KVM: irqfd
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 DEFINE_SPINLOCK(kvm_lock);
66 LIST_HEAD(vm_list);
67
68 static cpumask_var_t cpus_hardware_enabled;
69
70 struct kmem_cache *kvm_vcpu_cache;
71 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
72
73 static __read_mostly struct preempt_ops kvm_preempt_ops;
74
75 struct dentry *kvm_debugfs_dir;
76
77 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
78 unsigned long arg);
79
80 static bool kvm_rebooting;
81
82 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
83 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
84 int assigned_dev_id)
85 {
86 struct list_head *ptr;
87 struct kvm_assigned_dev_kernel *match;
88
89 list_for_each(ptr, head) {
90 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
91 if (match->assigned_dev_id == assigned_dev_id)
92 return match;
93 }
94 return NULL;
95 }
96
97 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
98 *assigned_dev, int irq)
99 {
100 int i, index;
101 struct msix_entry *host_msix_entries;
102
103 host_msix_entries = assigned_dev->host_msix_entries;
104
105 index = -1;
106 for (i = 0; i < assigned_dev->entries_nr; i++)
107 if (irq == host_msix_entries[i].vector) {
108 index = i;
109 break;
110 }
111 if (index < 0) {
112 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
113 return 0;
114 }
115
116 return index;
117 }
118
119 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
120 {
121 struct kvm_assigned_dev_kernel *assigned_dev;
122 struct kvm *kvm;
123 int irq, i;
124
125 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
126 interrupt_work);
127 kvm = assigned_dev->kvm;
128
129 /* This is taken to safely inject irq inside the guest. When
130 * the interrupt injection (or the ioapic code) uses a
131 * finer-grained lock, update this
132 */
133 mutex_lock(&kvm->lock);
134 spin_lock_irq(&assigned_dev->assigned_dev_lock);
135 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
136 struct kvm_guest_msix_entry *guest_entries =
137 assigned_dev->guest_msix_entries;
138 for (i = 0; i < assigned_dev->entries_nr; i++) {
139 if (!(guest_entries[i].flags &
140 KVM_ASSIGNED_MSIX_PENDING))
141 continue;
142 guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
143 kvm_set_irq(assigned_dev->kvm,
144 assigned_dev->irq_source_id,
145 guest_entries[i].vector, 1);
146 irq = assigned_dev->host_msix_entries[i].vector;
147 if (irq != 0)
148 enable_irq(irq);
149 assigned_dev->host_irq_disabled = false;
150 }
151 } else {
152 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
153 assigned_dev->guest_irq, 1);
154 if (assigned_dev->irq_requested_type &
155 KVM_DEV_IRQ_GUEST_MSI) {
156 enable_irq(assigned_dev->host_irq);
157 assigned_dev->host_irq_disabled = false;
158 }
159 }
160
161 spin_unlock_irq(&assigned_dev->assigned_dev_lock);
162 mutex_unlock(&assigned_dev->kvm->lock);
163 }
164
165 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
166 {
167 unsigned long flags;
168 struct kvm_assigned_dev_kernel *assigned_dev =
169 (struct kvm_assigned_dev_kernel *) dev_id;
170
171 spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
172 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
173 int index = find_index_from_host_irq(assigned_dev, irq);
174 if (index < 0)
175 goto out;
176 assigned_dev->guest_msix_entries[index].flags |=
177 KVM_ASSIGNED_MSIX_PENDING;
178 }
179
180 schedule_work(&assigned_dev->interrupt_work);
181
182 disable_irq_nosync(irq);
183 assigned_dev->host_irq_disabled = true;
184
185 out:
186 spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
187 return IRQ_HANDLED;
188 }
189
190 /* Ack the irq line for an assigned device */
191 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
192 {
193 struct kvm_assigned_dev_kernel *dev;
194 unsigned long flags;
195
196 if (kian->gsi == -1)
197 return;
198
199 dev = container_of(kian, struct kvm_assigned_dev_kernel,
200 ack_notifier);
201
202 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
203
204 /* The guest irq may be shared so this ack may be
205 * from another device.
206 */
207 spin_lock_irqsave(&dev->assigned_dev_lock, flags);
208 if (dev->host_irq_disabled) {
209 enable_irq(dev->host_irq);
210 dev->host_irq_disabled = false;
211 }
212 spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
213 }
214
215 static void deassign_guest_irq(struct kvm *kvm,
216 struct kvm_assigned_dev_kernel *assigned_dev)
217 {
218 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
219 assigned_dev->ack_notifier.gsi = -1;
220
221 if (assigned_dev->irq_source_id != -1)
222 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
223 assigned_dev->irq_source_id = -1;
224 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
225 }
226
227 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
228 static void deassign_host_irq(struct kvm *kvm,
229 struct kvm_assigned_dev_kernel *assigned_dev)
230 {
231 /*
232 * In kvm_free_device_irq, cancel_work_sync return true if:
233 * 1. work is scheduled, and then cancelled.
234 * 2. work callback is executed.
235 *
236 * The first one ensured that the irq is disabled and no more events
237 * would happen. But for the second one, the irq may be enabled (e.g.
238 * for MSI). So we disable irq here to prevent further events.
239 *
240 * Notice this maybe result in nested disable if the interrupt type is
241 * INTx, but it's OK for we are going to free it.
242 *
243 * If this function is a part of VM destroy, please ensure that till
244 * now, the kvm state is still legal for probably we also have to wait
245 * interrupt_work done.
246 */
247 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
248 int i;
249 for (i = 0; i < assigned_dev->entries_nr; i++)
250 disable_irq_nosync(assigned_dev->
251 host_msix_entries[i].vector);
252
253 cancel_work_sync(&assigned_dev->interrupt_work);
254
255 for (i = 0; i < assigned_dev->entries_nr; i++)
256 free_irq(assigned_dev->host_msix_entries[i].vector,
257 (void *)assigned_dev);
258
259 assigned_dev->entries_nr = 0;
260 kfree(assigned_dev->host_msix_entries);
261 kfree(assigned_dev->guest_msix_entries);
262 pci_disable_msix(assigned_dev->dev);
263 } else {
264 /* Deal with MSI and INTx */
265 disable_irq_nosync(assigned_dev->host_irq);
266 cancel_work_sync(&assigned_dev->interrupt_work);
267
268 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
269
270 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
271 pci_disable_msi(assigned_dev->dev);
272 }
273
274 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
275 }
276
277 static int kvm_deassign_irq(struct kvm *kvm,
278 struct kvm_assigned_dev_kernel *assigned_dev,
279 unsigned long irq_requested_type)
280 {
281 unsigned long guest_irq_type, host_irq_type;
282
283 if (!irqchip_in_kernel(kvm))
284 return -EINVAL;
285 /* no irq assignment to deassign */
286 if (!assigned_dev->irq_requested_type)
287 return -ENXIO;
288
289 host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
290 guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
291
292 if (host_irq_type)
293 deassign_host_irq(kvm, assigned_dev);
294 if (guest_irq_type)
295 deassign_guest_irq(kvm, assigned_dev);
296
297 return 0;
298 }
299
300 static void kvm_free_assigned_irq(struct kvm *kvm,
301 struct kvm_assigned_dev_kernel *assigned_dev)
302 {
303 kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
304 }
305
306 static void kvm_free_assigned_device(struct kvm *kvm,
307 struct kvm_assigned_dev_kernel
308 *assigned_dev)
309 {
310 kvm_free_assigned_irq(kvm, assigned_dev);
311
312 pci_reset_function(assigned_dev->dev);
313
314 pci_release_regions(assigned_dev->dev);
315 pci_disable_device(assigned_dev->dev);
316 pci_dev_put(assigned_dev->dev);
317
318 list_del(&assigned_dev->list);
319 kfree(assigned_dev);
320 }
321
322 void kvm_free_all_assigned_devices(struct kvm *kvm)
323 {
324 struct list_head *ptr, *ptr2;
325 struct kvm_assigned_dev_kernel *assigned_dev;
326
327 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
328 assigned_dev = list_entry(ptr,
329 struct kvm_assigned_dev_kernel,
330 list);
331
332 kvm_free_assigned_device(kvm, assigned_dev);
333 }
334 }
335
336 static int assigned_device_enable_host_intx(struct kvm *kvm,
337 struct kvm_assigned_dev_kernel *dev)
338 {
339 dev->host_irq = dev->dev->irq;
340 /* Even though this is PCI, we don't want to use shared
341 * interrupts. Sharing host devices with guest-assigned devices
342 * on the same interrupt line is not a happy situation: there
343 * are going to be long delays in accepting, acking, etc.
