KVM: Enable MSI for device assignment
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef CONFIG_X86
51 #include <asm/msidef.h>
52 #endif
53
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
56 #endif
57
58 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
59 #include <linux/pci.h>
60 #include <linux/interrupt.h>
61 #include "irq.h"
62 #endif
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 DEFINE_SPINLOCK(kvm_lock);
68 LIST_HEAD(vm_list);
69
70 static cpumask_t cpus_hardware_enabled;
71
72 struct kmem_cache *kvm_vcpu_cache;
73 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
74
75 static __read_mostly struct preempt_ops kvm_preempt_ops;
76
77 struct dentry *kvm_debugfs_dir;
78
79 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
80 unsigned long arg);
81
82 bool kvm_rebooting;
83
84 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
85
86 #ifdef CONFIG_X86
87 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
88 {
89 int vcpu_id;
90 struct kvm_vcpu *vcpu;
91 struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
92 int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
93 >> MSI_ADDR_DEST_ID_SHIFT;
94 int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
95 >> MSI_DATA_VECTOR_SHIFT;
96 int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
97 (unsigned long *)&dev->guest_msi.address_lo);
98 int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
99 (unsigned long *)&dev->guest_msi.data);
100 int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
101 (unsigned long *)&dev->guest_msi.data);
102 u32 deliver_bitmask;
103
104 BUG_ON(!ioapic);
105
106 deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
107 dest_id, dest_mode);
108 /* IOAPIC delivery mode value is the same as MSI here */
109 switch (delivery_mode) {
110 case IOAPIC_LOWEST_PRIORITY:
111 vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
112 deliver_bitmask);
113 if (vcpu != NULL)
114 kvm_apic_set_irq(vcpu, vector, trig_mode);
115 else
116 printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
117 break;
118 case IOAPIC_FIXED:
119 for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
120 if (!(deliver_bitmask & (1 << vcpu_id)))
121 continue;
122 deliver_bitmask &= ~(1 << vcpu_id);
123 vcpu = ioapic->kvm->vcpus[vcpu_id];
124 if (vcpu)
125 kvm_apic_set_irq(vcpu, vector, trig_mode);
126 }
127 break;
128 default:
129 printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
130 }
131 }
132 #else
133 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
134 #endif
135
136 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
137 int assigned_dev_id)
138 {
139 struct list_head *ptr;
140 struct kvm_assigned_dev_kernel *match;
141
142 list_for_each(ptr, head) {
143 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
144 if (match->assigned_dev_id == assigned_dev_id)
145 return match;
146 }
147 return NULL;
148 }
149
150 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
151 {
152 struct kvm_assigned_dev_kernel *assigned_dev;
153
154 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
155 interrupt_work);
156
157 /* This is taken to safely inject irq inside the guest. When
158 * the interrupt injection (or the ioapic code) uses a
159 * finer-grained lock, update this
160 */
161 mutex_lock(&assigned_dev->kvm->lock);
162 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
163 kvm_set_irq(assigned_dev->kvm,
164 assigned_dev->irq_source_id,
165 assigned_dev->guest_irq, 1);
166 else if (assigned_dev->irq_requested_type &
167 KVM_ASSIGNED_DEV_GUEST_MSI) {
168 assigned_device_msi_dispatch(assigned_dev);
169 enable_irq(assigned_dev->host_irq);
170 }
171 mutex_unlock(&assigned_dev->kvm->lock);
172 kvm_put_kvm(assigned_dev->kvm);
173 }
174
175 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
176 {
177 struct kvm_assigned_dev_kernel *assigned_dev =
178 (struct kvm_assigned_dev_kernel *) dev_id;
179
180 kvm_get_kvm(assigned_dev->kvm);
181 schedule_work(&assigned_dev->interrupt_work);
182 disable_irq_nosync(irq);
183 return IRQ_HANDLED;
184 }
185
186 /* Ack the irq line for an assigned device */
187 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
188 {
189 struct kvm_assigned_dev_kernel *dev;
190
191 if (kian->gsi == -1)
192 return;
193
194 dev = container_of(kian, struct kvm_assigned_dev_kernel,
195 ack_notifier);
196 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
197 enable_irq(dev->host_irq);
198 }
199
200 static void kvm_free_assigned_device(struct kvm *kvm,
201 struct kvm_assigned_dev_kernel
202 *assigned_dev)
203 {
204 if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested_type)
205 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
206 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
207 pci_disable_msi(assigned_dev->dev);
208
209 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
210 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
211
212 if (cancel_work_sync(&assigned_dev->interrupt_work))
213 /* We had pending work. That means we will have to take
214 * care of kvm_put_kvm.
215 */
216 kvm_put_kvm(kvm);
217
218 pci_reset_function(assigned_dev->dev);
219
220 pci_release_regions(assigned_dev->dev);
221 pci_disable_device(assigned_dev->dev);
222 pci_dev_put(assigned_dev->dev);
223
224 list_del(&assigned_dev->list);
225 kfree(assigned_dev);
226 }
227
228 void kvm_free_all_assigned_devices(struct kvm *kvm)
229 {
230 struct list_head *ptr, *ptr2;
231 struct kvm_assigned_dev_kernel *assigned_dev;
232
233 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
234 assigned_dev = list_entry(ptr,
235 struct kvm_assigned_dev_kernel,
236 list);
237
238 kvm_free_assigned_device(kvm, assigned_dev);
239 }
240 }
241
242 static int assigned_device_update_intx(struct kvm *kvm,
243 struct kvm_assigned_dev_kernel *adev,
244 struct kvm_assigned_irq *airq)
245 {
246 adev->guest_irq = airq->guest_irq;
247 adev->ack_notifier.gsi = airq->guest_irq;
248
249 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
250 return 0;
251
252 if (irqchip_in_kernel(kvm)) {
253 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) {
254 free_irq(adev->host_irq, (void *)kvm);
255 pci_disable_msi(adev->dev);
256 }
257
258 if (!capable(CAP_SYS_RAWIO))
259 return -EPERM;
260
261 if (airq->host_irq)
262 adev->host_irq = airq->host_irq;
263 else
264 adev->host_irq = adev->dev->irq;
265
266 /* Even though this is PCI, we don't want to use shared
267 * interrupts. Sharing host devices with guest-assigned devices
268 * on the same interrupt line is not a happy situation: there
269 * are going to be long delays in accepting, acking, etc.
