052 void kvm_get_kvm(struct kvm *kvm)
1053 {
1054 atomic_inc(&kvm->users_count);
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1057
1058 void kvm_put_kvm(struct kvm *kvm)
1059 {
1060 if (atomic_dec_and_test(&kvm->users_count))
1061 kvm_destroy_vm(kvm);
1062 }
1063 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1064
1065
1066 static int kvm_vm_release(struct inode *inode, struct file *filp)
1067 {
1068 struct kvm *kvm = filp->private_data;
1069
1070 kvm_irqfd_release(kvm);
1071
1072 kvm_put_kvm(kvm);
1073 return 0;
1074 }
1075
1076 /*
1077 * Allocate some memory and give it an address in the guest physical address
1078 * space.
1079 *
1080 * Discontiguous memory is allowed, mostly for framebuffers.
1081 *
1082 * Must be called holding mmap_sem for write.
1083 */
1084 int __kvm_set_memory_region(struct kvm *kvm,
1085 struct kvm_userspace_memory_region *mem,
1086 int user_alloc)
1087 {
1088 int r;
1089 gfn_t base_gfn;
1090 unsigned long npages, ugfn;
1091 unsigned long largepages, i;
1092 struct kvm_memory_slot *memslot;
1093 struct kvm_memory_slot old, new;
1094
1095 r = -EINVAL;
1096 /* General sanity checks */
1097 if (mem->memory_size & (PAGE_SIZE - 1))
1098 goto out;
1099 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1100 goto out;
1101 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1102 goto out;
1103 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1104 goto out;
1105 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1106 goto out;
1107
1108 memslot = &kvm->memslots[mem->slot];
1109 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1110 npages = mem->memory_size >> PAGE_SHIFT;
1111
1112 if (!npages)
1113 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1114
1115 new = old = *memslot;
1116
1117 new.base_gfn = base_gfn;
1118 new.npages = npages;
1119 new.flags = mem->flags;
1120
1121 /* Disallow changing a memory slot's size. */
1122 r = -EINVAL;
1123 if (npages && old.npages && npages != old.npages)
1124 goto out_free;
1125
1126 /* Check for overlaps */
1127 r = -EEXIST;
1128 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1129 struct kvm_memory_slot *s = &kvm->memslots[i];
1130
1131 if (s == memslot || !s->npages)
1132 continue;
1133 if (!((base_gfn + npages <= s->base_gfn) ||
1134 (base_gfn >= s->base_gfn + s->npages)))
1135 goto out_free;
1136 }
1137
1138 /* Free page dirty bitmap if unneeded */
1139 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1140 new.dirty_bitmap = NULL;
1141
1142 r = -ENOMEM;
1143
1144 /* Allocate if a slot is being created */
1145 #ifndef CONFIG_S390
1146 if (npages && !new.rmap) {
1147 new.rmap = vmalloc(npages * sizeof(struct page *));
1148
1149 if (!new.rmap)
1150 goto out_free;
1151
1152 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1153
1154 new.user_alloc = user_alloc;
1155 /*
1156 * hva_to_rmmap() serialzies with the mmu_lock and to be
1157 * safe it has to ignore memslots with !user_alloc &&
1158 * !userspace_addr.
1159 */
1160 if (user_alloc)
1161 new.userspace_addr = mem->userspace_addr;
1162 else
1163 new.userspace_addr = 0;
1164 }
1165 if (npages && !new.lpage_info) {
1166 largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
1167 largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
1168
1169 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1170
1171 if (!new.lpage_info)
1172 goto out_free;
1173
1174 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1175
1176 if (base_gfn % KVM_PAGES_PER_HPAGE)
1177 new.lpage_info[0].write_count = 1;
1178 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1179 new.lpage_info[largepages-1].write_count = 1;
1180 ugfn = new.userspace_addr >> PAGE_SHIFT;
1181 /*
1182 * If the gfn and userspace address are not aligned wrt each
1183 * other, disable large page support for this slot
1184 */
1185 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1))
1186 for (i = 0; i < largepages; ++i)
1187 new.lpage_info[i].write_count = 1;
1188 }
1189
1190 /* Allocate page dirty bitmap if needed */
1191 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1192 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1193
1194 new.dirty_bitmap = vmalloc(dirty_bytes);
1195 if (!new.dirty_bitmap)
1196 goto out_free;
1197 memset(new.dirty_bitmap, 0, dirty_bytes);
1198 if (old.npages)
1199 kvm_arch_flush_shadow(kvm);
1200 }
1201 #endif /* not defined CONFIG_S390 */
1202
1203 if (!npages)
1204 kvm_arch_flush_shadow(kvm);
1205
1206 spin_lock(&kvm->mmu_lock);
1207 if (mem->slot >= kvm->nmemslots)
1208 kvm->nmemslots = mem->slot + 1;
1209
1210 *memslot = new;
1211 spin_unlock(&kvm->mmu_lock);
1212
1213 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1214 if (r) {
1215 spin_lock(&kvm->mmu_lock);
1216 *memslot = old;
1217 spin_unlock(&kvm->mmu_lock);
1218 goto out_free;
1219 }
1220
1221 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1222 /* Slot deletion case: we have to update the current slot */
1223 spin_lock(&kvm->mmu_lock);
1224 if (!npages)
1225 *memslot = old;
1226 spin_unlock(&kvm->mmu_lock);
1227 #ifdef CONFIG_DMAR
1228 /* map the pages in iommu page table */
1229 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1230 if (r)
1231 goto out;
1232 #endif
1233 return 0;
1234
1235 out_free:
1236 kvm_free_physmem_slot(&new, &old);
1237 out:
1238 return r;
1239
1240 }
1241 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1242
1243 int kvm_set_memory_region(struct kvm *kvm,
1244 struct kvm_userspace_memory_region *mem,
1245 int user_alloc)
1246 {
1247 int r;
1248
1249 down_write(&kvm->slots_lock);
1250 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1251 up_write(&kvm->slots_lock);
1252 return r;
1253 }