344 */
345 if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
346 0, "kvm_assigned_intx_device", (void *)dev))
347 return -EIO;
348 return 0;
349 }
350
351 #ifdef __KVM_HAVE_MSI
352 static int assigned_device_enable_host_msi(struct kvm *kvm,
353 struct kvm_assigned_dev_kernel *dev)
354 {
355 int r;
356
357 if (!dev->dev->msi_enabled) {
358 r = pci_enable_msi(dev->dev);
359 if (r)
360 return r;
361 }
362
363 dev->host_irq = dev->dev->irq;
364 if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
365 "kvm_assigned_msi_device", (void *)dev)) {
366 pci_disable_msi(dev->dev);
367 return -EIO;
368 }
369
370 return 0;
371 }
372 #endif
373
374 #ifdef __KVM_HAVE_MSIX
375 static int assigned_device_enable_host_msix(struct kvm *kvm,
376 struct kvm_assigned_dev_kernel *dev)
377 {
378 int i, r = -EINVAL;
379
380 /* host_msix_entries and guest_msix_entries should have been
381 * initialized */
382 if (dev->entries_nr == 0)
383 return r;
384
385 r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
386 if (r)
387 return r;
388
389 for (i = 0; i < dev->entries_nr; i++) {
390 r = request_irq(dev->host_msix_entries[i].vector,
391 kvm_assigned_dev_intr, 0,
392 "kvm_assigned_msix_device",
393 (void *)dev);
394 /* FIXME: free requested_irq's on failure */
395 if (r)
396 return r;
397 }
398
399 return 0;
400 }
401
402 #endif
403
404 static int assigned_device_enable_guest_intx(struct kvm *kvm,
405 struct kvm_assigned_dev_kernel *dev,
406 struct kvm_assigned_irq *irq)
407 {
408 dev->guest_irq = irq->guest_irq;
409 dev->ack_notifier.gsi = irq->guest_irq;
410 return 0;
411 }
412
413 #ifdef __KVM_HAVE_MSI
414 static int assigned_device_enable_guest_msi(struct kvm *kvm,
415 struct kvm_assigned_dev_kernel *dev,
416 struct kvm_assigned_irq *irq)
417 {
418 dev->guest_irq = irq->guest_irq;
419 dev->ack_notifier.gsi = -1;
420 return 0;
421 }
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425 struct kvm_assigned_dev_kernel *dev,
426 struct kvm_assigned_irq *irq)
427 {
428 dev->guest_irq = irq->guest_irq;
429 dev->ack_notifier.gsi = -1;
430 return 0;
431 }
432 #endif
433
434 static int assign_host_irq(struct kvm *kvm,
435 struct kvm_assigned_dev_kernel *dev,
436 __u32 host_irq_type)
437 {
438 int r = -EEXIST;
439
440 if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
441 return r;
442
443 switch (host_irq_type) {
444 case KVM_DEV_IRQ_HOST_INTX:
445 r = assigned_device_enable_host_intx(kvm, dev);
446 break;
447 #ifdef __KVM_HAVE_MSI
448 case KVM_DEV_IRQ_HOST_MSI:
449 r = assigned_device_enable_host_msi(kvm, dev);
450 break;
451 #endif
452 #ifdef __KVM_HAVE_MSIX
453 case KVM_DEV_IRQ_HOST_MSIX:
454 r = assigned_device_enable_host_msix(kvm, dev);
455 break;
456 #endif
457 default:
458 r = -EINVAL;
459 }
460
461 if (!r)
462 dev->irq_requested_type |= host_irq_type;
463
464 return r;
465 }
466
467 static int assign_guest_irq(struct kvm *kvm,
468 struct kvm_assigned_dev_kernel *dev,
469 struct kvm_assigned_irq *irq,
470 unsigned long guest_irq_type)
471 {
472 int id;
473 int r = -EEXIST;
474
475 if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
476 return r;
477
478 id = kvm_request_irq_source_id(kvm);
479 if (id < 0)
480 return id;
481
482 dev->irq_source_id = id;
483
484 switch (guest_irq_type) {
485 case KVM_DEV_IRQ_GUEST_INTX:
486 r = assigned_device_enable_guest_intx(kvm, dev, irq);
487 break;
488 #ifdef __KVM_HAVE_MSI
489 case KVM_DEV_IRQ_GUEST_MSI:
490 r = assigned_device_enable_guest_msi(kvm, dev, irq);
491 break;
492 #endif
493 #ifdef __KVM_HAVE_MSIX
494 case KVM_DEV_IRQ_GUEST_MSIX:
495 r = assigned_device_enable_guest_msix(kvm, dev, irq);
496 break;
497 #endif
498 default:
499 r = -EINVAL;
500 }
501
502 if (!r) {
503 dev->irq_requested_type |= guest_irq_type;
504 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
505 } else
506 kvm_free_irq_source_id(kvm, dev->irq_source_id);
507
508 return r;
509 }
510
511 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
512 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
513 struct kvm_assigned_irq *assigned_irq)
514 {
515 int r = -EINVAL;
516 struct kvm_assigned_dev_kernel *match;
517 unsigned long host_irq_type, guest_irq_type;
518
519 if (!capable(CAP_SYS_RAWIO))
520 return -EPERM;
521
522 if (!irqchip_in_kernel(kvm))
523 return r;
524
525 mutex_lock(&kvm->lock);
526 r = -ENODEV;
527 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
528 assigned_irq->assigned_dev_id);
529 if (!match)
530 goto out;
531
532 host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
533 guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
534
535 r = -EINVAL;
536 /* can only assign one type at a time */
537 if (hweight_long(host_irq_type) > 1)
538 goto out;
539 if (hweight_long(guest_irq_type) > 1)
540 goto out;
541 if (host_irq_type == 0 && guest_irq_type == 0)
542 goto out;
543
544 r = 0;
545 if (host_irq_type)
546 r = assign_host_irq(kvm, match, host_irq_type);
547 if (r)
548 goto out;
549
550 if (guest_irq_type)
551 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
552 out:
553 mutex_unlock(&kvm->lock);
554 return r;
555 }
556
557 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
558 struct kvm_assigned_irq
559 *assigned_irq)
560 {
561 int r = -ENODEV;
562 struct kvm_assigned_dev_kernel *match;
563
564 mutex_lock(&kvm->lock);
565
566 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
567 assigned_irq->assigned_dev_id);
568 if (!match)
569 goto out;
570
571 r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
572 out:
573 mutex_unlock(&kvm->lock);
574 return r;
575 }
576
577 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
578 struct kvm_assigned_pci_dev *assigned_dev)
579 {
580 int r = 0;
581 struct kvm_assigned_dev_kernel *match;
582 struct pci_dev *dev;
583
584 down_read(&kvm->slots_lock);
585 mutex_lock(&kvm->lock);
586
587 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
588 assigned_dev->assigned_dev_id);
589 if (match) {
590 /* device already assigned */
591 r = -EEXIST;
592 goto out;
593 }
594
595 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
596 if (match == NULL) {
597 printk(KERN_INFO "%s: Couldn't allocate memory\n",
598 __func__);
599 r = -ENOMEM;
600 goto out;
601 }
602 dev = pci_get_bus_and_slot(assigned_dev->busnr,
603 assigned_dev->devfn);
604 if (!dev) {
605 printk(KERN_INFO "%s: host device not found\n", __func__);
606 r = -EINVAL;
607 goto out_free;
608 }
609 if (pci_enable_device(dev)) {
610 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
611 r = -EBUSY;
612 goto out_put;
613 }
614 r = pci_request_regions(dev, "kvm_assigned_device");
615 if (r) {
616 printk(KERN_INFO "%s: Could not get access to device regions\n",
617 __func__);
618 goto out_disable;
619 }
620
621 pci_reset_function(dev);
622
623 match->assigned_dev_id = assigned_dev->assigned_dev_id;
624 match->host_busnr = assigned_dev->busnr;
625 match->host_devfn = assigned_dev->devfn;
626 match->flags = assigned_dev->flags;
627 match->dev = dev;
628 spin_lock_init(&match->assigned_dev_lock);
629 match->irq_source_id = -1;
630 match->kvm = kvm;
631 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
632 INIT_WORK(&match->interrupt_work,
633 kvm_assigned_dev_interrupt_work_handler);
634
635 list_add(&match->list, &kvm->arch.assigned_dev_head);
636
637 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
638 if (!kvm->arch.iommu_domain) {
639 r = kvm_iommu_map_guest(kvm);
640 if (r)
641 goto out_list_del;
642 }
643 r = kvm_assign_device(kvm, match);
644 if (r)
645 goto out_list_del;
646 }
647
648 out:
649 mutex_unlock(&kvm->lock);
650 up_read(&kvm->slots_lock);
651 return r;
652 out_list_del:
653 list_del(&match->list);
654 pci_release_regions(dev);
655 out_disable:
656 pci_disable_device(dev);
657 out_put:
658 pci_dev_put(dev);
659 out_free:
660 kfree(match);
661 mutex_unlock(&kvm->lock);
662 up_read(&kvm->slots_lock);
663 return r;
664 }
665 #endif
666
667 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
668 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
669 struct kvm_assigned_pci_dev *assigned_dev)
670 {
671 int r = 0;
672 struct kvm_assigned_dev_kernel *match;
673
674 mutex_lock(&kvm->lock);
675
676 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
677 assigned_dev->assigned_dev_id);
678 if (!match) {
679 printk(KERN_INFO "%s: device hasn't been assigned before, "
680 "so cannot be deassigned\n", __func__);
681 r = -EINVAL;
682 goto out;
683 }
684
685 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
686 kvm_deassign_device(kvm, match);
687
688 kvm_free_assigned_device(kvm, match);
689
690 out:
691 mutex_unlock(&kvm->lock);
692 return r;
693 }
694 #endif
695
696 static inline int valid_vcpu(int n)
697 {
698 return likely(n >= 0 && n < KVM_MAX_VCPUS);
699 }
700
701 inline int kvm_is_mmio_pfn(pfn_t pfn)
702 {
703 if (pfn_valid(pfn)) {
704 struct page *page = compound_head(pfn_to_page(pfn));
705 return PageReserved(page);
706 }
707
708 return true;
709 }
710
711 /*
712 * Switches to specified vcpu, until a matching vcpu_put()
713 */
714 void vcpu_load(struct kvm_vcpu *vcpu)
715 {
716 int cpu;
717
718 mutex_lock(&vcpu->mutex);
719 cpu = get_cpu();
720 preempt_notifier_register(&vcpu->preempt_notifier);
721 kvm_arch_vcpu_load(vcpu, cpu);
722 put_cpu();
723 }
724
725 void vcpu_put(struct kvm_vcpu *vcpu)
726 {
727 preempt_disable();
728 kvm_arch_vcpu_put(vcpu);
729 preempt_notifier_unregister(&vcpu->preempt_notifier);
730 preempt_enable();
731 mutex_unlock(&vcpu->mutex);
732 }
733
734 static void ack_flush(void *_completed)
735 {
736 }
737
738 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
739 {
740 int i, cpu, me;
741 cpumask_var_t cpus;
742 bool called = true;
743 struct kvm_vcpu *vcpu;
744
745 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
746 cpumask_clear(cpus);
747
748 me = get_cpu();
749 spin_lock(&kvm->requests_lock);
750 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
751 vcpu = kvm->vcpus[i];
752 if (!vcpu)
753 continue;
754 if (test_and_set_bit(req, &vcpu->requests))
755 continue;
756 cpu = vcpu->cpu;
757 if (cpus != NULL && cpu != -1 && cpu != me)
758 cpumask_set_cpu(cpu, cpus);
759 }
760 if (unlikely(cpus == NULL))
761 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
762 else if (!cpumask_empty(cpus))
763 smp_call_function_many(cpus, ack_flush, NULL, 1);
764 else
765 called = false;
766 spin_unlock(&kvm->requests_lock);
767 put_cpu();
768 free_cpumask_var(cpus);
769 return called;
770 }
771
772 void kvm_flush_remote_tlbs(struct kvm *kvm)
773 {
774 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
775 ++kvm->stat.remote_tlb_flush;
776 }
777
778 void kvm_reload_remote_mmus(struct kvm *kvm)
779 {
780 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
781 }
782
783 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
784 {
785 struct page *page;
786 int r;
787
788 mutex_init(&vcpu->mutex);
789 vcpu->cpu = -1;
790 vcpu->kvm = kvm;
791 vcpu->vcpu_id = id;
792 init_waitqueue_head(&vcpu->wq);
793
794 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
795 if (!page) {
796 r = -ENOMEM;
797 goto fail;
798 }
799 vcpu->run = page_address(page);
800
801 r = kvm_arch_vcpu_init(vcpu);
802 if (r < 0)
803 goto fail_free_run;
804 return 0;
805
806 fail_free_run:
807 free_page((unsigned long)vcpu->run);
808 fail:
809 return r;
810 }
811 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
812
813 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
814 {
815 kvm_arch_vcpu_uninit(vcpu);
816 free_page((unsigned long)vcpu->run);
817 }
818 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
819
820 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
821 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
822 {
823 return container_of(mn, struct kvm, mmu_notifier);
824 }
825
826 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
827 struct mm_struct *mm,
828 unsigned long address)
829 {
830 struct kvm *kvm = mmu_notifier_to_kvm(mn);
831 int need_tlb_flush;
832
833 /*
834 * When ->invalidate_page runs, the linux pte has been zapped
835 * already but the page is still allocated until
836 * ->invalidate_page returns. So if we increase the sequence
837 * here the kvm page fault will notice if the spte can't be
838 * established because the page is going to be freed. If
839 * instead the kvm page fault establishes the spte before
840 * ->invalidate_page runs, kvm_unmap_hva will release it
841 * before returning.
842 *
843 * The sequence increase only need to be seen at spin_unlock
844 * time, and not at spin_lock time.
845 *
846 * Increasing the sequence after the spin_unlock would be
847 * unsafe because the kvm page fault could then establish the
848 * pte after kvm_unmap_hva returned, without noticing the page
849 * is going to be freed.
850 */
851 spin_lock(&kvm->mmu_lock);
852 kvm->mmu_notifier_seq++;
853 need_tlb_flush = kvm_unmap_hva(kvm, address);
854 spin_unlock(&kvm->mmu_lock);
855
856 /* we've to flush the tlb before the pages can be freed */
857 if (need_tlb_flush)
858 kvm_flush_remote_tlbs(kvm);
859
860 }
861
862 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
863 struct mm_struct *mm,
864 unsigned long start,
865 unsigned long end)
866 {
867 struct kvm *kvm = mmu_notifier_to_kvm(mn);
868 int need_tlb_flush = 0;
869
870 spin_lock(&kvm->mmu_lock);
871 /*
872 * The count increase must become visible at unlock time as no
873 * spte can be established without taking the mmu_lock and
874 * count is also read inside the mmu_lock critical section.
875 */
876 kvm->mmu_notifier_count++;
877 for (; start < end; start += PAGE_SIZE)
878 need_tlb_flush |= kvm_unmap_hva(kvm, start);
879 spin_unlock(&kvm->mmu_lock);
880
881 /* we've to flush the tlb before the pages can be freed */
882 if (need_tlb_flush)
883 kvm_flush_remote_tlbs(kvm);
884 }
885
886 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
887 struct mm_struct *mm,
888 unsigned long start,
889 unsigned long end)
890 {
891 struct kvm *kvm = mmu_notifier_to_kvm(mn);
892
893 spin_lock(&kvm->mmu_lock);
894 /*
895 * This sequence increase will notify the kvm page fault that
896 * the page that is going to be mapped in the spte could have
897 * been freed.
898 */
899 kvm->mmu_notifier_seq++;
900 /*
901 * The above sequence increase must be visible before the
902 * below count decrease but both values are read by the kvm
903 * page fault under mmu_lock spinlock so we don't need to add
904 * a smb_wmb() here in between the two.
905 */
906 kvm->mmu_notifier_count--;
907 spin_unlock(&kvm->mmu_lock);
908
909 BUG_ON(kvm->mmu_notifier_count < 0);
910 }
911
912 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
913 struct mm_struct *mm,
914 unsigned long address)
915 {
916 struct kvm *kvm = mmu_notifier_to_kvm(mn);
917 int young;
918
919 spin_lock(&kvm->mmu_lock);
920 young = kvm_age_hva(kvm, address);
921 spin_unlock(&kvm->mmu_lock);
922
923 if (young)
924 kvm_flush_remote_tlbs(kvm);
925
926 return young;
927 }
928
929 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
930 struct mm_struct *mm)
931 {
932 struct kvm *kvm = mmu_notifier_to_kvm(mn);
933 kvm_arch_flush_shadow(kvm);
934 }
935
936 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
937 .invalidate_page = kvm_mmu_notifier_invalidate_page,
938 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
939 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
940 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
941 .release = kvm_mmu_notifier_release,
942 };
943 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
944
945 static struct kvm *kvm_create_vm(void)
946 {
947 struct kvm *kvm = kvm_arch_create_vm();
948 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
949 struct page *page;
950 #endif
951
952 if (IS_ERR(kvm))
953 goto out;
954 #ifdef CONFIG_HAVE_KVM_IRQCHIP
955 INIT_LIST_HEAD(&kvm->irq_routing);
956 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
957 #endif
958
959 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
960 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
961 if (!page) {
962 kfree(kvm);
963 return ERR_PTR(-ENOMEM);
964 }
965 kvm->coalesced_mmio_ring =
966 (struct kvm_coalesced_mmio_ring *)page_address(page);
967 #endif
968
969 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
970 {
971 int err;
972 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
973 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
974 if (err) {
975 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
976 put_page(page);
977 #endif
978 kfree(kvm);
979 return ERR_PTR(err);
980 }
981 }
982 #endif
983
984 kvm->mm = current->mm;
985 atomic_inc(&kvm->mm->mm_count);
986 spin_lock_init(&kvm->mmu_lock);
987 spin_lock_init(&kvm->requests_lock);
988 kvm_io_bus_init(&kvm->pio_bus);
989 kvm_irqfd_init(kvm);
990 mutex_init(&kvm->lock);
991 kvm_io_bus_init(&kvm->mmio_bus);
992 init_rwsem(&kvm->slots_lock);
993 atomic_set(&kvm->users_count, 1);
994 spin_lock(&kvm_lock);
995 list_add(&kvm->vm_list, &vm_list);
996 spin_unlock(&kvm_lock);
997 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
998 kvm_coalesced_mmio_init(kvm);
999 #endif
1000 out:
1001 return kvm;
1002 }
1003
1004 /*
1005 * Free any memory in @free but not in @dont.