270 */
271 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
272 0, "kvm_assigned_intx_device", (void *)adev))
273 return -EIO;
274 }
275
276 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
277 KVM_ASSIGNED_DEV_HOST_INTX;
278 return 0;
279 }
280
281 #ifdef CONFIG_X86
282 static int assigned_device_update_msi(struct kvm *kvm,
283 struct kvm_assigned_dev_kernel *adev,
284 struct kvm_assigned_irq *airq)
285 {
286 int r;
287
288 /* x86 don't care upper address of guest msi message addr */
289 adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
290 adev->guest_msi.data = airq->guest_msi.data;
291 adev->ack_notifier.gsi = -1;
292
293 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
294 return 0;
295
296 if (irqchip_in_kernel(kvm)) {
297 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
298 free_irq(adev->host_irq, (void *)adev);
299
300 r = pci_enable_msi(adev->dev);
301 if (r)
302 return r;
303
304 adev->host_irq = adev->dev->irq;
305 if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
306 "kvm_assigned_msi_device", (void *)adev))
307 return -EIO;
308 }
309
310 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI |
311 KVM_ASSIGNED_DEV_HOST_MSI;
312 return 0;
313 }
314 #endif
315
316 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
317 struct kvm_assigned_irq
318 *assigned_irq)
319 {
320 int r = 0;
321 struct kvm_assigned_dev_kernel *match;
322
323 mutex_lock(&kvm->lock);
324
325 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
326 assigned_irq->assigned_dev_id);
327 if (!match) {
328 mutex_unlock(&kvm->lock);
329 return -EINVAL;
330 }
331
332 if (!match->irq_requested_type) {
333 INIT_WORK(&match->interrupt_work,
334 kvm_assigned_dev_interrupt_work_handler);
335 if (irqchip_in_kernel(kvm)) {
336 /* Register ack nofitier */
337 match->ack_notifier.gsi = -1;
338 match->ack_notifier.irq_acked =
339 kvm_assigned_dev_ack_irq;
340 kvm_register_irq_ack_notifier(kvm,
341 &match->ack_notifier);
342
343 /* Request IRQ source ID */
344 r = kvm_request_irq_source_id(kvm);
345 if (r < 0)
346 goto out_release;
347 else
348 match->irq_source_id = r;
349 }
350 }
351
352 if (assigned_irq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
353 #ifdef CONFIG_X86
354 r = assigned_device_update_msi(kvm, match, assigned_irq);
355 if (r) {
356 printk(KERN_WARNING "kvm: failed to enable "
357 "MSI device!\n");
358 goto out_release;
359 }
360 #else
361 r = -ENOTTY;
362 #endif
363 } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
364 /* Host device IRQ 0 means don't support INTx */
365 printk(KERN_WARNING "kvm: wait device to enable MSI!\n");
366 r = 0;
367 } else {
368 /* Non-sharing INTx mode */
369 r = assigned_device_update_intx(kvm, match, assigned_irq);
370 if (r) {
371 printk(KERN_WARNING "kvm: failed to enable "
372 "INTx device!\n");
373 goto out_release;
374 }
375 }
376
377 mutex_unlock(&kvm->lock);
378 return r;
379 out_release:
380 mutex_unlock(&kvm->lock);
381 kvm_free_assigned_device(kvm, match);
382 return r;
383 }
384
385 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
386 struct kvm_assigned_pci_dev *assigned_dev)
387 {
388 int r = 0;
389 struct kvm_assigned_dev_kernel *match;
390 struct pci_dev *dev;
391
392 mutex_lock(&kvm->lock);
393
394 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
395 assigned_dev->assigned_dev_id);
396 if (match) {
397 /* device already assigned */
398 r = -EINVAL;
399 goto out;
400 }
401
402 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
403 if (match == NULL) {
404 printk(KERN_INFO "%s: Couldn't allocate memory\n",
405 __func__);
406 r = -ENOMEM;
407 goto out;
408 }
409 dev = pci_get_bus_and_slot(assigned_dev->busnr,
410 assigned_dev->devfn);
411 if (!dev) {
412 printk(KERN_INFO "%s: host device not found\n", __func__);
413 r = -EINVAL;
414 goto out_free;
415 }
416 if (pci_enable_device(dev)) {
417 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
418 r = -EBUSY;
419 goto out_put;
420 }
421 r = pci_request_regions(dev, "kvm_assigned_device");
422 if (r) {
423 printk(KERN_INFO "%s: Could not get access to device regions\n",
424 __func__);
425 goto out_disable;
426 }
427
428 pci_reset_function(dev);
429
430 match->assigned_dev_id = assigned_dev->assigned_dev_id;
431 match->host_busnr = assigned_dev->busnr;
432 match->host_devfn = assigned_dev->devfn;
433 match->dev = dev;
434
435 match->kvm = kvm;
436
437 list_add(&match->list, &kvm->arch.assigned_dev_head);
438
439 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
440 r = kvm_iommu_map_guest(kvm, match);
441 if (r)
442 goto out_list_del;
443 }
444
445 out:
446 mutex_unlock(&kvm->lock);
447 return r;
448 out_list_del:
449 list_del(&match->list);
450 pci_release_regions(dev);
451 out_disable:
452 pci_disable_device(dev);
453 out_put:
454 pci_dev_put(dev);
455 out_free:
456 kfree(match);
457 mutex_unlock(&kvm->lock);
458 return r;
459 }
460 #endif
461
462 static inline int valid_vcpu(int n)
463 {
464 return likely(n >= 0 && n < KVM_MAX_VCPUS);
465 }
466
467 inline int kvm_is_mmio_pfn(pfn_t pfn)
468 {
469 if (pfn_valid(pfn))
470 return PageReserved(pfn_to_page(pfn));
471
472 return true;
473 }
474
475 /*
476 * Switches to specified vcpu, until a matching vcpu_put()
477 */
478 void vcpu_load(struct kvm_vcpu *vcpu)
479 {
480 int cpu;
481
482 mutex_lock(&vcpu->mutex);
483 cpu = get_cpu();
484 preempt_notifier_register(&vcpu->preempt_notifier);
485 kvm_arch_vcpu_load(vcpu, cpu);
486 put_cpu();
487 }
488
489 void vcpu_put(struct kvm_vcpu *vcpu)
490 {
491 preempt_disable();
492 kvm_arch_vcpu_put(vcpu);
493 preempt_notifier_unregister(&vcpu->preempt_notifier);
494 preempt_enable();
495 mutex_unlock(&vcpu->mutex);
496 }
497
498 static void ack_flush(void *_completed)
499 {
500 }
501
502 void kvm_flush_remote_tlbs(struct kvm *kvm)
503 {
504 int i, cpu, me;
505 cpumask_t cpus;
506 struct kvm_vcpu *vcpu;
507
508 me = get_cpu();
509 cpus_clear(cpus);
510 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
511 vcpu = kvm->vcpus[i];
512 if (!vcpu)
513 continue;
514 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
515 continue;
516 cpu = vcpu->cpu;
517 if (cpu != -1 && cpu != me)
518 cpu_set(cpu, cpus);
519 }
520 if (cpus_empty(cpus))
521 goto out;
522 ++kvm->stat.remote_tlb_flush;
523 smp_call_function_mask(cpus, ack_flush, NULL, 1);
524 out:
525 put_cpu();
526 }
527
528 void kvm_reload_remote_mmus(struct kvm *kvm)
529 {
530 int i, cpu, me;
531 cpumask_t cpus;
532 struct kvm_vcpu *vcpu;
533
534 me = get_cpu();
535 cpus_clear(cpus);
536 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
537 vcpu = kvm->vcpus[i];
538 if (!vcpu)
539 continue;
540 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
541 continue;
542 cpu = vcpu->cpu;
543 if (cpu != -1 && cpu != me)
544 cpu_set(cpu, cpus);
545 }
546 if (cpus_empty(cpus))
547 goto out;
548 smp_call_function_mask(cpus, ack_flush, NULL, 1);
549 out:
550 put_cpu();
551 }
552
553
554 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
555 {
556 struct page *page;
557 int r;
558
559 mutex_init(&vcpu->mutex);
560 vcpu->cpu = -1;
561 vcpu->kvm = kvm;
562 vcpu->vcpu_id = id;
563 init_waitqueue_head(&vcpu->wq);
564
565 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
566 if (!page) {
567 r = -ENOMEM;
568 goto fail;
569 }
570 vcpu->run = page_address(page);
571
572 r = kvm_arch_vcpu_init(vcpu);
573 if (r < 0)
574 goto fail_free_run;
575 return 0;
576
577 fail_free_run:
578 free_page((unsigned long)vcpu->run);
579 fail:
580 return r;
581 }
582 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
583
584 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
585 {
586 kvm_arch_vcpu_uninit(vcpu);
587 free_page((unsigned long)vcpu->run);
588 }
589 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
590
591 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
592 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
593 {
594 return container_of(mn, struct kvm, mmu_notifier);
595 }
596
597 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
598 struct mm_struct *mm,
599 unsigned long address)
600 {
601 struct kvm *kvm = mmu_notifier_to_kvm(mn);
602 int need_tlb_flush;
603
604 /*
605 * When ->invalidate_page runs, the linux pte has been zapped
606 * already but the page is still allocated until
607 * ->invalidate_page returns. So if we increase the sequence
608 * here the kvm page fault will notice if the spte can't be
609 * established because the page is going to be freed. If
610 * instead the kvm page fault establishes the spte before
611 * ->invalidate_page runs, kvm_unmap_hva will release it
612 * before returning.