1254 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1255
1256 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1257 struct
1258 kvm_userspace_memory_region *mem,
1259 int user_alloc)
1260 {
1261 if (mem->slot >= KVM_MEMORY_SLOTS)
1262 return -EINVAL;
1263 return kvm_set_memory_region(kvm, mem, user_alloc);
1264 }
1265
1266 int kvm_get_dirty_log(struct kvm *kvm,
1267 struct kvm_dirty_log *log, int *is_dirty)
1268 {
1269 struct kvm_memory_slot *memslot;
1270 int r, i;
1271 int n;
1272 unsigned long any = 0;
1273
1274 r = -EINVAL;
1275 if (log->slot >= KVM_MEMORY_SLOTS)
1276 goto out;
1277
1278 memslot = &kvm->memslots[log->slot];
1279 r = -ENOENT;
1280 if (!memslot->dirty_bitmap)
1281 goto out;
1282
1283 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1284
1285 for (i = 0; !any && i < n/sizeof(long); ++i)
1286 any = memslot->dirty_bitmap[i];
1287
1288 r = -EFAULT;
1289 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1290 goto out;
1291
1292 if (any)
1293 *is_dirty = 1;
1294
1295 r = 0;
1296 out:
1297 return r;
1298 }
1299
1300 int is_error_page(struct page *page)
1301 {
1302 return page == bad_page;
1303 }
1304 EXPORT_SYMBOL_GPL(is_error_page);
1305
1306 int is_error_pfn(pfn_t pfn)
1307 {
1308 return pfn == bad_pfn;
1309 }
1310 EXPORT_SYMBOL_GPL(is_error_pfn);
1311
1312 static inline unsigned long bad_hva(void)
1313 {
1314 return PAGE_OFFSET;
1315 }
1316
1317 int kvm_is_error_hva(unsigned long addr)
1318 {
1319 return addr == bad_hva();
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1322
1323 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1324 {
1325 int i;
1326
1327 for (i = 0; i < kvm->nmemslots; ++i) {
1328 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1329
1330 if (gfn >= memslot->base_gfn
1331 && gfn < memslot->base_gfn + memslot->npages)
1332 return memslot;
1333 }
1334 return NULL;
1335 }
1336 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1337
1338 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1339 {
1340 gfn = unalias_gfn(kvm, gfn);
1341 return gfn_to_memslot_unaliased(kvm, gfn);
1342 }
1343
1344 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1345 {
1346 int i;
1347
1348 gfn = unalias_gfn(kvm, gfn);
1349 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1350 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1351
1352 if (gfn >= memslot->base_gfn
1353 && gfn < memslot->base_gfn + memslot->npages)
1354 return 1;
1355 }
1356 return 0;
1357 }
1358 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1359
1360 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1361 {
1362 struct kvm_memory_slot *slot;
1363
1364 gfn = unalias_gfn(kvm, gfn);
1365 slot = gfn_to_memslot_unaliased(kvm, gfn);
1366 if (!slot)
1367 return bad_hva();
1368 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1369 }
1370 EXPORT_SYMBOL_GPL(gfn_to_hva);
1371
1372 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1373 {
1374 struct page *page[1];
1375 unsigned long addr;
1376 int npages;
1377 pfn_t pfn;
1378
1379 might_sleep();
1380
1381 addr = gfn_to_hva(kvm, gfn);
1382 if (kvm_is_error_hva(addr)) {
1383 get_page(bad_page);
1384 return page_to_pfn(bad_page);
1385 }
1386
1387 npages = get_user_pages_fast(addr, 1, 1, page);
1388
1389 if (unlikely(npages != 1)) {
1390 struct vm_area_struct *vma;
1391
1392 down_read(&current->mm->mmap_sem);
1393 vma = find_vma(current->mm, addr);
1394
1395 if (vma == NULL || addr < vma->vm_start ||
1396 !(vma->vm_flags & VM_PFNMAP)) {
1397 up_read(&current->mm->mmap_sem);
1398 get_page(bad_page);
1399 return page_to_pfn(bad_page);
1400 }
1401
1402 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1403 up_read(&current->mm->mmap_sem);
1404 BUG_ON(!kvm_is_mmio_pfn(pfn));
1405 } else
1406 pfn = page_to_pfn(page[0]);
1407
1408 return pfn;
1409 }
1410
1411 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1412
1413 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1414 {
1415 pfn_t pfn;
1416
1417 pfn = gfn_to_pfn(kvm, gfn);
1418 if (!kvm_is_mmio_pfn(pfn))
1419 return pfn_to_page(pfn);
1420
1421 WARN_ON(kvm_is_mmio_pfn(pfn));
1422
1423 get_page(bad_page);
1424 return bad_page;
1425 }
1426
1427 EXPORT_SYMBOL_GPL(gfn_to_page);
1428
1429 void kvm_release_page_clean(struct page *page)
1430 {
1431 kvm_release_pfn_clean(page_to_pfn(page));
1432 }
1433 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1434
1435 void kvm_release_pfn_clean(pfn_t pfn)
1436 {
1437 if (!kvm_is_mmio_pfn(pfn))
1438 put_page(pfn_to_page(pfn));
1439 }
1440 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1441
1442 void kvm_release_page_dirty(struct page *page)
1443 {
1444 kvm_release_pfn_dirty(page_to_pfn(page));
1445 }
1446 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1447
1448 void kvm_release_pfn_dirty(pfn_t pfn)
1449 {
1450 kvm_set_pfn_dirty(pfn);
1451 kvm_release_pfn_clean(pfn);
1452 }
1453 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1454
1455 void kvm_set_page_dirty(struct page *page)
1456 {
1457 kvm_set_pfn_dirty(page_to_pfn(page));
1458 }
1459 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1460
1461 void kvm_set_pfn_dirty(pfn_t pfn)
1462 {
1463 if (!kvm_is_mmio_pfn(pfn)) {
1464 struct page *page = pfn_to_page(pfn);
1465 if (!PageReserved(page))
1466 SetPageDirty(page);
1467 }
1468 }
1469 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1470
1471 void kvm_set_pfn_accessed(pfn_t pfn)
1472 {
1473 if (!kvm_is_mmio_pfn(pfn))
1474 mark_page_accessed(pfn_to_page(pfn));
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1477
1478 void kvm_get_pfn(pfn_t pfn)
1479 {
1480 if (!kvm_is_mmio_pfn(pfn))
1481 get_page(pfn_to_page(pfn));
1482 }
1483 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1484