1006 */
1007 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1008 struct kvm_memory_slot *dont)
1009 {
1010 if (!dont || free->rmap != dont->rmap)
1011 vfree(free->rmap);
1012
1013 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1014 vfree(free->dirty_bitmap);
1015
1016 if (!dont || free->lpage_info != dont->lpage_info)
1017 vfree(free->lpage_info);
1018
1019 free->npages = 0;
1020 free->dirty_bitmap = NULL;
1021 free->rmap = NULL;
1022 free->lpage_info = NULL;
1023 }
1024
1025 void kvm_free_physmem(struct kvm *kvm)
1026 {
1027 int i;
1028
1029 for (i = 0; i < kvm->nmemslots; ++i)
1030 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1031 }
1032
1033 static void kvm_destroy_vm(struct kvm *kvm)
1034 {
1035 struct mm_struct *mm = kvm->mm;
1036
1037 kvm_arch_sync_events(kvm);
1038 spin_lock(&kvm_lock);
1039 list_del(&kvm->vm_list);
1040 spin_unlock(&kvm_lock);
1041 kvm_free_irq_routing(kvm);
1042 kvm_io_bus_destroy(&kvm->pio_bus);
1043 kvm_io_bus_destroy(&kvm->mmio_bus);
1044 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1045 if (kvm->coalesced_mmio_ring != NULL)
1046 free_page((unsigned long)kvm->coalesced_mmio_ring);
1047 #endif
1048 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1049 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1050 #else
1051 kvm_arch_flush_shadow(kvm);
1052 #endif
1053 kvm_arch_destroy_vm(kvm);
1054 mmdrop(mm);
1055 }
1056
1057 void kvm_get_kvm(struct kvm *kvm)
1058 {
1059 atomic_inc(&kvm->users_count);
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1062
1063 void kvm_put_kvm(struct kvm *kvm)
1064 {
1065 if (atomic_dec_and_test(&kvm->users_count))
1066 kvm_destroy_vm(kvm);
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1069
1070
1071 static int kvm_vm_release(struct inode *inode, struct file *filp)
1072 {
1073 struct kvm *kvm = filp->private_data;
1074
1075 kvm_irqfd_release(kvm);
1076
1077 kvm_put_kvm(kvm);
1078 return 0;
1079 }
1080
1081 /*
1082 * Allocate some memory and give it an address in the guest physical address
1083 * space.
1084 *
1085 * Discontiguous memory is allowed, mostly for framebuffers.
1086 *
1087 * Must be called holding mmap_sem for write.
1088 */
1089 int __kvm_set_memory_region(struct kvm *kvm,
1090 struct kvm_userspace_memory_region *mem,
1091 int user_alloc)
1092 {
1093 int r;
1094 gfn_t base_gfn;
1095 unsigned long npages, ugfn;
1096 unsigned long largepages, i;
1097 struct kvm_memory_slot *memslot;
1098 struct kvm_memory_slot old, new;
1099
1100 r = -EINVAL;
1101 /* General sanity checks */
1102 if (mem->memory_size & (PAGE_SIZE - 1))
1103 goto out;
1104 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1105 goto out;
1106 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1107 goto out;
1108 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1109 goto out;
1110 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1111 goto out;
1112
1113 memslot = &kvm->memslots[mem->slot];
1114 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1115 npages = mem->memory_size >> PAGE_SHIFT;
1116
1117 if (!npages)
1118 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1119
1120 new = old = *memslot;
1121
1122 new.base_gfn = base_gfn;
1123 new.npages = npages;
1124 new.flags = mem->flags;
1125
1126 /* Disallow changing a memory slot's size. */
1127 r = -EINVAL;
1128 if (npages && old.npages && npages != old.npages)
1129 goto out_free;
1130
1131 /* Check for overlaps */
1132 r = -EEXIST;
1133 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1134 struct kvm_memory_slot *s = &kvm->memslots[i];
1135
1136 if (s == memslot || !s->npages)
1137 continue;
1138 if (!((base_gfn + npages <= s->base_gfn) ||
1139 (base_gfn >= s->base_gfn + s->npages)))
1140 goto out_free;
1141 }
1142
1143 /* Free page dirty bitmap if unneeded */
1144 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1145 new.dirty_bitmap = NULL;
1146
1147 r = -ENOMEM;
1148
1149 /* Allocate if a slot is being created */
1150 #ifndef CONFIG_S390
1151 if (npages && !new.rmap) {
1152 new.rmap = vmalloc(npages * sizeof(struct page *));
1153
1154 if (!new.rmap)
1155 goto out_free;
1156
1157 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1158
1159 new.user_alloc = user_alloc;
1160 /*
1161 * hva_to_rmmap() serialzies with the mmu_lock and to be
1162 * safe it has to ignore memslots with !user_alloc &&
1163 * !userspace_addr.
1164 */
1165 if (user_alloc)
1166 new.userspace_addr = mem->userspace_addr;
1167 else
1168 new.userspace_addr = 0;
1169 }
1170 if (npages && !new.lpage_info) {
1171 largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
1172 largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
1173
1174 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1175
1176 if (!new.lpage_info)
1177 goto out_free;
1178
1179 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1180
1181 if (base_gfn % KVM_PAGES_PER_HPAGE)
1182 new.lpage_info[0].write_count = 1;
1183 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1184 new.lpage_info[largepages-1].write_count = 1;
1185 ugfn = new.userspace_addr >> PAGE_SHIFT;
1186 /*
1187 * If the gfn and userspace address are not aligned wrt each
1188 * other, disable large page support for this slot
1189 */
1190 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1))
1191 for (i = 0; i < largepages; ++i)
1192 new.lpage_info[i].write_count = 1;
1193 }
1194
1195 /* Allocate page dirty bitmap if needed */
1196 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1197 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1198
1199 new.dirty_bitmap = vmalloc(dirty_bytes);
1200 if (!new.dirty_bitmap)
1201 goto out_free;
1202 memset(new.dirty_bitmap, 0, dirty_bytes);
1203 if (old.npages)
1204 kvm_arch_flush_shadow(kvm);
1205 }
1206 #endif /* not defined CONFIG_S390 */
1207
1208 if (!npages)
1209 kvm_arch_flush_shadow(kvm);
1210
1211 spin_lock(&kvm->mmu_lock);
1212 if (mem->slot >= kvm->nmemslots)
1213 kvm->nmemslots = mem->slot + 1;
1214
1215 *memslot = new;
1216 spin_unlock(&kvm->mmu_lock);
1217
1218 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1219 if (r) {
1220 spin_lock(&kvm->mmu_lock);
1221 *memslot = old;
1222 spin_unlock(&kvm->mmu_lock);
1223 goto out_free;
1224 }
1225
1226 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1227 /* Slot deletion case: we have to update the current slot */
1228 spin_lock(&kvm->mmu_lock);
1229 if (!npages)
1230 *memslot = old;
1231 spin_unlock(&kvm->mmu_lock);
1232 #ifdef CONFIG_DMAR
1233 /* map the pages in iommu page table */
1234 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1235 if (r)
1236 goto out;
1237 #endif
1238 return 0;
1239
1240 out_free:
1241 kvm_free_physmem_slot(&new, &old);
1242 out:
1243 return r;
1244
1245 }
1246 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1247
1248 int kvm_set_memory_region(struct kvm *kvm,
1249 struct kvm_userspace_memory_region *mem,
1250 int user_alloc)
1251 {
1252 int r;
1253
1254 down_write(&kvm->slots_lock);
1255 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1256 up_write(&kvm->slots_lock);
1257 return r;
1258 }
1259 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1260
1261 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1262 struct
1263 kvm_userspace_memory_region *mem,
1264 int user_alloc)
1265 {
1266 if (mem->slot >= KVM_MEMORY_SLOTS)
1267 return -EINVAL;
1268 return kvm_set_memory_region(kvm, mem, user_alloc);
1269 }
1270
1271 int kvm_get_dirty_log(struct kvm *kvm,
1272 struct kvm_dirty_log *log, int *is_dirty)
1273 {
1274 struct kvm_memory_slot *memslot;
1275 int r, i;
1276 int n;
1277 unsigned long any = 0;
1278
1279 r = -EINVAL;
1280 if (log->slot >= KVM_MEMORY_SLOTS)
1281 goto out;
1282
1283 memslot = &kvm->memslots[log->slot];
1284 r = -ENOENT;
1285 if (!memslot->dirty_bitmap)
1286 goto out;
1287
1288 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1289
1290 for (i = 0; !any && i < n/sizeof(long); ++i)
1291 any = memslot->dirty_bitmap[i];
1292
1293 r = -EFAULT;
1294 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1295 goto out;
1296
1297 if (any)
1298 *is_dirty = 1;
1299
1300 r = 0;
1301 out:
1302 return r;
1303 }
1304
1305 int is_error_page(struct page *page)
1306 {
1307 return page == bad_page;
1308 }
1309 EXPORT_SYMBOL_GPL(is_error_page);
1310
1311 int is_error_pfn(pfn_t pfn)
1312 {
1313 return pfn == bad_pfn;
1314 }
1315 EXPORT_SYMBOL_GPL(is_error_pfn);
1316
1317 static inline unsigned long bad_hva(void)
1318 {
1319 return PAGE_OFFSET;
1320 }
1321
1322 int kvm_is_error_hva(unsigned long addr)
1323 {
1324 return addr == bad_hva();
1325 }
1326 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1327
1328 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1329 {
1330 int i;
1331
1332 for (i = 0; i < kvm->nmemslots; ++i) {
1333 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1334
1335 if (gfn >= memslot->base_gfn
1336 && gfn < memslot->base_gfn + memslot->npages)
1337 return memslot;
1338 }
1339 return NULL;
1340 }
1341 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1342
1343 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1344 {
1345 gfn = unalias_gfn(kvm, gfn);
1346 return gfn_to_memslot_unaliased(kvm, gfn);
1347 }
1348
1349 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1350 {