613 *
614 * The sequence increase only need to be seen at spin_unlock
615 * time, and not at spin_lock time.
616 *
617 * Increasing the sequence after the spin_unlock would be
618 * unsafe because the kvm page fault could then establish the
619 * pte after kvm_unmap_hva returned, without noticing the page
620 * is going to be freed.
621 */
622 spin_lock(&kvm->mmu_lock);
623 kvm->mmu_notifier_seq++;
624 need_tlb_flush = kvm_unmap_hva(kvm, address);
625 spin_unlock(&kvm->mmu_lock);
626
627 /* we've to flush the tlb before the pages can be freed */
628 if (need_tlb_flush)
629 kvm_flush_remote_tlbs(kvm);
630
631 }
632
633 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
634 struct mm_struct *mm,
635 unsigned long start,
636 unsigned long end)
637 {
638 struct kvm *kvm = mmu_notifier_to_kvm(mn);
639 int need_tlb_flush = 0;
640
641 spin_lock(&kvm->mmu_lock);
642 /*
643 * The count increase must become visible at unlock time as no
644 * spte can be established without taking the mmu_lock and
645 * count is also read inside the mmu_lock critical section.
646 */
647 kvm->mmu_notifier_count++;
648 for (; start < end; start += PAGE_SIZE)
649 need_tlb_flush |= kvm_unmap_hva(kvm, start);
650 spin_unlock(&kvm->mmu_lock);
651
652 /* we've to flush the tlb before the pages can be freed */
653 if (need_tlb_flush)
654 kvm_flush_remote_tlbs(kvm);
655 }
656
657 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
658 struct mm_struct *mm,
659 unsigned long start,
660 unsigned long end)
661 {
662 struct kvm *kvm = mmu_notifier_to_kvm(mn);
663
664 spin_lock(&kvm->mmu_lock);
665 /*
666 * This sequence increase will notify the kvm page fault that
667 * the page that is going to be mapped in the spte could have
668 * been freed.
669 */
670 kvm->mmu_notifier_seq++;
671 /*
672 * The above sequence increase must be visible before the
673 * below count decrease but both values are read by the kvm
674 * page fault under mmu_lock spinlock so we don't need to add
675 * a smb_wmb() here in between the two.
676 */
677 kvm->mmu_notifier_count--;
678 spin_unlock(&kvm->mmu_lock);
679
680 BUG_ON(kvm->mmu_notifier_count < 0);
681 }
682
683 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
684 struct mm_struct *mm,
685 unsigned long address)
686 {
687 struct kvm *kvm = mmu_notifier_to_kvm(mn);
688 int young;
689
690 spin_lock(&kvm->mmu_lock);
691 young = kvm_age_hva(kvm, address);
692 spin_unlock(&kvm->mmu_lock);
693
694 if (young)
695 kvm_flush_remote_tlbs(kvm);
696
697 return young;
698 }
699
700 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
701 .invalidate_page = kvm_mmu_notifier_invalidate_page,
702 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
703 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
704 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
705 };
706 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
707
708 static struct kvm *kvm_create_vm(void)
709 {
710 struct kvm *kvm = kvm_arch_create_vm();
711 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
712 struct page *page;
713 #endif
714
715 if (IS_ERR(kvm))
716 goto out;
717
718 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
719 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
720 if (!page) {
721 kfree(kvm);
722 return ERR_PTR(-ENOMEM);
723 }
724 kvm->coalesced_mmio_ring =
725 (struct kvm_coalesced_mmio_ring *)page_address(page);
726 #endif
727
728 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
729 {
730 int err;
731 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
732 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
733 if (err) {
734 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
735 put_page(page);
736 #endif
737 kfree(kvm);
738 return ERR_PTR(err);
739 }
740 }
741 #endif
742
743 kvm->mm = current->mm;
744 atomic_inc(&kvm->mm->mm_count);
745 spin_lock_init(&kvm->mmu_lock);
746 kvm_io_bus_init(&kvm->pio_bus);
747 mutex_init(&kvm->lock);
748 kvm_io_bus_init(&kvm->mmio_bus);
749 init_rwsem(&kvm->slots_lock);
750 atomic_set(&kvm->users_count, 1);
751 spin_lock(&kvm_lock);
752 list_add(&kvm->vm_list, &vm_list);
753 spin_unlock(&kvm_lock);
754 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
755 kvm_coalesced_mmio_init(kvm);
756 #endif
757 out:
758 return kvm;
759 }
760
761 /*
762 * Free any memory in @free but not in @dont.
763 */
764 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
765 struct kvm_memory_slot *dont)
766 {
767 if (!dont || free->rmap != dont->rmap)
768 vfree(free->rmap);
769
770 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
771 vfree(free->dirty_bitmap);
772
773 if (!dont || free->lpage_info != dont->lpage_info)
774 vfree(free->lpage_info);
775
776 free->npages = 0;
777 free->dirty_bitmap = NULL;
778 free->rmap = NULL;
779 free->lpage_info = NULL;
780 }
781
782 void kvm_free_physmem(struct kvm *kvm)
783 {
784 int i;
785
786 for (i = 0; i < kvm->nmemslots; ++i)
787 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
788 }
789
790 static void kvm_destroy_vm(struct kvm *kvm)
791 {
792 struct mm_struct *mm = kvm->mm;
793
794 spin_lock(&kvm_lock);
795 list_del(&kvm->vm_list);
796 spin_unlock(&kvm_lock);
797 kvm_io_bus_destroy(&kvm->pio_bus);
798 kvm_io_bus_destroy(&kvm->mmio_bus);
799 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
800 if (kvm->coalesced_mmio_ring != NULL)
801 free_page((unsigned long)kvm->coalesced_mmio_ring);
802 #endif
803 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
804 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
805 #endif
806 kvm_arch_destroy_vm(kvm);
807 mmdrop(mm);
808 }
809
810 void kvm_get_kvm(struct kvm *kvm)
811 {
812 atomic_inc(&kvm->users_count);
813 }
814 EXPORT_SYMBOL_GPL(kvm_get_kvm);
815
816 void kvm_put_kvm(struct kvm *kvm)
817 {
818 if (atomic_dec_and_test(&kvm->users_count))
819 kvm_destroy_vm(kvm);
820 }
821 EXPORT_SYMBOL_GPL(kvm_put_kvm);
822
823
824 static int kvm_vm_release(struct inode *inode, struct file *filp)
825 {
826 struct kvm *kvm = filp->private_data;
827
828 kvm_put_kvm(kvm);
829 return 0;
830 }
831
832 /*
833 * Allocate some memory and give it an address in the guest physical address
834 * space.
835 *
836 * Discontiguous memory is allowed, mostly for framebuffers.
837 *
838 * Must be called holding mmap_sem for write.