1485 static int next_segment(unsigned long len, int offset)
1486 {
1487 if (len > PAGE_SIZE - offset)
1488 return PAGE_SIZE - offset;
1489 else
1490 return len;
1491 }
1492
1493 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1494 int len)
1495 {
1496 int r;
1497 unsigned long addr;
1498
1499 addr = gfn_to_hva(kvm, gfn);
1500 if (kvm_is_error_hva(addr))
1501 return -EFAULT;
1502 r = copy_from_user(data, (void __user *)addr + offset, len);
1503 if (r)
1504 return -EFAULT;
1505 return 0;
1506 }
1507 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1508
1509 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1510 {
1511 gfn_t gfn = gpa >> PAGE_SHIFT;
1512 int seg;
1513 int offset = offset_in_page(gpa);
1514 int ret;
1515
1516 while ((seg = next_segment(len, offset)) != 0) {
1517 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1518 if (ret < 0)
1519 return ret;
1520 offset = 0;
1521 len -= seg;
1522 data += seg;
1523 ++gfn;
1524 }
1525 return 0;
1526 }
1527 EXPORT_SYMBOL_GPL(kvm_read_guest);
1528
1529 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1530 unsigned long len)
1531 {
1532 int r;
1533 unsigned long addr;
1534 gfn_t gfn = gpa >> PAGE_SHIFT;
1535 int offset = offset_in_page(gpa);
1536
1537 addr = gfn_to_hva(kvm, gfn);
1538 if (kvm_is_error_hva(addr))
1539 return -EFAULT;
1540 pagefault_disable();
1541 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1542 pagefault_enable();
1543 if (r)
1544 return -EFAULT;
1545 return 0;
1546 }
1547 EXPORT_SYMBOL(kvm_read_guest_atomic);
1548
1549 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1550 int offset, int len)
1551 {
1552 int r;
1553 unsigned long addr;
1554
1555 addr = gfn_to_hva(kvm, gfn);
1556 if (kvm_is_error_hva(addr))
1557 return -EFAULT;
1558 r = copy_to_user((void __user *)addr + offset, data, len);
1559 if (r)
1560 return -EFAULT;
1561 mark_page_dirty(kvm, gfn);
1562 return 0;
1563 }
1564 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1565
1566 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1567 unsigned long len)
1568 {
1569 gfn_t gfn = gpa >> PAGE_SHIFT;
1570 int seg;
1571 int offset = offset_in_page(gpa);
1572 int ret;
1573
1574 while ((seg = next_segment(len, offset)) != 0) {
1575 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1576 if (ret < 0)
1577 return ret;
1578 offset = 0;
1579 len -= seg;
1580 data += seg;
1581 ++gfn;
1582 }
1583 return 0;
1584 }
1585
1586 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1587 {
1588 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1589 }
1590 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1591
1592 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1593 {
1594 gfn_t gfn = gpa >> PAGE_SHIFT;
1595 int seg;
1596 int offset = offset_in_page(gpa);
1597 int ret;
1598
1599 while ((seg = next_segment(len, offset)) != 0) {
1600 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1601 if (ret < 0)
1602 return ret;
1603 offset = 0;
1604 len -= seg;
1605 ++gfn;
1606 }
1607 return 0;
1608 }
1609 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1610
1611 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1612 {
1613 struct kvm_memory_slot *memslot;
1614
1615 gfn = unalias_gfn(kvm, gfn);
1616 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1617 if (memslot && memslot->dirty_bitmap) {
1618 unsigned long rel_gfn = gfn - memslot->base_gfn;
1619
1620 /* avoid RMW */
1621 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1622 set_bit(rel_gfn, memslot->dirty_bitmap);
1623 }
1624 }
1625
1626 /*
1627 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1628 */
1629 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1630 {
1631 DEFINE_WAIT(wait);
1632
1633 for (;;) {
1634 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1635
1636 if ((kvm_arch_interrupt_allowed(vcpu) &&
1637 kvm_cpu_has_interrupt(vcpu)) ||
1638 kvm_arch_vcpu_runnable(vcpu)) {
1639 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1640 break;
1641 }
1642 if (kvm_cpu_has_pending_timer(vcpu))
1643 break;
1644 if (signal_pending(current))
1645 break;
1646
1647 vcpu_put(vcpu);
1648 schedule();
1649 vcpu_load(vcpu);
1650 }
1651
1652 finish_wait(&vcpu->wq, &wait);
1653 }
1654
1655 void kvm_resched(struct kvm_vcpu *vcpu)
1656 {
1657 if (!need_resched())
1658 return;
1659 cond_resched();
1660 }
1661 EXPORT_SYMBOL_GPL(kvm_resched);
1662
1663 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1664 {
1665 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1666 struct page *page;
1667
1668 if (vmf->pgoff == 0)
1669 page = virt_to_page(vcpu->run);
1670 #ifdef CONFIG_X86
1671 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1672 page = virt_to_page(vcpu->arch.pio_data);
1673 #endif
1674 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1675 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1676 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1677 #endif
1678 else
1679 return VM_FAULT_SIGBUS;
1680 get_page(page);
1681 vmf->page = page;
1682 return 0;
1683 }
1684
1685 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1686 .fault = kvm_vcpu_fault,
1687 };
1688
1689 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1690 {
1691 vma->vm_ops = &kvm_vcpu_vm_ops;
1692 return 0;
1693 }
1694
1695 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1696 {
1697 struct kvm_vcpu *vcpu = filp->private_data;
1698
1699 kvm_put_kvm(vcpu->kvm);
1700 return 0;
1701 }
1702
1703 static struct file_operations kvm_vcpu_fops = {
1704 .release = kvm_vcpu_release,
1705 .unlocked_ioctl = kvm_vcpu_ioctl,
1706 .compat_ioctl = kvm_vcpu_ioctl,
1707 .mmap = kvm_vcpu_mmap,
1708 };
1709
1710 /*
1711 * Allocates an inode for the vcpu.