1351 int i;
1352
1353 gfn = unalias_gfn(kvm, gfn);
1354 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1355 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1356
1357 if (gfn >= memslot->base_gfn
1358 && gfn < memslot->base_gfn + memslot->npages)
1359 return 1;
1360 }
1361 return 0;
1362 }
1363 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1364
1365 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1366 {
1367 struct kvm_memory_slot *slot;
1368
1369 gfn = unalias_gfn(kvm, gfn);
1370 slot = gfn_to_memslot_unaliased(kvm, gfn);
1371 if (!slot)
1372 return bad_hva();
1373 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1374 }
1375 EXPORT_SYMBOL_GPL(gfn_to_hva);
1376
1377 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1378 {
1379 struct page *page[1];
1380 unsigned long addr;
1381 int npages;
1382 pfn_t pfn;
1383
1384 might_sleep();
1385
1386 addr = gfn_to_hva(kvm, gfn);
1387 if (kvm_is_error_hva(addr)) {
1388 get_page(bad_page);
1389 return page_to_pfn(bad_page);
1390 }
1391
1392 npages = get_user_pages_fast(addr, 1, 1, page);
1393
1394 if (unlikely(npages != 1)) {
1395 struct vm_area_struct *vma;
1396
1397 down_read(&current->mm->mmap_sem);
1398 vma = find_vma(current->mm, addr);
1399
1400 if (vma == NULL || addr < vma->vm_start ||
1401 !(vma->vm_flags & VM_PFNMAP)) {
1402 up_read(&current->mm->mmap_sem);
1403 get_page(bad_page);
1404 return page_to_pfn(bad_page);
1405 }
1406
1407 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1408 up_read(&current->mm->mmap_sem);
1409 BUG_ON(!kvm_is_mmio_pfn(pfn));
1410 } else
1411 pfn = page_to_pfn(page[0]);
1412
1413 return pfn;
1414 }
1415
1416 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1417
1418 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1419 {
1420 pfn_t pfn;
1421
1422 pfn = gfn_to_pfn(kvm, gfn);
1423 if (!kvm_is_mmio_pfn(pfn))
1424 return pfn_to_page(pfn);
1425
1426 WARN_ON(kvm_is_mmio_pfn(pfn));
1427
1428 get_page(bad_page);
1429 return bad_page;
1430 }
1431
1432 EXPORT_SYMBOL_GPL(gfn_to_page);
1433
1434 void kvm_release_page_clean(struct page *page)
1435 {
1436 kvm_release_pfn_clean(page_to_pfn(page));
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1439
1440 void kvm_release_pfn_clean(pfn_t pfn)
1441 {
1442 if (!kvm_is_mmio_pfn(pfn))
1443 put_page(pfn_to_page(pfn));
1444 }
1445 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1446
1447 void kvm_release_page_dirty(struct page *page)
1448 {
1449 kvm_release_pfn_dirty(page_to_pfn(page));
1450 }
1451 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1452
1453 void kvm_release_pfn_dirty(pfn_t pfn)
1454 {
1455 kvm_set_pfn_dirty(pfn);
1456 kvm_release_pfn_clean(pfn);
1457 }
1458 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1459
1460 void kvm_set_page_dirty(struct page *page)
1461 {
1462 kvm_set_pfn_dirty(page_to_pfn(page));
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1465
1466 void kvm_set_pfn_dirty(pfn_t pfn)
1467 {
1468 if (!kvm_is_mmio_pfn(pfn)) {
1469 struct page *page = pfn_to_page(pfn);
1470 if (!PageReserved(page))
1471 SetPageDirty(page);
1472 }
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1475
1476 void kvm_set_pfn_accessed(pfn_t pfn)
1477 {
1478 if (!kvm_is_mmio_pfn(pfn))
1479 mark_page_accessed(pfn_to_page(pfn));
1480 }
1481 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1482
1483 void kvm_get_pfn(pfn_t pfn)
1484 {
1485 if (!kvm_is_mmio_pfn(pfn))
1486 get_page(pfn_to_page(pfn));
1487 }
1488 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1489
1490 static int next_segment(unsigned long len, int offset)
1491 {
1492 if (len > PAGE_SIZE - offset)
1493 return PAGE_SIZE - offset;
1494 else
1495 return len;
1496 }
1497
1498 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1499 int len)
1500 {
1501 int r;
1502 unsigned long addr;
1503
1504 addr = gfn_to_hva(kvm, gfn);
1505 if (kvm_is_error_hva(addr))
1506 return -EFAULT;
1507 r = copy_from_user(data, (void __user *)addr + offset, len);
1508 if (r)
1509 return -EFAULT;
1510 return 0;
1511 }
1512 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1513
1514 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1515 {
1516 gfn_t gfn = gpa >> PAGE_SHIFT;
1517 int seg;
1518 int offset = offset_in_page(gpa);
1519 int ret;
1520
1521 while ((seg = next_segment(len, offset)) != 0) {
1522 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1523 if (ret < 0)
1524 return ret;
1525 offset = 0;
1526 len -= seg;
1527 data += seg;
1528 ++gfn;
1529 }
1530 return 0;
1531 }
1532 EXPORT_SYMBOL_GPL(kvm_read_guest);
1533
1534 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1535 unsigned long len)
1536 {
1537 int r;
1538 unsigned long addr;
1539 gfn_t gfn = gpa >> PAGE_SHIFT;
1540 int offset = offset_in_page(gpa);
1541
1542 addr = gfn_to_hva(kvm, gfn);
1543 if (kvm_is_error_hva(addr))
1544 return -EFAULT;
1545 pagefault_disable();
1546 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1547 pagefault_enable();
1548 if (r)
1549 return -EFAULT;
1550 return 0;
1551 }
1552 EXPORT_SYMBOL(kvm_read_guest_atomic);
1553
1554 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1555 int offset, int len)
1556 {
1557 int r;
1558 unsigned long addr;
1559
1560 addr = gfn_to_hva(kvm, gfn);
1561 if (kvm_is_error_hva(addr))
1562 return -EFAULT;
1563 r = copy_to_user((void __user *)addr + offset, data, len);
1564 if (r)
1565 return -EFAULT;
1566 mark_page_dirty(kvm, gfn);
1567 return 0;
1568 }
1569 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1570
1571 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1572 unsigned long len)
1573 {
1574 gfn_t gfn = gpa >> PAGE_SHIFT;
1575 int seg;
1576 int offset = offset_in_page(gpa);
1577 int ret;
1578
1579 while ((seg = next_segment(len, offset)) != 0) {
1580 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1581 if (ret < 0)
1582 return ret;
1583 offset = 0;
1584 len -= seg;
1585 data += seg;
1586 ++gfn;
1587 }
1588 return 0;
1589 }
1590
1591 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1592 {
1593 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1594 }
1595 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1596
1597 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1598 {
1599 gfn_t gfn = gpa >> PAGE_SHIFT;
1600 int seg;
1601 int offset = offset_in_page(gpa);
1602 int ret;
1603
1604 while ((seg = next_segment(len, offset)) != 0) {
1605 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1606 if (ret < 0)
1607 return ret;
1608 offset = 0;
1609 len -= seg;
1610 ++gfn;
1611 }
1612 return 0;
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1615
1616 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1617 {
1618 struct kvm_memory_slot *memslot;
1619
1620 gfn = unalias_gfn(kvm, gfn);
1621 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1622 if (memslot && memslot->dirty_bitmap) {
1623 unsigned long rel_gfn = gfn - memslot->base_gfn;
1624
1625 /* avoid RMW */
1626 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1627 set_bit(rel_gfn, memslot->dirty_bitmap);
1628 }
1629 }
1630
1631 /*
1632 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1633 */
1634 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1635 {
1636 DEFINE_WAIT(wait);
1637
1638 for (;;) {
1639 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1640
1641 if ((kvm_arch_interrupt_allowed(vcpu) &&
1642 kvm_cpu_has_interrupt(vcpu)) ||
1643 kvm_arch_vcpu_runnable(vcpu)) {
1644 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1645 break;
1646 }
1647 if (kvm_cpu_has_pending_timer(vcpu))
1648 break;
1649 if (signal_pending(current))
1650 break;
1651
1652 vcpu_put(vcpu);
1653 schedule();
1654 vcpu_load(vcpu);
1655 }
1656
1657 finish_wait(&vcpu->wq, &wait);
1658 }
1659
1660 void kvm_resched(struct kvm_vcpu *vcpu)
1661 {
1662 if (!need_resched())
1663 return;
1664 cond_resched();
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_resched);
1667
1668 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1669 {
1670 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1671 struct page *page;
1672
1673 if (vmf->pgoff == 0)
1674 page = virt_to_page(vcpu->run);
1675 #ifdef CONFIG_X86
1676 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1677 page = virt_to_page(vcpu->arch.pio_data);
1678 #endif
1679 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1680 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1681 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1682 #endif
1683 else
1684 return VM_FAULT_SIGBUS;
1685 get_page(page);
1686 vmf->page = page;
1687 return 0;
1688 }
1689
1690 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1691 .fault = kvm_vcpu_fault,
1692 };
1693
1694 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1695 {
1696 vma->vm_ops = &kvm_vcpu_vm_ops;
1697 return 0;
1698 }
1699
1700 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1701 {
1702 struct kvm_vcpu *vcpu = filp->private_data;
1703
1704 kvm_put_kvm(vcpu->kvm);
1705 return 0;
1706 }
1707
1708 static struct file_operations kvm_vcpu_fops = {
1709 .release = kvm_vcpu_release,
1710 .unlocked_ioctl = kvm_vcpu_ioctl,
1711 .compat_ioctl = kvm_vcpu_ioctl,
1712 .mmap = kvm_vcpu_mmap,
1713 };
1714
1715 /*
1716 * Allocates an inode for the vcpu.