839 */
840 int __kvm_set_memory_region(struct kvm *kvm,
841 struct kvm_userspace_memory_region *mem,
842 int user_alloc)
843 {
844 int r;
845 gfn_t base_gfn;
846 unsigned long npages;
847 unsigned long i;
848 struct kvm_memory_slot *memslot;
849 struct kvm_memory_slot old, new;
850
851 r = -EINVAL;
852 /* General sanity checks */
853 if (mem->memory_size & (PAGE_SIZE - 1))
854 goto out;
855 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
856 goto out;
857 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
858 goto out;
859 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
860 goto out;
861 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
862 goto out;
863
864 memslot = &kvm->memslots[mem->slot];
865 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
866 npages = mem->memory_size >> PAGE_SHIFT;
867
868 if (!npages)
869 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
870
871 new = old = *memslot;
872
873 new.base_gfn = base_gfn;
874 new.npages = npages;
875 new.flags = mem->flags;
876
877 /* Disallow changing a memory slot's size. */
878 r = -EINVAL;
879 if (npages && old.npages && npages != old.npages)
880 goto out_free;
881
882 /* Check for overlaps */
883 r = -EEXIST;
884 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
885 struct kvm_memory_slot *s = &kvm->memslots[i];
886
887 if (s == memslot)
888 continue;
889 if (!((base_gfn + npages <= s->base_gfn) ||
890 (base_gfn >= s->base_gfn + s->npages)))
891 goto out_free;
892 }
893
894 /* Free page dirty bitmap if unneeded */
895 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
896 new.dirty_bitmap = NULL;
897
898 r = -ENOMEM;
899
900 /* Allocate if a slot is being created */
901 #ifndef CONFIG_S390
902 if (npages && !new.rmap) {
903 new.rmap = vmalloc(npages * sizeof(struct page *));
904
905 if (!new.rmap)
906 goto out_free;
907
908 memset(new.rmap, 0, npages * sizeof(*new.rmap));
909
910 new.user_alloc = user_alloc;
911 /*
912 * hva_to_rmmap() serialzies with the mmu_lock and to be
913 * safe it has to ignore memslots with !user_alloc &&
914 * !userspace_addr.
915 */
916 if (user_alloc)
917 new.userspace_addr = mem->userspace_addr;
918 else
919 new.userspace_addr = 0;
920 }
921 if (npages && !new.lpage_info) {
922 int largepages = npages / KVM_PAGES_PER_HPAGE;
923 if (npages % KVM_PAGES_PER_HPAGE)
924 largepages++;
925 if (base_gfn % KVM_PAGES_PER_HPAGE)
926 largepages++;
927
928 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
929
930 if (!new.lpage_info)
931 goto out_free;
932
933 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
934
935 if (base_gfn % KVM_PAGES_PER_HPAGE)
936 new.lpage_info[0].write_count = 1;
937 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
938 new.lpage_info[largepages-1].write_count = 1;
939 }
940
941 /* Allocate page dirty bitmap if needed */
942 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
943 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
944
945 new.dirty_bitmap = vmalloc(dirty_bytes);
946 if (!new.dirty_bitmap)
947 goto out_free;
948 memset(new.dirty_bitmap, 0, dirty_bytes);
949 }
950 #endif /* not defined CONFIG_S390 */
951
952 if (!npages)
953 kvm_arch_flush_shadow(kvm);
954
955 spin_lock(&kvm->mmu_lock);
956 if (mem->slot >= kvm->nmemslots)
957 kvm->nmemslots = mem->slot + 1;
958
959 *memslot = new;
960 spin_unlock(&kvm->mmu_lock);
961
962 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
963 if (r) {
964 spin_lock(&kvm->mmu_lock);
965 *memslot = old;
966 spin_unlock(&kvm->mmu_lock);
967 goto out_free;
968 }
969
970 kvm_free_physmem_slot(&old, &new);
971 #ifdef CONFIG_DMAR
972 /* map the pages in iommu page table */
973 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
974 if (r)
975 goto out;
976 #endif
977 return 0;
978
979 out_free:
980 kvm_free_physmem_slot(&new, &old);
981 out:
982 return r;
983
984 }
985 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
986
987 int kvm_set_memory_region(struct kvm *kvm,
988 struct kvm_userspace_memory_region *mem,
989 int user_alloc)
990 {
991 int r;
992
993 down_write(&kvm->slots_lock);
994 r = __kvm_set_memory_region(kvm, mem, user_alloc);
995 up_write(&kvm->slots_lock);
996 return r;
997 }
998 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
999
1000 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1001 struct
1002 kvm_userspace_memory_region *mem,
1003 int user_alloc)
1004 {
1005 if (mem->slot >= KVM_MEMORY_SLOTS)
1006 return -EINVAL;
1007 return kvm_set_memory_region(kvm, mem, user_alloc);
1008 }
1009
1010 int kvm_get_dirty_log(struct kvm *kvm,
1011 struct kvm_dirty_log *log, int *is_dirty)
1012 {
1013 struct kvm_memory_slot *memslot;
1014 int r, i;
1015 int n;
1016 unsigned long any = 0;
1017
1018 r = -EINVAL;
1019 if (log->slot >= KVM_MEMORY_SLOTS)
1020 goto out;
1021
1022 memslot = &kvm->memslots[log->slot];
1023 r = -ENOENT;
1024 if (!memslot->dirty_bitmap)
1025 goto out;
1026
1027 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1028
1029 for (i = 0; !any && i < n/sizeof(long); ++i)
1030 any = memslot->dirty_bitmap[i];
1031
1032 r = -EFAULT;
1033 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1034 goto out;
1035
1036 if (any)
1037 *is_dirty = 1;
1038
1039 r = 0;
1040 out:
1041 return r;
1042 }
1043
1044 int is_error_page(struct page *page)
1045 {
1046 return page == bad_page;
1047 }
1048 EXPORT_SYMBOL_GPL(is_error_page);
1049
1050 int is_error_pfn(pfn_t pfn)
1051 {
1052 return pfn == bad_pfn;
1053 }
1054 EXPORT_SYMBOL_GPL(is_error_pfn);
1055
1056 static inline unsigned long bad_hva(void)
1057 {
1058 return PAGE_OFFSET;
1059 }
1060
1061 int kvm_is_error_hva(unsigned long addr)
1062 {
1063 return addr == bad_hva();
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1066
1067 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1068 {
1069 int i;
1070
1071 for (i = 0; i < kvm->nmemslots; ++i) {
1072 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1073
1074 if (gfn >= memslot->base_gfn
1075 && gfn < memslot->base_gfn + memslot->npages)
1076 return memslot;
1077 }
1078 return NULL;
1079 }
1080 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1081
1082 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1083 {
1084 gfn = unalias_gfn(kvm, gfn);
1085 return gfn_to_memslot_unaliased(kvm, gfn);
1086 }
1087
1088 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1089 {
1090 int i;
1091
1092 gfn = unalias_gfn(kvm, gfn);
1093 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1094 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1095
1096 if (gfn >= memslot->base_gfn
1097 && gfn < memslot->base_gfn + memslot->npages)
1098 return 1;
1099 }
1100 return 0;
1101 }
1102 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1103
1104 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1105 {
1106 struct kvm_memory_slot *slot;
1107
1108 gfn = unalias_gfn(kvm, gfn);
1109 slot = gfn_to_memslot_unaliased(kvm, gfn);
1110 if (!slot)
1111 return bad_hva();
1112 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1113 }
1114 EXPORT_SYMBOL_GPL(gfn_to_hva);
1115
1116 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1117 {
1118 struct page *page[1];
1119 unsigned long addr;
1120 int npages;
1121 pfn_t pfn;
1122
1123 might_sleep();
1124
1125 addr = gfn_to_hva(kvm, gfn);
1126 if (kvm_is_error_hva(addr)) {
1127 get_page(bad_page);
1128 return page_to_pfn(bad_page);
1129 }
1130
1131 npages = get_user_pages_fast(addr, 1, 1, page);
1132
1133 if (unlikely(npages != 1)) {
1134 struct vm_area_struct *vma;
1135
1136 down_read(&current->mm->mmap_sem);
1137 vma = find_vma(current->mm, addr);
1138
1139 if (vma == NULL || addr < vma->vm_start ||
1140 !(vma->vm_flags & VM_PFNMAP)) {
1141 up_read(&current->mm->mmap_sem);
1142 get_page(bad_page);