1712 */
1713 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1714 {
1715 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1716 if (fd < 0)
1717 kvm_put_kvm(vcpu->kvm);
1718 return fd;
1719 }
1720
1721 /*
1722 * Creates some virtual cpus. Good luck creating more than one.
1723 */
1724 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1725 {
1726 int r;
1727 struct kvm_vcpu *vcpu;
1728
1729 if (!valid_vcpu(n))
1730 return -EINVAL;
1731
1732 vcpu = kvm_arch_vcpu_create(kvm, n);
1733 if (IS_ERR(vcpu))
1734 return PTR_ERR(vcpu);
1735
1736 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1737
1738 r = kvm_arch_vcpu_setup(vcpu);
1739 if (r)
1740 return r;
1741
1742 mutex_lock(&kvm->lock);
1743 if (kvm->vcpus[n]) {
1744 r = -EEXIST;
1745 goto vcpu_destroy;
1746 }
1747 kvm->vcpus[n] = vcpu;
1748 mutex_unlock(&kvm->lock);
1749
1750 /* Now it's all set up, let userspace reach it */
1751 kvm_get_kvm(kvm);
1752 r = create_vcpu_fd(vcpu);
1753 if (r < 0)
1754 goto unlink;
1755 return r;
1756
1757 unlink:
1758 mutex_lock(&kvm->lock);
1759 kvm->vcpus[n] = NULL;
1760 vcpu_destroy:
1761 mutex_unlock(&kvm->lock);
1762 kvm_arch_vcpu_destroy(vcpu);
1763 return r;
1764 }
1765
1766 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1767 {
1768 if (sigset) {
1769 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1770 vcpu->sigset_active = 1;
1771 vcpu->sigset = *sigset;
1772 } else
1773 vcpu->sigset_active = 0;
1774 return 0;
1775 }
1776
1777 #ifdef __KVM_HAVE_MSIX
1778 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1779 struct kvm_assigned_msix_nr *entry_nr)
1780 {
1781 int r = 0;
1782 struct kvm_assigned_dev_kernel *adev;
1783
1784 mutex_lock(&kvm->lock);
1785
1786 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1787 entry_nr->assigned_dev_id);
1788 if (!adev) {
1789 r = -EINVAL;
1790 goto msix_nr_out;
1791 }
1792
1793 if (adev->entries_nr == 0) {
1794 adev->entries_nr = entry_nr->entry_nr;
1795 if (adev->entries_nr == 0 ||
1796 adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1797 r = -EINVAL;
1798 goto msix_nr_out;
1799 }
1800
1801 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1802 entry_nr->entry_nr,
1803 GFP_KERNEL);
1804 if (!adev->host_msix_entries) {
1805 r = -ENOMEM;
1806 goto msix_nr_out;
1807 }
1808 adev->guest_msix_entries = kzalloc(
1809 sizeof(struct kvm_guest_msix_entry) *
1810 entry_nr->entry_nr, GFP_KERNEL);
1811 if (!adev->guest_msix_entries) {
1812 kfree(adev->host_msix_entries);
1813 r = -ENOMEM;
1814 goto msix_nr_out;
1815 }
1816 } else /* Not allowed set MSI-X number twice */
1817 r = -EINVAL;
1818 msix_nr_out:
1819 mutex_unlock(&kvm->lock);
1820 return r;
1821 }
1822
1823 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1824 struct kvm_assigned_msix_entry *entry)
1825 {
1826 int r = 0, i;
1827 struct kvm_assigned_dev_kernel *adev;
1828
1829 mutex_lock(&kvm->lock);
1830
1831 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1832 entry->assigned_dev_id);
1833
1834 if (!adev) {
1835 r = -EINVAL;
1836 goto msix_entry_out;
1837 }
1838
1839 for (i = 0; i < adev->entries_nr; i++)
1840 if (adev->guest_msix_entries[i].vector == 0 ||
1841 adev->guest_msix_entries[i].entry == entry->entry) {
1842 adev->guest_msix_entries[i].entry = entry->entry;
1843 adev->guest_msix_entries[i].vector = entry->gsi;
1844 adev->host_msix_entries[i].entry = entry->entry;
1845 break;
1846 }
1847 if (i == adev->entries_nr) {
1848 r = -ENOSPC;
1849 goto msix_entry_out;
1850 }
1851
1852 msix_entry_out:
1853 mutex_unlock(&kvm->lock);
1854
1855 return r;
1856 }
1857 #endif
1858
1859 static long kvm_vcpu_ioctl(struct file *filp,
1860 unsigned int ioctl, unsigned long arg)
1861 {
1862 struct kvm_vcpu *vcpu = filp->private_data;
1863 void __user *argp = (void __user *)arg;
1864 int r;
1865 struct kvm_fpu *fpu = NULL;
1866 struct kvm_sregs *kvm_sregs = NULL;
1867
1868 if (vcpu->kvm->mm != current->mm)
1869 return -EIO;
1870 switch (ioctl) {
1871 case KVM_RUN:
1872 r = -EINVAL;
1873 if (arg)
1874 goto out;
1875 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1876 break;
1877 case KVM_GET_REGS: {
1878 struct kvm_regs *kvm_regs;
1879
1880 r = -ENOMEM;
1881 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1882 if (!kvm_regs)
1883 goto out;
1884 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1885 if (r)
1886 goto out_free1;
1887 r = -EFAULT;
1888 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1889 goto out_free1;
1890 r = 0;
1891 out_free1:
1892 kfree(kvm_regs);
1893 break;
1894 }
1895 case KVM_SET_REGS: {
1896 struct kvm_regs *kvm_regs;
1897
1898 r = -ENOMEM;
1899 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1900 if (!kvm_regs)
1901 goto out;
1902 r = -EFAULT;
1903 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1904 goto out_free2;
1905 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1906 if (r)
1907 goto out_free2;
1908 r = 0;
1909 out_free2:
1910 kfree(kvm_regs);
1911 break;
1912 }
1913 case KVM_GET_SREGS: {