1717 */
1718 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1719 {
1720 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1721 if (fd < 0)
1722 kvm_put_kvm(vcpu->kvm);
1723 return fd;
1724 }
1725
1726 /*
1727 * Creates some virtual cpus. Good luck creating more than one.
1728 */
1729 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1730 {
1731 int r;
1732 struct kvm_vcpu *vcpu;
1733
1734 if (!valid_vcpu(n))
1735 return -EINVAL;
1736
1737 vcpu = kvm_arch_vcpu_create(kvm, n);
1738 if (IS_ERR(vcpu))
1739 return PTR_ERR(vcpu);
1740
1741 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1742
1743 r = kvm_arch_vcpu_setup(vcpu);
1744 if (r)
1745 return r;
1746
1747 mutex_lock(&kvm->lock);
1748 if (kvm->vcpus[n]) {
1749 r = -EEXIST;
1750 goto vcpu_destroy;
1751 }
1752 kvm->vcpus[n] = vcpu;
1753 mutex_unlock(&kvm->lock);
1754
1755 /* Now it's all set up, let userspace reach it */
1756 kvm_get_kvm(kvm);
1757 r = create_vcpu_fd(vcpu);
1758 if (r < 0)
1759 goto unlink;
1760 return r;
1761
1762 unlink:
1763 mutex_lock(&kvm->lock);
1764 kvm->vcpus[n] = NULL;
1765 vcpu_destroy:
1766 mutex_unlock(&kvm->lock);
1767 kvm_arch_vcpu_destroy(vcpu);
1768 return r;
1769 }
1770
1771 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1772 {
1773 if (sigset) {
1774 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1775 vcpu->sigset_active = 1;
1776 vcpu->sigset = *sigset;
1777 } else
1778 vcpu->sigset_active = 0;
1779 return 0;
1780 }
1781
1782 #ifdef __KVM_HAVE_MSIX
1783 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1784 struct kvm_assigned_msix_nr *entry_nr)
1785 {
1786 int r = 0;
1787 struct kvm_assigned_dev_kernel *adev;
1788
1789 mutex_lock(&kvm->lock);
1790
1791 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1792 entry_nr->assigned_dev_id);
1793 if (!adev) {
1794 r = -EINVAL;
1795 goto msix_nr_out;
1796 }
1797
1798 if (adev->entries_nr == 0) {
1799 adev->entries_nr = entry_nr->entry_nr;
1800 if (adev->entries_nr == 0 ||
1801 adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1802 r = -EINVAL;
1803 goto msix_nr_out;
1804 }
1805
1806 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1807 entry_nr->entry_nr,
1808 GFP_KERNEL);
1809 if (!adev->host_msix_entries) {
1810 r = -ENOMEM;
1811 goto msix_nr_out;
1812 }
1813 adev->guest_msix_entries = kzalloc(
1814 sizeof(struct kvm_guest_msix_entry) *
1815 entry_nr->entry_nr, GFP_KERNEL);
1816 if (!adev->guest_msix_entries) {
1817 kfree(adev->host_msix_entries);
1818 r = -ENOMEM;
1819 goto msix_nr_out;
1820 }
1821 } else /* Not allowed set MSI-X number twice */
1822 r = -EINVAL;
1823 msix_nr_out:
1824 mutex_unlock(&kvm->lock);
1825 return r;
1826 }
1827
1828 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1829 struct kvm_assigned_msix_entry *entry)
1830 {
1831 int r = 0, i;
1832 struct kvm_assigned_dev_kernel *adev;
1833
1834 mutex_lock(&kvm->lock);
1835
1836 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1837 entry->assigned_dev_id);
1838
1839 if (!adev) {
1840 r = -EINVAL;
1841 goto msix_entry_out;
1842 }
1843
1844 for (i = 0; i < adev->entries_nr; i++)
1845 if (adev->guest_msix_entries[i].vector == 0 ||
1846 adev->guest_msix_entries[i].entry == entry->entry) {
1847 adev->guest_msix_entries[i].entry = entry->entry;
1848 adev->guest_msix_entries[i].vector = entry->gsi;
1849 adev->host_msix_entries[i].entry = entry->entry;
1850 break;
1851 }
1852 if (i == adev->entries_nr) {
1853 r = -ENOSPC;
1854 goto msix_entry_out;
1855 }
1856
1857 msix_entry_out:
1858 mutex_unlock(&kvm->lock);
1859
1860 return r;
1861 }
1862 #endif
1863
1864 static long kvm_vcpu_ioctl(struct file *filp,
1865 unsigned int ioctl, unsigned long arg)
1866 {
1867 struct kvm_vcpu *vcpu = filp->private_data;
1868 void __user *argp = (void __user *)arg;
1869 int r;
1870 struct kvm_fpu *fpu = NULL;
1871 struct kvm_sregs *kvm_sregs = NULL;
1872
1873 if (vcpu->kvm->mm != current->mm)
1874 return -EIO;
1875 switch (ioctl) {
1876 case KVM_RUN:
1877 r = -EINVAL;
1878 if (arg)
1879 goto out;
1880 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1881 break;
1882 case KVM_GET_REGS: {
1883 struct kvm_regs *kvm_regs;
1884
1885 r = -ENOMEM;
1886 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1887 if (!kvm_regs)
1888 goto out;
1889 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1890 if (r)
1891 goto out_free1;
1892 r = -EFAULT;
1893 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1894 goto out_free1;
1895 r = 0;
1896 out_free1:
1897 kfree(kvm_regs);
1898 break;
1899 }
1900 case KVM_SET_REGS: {
1901 struct kvm_regs *kvm_regs;
1902
1903 r = -ENOMEM;
1904 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1905 if (!kvm_regs)
1906 goto out;
1907 r = -EFAULT;
1908 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1909 goto out_free2;
1910 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1911 if (r)
1912 goto out_free2;
1913 r = 0;
1914 out_free2:
1915 kfree(kvm_regs);
1916 break;
1917 }
1918 case KVM_GET_SREGS: {
1919 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1920 r = -ENOMEM;
1921 if (!kvm_sregs)
1922 goto out;
1923 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1924 if (r)
1925 goto out;
1926 r = -EFAULT;
1927 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1928 goto out;
1929 r = 0;
1930 break;
1931 }
1932 case KVM_SET_SREGS: {
1933 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1934 r = -ENOMEM;
1935 if (!kvm_sregs)
1936 goto out;
1937 r = -EFAULT;
1938 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1939 goto out;
1940 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1941 if (r)
1942 goto out;
1943 r = 0;
1944 break;
1945 }
1946 case KVM_GET_MP_STATE: {
1947 struct kvm_mp_state mp_state;
1948
1949 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1950 if (r)
1951 goto out;
1952 r = -EFAULT;
1953 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1954 goto out;
1955 r = 0;
1956 break;
1957 }
1958 case KVM_SET_MP_STATE: {
1959 struct kvm_mp_state mp_state;
1960
1961 r = -EFAULT;
1962 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1963 goto out;
1964 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1965 if (r)
1966 goto out;
1967 r = 0;
1968 break;
1969 }
1970 case KVM_TRANSLATE: {
1971 struct kvm_translation tr;
1972
1973 r = -EFAULT;
1974 if (copy_from_user(&tr, argp, sizeof tr))
1975 goto out;
1976 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1977 if (r)
1978 goto out;
1979 r = -EFAULT;
1980 if (copy_to_user(argp, &tr, sizeof tr))
1981 goto out;
1982 r = 0;
1983 break;
1984 }
1985 case KVM_SET_GUEST_DEBUG: {
1986 struct kvm_guest_debug dbg;
1987
1988 r = -EFAULT;
1989 if (copy_from_user(&dbg, argp, sizeof dbg))
1990 goto out;
1991 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1992 if (r)
1993 goto out;
1994 r = 0;
1995 break;
1996 }
1997 case KVM_SET_SIGNAL_MASK: {
1998 struct kvm_signal_mask __user *sigmask_arg = argp;
1999 struct kvm_signal_mask kvm_sigmask;
2000 sigset_t sigset, *p;
2001
2002 p = NULL;
2003 if (argp) {
2004 r = -EFAULT;
2005 if (copy_from_user(&kvm_sigmask, argp,
2006 sizeof kvm_sigmask))
2007 goto out;
2008 r = -EINVAL;
2009 if (kvm_sigmask.len != sizeof sigset)
2010 goto out;
2011 r = -EFAULT;
2012 if (copy_from_user(&sigset, sigmask_arg->sigset,
2013 sizeof sigset))
2014 goto out;
2015 p = &sigset;
2016 }
2017 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2018 break;
2019 }
2020 case KVM_GET_FPU: {
2021 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2022 r = -ENOMEM;
2023 if (!fpu)
2024 goto out;
2025 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2026 if (r)
2027 goto out;
2028 r = -EFAULT;
2029 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2030 goto out;
2031 r = 0;
2032 break;
2033 }
2034 case KVM_SET_FPU: {
2035 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2036 r = -ENOMEM;
2037 if (!fpu)
2038 goto out;
2039 r = -EFAULT;
2040 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2041 goto out;
2042 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2043 if (r)
2044 goto out;
2045 r = 0;
2046 break;
2047 }
2048 default:
2049 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2050 }
2051 out:
2052 kfree(fpu);
2053 kfree(kvm_sregs);
2054 return r;
2055 }
2056
2057 static long kvm_vm_ioctl(struct file *filp,
2058 unsigned int ioctl, unsigned long arg)
2059 {
2060 struct kvm *kvm = filp->private_data;
2061 void __user *argp = (void __user *)arg;
2062 int r;
2063
2064 if (kvm->mm != current->mm)
2065 return -EIO;
2066 switch (ioctl) {
2067 case KVM_CREATE_VCPU:
2068 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2069 if (r < 0)
2070 goto out;
2071 break;
2072 case KVM_SET_USER_MEMORY_REGION: {
2073 struct kvm_userspace_memory_region kvm_userspace_mem;
2074
2075 r = -EFAULT;
2076 if (copy_from_user(&kvm_userspace_mem, argp,
2077 sizeof kvm_userspace_mem))
2078 goto out;
2079
2080 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2081 if (r)