1143 return page_to_pfn(bad_page);
1144 }
1145
1146 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1147 up_read(&current->mm->mmap_sem);
1148 BUG_ON(!kvm_is_mmio_pfn(pfn));
1149 } else
1150 pfn = page_to_pfn(page[0]);
1151
1152 return pfn;
1153 }
1154
1155 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1156
1157 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1158 {
1159 pfn_t pfn;
1160
1161 pfn = gfn_to_pfn(kvm, gfn);
1162 if (!kvm_is_mmio_pfn(pfn))
1163 return pfn_to_page(pfn);
1164
1165 WARN_ON(kvm_is_mmio_pfn(pfn));
1166
1167 get_page(bad_page);
1168 return bad_page;
1169 }
1170
1171 EXPORT_SYMBOL_GPL(gfn_to_page);
1172
1173 void kvm_release_page_clean(struct page *page)
1174 {
1175 kvm_release_pfn_clean(page_to_pfn(page));
1176 }
1177 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1178
1179 void kvm_release_pfn_clean(pfn_t pfn)
1180 {
1181 if (!kvm_is_mmio_pfn(pfn))
1182 put_page(pfn_to_page(pfn));
1183 }
1184 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1185
1186 void kvm_release_page_dirty(struct page *page)
1187 {
1188 kvm_release_pfn_dirty(page_to_pfn(page));
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1191
1192 void kvm_release_pfn_dirty(pfn_t pfn)
1193 {
1194 kvm_set_pfn_dirty(pfn);
1195 kvm_release_pfn_clean(pfn);
1196 }
1197 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1198
1199 void kvm_set_page_dirty(struct page *page)
1200 {
1201 kvm_set_pfn_dirty(page_to_pfn(page));
1202 }
1203 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1204
1205 void kvm_set_pfn_dirty(pfn_t pfn)
1206 {
1207 if (!kvm_is_mmio_pfn(pfn)) {
1208 struct page *page = pfn_to_page(pfn);
1209 if (!PageReserved(page))
1210 SetPageDirty(page);
1211 }
1212 }
1213 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1214
1215 void kvm_set_pfn_accessed(pfn_t pfn)
1216 {
1217 if (!kvm_is_mmio_pfn(pfn))
1218 mark_page_accessed(pfn_to_page(pfn));
1219 }
1220 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1221
1222 void kvm_get_pfn(pfn_t pfn)
1223 {
1224 if (!kvm_is_mmio_pfn(pfn))
1225 get_page(pfn_to_page(pfn));
1226 }
1227 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1228
1229 static int next_segment(unsigned long len, int offset)
1230 {
1231 if (len > PAGE_SIZE - offset)
1232 return PAGE_SIZE - offset;
1233 else
1234 return len;
1235 }
1236
1237 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1238 int len)
1239 {
1240 int r;
1241 unsigned long addr;
1242
1243 addr = gfn_to_hva(kvm, gfn);
1244 if (kvm_is_error_hva(addr))
1245 return -EFAULT;
1246 r = copy_from_user(data, (void __user *)addr + offset, len);
1247 if (r)
1248 return -EFAULT;
1249 return 0;
1250 }
1251 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1252
1253 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1254 {
1255 gfn_t gfn = gpa >> PAGE_SHIFT;
1256 int seg;
1257 int offset = offset_in_page(gpa);
1258 int ret;
1259
1260 while ((seg = next_segment(len, offset)) != 0) {
1261 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1262 if (ret < 0)
1263 return ret;
1264 offset = 0;
1265 len -= seg;
1266 data += seg;
1267 ++gfn;
1268 }
1269 return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(kvm_read_guest);
1272
1273 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1274 unsigned long len)
1275 {
1276 int r;
1277 unsigned long addr;
1278 gfn_t gfn = gpa >> PAGE_SHIFT;
1279 int offset = offset_in_page(gpa);
1280
1281 addr = gfn_to_hva(kvm, gfn);
1282 if (kvm_is_error_hva(addr))
1283 return -EFAULT;
1284 pagefault_disable();
1285 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1286 pagefault_enable();
1287 if (r)
1288 return -EFAULT;
1289 return 0;
1290 }
1291 EXPORT_SYMBOL(kvm_read_guest_atomic);
1292
1293 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1294 int offset, int len)
1295 {
1296 int r;
1297 unsigned long addr;
1298
1299 addr = gfn_to_hva(kvm, gfn);
1300 if (kvm_is_error_hva(addr))
1301 return -EFAULT;
1302 r = copy_to_user((void __user *)addr + offset, data, len);
1303 if (r)
1304 return -EFAULT;
1305 mark_page_dirty(kvm, gfn);
1306 return 0;
1307 }
1308 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1309
1310 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1311 unsigned long len)
1312 {
1313 gfn_t gfn = gpa >> PAGE_SHIFT;
1314 int seg;
1315 int offset = offset_in_page(gpa);
1316 int ret;
1317
1318 while ((seg = next_segment(len, offset)) != 0) {
1319 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1320 if (ret < 0)
1321 return ret;
1322 offset = 0;
1323 len -= seg;
1324 data += seg;
1325 ++gfn;
1326 }
1327 return 0;
1328 }
1329
1330 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1331 {
1332 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1335
1336 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1337 {
1338 gfn_t gfn = gpa >> PAGE_SHIFT;
1339 int seg;
1340 int offset = offset_in_page(gpa);
1341 int ret;
1342
1343 while ((seg = next_segment(len, offset)) != 0) {
1344 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1345 if (ret < 0)
1346 return ret;
1347 offset = 0;
1348 len -= seg;
1349 ++gfn;
1350 }
1351 return 0;
1352 }
1353 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1354
1355 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1356 {
1357 struct kvm_memory_slot *memslot;
1358
1359 gfn = unalias_gfn(kvm, gfn);
1360 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1361 if (memslot && memslot->dirty_bitmap) {
1362 unsigned long rel_gfn = gfn - memslot->base_gfn;
1363
1364 /* avoid RMW */
1365 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1366 set_bit(rel_gfn, memslot->dirty_bitmap);
1367 }
1368 }
1369
1370 /*
1371 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1372 */
1373 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1374 {
1375 DEFINE_WAIT(wait);
1376
1377 for (;;) {
1378 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1379
1380 if (kvm_cpu_has_interrupt(vcpu) ||
1381 kvm_cpu_has_pending_timer(vcpu) ||
1382 kvm_arch_vcpu_runnable(vcpu)) {
1383 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1384 break;
1385 }
1386 if (signal_pending(current))
1387 break;
1388
1389 vcpu_put(vcpu);
1390 schedule();
1391 vcpu_load(vcpu);
1392 }
1393
1394 finish_wait(&vcpu->wq, &wait);
1395 }
1396
1397 void kvm_resched(struct kvm_vcpu *vcpu)
1398 {
1399 if (!need_resched())
1400 return;
1401 cond_resched();
1402 }
1403 EXPORT_SYMBOL_GPL(kvm_resched);
1404
1405 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1406 {
1407 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1408 struct page *page;
1409
1410 if (vmf->pgoff == 0)
1411 page = virt_to_page(vcpu->run);
1412 #ifdef CONFIG_X86
1413 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1414 page = virt_to_page(vcpu->arch.pio_data);
1415 #endif
1416 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1417 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1418 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1419 #endif
1420 else
1421 return VM_FAULT_SIGBUS;
1422 get_page(page);
1423 vmf->page = page;
1424 return 0;
1425 }
1426
1427 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1428 .fault = kvm_vcpu_fault,
1429 };
1430
1431 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1432 {
1433 vma->vm_ops = &kvm_vcpu_vm_ops;
1434 return 0;
1435 }
1436
1437 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1438 {
1439 struct kvm_vcpu *vcpu = filp->private_data;
1440
1441 kvm_put_kvm(vcpu->kvm);
1442 return 0;
1443 }
1444
1445 static const struct file_operations kvm_vcpu_fops = {
1446 .release = kvm_vcpu_release,
1447 .unlocked_ioctl = kvm_vcpu_ioctl,
1448 .compat_ioctl = kvm_vcpu_ioctl,
1449 .mmap = kvm_vcpu_mmap,
1450 };
1451
1452 /*
1453 * Allocates an inode for the vcpu.