1914 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1915 r = -ENOMEM;
1916 if (!kvm_sregs)
1917 goto out;
1918 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1919 if (r)
1920 goto out;
1921 r = -EFAULT;
1922 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1923 goto out;
1924 r = 0;
1925 break;
1926 }
1927 case KVM_SET_SREGS: {
1928 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1929 r = -ENOMEM;
1930 if (!kvm_sregs)
1931 goto out;
1932 r = -EFAULT;
1933 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1934 goto out;
1935 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1936 if (r)
1937 goto out;
1938 r = 0;
1939 break;
1940 }
1941 case KVM_GET_MP_STATE: {
1942 struct kvm_mp_state mp_state;
1943
1944 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1945 if (r)
1946 goto out;
1947 r = -EFAULT;
1948 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1949 goto out;
1950 r = 0;
1951 break;
1952 }
1953 case KVM_SET_MP_STATE: {
1954 struct kvm_mp_state mp_state;
1955
1956 r = -EFAULT;
1957 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1958 goto out;
1959 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1960 if (r)
1961 goto out;
1962 r = 0;
1963 break;
1964 }
1965 case KVM_TRANSLATE: {
1966 struct kvm_translation tr;
1967
1968 r = -EFAULT;
1969 if (copy_from_user(&tr, argp, sizeof tr))
1970 goto out;
1971 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1972 if (r)
1973 goto out;
1974 r = -EFAULT;
1975 if (copy_to_user(argp, &tr, sizeof tr))
1976 goto out;
1977 r = 0;
1978 break;
1979 }
1980 case KVM_SET_GUEST_DEBUG: {
1981 struct kvm_guest_debug dbg;
1982
1983 r = -EFAULT;
1984 if (copy_from_user(&dbg, argp, sizeof dbg))
1985 goto out;
1986 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1987 if (r)
1988 goto out;
1989 r = 0;
1990 break;
1991 }
1992 case KVM_SET_SIGNAL_MASK: {
1993 struct kvm_signal_mask __user *sigmask_arg = argp;
1994 struct kvm_signal_mask kvm_sigmask;
1995 sigset_t sigset, *p;
1996
1997 p = NULL;
1998 if (argp) {
1999 r = -EFAULT;
2000 if (copy_from_user(&kvm_sigmask, argp,
2001 sizeof kvm_sigmask))
2002 goto out;
2003 r = -EINVAL;
2004 if (kvm_sigmask.len != sizeof sigset)
2005 goto out;
2006 r = -EFAULT;
2007 if (copy_from_user(&sigset, sigmask_arg->sigset,
2008 sizeof sigset))
2009 goto out;
2010 p = &sigset;
2011 }
2012 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2013 break;
2014 }
2015 case KVM_GET_FPU: {
2016 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2017 r = -ENOMEM;
2018 if (!fpu)
2019 goto out;
2020 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2021 if (r)
2022 goto out;
2023 r = -EFAULT;
2024 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2025 goto out;
2026 r = 0;
2027 break;
2028 }
2029 case KVM_SET_FPU: {
2030 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2031 r = -ENOMEM;
2032 if (!fpu)
2033 goto out;
2034 r = -EFAULT;
2035 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2036 goto out;
2037 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2038 if (r)
2039 goto out;
2040 r = 0;
2041 break;
2042 }
2043 default:
2044 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2045 }
2046 out:
2047 kfree(fpu);
2048 kfree(kvm_sregs);
2049 return r;
2050 }
2051
2052 static long kvm_vm_ioctl(struct file *filp,
2053 unsigned int ioctl, unsigned long arg)
2054 {
2055 struct kvm *kvm = filp->private_data;
2056 void __user *argp = (void __user *)arg;
2057 int r;
2058
2059 if (kvm->mm != current->mm)
2060 return -EIO;
2061 switch (ioctl) {
2062 case KVM_CREATE_VCPU:
2063 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2064 if (r < 0)
2065 goto out;
2066 break;
2067 case KVM_SET_USER_MEMORY_REGION: {
2068 struct kvm_userspace_memory_region kvm_userspace_mem;
2069
2070 r = -EFAULT;
2071 if (copy_from_user(&kvm_userspace_mem, argp,
2072 sizeof kvm_userspace_mem))
2073 goto out;
2074
2075 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2076 if (r)
2077 goto out;
2078 break;
2079 }
2080 case KVM_GET_DIRTY_LOG: {
2081 struct kvm_dirty_log log;
2082
2083 r = -EFAULT;
2084 if (copy_from_user(&log, argp, sizeof log))
2085 goto out;
2086 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2087 if (r)
2088 goto out;
2089 break;
2090 }
2091 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2092 case KVM_REGISTER_COALESCED_MMIO: {
2093 struct kvm_coalesced_mmio_zone zone;
2094 r = -EFAULT;
2095 if (copy_from_user(&zone, argp, sizeof zone))
2096 goto out;
2097 r = -ENXIO;
2098 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2099 if (r)
2100 goto out;
2101 r = 0;
2102 break;
2103 }
2104 case KVM_UNREGISTER_COALESCED_MMIO: {
2105 struct kvm_coalesced_mmio_zone zone;
2106 r = -EFAULT;
2107 if (copy_from_user(&zone, argp, sizeof zone))
2108 goto out;
2109 r = -ENXIO;
2110 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2111 if (r)
2112 goto out;
2113 r = 0;
2114 break;
2115 }
2116 #endif
2117 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2118 case KVM_ASSIGN_PCI_DEVICE: {
