Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /*
70 * Ordering of locks:
71 *
72 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 */
74
75 DEFINE_SPINLOCK(kvm_lock);
76 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
77 LIST_HEAD(vm_list);
78
79 static cpumask_var_t cpus_hardware_enabled;
80 static int kvm_usage_count = 0;
81 static atomic_t hardware_enable_failed;
82
83 struct kmem_cache *kvm_vcpu_cache;
84 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
85
86 static __read_mostly struct preempt_ops kvm_preempt_ops;
87
88 struct dentry *kvm_debugfs_dir;
89
90 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #ifdef CONFIG_COMPAT
93 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
94 unsigned long arg);
95 #endif
96 static int hardware_enable_all(void);
97 static void hardware_disable_all(void);
98
99 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
100
101 static void kvm_release_pfn_dirty(pfn_t pfn);
102 static void mark_page_dirty_in_slot(struct kvm *kvm,
103 struct kvm_memory_slot *memslot, gfn_t gfn);
104
105 __visible bool kvm_rebooting;
106 EXPORT_SYMBOL_GPL(kvm_rebooting);
107
108 static bool largepages_enabled = true;
109
110 bool kvm_is_mmio_pfn(pfn_t pfn)
111 {
112 if (pfn_valid(pfn))
113 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
114
115 return true;
116 }
117
118 /*
119 * Switches to specified vcpu, until a matching vcpu_put()
120 */
121 int vcpu_load(struct kvm_vcpu *vcpu)
122 {
123 int cpu;
124
125 if (mutex_lock_killable(&vcpu->mutex))
126 return -EINTR;
127 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
128 /* The thread running this VCPU changed. */
129 struct pid *oldpid = vcpu->pid;
130 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
131 rcu_assign_pointer(vcpu->pid, newpid);
132 if (oldpid)
133 synchronize_rcu();
134 put_pid(oldpid);
135 }
136 cpu = get_cpu();
137 preempt_notifier_register(&vcpu->preempt_notifier);
138 kvm_arch_vcpu_load(vcpu, cpu);
139 put_cpu();
140 return 0;
141 }
142
143 void vcpu_put(struct kvm_vcpu *vcpu)
144 {
145 preempt_disable();
146 kvm_arch_vcpu_put(vcpu);
147 preempt_notifier_unregister(&vcpu->preempt_notifier);
148 preempt_enable();
149 mutex_unlock(&vcpu->mutex);
150 }
151
152 static void ack_flush(void *_completed)
153 {
154 }
155
156 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
157 {
158 int i, cpu, me;
159 cpumask_var_t cpus;
160 bool called = true;
161 struct kvm_vcpu *vcpu;
162
163 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
164
165 me = get_cpu();
166 kvm_for_each_vcpu(i, vcpu, kvm) {
167 kvm_make_request(req, vcpu);
168 cpu = vcpu->cpu;
169
170 /* Set ->requests bit before we read ->mode */
171 smp_mb();
172
173 if (cpus != NULL && cpu != -1 && cpu != me &&
174 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
175 cpumask_set_cpu(cpu, cpus);
176 }
177 if (unlikely(cpus == NULL))
178 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
179 else if (!cpumask_empty(cpus))
180 smp_call_function_many(cpus, ack_flush, NULL, 1);
181 else
182 called = false;
183 put_cpu();
184 free_cpumask_var(cpus);
185 return called;
186 }
187
188 void kvm_flush_remote_tlbs(struct kvm *kvm)
189 {
190 long dirty_count = kvm->tlbs_dirty;
191
192 smp_mb();
193 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
194 ++kvm->stat.remote_tlb_flush;
195 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
196 }
197 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
198
199 void kvm_reload_remote_mmus(struct kvm *kvm)
200 {
201 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
202 }
203
204 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
205 {
206 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
207 }
208
209 void kvm_make_scan_ioapic_request(struct kvm *kvm)
210 {
211 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
212 }
213
214 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
215 {
216 struct page *page;
217 int r;
218
219 mutex_init(&vcpu->mutex);
220 vcpu->cpu = -1;
221 vcpu->kvm = kvm;
222 vcpu->vcpu_id = id;
223 vcpu->pid = NULL;
224 init_waitqueue_head(&vcpu->wq);
225 kvm_async_pf_vcpu_init(vcpu);
226
227 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
228 if (!page) {
229 r = -ENOMEM;
230 goto fail;
231 }
232 vcpu->run = page_address(page);
233
234 kvm_vcpu_set_in_spin_loop(vcpu, false);
235 kvm_vcpu_set_dy_eligible(vcpu, false);
236 vcpu->preempted = false;
237
238 r = kvm_arch_vcpu_init(vcpu);
239 if (r < 0)
240 goto fail_free_run;
241 return 0;
242
243 fail_free_run:
244 free_page((unsigned long)vcpu->run);
245 fail:
246 return r;
247 }
248 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
249
250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
251 {
252 put_pid(vcpu->pid);
253 kvm_arch_vcpu_uninit(vcpu);
254 free_page((unsigned long)vcpu->run);
255 }
256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
257
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
260 {
261 return container_of(mn, struct kvm, mmu_notifier);
262 }
263
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
265 struct mm_struct *mm,
266 unsigned long address)
267 {
268 struct kvm *kvm = mmu_notifier_to_kvm(mn);
269 int need_tlb_flush, idx;
270
271 /*
272 * When ->invalidate_page runs, the linux pte has been zapped
273 * already but the page is still allocated until
274 * ->invalidate_page returns. So if we increase the sequence
275 * here the kvm page fault will notice if the spte can't be
276 * established because the page is going to be freed. If
277 * instead the kvm page fault establishes the spte before
278 * ->invalidate_page runs, kvm_unmap_hva will release it
279 * before returning.