1454 */
1455 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1456 {
1457 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1458 if (fd < 0)
1459 kvm_put_kvm(vcpu->kvm);
1460 return fd;
1461 }
1462
1463 /*
1464 * Creates some virtual cpus. Good luck creating more than one.
1465 */
1466 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1467 {
1468 int r;
1469 struct kvm_vcpu *vcpu;
1470
1471 if (!valid_vcpu(n))
1472 return -EINVAL;
1473
1474 vcpu = kvm_arch_vcpu_create(kvm, n);
1475 if (IS_ERR(vcpu))
1476 return PTR_ERR(vcpu);
1477
1478 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1479
1480 r = kvm_arch_vcpu_setup(vcpu);
1481 if (r)
1482 return r;
1483
1484 mutex_lock(&kvm->lock);
1485 if (kvm->vcpus[n]) {
1486 r = -EEXIST;
1487 goto vcpu_destroy;
1488 }
1489 kvm->vcpus[n] = vcpu;
1490 mutex_unlock(&kvm->lock);
1491
1492 /* Now it's all set up, let userspace reach it */
1493 kvm_get_kvm(kvm);
1494 r = create_vcpu_fd(vcpu);
1495 if (r < 0)
1496 goto unlink;
1497 return r;
1498
1499 unlink:
1500 mutex_lock(&kvm->lock);
1501 kvm->vcpus[n] = NULL;
1502 vcpu_destroy:
1503 mutex_unlock(&kvm->lock);
1504 kvm_arch_vcpu_destroy(vcpu);
1505 return r;
1506 }
1507
1508 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1509 {
1510 if (sigset) {
1511 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1512 vcpu->sigset_active = 1;
1513 vcpu->sigset = *sigset;
1514 } else
1515 vcpu->sigset_active = 0;
1516 return 0;
1517 }
1518
1519 static long kvm_vcpu_ioctl(struct file *filp,
1520 unsigned int ioctl, unsigned long arg)
1521 {
1522 struct kvm_vcpu *vcpu = filp->private_data;
1523 void __user *argp = (void __user *)arg;
1524 int r;
1525 struct kvm_fpu *fpu = NULL;
1526 struct kvm_sregs *kvm_sregs = NULL;
1527
1528 if (vcpu->kvm->mm != current->mm)
1529 return -EIO;
1530 switch (ioctl) {
1531 case KVM_RUN:
1532 r = -EINVAL;
1533 if (arg)
1534 goto out;
1535 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1536 break;
1537 case KVM_GET_REGS: {
1538 struct kvm_regs *kvm_regs;
1539
1540 r = -ENOMEM;
1541 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1542 if (!kvm_regs)
1543 goto out;
1544 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1545 if (r)
1546 goto out_free1;
1547 r = -EFAULT;
1548 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1549 goto out_free1;
1550 r = 0;
1551 out_free1:
1552 kfree(kvm_regs);
1553 break;
1554 }
1555 case KVM_SET_REGS: {
1556 struct kvm_regs *kvm_regs;
1557
1558 r = -ENOMEM;
1559 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1560 if (!kvm_regs)
1561 goto out;
1562 r = -EFAULT;
1563 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1564 goto out_free2;
1565 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1566 if (r)
1567 goto out_free2;
1568 r = 0;
1569 out_free2:
1570 kfree(kvm_regs);
1571 break;
1572 }
1573 case KVM_GET_SREGS: {
1574 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1575 r = -ENOMEM;
1576 if (!kvm_sregs)
1577 goto out;
1578 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1579 if (r)
1580 goto out;
1581 r = -EFAULT;
1582 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1583 goto out;
1584 r = 0;
1585 break;
1586 }
1587 case KVM_SET_SREGS: {
1588 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1589 r = -ENOMEM;
1590 if (!kvm_sregs)
1591 goto out;
1592 r = -EFAULT;
1593 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1594 goto out;
1595 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1596 if (r)
1597 goto out;
1598 r = 0;
1599 break;
1600 }
1601 case KVM_GET_MP_STATE: {
1602 struct kvm_mp_state mp_state;
1603
1604 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1605 if (r)
1606 goto out;
1607 r = -EFAULT;
1608 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1609 goto out;
1610 r = 0;
1611 break;
1612 }
1613 case KVM_SET_MP_STATE: {
1614 struct kvm_mp_state mp_state;
1615
1616 r = -EFAULT;
1617 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1618 goto out;
1619 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1620 if (r)
1621 goto out;
1622 r = 0;
1623 break;
1624 }
1625 case KVM_TRANSLATE: {
1626 struct kvm_translation tr;
1627
1628 r = -EFAULT;
1629 if (copy_from_user(&tr, argp, sizeof tr))
1630 goto out;
1631 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1632 if (r)
1633 goto out;
1634 r = -EFAULT;
1635 if (copy_to_user(argp, &tr, sizeof tr))
1636 goto out;
1637 r = 0;
1638 break;
1639 }
1640 case KVM_DEBUG_GUEST: {
1641 struct kvm_debug_guest dbg;
1642
1643 r = -EFAULT;
1644 if (copy_from_user(&dbg, argp, sizeof dbg))
1645 goto out;
1646 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1647 if (r)
1648 goto out;
1649 r = 0;
1650 break;
1651 }
1652 case KVM_SET_SIGNAL_MASK: {
1653 struct kvm_signal_mask __user *sigmask_arg = argp;
1654 struct kvm_signal_mask kvm_sigmask;
1655 sigset_t sigset, *p;
1656
1657 p = NULL;
1658 if (argp) {
1659 r = -EFAULT;
1660 if (copy_from_user(&kvm_sigmask, argp,
1661 sizeof kvm_sigmask))
1662 goto out;
1663 r = -EINVAL;
1664 if (kvm_sigmask.len != sizeof sigset)
1665 goto out;
1666 r = -EFAULT;
1667 if (copy_from_user(&sigset, sigmask_arg->sigset,
1668 sizeof sigset))
1669 goto out;
1670 p = &sigset;
1671 }
1672 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1673 break;
1674 }
1675 case KVM_GET_FPU: {
1676 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1677 r = -ENOMEM;
1678 if (!fpu)
1679 goto out;
1680 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1681 if (r)
1682 goto out;
1683 r = -EFAULT;
1684 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1685 goto out;
1686 r = 0;
1687 break;
1688 }
1689 case KVM_SET_FPU: {
1690 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1691 r = -ENOMEM;
1692 if (!fpu)
1693 goto out;
1694 r = -EFAULT;
1695 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1696 goto out;
1697 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1698 if (r)
1699 goto out;
1700 r = 0;
1701 break;
1702 }
1703 default:
1704 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1705 }
1706 out:
1707 kfree(fpu);
1708 kfree(kvm_sregs);
1709 return r;
1710 }
1711
1712 static long kvm_vm_ioctl(struct file *filp,
1713 unsigned int ioctl, unsigned long arg)
1714 {
1715 struct kvm *kvm = filp->private_data;
1716 void __user *argp = (void __user *)arg;
1717 int r;
1718
1719 if (kvm->mm != current->mm)