2119 struct kvm_assigned_pci_dev assigned_dev;
2120
2121 r = -EFAULT;
2122 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2123 goto out;
2124 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2125 if (r)
2126 goto out;
2127 break;
2128 }
2129 case KVM_ASSIGN_IRQ: {
2130 r = -EOPNOTSUPP;
2131 break;
2132 }
2133 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2134 case KVM_ASSIGN_DEV_IRQ: {
2135 struct kvm_assigned_irq assigned_irq;
2136
2137 r = -EFAULT;
2138 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2139 goto out;
2140 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2141 if (r)
2142 goto out;
2143 break;
2144 }
2145 case KVM_DEASSIGN_DEV_IRQ: {
2146 struct kvm_assigned_irq assigned_irq;
2147
2148 r = -EFAULT;
2149 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2150 goto out;
2151 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2152 if (r)
2153 goto out;
2154 break;
2155 }
2156 #endif
2157 #endif
2158 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2159 case KVM_DEASSIGN_PCI_DEVICE: {
2160 struct kvm_assigned_pci_dev assigned_dev;
2161
2162 r = -EFAULT;
2163 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2164 goto out;
2165 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2166 if (r)
2167 goto out;
2168 break;
2169 }
2170 #endif
2171 #ifdef KVM_CAP_IRQ_ROUTING
2172 case KVM_SET_GSI_ROUTING: {
2173 struct kvm_irq_routing routing;
2174 struct kvm_irq_routing __user *urouting;
2175 struct kvm_irq_routing_entry *entries;
2176
2177 r = -EFAULT;
2178 if (copy_from_user(&routing, argp, sizeof(routing)))
2179 goto out;
2180 r = -EINVAL;
2181 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2182 goto out;
2183 if (routing.flags)
2184 goto out;
2185 r = -ENOMEM;
2186 entries = vmalloc(routing.nr * sizeof(*entries));
2187 if (!entries)
2188 goto out;
2189 r = -EFAULT;
2190 urouting = argp;
2191 if (copy_from_user(entries, urouting->entries,
2192 routing.nr * sizeof(*entries)))
2193 goto out_free_irq_routing;
2194 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2195 routing.flags);
2196 out_free_irq_routing:
2197 vfree(entries);
2198 break;
2199 }
2200 #ifdef __KVM_HAVE_MSIX
2201 case KVM_ASSIGN_SET_MSIX_NR: {
2202 struct kvm_assigned_msix_nr entry_nr;
2203 r = -EFAULT;
2204 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2205 goto out;
2206 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2207 if (r)
2208 goto out;
2209 break;
2210 }
2211 case KVM_ASSIGN_SET_MSIX_ENTRY: {
2212 struct kvm_assigned_msix_entry entry;
2213 r = -EFAULT;
2214 if (copy_from_user(&entry, argp, sizeof entry))
2215 goto out;
2216 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2217 if (r)
2218 goto out;
2219 break;
2220 }
2221 #endif
2222 #endif /* KVM_CAP_IRQ_ROUTING */
2223 case KVM_IRQFD: {
2224 struct kvm_irqfd data;
2225
2226 r = -EFAULT;
2227 if (copy_from_user(&data, argp, sizeof data))
2228 goto out;
2229 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2230 break;
2231 }
2232 default:
2233 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2234 }
2235 out:
2236 return r;
2237 }
2238
2239 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2240 {
2241 struct page *page[1];
2242 unsigned long addr;
2243 int npages;
2244 gfn_t gfn = vmf->pgoff;
2245 struct kvm *kvm = vma->vm_file->private_data;
2246
2247 addr = gfn_to_hva(kvm, gfn);
2248 if (kvm_is_error_hva(addr))
2249 return VM_FAULT_SIGBUS;
2250
2251 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2252 NULL);
2253 if (unlikely(npages != 1))
2254 return VM_FAULT_SIGBUS;
2255
2256 vmf->page = page[0];
2257 return 0;
2258 }
2259
2260 static struct vm_operations_struct kvm_vm_vm_ops = {
2261 .fault = kvm_vm_fault,
2262 };
2263
2264 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2265 {
2266 vma->vm_ops = &kvm_vm_vm_ops;
2267 return 0;
2268 }
2269
2270 static struct file_operations kvm_vm_fops = {
2271 .release = kvm_vm_release,
2272 .unlocked_ioctl = kvm_vm_ioctl,
2273 .compat_ioctl = kvm_vm_ioctl,
2274 .mmap = kvm_vm_mmap,
2275 };
2276
2277 static int kvm_dev_ioctl_create_vm(void)
2278 {
2279 int fd;
2280 struct kvm *kvm;
2281
2282 kvm = kvm_create_vm();
2283 if (IS_ERR(kvm))
2284 return PTR_ERR(kvm);
2285 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2286 if (fd < 0)
2287 kvm_put_kvm(kvm);
2288
2289 return fd;
2290 }
2291
2292 static long kvm_dev_ioctl_check_extension_generic(long arg)
2293 {
2294 switch (arg) {
2295 case KVM_CAP_USER_MEMORY:
2296 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2297 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2298 return 1;
2299 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2300 case KVM_CAP_IRQ_ROUTING:
2301 return KVM_MAX_IRQ_ROUTES;
2302 #endif
2303 default:
2304 break;
2305 }
2306 return kvm_dev_ioctl_check_extension(arg);
2307 }
2308
2309 static long kvm_dev_ioctl(struct file *filp,
2310 unsigned int ioctl, unsigned long arg)
2311 {
2312 long r = -EINVAL;
2313