2082 goto out;
2083 break;
2084 }
2085 case KVM_GET_DIRTY_LOG: {
2086 struct kvm_dirty_log log;
2087
2088 r = -EFAULT;
2089 if (copy_from_user(&log, argp, sizeof log))
2090 goto out;
2091 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2092 if (r)
2093 goto out;
2094 break;
2095 }
2096 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2097 case KVM_REGISTER_COALESCED_MMIO: {
2098 struct kvm_coalesced_mmio_zone zone;
2099 r = -EFAULT;
2100 if (copy_from_user(&zone, argp, sizeof zone))
2101 goto out;
2102 r = -ENXIO;
2103 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2104 if (r)
2105 goto out;
2106 r = 0;
2107 break;
2108 }
2109 case KVM_UNREGISTER_COALESCED_MMIO: {
2110 struct kvm_coalesced_mmio_zone zone;
2111 r = -EFAULT;
2112 if (copy_from_user(&zone, argp, sizeof zone))
2113 goto out;
2114 r = -ENXIO;
2115 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2116 if (r)
2117 goto out;
2118 r = 0;
2119 break;
2120 }
2121 #endif
2122 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2123 case KVM_ASSIGN_PCI_DEVICE: {
2124 struct kvm_assigned_pci_dev assigned_dev;
2125
2126 r = -EFAULT;
2127 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2128 goto out;
2129 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2130 if (r)
2131 goto out;
2132 break;
2133 }
2134 case KVM_ASSIGN_IRQ: {
2135 r = -EOPNOTSUPP;
2136 break;
2137 }
2138 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2139 case KVM_ASSIGN_DEV_IRQ: {
2140 struct kvm_assigned_irq assigned_irq;
2141
2142 r = -EFAULT;
2143 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2144 goto out;
2145 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2146 if (r)
2147 goto out;
2148 break;
2149 }
2150 case KVM_DEASSIGN_DEV_IRQ: {
2151 struct kvm_assigned_irq assigned_irq;
2152
2153 r = -EFAULT;
2154 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2155 goto out;
2156 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2157 if (r)
2158 goto out;
2159 break;
2160 }
2161 #endif
2162 #endif
2163 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2164 case KVM_DEASSIGN_PCI_DEVICE: {
2165 struct kvm_assigned_pci_dev assigned_dev;
2166
2167 r = -EFAULT;
2168 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2169 goto out;
2170 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2171 if (r)
2172 goto out;
2173 break;
2174 }
2175 #endif
2176 #ifdef KVM_CAP_IRQ_ROUTING
2177 case KVM_SET_GSI_ROUTING: {
2178 struct kvm_irq_routing routing;
2179 struct kvm_irq_routing __user *urouting;
2180 struct kvm_irq_routing_entry *entries;
2181
2182 r = -EFAULT;
2183 if (copy_from_user(&routing, argp, sizeof(routing)))
2184 goto out;
2185 r = -EINVAL;
2186 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2187 goto out;
2188 if (routing.flags)
2189 goto out;
2190 r = -ENOMEM;
2191 entries = vmalloc(routing.nr * sizeof(*entries));
2192 if (!entries)
2193 goto out;
2194 r = -EFAULT;
2195 urouting = argp;
2196 if (copy_from_user(entries, urouting->entries,
2197 routing.nr * sizeof(*entries)))
2198 goto out_free_irq_routing;
2199 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2200 routing.flags);
2201 out_free_irq_routing:
2202 vfree(entries);
2203 break;
2204 }
2205 #ifdef __KVM_HAVE_MSIX
2206 case KVM_ASSIGN_SET_MSIX_NR: {
2207 struct kvm_assigned_msix_nr entry_nr;
2208 r = -EFAULT;
2209 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2210 goto out;
2211 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2212 if (r)
2213 goto out;
2214 break;
2215 }
2216 case KVM_ASSIGN_SET_MSIX_ENTRY: {
2217 struct kvm_assigned_msix_entry entry;
2218 r = -EFAULT;
2219 if (copy_from_user(&entry, argp, sizeof entry))
2220 goto out;
2221 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2222 if (r)
2223 goto out;
2224 break;
2225 }
2226 #endif
2227 #endif /* KVM_CAP_IRQ_ROUTING */
2228 case KVM_IRQFD: {
2229 struct kvm_irqfd data;
2230
2231 r = -EFAULT;
2232 if (copy_from_user(&data, argp, sizeof data))
2233 goto out;
2234 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2235 break;
2236 }
2237 default:
2238 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2239 }
2240 out:
2241 return r;
2242 }
2243
2244 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2245 {
2246 struct page *page[1];
2247 unsigned long addr;
2248 int npages;
2249 gfn_t gfn = vmf->pgoff;
2250 struct kvm *kvm = vma->vm_file->private_data;
2251
2252 addr = gfn_to_hva(kvm, gfn);
2253 if (kvm_is_error_hva(addr))
2254 return VM_FAULT_SIGBUS;
2255
2256 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2257 NULL);
2258 if (unlikely(npages != 1))
2259 return VM_FAULT_SIGBUS;
2260
2261 vmf->page = page[0];
2262 return 0;
2263 }
2264
2265 static struct vm_operations_struct kvm_vm_vm_ops = {
2266 .fault = kvm_vm_fault,
2267 };
2268
2269 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2270 {
2271 vma->vm_ops = &kvm_vm_vm_ops;
2272 return 0;
2273 }
2274
2275 static struct file_operations kvm_vm_fops = {
2276 .release = kvm_vm_release,
2277 .unlocked_ioctl = kvm_vm_ioctl,
2278 .compat_ioctl = kvm_vm_ioctl,
2279 .mmap = kvm_vm_mmap,
2280 };
2281
2282 static int kvm_dev_ioctl_create_vm(void)
2283 {
2284 int fd;
2285 struct kvm *kvm;
2286
2287 kvm = kvm_create_vm();
2288 if (IS_ERR(kvm))
2289 return PTR_ERR(kvm);
2290 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2291 if (fd < 0)
2292 kvm_put_kvm(kvm);
2293
2294 return fd;
2295 }
2296
2297 static long kvm_dev_ioctl_check_extension_generic(long arg)
2298 {
2299 switch (arg) {
2300 case KVM_CAP_USER_MEMORY:
2301 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2302 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2303 return 1;
2304 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2305 case KVM_CAP_IRQ_ROUTING:
2306 return KVM_MAX_IRQ_ROUTES;
2307 #endif
2308 default:
2309 break;
2310 }
2311 return kvm_dev_ioctl_check_extension(arg);
2312 }
2313
2314 static long kvm_dev_ioctl(struct file *filp,
2315 unsigned int ioctl, unsigned long arg)
2316 {
2317 long r = -EINVAL;
2318
2319 switch (ioctl) {
2320 case KVM_GET_API_VERSION:
2321 r = -EINVAL;
2322 if (arg)
2323 goto out;
2324 r = KVM_API_VERSION;
2325 break;
2326 case KVM_CREATE_VM:
2327 r = -EINVAL;
2328 if (arg)
2329 goto out;
2330 r = kvm_dev_ioctl_create_vm();
2331 break;
2332 case KVM_CHECK_EXTENSION:
2333 r = kvm_dev_ioctl_check_extension_generic(arg);
2334 break;
2335 case KVM_GET_VCPU_MMAP_SIZE:
2336 r = -EINVAL;
2337 if (arg)
2338 goto out;
2339 r = PAGE_SIZE; /* struct kvm_run */
2340 #ifdef CONFIG_X86
2341 r += PAGE_SIZE; /* pio data page */
2342 #endif
2343 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2344 r += PAGE_SIZE; /* coalesced mmio ring page */
2345 #endif
2346 break;
2347 case KVM_TRACE_ENABLE:
2348 case KVM_TRACE_PAUSE:
2349 case KVM_TRACE_DISABLE:
2350 r = kvm_trace_ioctl(ioctl, arg);
2351 break;
2352 default:
2353 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2354 }
2355 out:
2356 return r;
2357 }
2358
2359 static struct file_operations kvm_chardev_ops = {
2360 .unlocked_ioctl = kvm_dev_ioctl,
2361 .compat_ioctl = kvm_dev_ioctl,
2362 };
2363
2364 static struct miscdevice kvm_dev = {
2365 KVM_MINOR,
2366 "kvm",
2367 &kvm_chardev_ops,
2368 };
2369
2370 static void hardware_enable(void *junk)
2371 {
2372 int cpu = raw_smp_processor_id();
2373
2374 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2375 return;
2376 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2377 kvm_arch_hardware_enable(NULL);
2378 }
2379
2380 static void hardware_disable(void *junk)
2381 {
2382 int cpu = raw_smp_processor_id();
2383
2384 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2385 return;
2386 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2387 kvm_arch_hardware_disable(NULL);
2388 }
2389
2390 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2391 void *v)
2392 {
2393 int cpu = (long)v;
2394
2395 val &= ~CPU_TASKS_FROZEN;
2396 switch (val) {
2397 case CPU_DYING:
2398 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2399 cpu);
2400 hardware_disable(NULL);
2401 break;
2402 case CPU_UP_CANCELED:
2403 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2404 cpu);
2405 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2406 break;
2407 case CPU_ONLINE:
2408 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2409 cpu);
2410 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2411 break;
2412 }
2413 return NOTIFY_OK;
2414 }
2415
2416
2417 asmlinkage void kvm_handle_fault_on_reboot(void)
2418 {
2419 if (kvm_rebooting)
2420 /* spin while reset goes on */
2421 while (true)
2422 ;
2423 /* Fault while not rebooting. We want the trace. */
2424 BUG();
2425 }
2426 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2427
2428 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2429 void *v)
2430 {
2431 /*
2432 * Some (well, at least mine) BIOSes hang on reboot if
2433 * in vmx root mode.