1720 return -EIO;
1721 switch (ioctl) {
1722 case KVM_CREATE_VCPU:
1723 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1724 if (r < 0)
1725 goto out;
1726 break;
1727 case KVM_SET_USER_MEMORY_REGION: {
1728 struct kvm_userspace_memory_region kvm_userspace_mem;
1729
1730 r = -EFAULT;
1731 if (copy_from_user(&kvm_userspace_mem, argp,
1732 sizeof kvm_userspace_mem))
1733 goto out;
1734
1735 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1736 if (r)
1737 goto out;
1738 break;
1739 }
1740 case KVM_GET_DIRTY_LOG: {
1741 struct kvm_dirty_log log;
1742
1743 r = -EFAULT;
1744 if (copy_from_user(&log, argp, sizeof log))
1745 goto out;
1746 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1747 if (r)
1748 goto out;
1749 break;
1750 }
1751 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1752 case KVM_REGISTER_COALESCED_MMIO: {
1753 struct kvm_coalesced_mmio_zone zone;
1754 r = -EFAULT;
1755 if (copy_from_user(&zone, argp, sizeof zone))
1756 goto out;
1757 r = -ENXIO;
1758 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1759 if (r)
1760 goto out;
1761 r = 0;
1762 break;
1763 }
1764 case KVM_UNREGISTER_COALESCED_MMIO: {
1765 struct kvm_coalesced_mmio_zone zone;
1766 r = -EFAULT;
1767 if (copy_from_user(&zone, argp, sizeof zone))
1768 goto out;
1769 r = -ENXIO;
1770 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1771 if (r)
1772 goto out;
1773 r = 0;
1774 break;
1775 }
1776 #endif
1777 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1778 case KVM_ASSIGN_PCI_DEVICE: {
1779 struct kvm_assigned_pci_dev assigned_dev;
1780
1781 r = -EFAULT;
1782 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1783 goto out;
1784 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1785 if (r)
1786 goto out;
1787 break;
1788 }
1789 case KVM_ASSIGN_IRQ: {
1790 struct kvm_assigned_irq assigned_irq;
1791
1792 r = -EFAULT;
1793 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1794 goto out;
1795 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1796 if (r)
1797 goto out;
1798 break;
1799 }
1800 #endif
1801 default:
1802 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1803 }
1804 out:
1805 return r;
1806 }
1807
1808 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1809 {
1810 struct page *page[1];
1811 unsigned long addr;
1812 int npages;
1813 gfn_t gfn = vmf->pgoff;
1814 struct kvm *kvm = vma->vm_file->private_data;
1815
1816 addr = gfn_to_hva(kvm, gfn);
1817 if (kvm_is_error_hva(addr))
1818 return VM_FAULT_SIGBUS;
1819
1820 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1821 NULL);
1822 if (unlikely(npages != 1))
1823 return VM_FAULT_SIGBUS;
1824
1825 vmf->page = page[0];
1826 return 0;
1827 }
1828
1829 static struct vm_operations_struct kvm_vm_vm_ops = {
1830 .fault = kvm_vm_fault,
1831 };
1832
1833 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1834 {
1835 vma->vm_ops = &kvm_vm_vm_ops;
1836 return 0;
1837 }
1838
1839 static const struct file_operations kvm_vm_fops = {
1840 .release = kvm_vm_release,
1841 .unlocked_ioctl = kvm_vm_ioctl,
1842 .compat_ioctl = kvm_vm_ioctl,
1843 .mmap = kvm_vm_mmap,
1844 };
1845
1846 static int kvm_dev_ioctl_create_vm(void)
1847 {
1848 int fd;
1849 struct kvm *kvm;
1850
1851 kvm = kvm_create_vm();
1852 if (IS_ERR(kvm))
1853 return PTR_ERR(kvm);
1854 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1855 if (fd < 0)
1856 kvm_put_kvm(kvm);
1857
1858 return fd;
1859 }
1860
1861 static long kvm_dev_ioctl(struct file *filp,
1862 unsigned int ioctl, unsigned long arg)
1863 {
1864 long r = -EINVAL;
1865
1866 switch (ioctl) {
1867 case KVM_GET_API_VERSION:
1868 r = -EINVAL;
1869 if (arg)
1870 goto out;
1871 r = KVM_API_VERSION;
1872 break;
1873 case KVM_CREATE_VM:
1874 r = -EINVAL;
1875 if (arg)
1876 goto out;
1877 r = kvm_dev_ioctl_create_vm();
1878 break;
1879 case KVM_CHECK_EXTENSION:
1880 r = kvm_dev_ioctl_check_extension(arg);
1881 break;
1882 case KVM_GET_VCPU_MMAP_SIZE:
1883 r = -EINVAL;
1884 if (arg)
1885 goto out;
1886 r = PAGE_SIZE; /* struct kvm_run */
1887 #ifdef CONFIG_X86
1888 r += PAGE_SIZE; /* pio data page */
1889 #endif
1890 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1891 r += PAGE_SIZE; /* coalesced mmio ring page */
1892 #endif
1893 break;
1894 case KVM_TRACE_ENABLE:
1895 case KVM_TRACE_PAUSE:
1896 case KVM_TRACE_DISABLE:
1897 r = kvm_trace_ioctl(ioctl, arg);
1898 break;
1899 default:
1900 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1901 }
1902 out:
1903 return r;
1904 }
1905
1906 static struct file_operations kvm_chardev_ops = {
1907 .unlocked_ioctl = kvm_dev_ioctl,
1908 .compat_ioctl = kvm_dev_ioctl,
1909 };
1910
1911 static struct miscdevice kvm_dev = {
1912 KVM_MINOR,
1913 "kvm",
1914 &kvm_chardev_ops,
1915 };
1916
1917 static void hardware_enable(void *junk)
1918 {
1919 int cpu = raw_smp_processor_id();
1920
1921 if (cpu_isset(cpu, cpus_hardware_enabled))
1922 return;
1923 cpu_set(cpu, cpus_hardware_enabled);
1924 kvm_arch_hardware_enable(NULL);
1925 }
1926
1927 static void hardware_disable(void *junk)
1928 {
1929 int cpu = raw_smp_processor_id();
1930
1931 if (!cpu_isset(cpu, cpus_hardware_enabled))
1932 return;
1933 cpu_clear(cpu, cpus_hardware_enabled);
1934 kvm_arch_hardware_disable(NULL);
1935 }
1936
1937 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1938 void *v)
1939 {
1940 int cpu = (long)v;
1941
1942 val &= ~CPU_TASKS_FROZEN;
1943 switch (val) {
1944 case CPU_DYING:
1945 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1946 cpu);
1947 hardware_disable(NULL);
1948 break;
1949 case CPU_UP_CANCELED:
1950 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1951 cpu);
1952 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1953 break;
1954 case CPU_ONLINE:
1955 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1956 cpu);
1957 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1958 break;
1959 }
1960 return NOTIFY_OK;
1961 }
1962
1963
1964 asmlinkage void kvm_handle_fault_on_reboot(void)
1965 {
1966 if (kvm_rebooting)
1967 /* spin while reset goes on */
1968 while (true)
1969 ;
1970 /* Fault while not rebooting. We want the trace. */
1971 BUG();
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1974
1975 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1976 void *v)
1977 {
1978 if (val == SYS_RESTART) {
1979 /*
1980 * Some (well, at least mine) BIOSes hang on reboot if
1981 * in vmx root mode.