2314 switch (ioctl) {
2315 case KVM_GET_API_VERSION:
2316 r = -EINVAL;
2317 if (arg)
2318 goto out;
2319 r = KVM_API_VERSION;
2320 break;
2321 case KVM_CREATE_VM:
2322 r = -EINVAL;
2323 if (arg)
2324 goto out;
2325 r = kvm_dev_ioctl_create_vm();
2326 break;
2327 case KVM_CHECK_EXTENSION:
2328 r = kvm_dev_ioctl_check_extension_generic(arg);
2329 break;
2330 case KVM_GET_VCPU_MMAP_SIZE:
2331 r = -EINVAL;
2332 if (arg)
2333 goto out;
2334 r = PAGE_SIZE; /* struct kvm_run */
2335 #ifdef CONFIG_X86
2336 r += PAGE_SIZE; /* pio data page */
2337 #endif
2338 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2339 r += PAGE_SIZE; /* coalesced mmio ring page */
2340 #endif
2341 break;
2342 case KVM_TRACE_ENABLE:
2343 case KVM_TRACE_PAUSE:
2344 case KVM_TRACE_DISABLE:
2345 r = kvm_trace_ioctl(ioctl, arg);
2346 break;
2347 default:
2348 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2349 }
2350 out:
2351 return r;
2352 }
2353
2354 static struct file_operations kvm_chardev_ops = {
2355 .unlocked_ioctl = kvm_dev_ioctl,
2356 .compat_ioctl = kvm_dev_ioctl,
2357 };
2358
2359 static struct miscdevice kvm_dev = {
2360 KVM_MINOR,
2361 "kvm",
2362 &kvm_chardev_ops,
2363 };
2364
2365 static void hardware_enable(void *junk)
2366 {
2367 int cpu = raw_smp_processor_id();
2368
2369 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2370 return;
2371 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2372 kvm_arch_hardware_enable(NULL);
2373 }
2374
2375 static void hardware_disable(void *junk)
2376 {
2377 int cpu = raw_smp_processor_id();
2378
2379 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2380 return;
2381 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2382 kvm_arch_hardware_disable(NULL);
2383 }
2384
2385 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2386 void *v)
2387 {
2388 int cpu = (long)v;
2389
2390 val &= ~CPU_TASKS_FROZEN;
2391 switch (val) {
2392 case CPU_DYING:
2393 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2394 cpu);
2395 hardware_disable(NULL);
2396 break;
2397 case CPU_UP_CANCELED:
2398 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2399 cpu);
2400 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2401 break;
2402 case CPU_ONLINE:
2403 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2404 cpu);
2405 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2406 break;
2407 }
2408 return NOTIFY_OK;
2409 }
2410
2411
2412 asmlinkage void kvm_handle_fault_on_reboot(void)
2413 {
2414 if (kvm_rebooting)
2415 /* spin while reset goes on */
2416 while (true)
2417 ;
2418 /* Fault while not rebooting. We want the trace. */
2419 BUG();
2420 }
2421 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2422
2423 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2424 void *v)
2425 {
2426 /*
2427 * Some (well, at least mine) BIOSes hang on reboot if
2428 * in vmx root mode.
2429 *
2430 * And Intel TXT required VMX off for all cpu when system shutdown.
2431 */
2432 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2433 kvm_rebooting = true;
2434 on_each_cpu(hardware_disable, NULL, 1);
2435 return NOTIFY_OK;
2436 }
2437
2438 static struct notifier_block kvm_reboot_notifier = {
2439 .notifier_call = kvm_reboot,
2440 .priority = 0,
2441 };
2442
2443 void kvm_io_bus_init(struct kvm_io_bus *bus)
2444 {
2445 memset(bus, 0, sizeof(*bus));
2446 }
2447
2448 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2449 {
2450 int i;
2451
2452 for (i = 0; i < bus->dev_count; i++) {
2453 struct kvm_io_device *pos = bus->devs[i];
2454
2455 kvm_iodevice_destructor(pos);
2456 }
2457 }
2458
2459 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2460 gpa_t addr, int len, int is_write)
2461 {
2462 int i;
2463
2464 for (i = 0; i < bus->dev_count; i++) {
2465 struct kvm_io_device *pos = bus->devs[i];
2466
2467 if (kvm_iodevice_in_range(pos, addr, len, is_write))
2468 return pos;
2469 }
2470
2471 return NULL;
2472 }
2473
2474 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2475 {
2476 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2477
2478 bus->devs[bus->dev_count++] = dev;
2479 }
2480
2481 static struct notifier_block kvm_cpu_notifier = {
2482 .notifier_call = kvm_cpu_hotplug,
2483 .priority = 20, /* must be > scheduler priority */
2484 };
2485
2486 static int vm_stat_get(void *_offset, u64 *val)
2487 {
2488 unsigned offset = (long)_offset;
2489 struct kvm *kvm;
2490
2491 *val = 0;
2492 spin_lock(&kvm_lock);
2493 list_for_each_entry(kvm, &vm_list, vm_list)
2494 *val += *(u32 *)((void *)kvm + offset);
2495 spin_unlock(&kvm_lock);
2496 return 0;
2497 }
2498
2499 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2500
2501 static int vcpu_stat_get(void *_offset, u64 *val)
2502 {
2503 unsigned offset = (long)_offset;
2504 struct kvm *kvm;
2505 struct kvm_vcpu *vcpu;
2506 int i;
2507
2508 *val = 0;
2509 spin_lock(&kvm_lock);
2510 list_for_each_entry(kvm, &vm_list, vm_list)
2511 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2512 vcpu = kvm->vcpus[i];