2434 *
2435 * And Intel TXT required VMX off for all cpu when system shutdown.
2436 */
2437 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2438 kvm_rebooting = true;
2439 on_each_cpu(hardware_disable, NULL, 1);
2440 return NOTIFY_OK;
2441 }
2442
2443 static struct notifier_block kvm_reboot_notifier = {
2444 .notifier_call = kvm_reboot,
2445 .priority = 0,
2446 };
2447
2448 void kvm_io_bus_init(struct kvm_io_bus *bus)
2449 {
2450 memset(bus, 0, sizeof(*bus));
2451 }
2452
2453 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2454 {
2455 int i;
2456
2457 for (i = 0; i < bus->dev_count; i++) {
2458 struct kvm_io_device *pos = bus->devs[i];
2459
2460 kvm_iodevice_destructor(pos);
2461 }
2462 }
2463
2464 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2465 gpa_t addr, int len, int is_write)
2466 {
2467 int i;
2468
2469 for (i = 0; i < bus->dev_count; i++) {
2470 struct kvm_io_device *pos = bus->devs[i];
2471
2472 if (pos->in_range(pos, addr, len, is_write))
2473 return pos;
2474 }
2475
2476 return NULL;
2477 }
2478
2479 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2480 {
2481 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2482
2483 bus->devs[bus->dev_count++] = dev;
2484 }
2485
2486 static struct notifier_block kvm_cpu_notifier = {
2487 .notifier_call = kvm_cpu_hotplug,
2488 .priority = 20, /* must be > scheduler priority */
2489 };
2490
2491 static int vm_stat_get(void *_offset, u64 *val)
2492 {
2493 unsigned offset = (long)_offset;
2494 struct kvm *kvm;
2495
2496 *val = 0;
2497 spin_lock(&kvm_lock);
2498 list_for_each_entry(kvm, &vm_list, vm_list)
2499 *val += *(u32 *)((void *)kvm + offset);
2500 spin_unlock(&kvm_lock);
2501 return 0;
2502 }
2503
2504 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2505
2506 static int vcpu_stat_get(void *_offset, u64 *val)
2507 {
2508 unsigned offset = (long)_offset;
2509 struct kvm *kvm;
2510 struct kvm_vcpu *vcpu;
2511 int i;
2512
2513 *val = 0;
2514 spin_lock(&kvm_lock);
2515 list_for_each_entry(kvm, &vm_list, vm_list)
2516 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2517 vcpu = kvm->vcpus[i];
2518 if (vcpu)
2519 *val += *(u32 *)((void *)vcpu + offset);
2520 }
2521 spin_unlock(&kvm_lock);
2522 return 0;
2523 }
2524
2525 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2526
2527 static struct file_operations *stat_fops[] = {
2528 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2529 [KVM_STAT_VM] = &vm_stat_fops,
2530 };
2531
2532 static void kvm_init_debug(void)
2533 {
2534 struct kvm_stats_debugfs_item *p;
2535
2536 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2537 for (p = debugfs_entries; p->name; ++p)
2538 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2539 (void *)(long)p->offset,
2540 stat_fops[p->kind]);
2541 }
2542
2543 static void kvm_exit_debug(void)
2544 {
2545 struct kvm_stats_debugfs_item *p;
2546
2547 for (p = debugfs_entries; p->name; ++p)
2548 debugfs_remove(p->dentry);
2549 debugfs_remove(kvm_debugfs_dir);
2550 }
2551
2552 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2553 {
2554 hardware_disable(NULL);
2555 return 0;
2556 }
2557
2558 static int kvm_resume(struct sys_device *dev)
2559 {
2560 hardware_enable(NULL);
2561 return 0;
2562 }
2563
2564 static struct sysdev_class kvm_sysdev_class = {
2565 .name = "kvm",
2566 .suspend = kvm_suspend,
2567 .resume = kvm_resume,
2568 };
2569
2570 static struct sys_device kvm_sysdev = {
2571 .id = 0,
2572 .cls = &kvm_sysdev_class,
2573 };
2574
2575 struct page *bad_page;
2576 pfn_t bad_pfn;
2577
2578 static inline
2579 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2580 {
2581 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2582 }
2583
2584 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2585 {
2586 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2587
2588 kvm_arch_vcpu_load(vcpu, cpu);
2589 }
2590
2591 static void kvm_sched_out(struct preempt_notifier *pn,
2592 struct task_struct *next)
2593 {
2594 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2595
2596 kvm_arch_vcpu_put(vcpu);
2597 }
2598
2599 int kvm_init(void *opaque, unsigned int vcpu_size,
2600 struct module *module)
2601 {
2602 int r;
2603 int cpu;
2604
2605 kvm_init_debug();
2606
2607 r = kvm_arch_init(opaque);
2608 if (r)
2609 goto out_fail;
2610
2611 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2612
2613 if (bad_page == NULL) {
2614 r = -ENOMEM;
2615 goto out;
2616 }
2617
2618 bad_pfn = page_to_pfn(bad_page);
2619
2620 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2621 r = -ENOMEM;
2622 goto out_free_0;
2623 }
2624
2625 r = kvm_arch_hardware_setup();
2626 if (r < 0)
2627 goto out_free_0a;
2628
2629 for_each_online_cpu(cpu) {
2630 smp_call_function_single(cpu,
2631 kvm_arch_check_processor_compat,
2632 &r, 1);
2633 if (r < 0)
2634 goto out_free_1;
2635 }
2636
2637 on_each_cpu(hardware_enable, NULL, 1);
2638 r = register_cpu_notifier(&kvm_cpu_notifier);
2639 if (r)
2640 goto out_free_2;
2641 register_reboot_notifier(&kvm_reboot_notifier);
2642
2643 r = sysdev_class_register(&kvm_sysdev_class);
2644 if (r)
2645 goto out_free_3;
2646
2647 r = sysdev_register(&kvm_sysdev);
2648 if (r)
2649 goto out_free_4;
2650
2651 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2652 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2653 __alignof__(struct kvm_vcpu),
2654 0, NULL);
2655 if (!kvm_vcpu_cache) {
2656 r = -ENOMEM;
2657 goto out_free_5;
2658 }
2659
2660 kvm_chardev_ops.owner = module;
2661 kvm_vm_fops.owner = module;
2662 kvm_vcpu_fops.owner = module;
2663
2664 r = misc_register(&kvm_dev);
2665 if (r) {
2666 printk(KERN_ERR "kvm: misc device register failed\n");
2667 goto out_free;
2668 }
2669
2670 kvm_preempt_ops.sched_in = kvm_sched_in;
2671 kvm_preempt_ops.sched_out = kvm_sched_out;
2672
2673 return 0;
2674
2675 out_free:
2676 kmem_cache_destroy(kvm_vcpu_cache);
2677 out_free_5:
2678 sysdev_unregister(&kvm_sysdev);
2679 out_free_4:
2680 sysdev_class_unregister(&kvm_sysdev_class);
2681 out_free_3:
2682 unregister_reboot_notifier(&kvm_reboot_notifier);
2683 unregister_cpu_notifier(&kvm_cpu_notifier);
2684 out_free_2:
2685 on_each_cpu(hardware_disable, NULL, 1);
2686 out_free_1:
2687 kvm_arch_hardware_unsetup();
2688 out_free_0a:
2689 free_cpumask_var(cpus_hardware_enabled);
2690 out_free_0:
2691 __free_page(bad_page);
2692 out:
2693 kvm_arch_exit();
2694 kvm_exit_debug();
2695 out_fail:
2696 return r;
2697 }
2698 EXPORT_SYMBOL_GPL(kvm_init);
2699
2700 void kvm_exit(void)
2701 {
2702 kvm_trace_cleanup();
2703 misc_deregister(&kvm_dev);
2704 kmem_cache_destroy(kvm_vcpu_cache);
2705 sysdev_unregister(&kvm_sysdev);
2706 sysdev_class_unregister(&kvm_sysdev_class);
2707 unregister_reboot_notifier(&kvm_reboot_notifier);
2708 unregister_cpu_notifier(&kvm_cpu_notifier);
2709 on_each_cpu(hardware_disable, NULL, 1);
2710 kvm_arch_hardware_unsetup();
2711 kvm_arch_exit();
2712 kvm_exit_debug();
2713 free_cpumask_var(cpus_hardware_enabled);
2714 __free_page(bad_page);
2715 }
2716 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.083474 seconds and 6 git commands to generate.