1982 */
1983 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1984 kvm_rebooting = true;
1985 on_each_cpu(hardware_disable, NULL, 1);
1986 }
1987 return NOTIFY_OK;
1988 }
1989
1990 static struct notifier_block kvm_reboot_notifier = {
1991 .notifier_call = kvm_reboot,
1992 .priority = 0,
1993 };
1994
1995 void kvm_io_bus_init(struct kvm_io_bus *bus)
1996 {
1997 memset(bus, 0, sizeof(*bus));
1998 }
1999
2000 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2001 {
2002 int i;
2003
2004 for (i = 0; i < bus->dev_count; i++) {
2005 struct kvm_io_device *pos = bus->devs[i];
2006
2007 kvm_iodevice_destructor(pos);
2008 }
2009 }
2010
2011 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2012 gpa_t addr, int len, int is_write)
2013 {
2014 int i;
2015
2016 for (i = 0; i < bus->dev_count; i++) {
2017 struct kvm_io_device *pos = bus->devs[i];
2018
2019 if (pos->in_range(pos, addr, len, is_write))
2020 return pos;
2021 }
2022
2023 return NULL;
2024 }
2025
2026 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2027 {
2028 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2029
2030 bus->devs[bus->dev_count++] = dev;
2031 }
2032
2033 static struct notifier_block kvm_cpu_notifier = {
2034 .notifier_call = kvm_cpu_hotplug,
2035 .priority = 20, /* must be > scheduler priority */
2036 };
2037
2038 static int vm_stat_get(void *_offset, u64 *val)
2039 {
2040 unsigned offset = (long)_offset;
2041 struct kvm *kvm;
2042
2043 *val = 0;
2044 spin_lock(&kvm_lock);
2045 list_for_each_entry(kvm, &vm_list, vm_list)
2046 *val += *(u32 *)((void *)kvm + offset);
2047 spin_unlock(&kvm_lock);
2048 return 0;
2049 }
2050
2051 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2052
2053 static int vcpu_stat_get(void *_offset, u64 *val)
2054 {
2055 unsigned offset = (long)_offset;
2056 struct kvm *kvm;
2057 struct kvm_vcpu *vcpu;
2058 int i;
2059
2060 *val = 0;
2061 spin_lock(&kvm_lock);
2062 list_for_each_entry(kvm, &vm_list, vm_list)
2063 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2064 vcpu = kvm->vcpus[i];
2065 if (vcpu)
2066 *val += *(u32 *)((void *)vcpu + offset);
2067 }
2068 spin_unlock(&kvm_lock);
2069 return 0;
2070 }
2071
2072 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2073
2074 static struct file_operations *stat_fops[] = {
2075 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2076 [KVM_STAT_VM] = &vm_stat_fops,
2077 };
2078
2079 static void kvm_init_debug(void)
2080 {
2081 struct kvm_stats_debugfs_item *p;
2082
2083 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2084 for (p = debugfs_entries; p->name; ++p)
2085 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2086 (void *)(long)p->offset,
2087 stat_fops[p->kind]);
2088 }
2089
2090 static void kvm_exit_debug(void)
2091 {
2092 struct kvm_stats_debugfs_item *p;
2093
2094 for (p = debugfs_entries; p->name; ++p)
2095 debugfs_remove(p->dentry);
2096 debugfs_remove(kvm_debugfs_dir);
2097 }
2098
2099 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2100 {
2101 hardware_disable(NULL);
2102 return 0;
2103 }
2104
2105 static int kvm_resume(struct sys_device *dev)
2106 {
2107 hardware_enable(NULL);
2108 return 0;
2109 }
2110
2111 static struct sysdev_class kvm_sysdev_class = {
2112 .name = "kvm",
2113 .suspend = kvm_suspend,
2114 .resume = kvm_resume,
2115 };
2116
2117 static struct sys_device kvm_sysdev = {
2118 .id = 0,
2119 .cls = &kvm_sysdev_class,
2120 };
2121
2122 struct page *bad_page;
2123 pfn_t bad_pfn;
2124
2125 static inline
2126 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2127 {
2128 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2129 }
2130
2131 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2132 {
2133 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2134
2135 kvm_arch_vcpu_load(vcpu, cpu);
2136 }
2137
2138 static void kvm_sched_out(struct preempt_notifier *pn,
2139 struct task_struct *next)
2140 {
2141 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2142
2143 kvm_arch_vcpu_put(vcpu);
2144 }
2145
2146 int kvm_init(void *opaque, unsigned int vcpu_size,
2147 struct module *module)
2148 {
2149 int r;
2150 int cpu;
2151
2152 kvm_init_debug();
2153
2154 r = kvm_arch_init(opaque);
2155 if (r)
2156 goto out_fail;
2157
2158 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2159
2160 if (bad_page == NULL) {
2161 r = -ENOMEM;
2162 goto out;
2163 }
2164
2165 bad_pfn = page_to_pfn(bad_page);
2166
2167 r = kvm_arch_hardware_setup();
2168 if (r < 0)
2169 goto out_free_0;
2170
2171 for_each_online_cpu(cpu) {
2172 smp_call_function_single(cpu,
2173 kvm_arch_check_processor_compat,
2174 &r, 1);
2175 if (r < 0)
2176 goto out_free_1;
2177 }
2178
2179 on_each_cpu(hardware_enable, NULL, 1);
2180 r = register_cpu_notifier(&kvm_cpu_notifier);
2181 if (r)
2182 goto out_free_2;
2183 register_reboot_notifier(&kvm_reboot_notifier);
2184
2185 r = sysdev_class_register(&kvm_sysdev_class);
2186 if (r)
2187 goto out_free_3;
2188
2189 r = sysdev_register(&kvm_sysdev);
2190 if (r)
2191 goto out_free_4;
2192
2193 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2194 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2195 __alignof__(struct kvm_vcpu),
2196 0, NULL);
2197 if (!kvm_vcpu_cache) {
2198 r = -ENOMEM;
2199 goto out_free_5;
2200 }
2201
2202 kvm_chardev_ops.owner = module;
2203
2204 r = misc_register(&kvm_dev);
2205 if (r) {
2206 printk(KERN_ERR "kvm: misc device register failed\n");
2207 goto out_free;
2208 }
2209
2210 kvm_preempt_ops.sched_in = kvm_sched_in;
2211 kvm_preempt_ops.sched_out = kvm_sched_out;
2212
2213 return 0;
2214
2215 out_free:
2216 kmem_cache_destroy(kvm_vcpu_cache);
2217 out_free_5:
2218 sysdev_unregister(&kvm_sysdev);
2219 out_free_4:
2220 sysdev_class_unregister(&kvm_sysdev_class);
2221 out_free_3:
2222 unregister_reboot_notifier(&kvm_reboot_notifier);
2223 unregister_cpu_notifier(&kvm_cpu_notifier);
2224 out_free_2:
2225 on_each_cpu(hardware_disable, NULL, 1);
2226 out_free_1:
2227 kvm_arch_hardware_unsetup();
2228 out_free_0:
2229 __free_page(bad_page);
2230 out:
2231 kvm_arch_exit();
2232 kvm_exit_debug();
2233 out_fail:
2234 return r;
2235 }
2236 EXPORT_SYMBOL_GPL(kvm_init);
2237
2238 void kvm_exit(void)
2239 {
2240 kvm_trace_cleanup();
2241 misc_deregister(&kvm_dev);
2242 kmem_cache_destroy(kvm_vcpu_cache);
2243 sysdev_unregister(&kvm_sysdev);
2244 sysdev_class_unregister(&kvm_sysdev_class);
2245 unregister_reboot_notifier(&kvm_reboot_notifier);
2246 unregister_cpu_notifier(&kvm_cpu_notifier);
2247 on_each_cpu(hardware_disable, NULL, 1);
2248 kvm_arch_hardware_unsetup();
2249 kvm_arch_exit();
2250 kvm_exit_debug();
2251 __free_page(bad_page);
2252 }
2253 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.080615 seconds and 6 git commands to generate.