2513 if (vcpu)
2514 *val += *(u32 *)((void *)vcpu + offset);
2515 }
2516 spin_unlock(&kvm_lock);
2517 return 0;
2518 }
2519
2520 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2521
2522 static struct file_operations *stat_fops[] = {
2523 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2524 [KVM_STAT_VM] = &vm_stat_fops,
2525 };
2526
2527 static void kvm_init_debug(void)
2528 {
2529 struct kvm_stats_debugfs_item *p;
2530
2531 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2532 for (p = debugfs_entries; p->name; ++p)
2533 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2534 (void *)(long)p->offset,
2535 stat_fops[p->kind]);
2536 }
2537
2538 static void kvm_exit_debug(void)
2539 {
2540 struct kvm_stats_debugfs_item *p;
2541
2542 for (p = debugfs_entries; p->name; ++p)
2543 debugfs_remove(p->dentry);
2544 debugfs_remove(kvm_debugfs_dir);
2545 }
2546
2547 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2548 {
2549 hardware_disable(NULL);
2550 return 0;
2551 }
2552
2553 static int kvm_resume(struct sys_device *dev)
2554 {
2555 hardware_enable(NULL);
2556 return 0;
2557 }
2558
2559 static struct sysdev_class kvm_sysdev_class = {
2560 .name = "kvm",
2561 .suspend = kvm_suspend,
2562 .resume = kvm_resume,
2563 };
2564
2565 static struct sys_device kvm_sysdev = {
2566 .id = 0,
2567 .cls = &kvm_sysdev_class,
2568 };
2569
2570 struct page *bad_page;
2571 pfn_t bad_pfn;
2572
2573 static inline
2574 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2575 {
2576 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2577 }
2578
2579 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2580 {
2581 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2582
2583 kvm_arch_vcpu_load(vcpu, cpu);
2584 }
2585
2586 static void kvm_sched_out(struct preempt_notifier *pn,
2587 struct task_struct *next)
2588 {
2589 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2590
2591 kvm_arch_vcpu_put(vcpu);
2592 }
2593
2594 int kvm_init(void *opaque, unsigned int vcpu_size,
2595 struct module *module)
2596 {
2597 int r;
2598 int cpu;
2599
2600 kvm_init_debug();
2601
2602 r = kvm_arch_init(opaque);
2603 if (r)
2604 goto out_fail;
2605
2606 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2607
2608 if (bad_page == NULL) {
2609 r = -ENOMEM;
2610 goto out;
2611 }
2612
2613 bad_pfn = page_to_pfn(bad_page);
2614
2615 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2616 r = -ENOMEM;
2617 goto out_free_0;
2618 }
2619
2620 r = kvm_arch_hardware_setup();
2621 if (r < 0)
2622 goto out_free_0a;
2623
2624 for_each_online_cpu(cpu) {
2625 smp_call_function_single(cpu,
2626 kvm_arch_check_processor_compat,
2627 &r, 1);
2628 if (r < 0)
2629 goto out_free_1;
2630 }
2631
2632 on_each_cpu(hardware_enable, NULL, 1);
2633 r = register_cpu_notifier(&kvm_cpu_notifier);
2634 if (r)
2635 goto out_free_2;
2636 register_reboot_notifier(&kvm_reboot_notifier);
2637
2638 r = sysdev_class_register(&kvm_sysdev_class);
2639 if (r)
2640 goto out_free_3;
2641
2642 r = sysdev_register(&kvm_sysdev);
2643 if (r)
2644 goto out_free_4;
2645
2646 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2647 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2648 __alignof__(struct kvm_vcpu),
2649 0, NULL);
2650 if (!kvm_vcpu_cache) {
2651 r = -ENOMEM;
2652 goto out_free_5;
2653 }
2654
2655 kvm_chardev_ops.owner = module;
2656 kvm_vm_fops.owner = module;
2657 kvm_vcpu_fops.owner = module;
2658
2659 r = misc_register(&kvm_dev);
2660 if (r) {
2661 printk(KERN_ERR "kvm: misc device register failed\n");
2662 goto out_free;
2663 }
2664
2665 kvm_preempt_ops.sched_in = kvm_sched_in;
2666 kvm_preempt_ops.sched_out = kvm_sched_out;
2667
2668 return 0;
2669
2670 out_free:
2671 kmem_cache_destroy(kvm_vcpu_cache);
2672 out_free_5:
2673 sysdev_unregister(&kvm_sysdev);
2674 out_free_4:
2675 sysdev_class_unregister(&kvm_sysdev_class);
2676 out_free_3:
2677 unregister_reboot_notifier(&kvm_reboot_notifier);
2678 unregister_cpu_notifier(&kvm_cpu_notifier);
2679 out_free_2:
2680 on_each_cpu(hardware_disable, NULL, 1);
2681 out_free_1:
2682 kvm_arch_hardware_unsetup();
2683 out_free_0a:
2684 free_cpumask_var(cpus_hardware_enabled);
2685 out_free_0:
2686 __free_page(bad_page);
2687 out:
2688 kvm_arch_exit();
2689 kvm_exit_debug();
2690 out_fail:
2691 return r;
2692 }
2693 EXPORT_SYMBOL_GPL(kvm_init);
2694
2695 void kvm_exit(void)
2696 {
2697 kvm_trace_cleanup();
2698 misc_deregister(&kvm_dev);
2699 kmem_cache_destroy(kvm_vcpu_cache);
2700 sysdev_unregister(&kvm_sysdev);
2701 sysdev_class_unregister(&kvm_sysdev_class);
2702 unregister_reboot_notifier(&kvm_reboot_notifier);
2703 unregister_cpu_notifier(&kvm_cpu_notifier);
2704 on_each_cpu(hardware_disable, NULL, 1);
2705 kvm_arch_hardware_unsetup();
2706 kvm_arch_exit();
2707 kvm_exit_debug();
2708 free_cpumask_var(cpus_hardware_enabled);
2709 __free_page(bad_page);
2710 }
2711 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.083608 seconds and 6 git commands to generate.