280 *
281 * The sequence increase only need to be seen at spin_unlock
282 * time, and not at spin_lock time.
283 *
284 * Increasing the sequence after the spin_unlock would be
285 * unsafe because the kvm page fault could then establish the
286 * pte after kvm_unmap_hva returned, without noticing the page
287 * is going to be freed.
288 */
289 idx = srcu_read_lock(&kvm->srcu);
290 spin_lock(&kvm->mmu_lock);
291
292 kvm->mmu_notifier_seq++;
293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 /* we've to flush the tlb before the pages can be freed */
295 if (need_tlb_flush)
296 kvm_flush_remote_tlbs(kvm);
297
298 spin_unlock(&kvm->mmu_lock);
299
300 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
301
302 srcu_read_unlock(&kvm->srcu, idx);
303 }
304
305 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
306 struct mm_struct *mm,
307 unsigned long address,
308 pte_t pte)
309 {
310 struct kvm *kvm = mmu_notifier_to_kvm(mn);
311 int idx;
312
313 idx = srcu_read_lock(&kvm->srcu);
314 spin_lock(&kvm->mmu_lock);
315 kvm->mmu_notifier_seq++;
316 kvm_set_spte_hva(kvm, address, pte);
317 spin_unlock(&kvm->mmu_lock);
318 srcu_read_unlock(&kvm->srcu, idx);
319 }
320
321 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
322 struct mm_struct *mm,
323 unsigned long start,
324 unsigned long end)
325 {
326 struct kvm *kvm = mmu_notifier_to_kvm(mn);
327 int need_tlb_flush = 0, idx;
328
329 idx = srcu_read_lock(&kvm->srcu);
330 spin_lock(&kvm->mmu_lock);
331 /*
332 * The count increase must become visible at unlock time as no
333 * spte can be established without taking the mmu_lock and
334 * count is also read inside the mmu_lock critical section.
335 */
336 kvm->mmu_notifier_count++;
337 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
338 need_tlb_flush |= kvm->tlbs_dirty;
339 /* we've to flush the tlb before the pages can be freed */
340 if (need_tlb_flush)
341 kvm_flush_remote_tlbs(kvm);
342
343 spin_unlock(&kvm->mmu_lock);
344 srcu_read_unlock(&kvm->srcu, idx);
345 }
346
347 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
348 struct mm_struct *mm,
349 unsigned long start,
350 unsigned long end)
351 {
352 struct kvm *kvm = mmu_notifier_to_kvm(mn);
353
354 spin_lock(&kvm->mmu_lock);
355 /*
356 * This sequence increase will notify the kvm page fault that
357 * the page that is going to be mapped in the spte could have
358 * been freed.
359 */
360 kvm->mmu_notifier_seq++;
361 smp_wmb();
362 /*
363 * The above sequence increase must be visible before the
364 * below count decrease, which is ensured by the smp_wmb above
365 * in conjunction with the smp_rmb in mmu_notifier_retry().
366 */
367 kvm->mmu_notifier_count--;
368 spin_unlock(&kvm->mmu_lock);
369
370 BUG_ON(kvm->mmu_notifier_count < 0);
371 }
372
373 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
374 struct mm_struct *mm,
375 unsigned long start,
376 unsigned long end)
377 {
378 struct kvm *kvm = mmu_notifier_to_kvm(mn);
379 int young, idx;
380
381 idx = srcu_read_lock(&kvm->srcu);
382 spin_lock(&kvm->mmu_lock);
383
384 young = kvm_age_hva(kvm, start, end);
385 if (young)
386 kvm_flush_remote_tlbs(kvm);
387
388 spin_unlock(&kvm->mmu_lock);
389 srcu_read_unlock(&kvm->srcu, idx);
390
391 return young;
392 }
393
394 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
395 struct mm_struct *mm,
396 unsigned long address)
397 {
398 struct kvm *kvm = mmu_notifier_to_kvm(mn);
399 int young, idx;
400
401 idx = srcu_read_lock(&kvm->srcu);
402 spin_lock(&kvm->mmu_lock);
403 young = kvm_test_age_hva(kvm, address);
404 spin_unlock(&kvm->mmu_lock);
405 srcu_read_unlock(&kvm->srcu, idx);
406
407 return young;
408 }
409
410 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
411 struct mm_struct *mm)
412 {
413 struct kvm *kvm = mmu_notifier_to_kvm(mn);
414 int idx;
415
416 idx = srcu_read_lock(&kvm->srcu);
417 kvm_arch_flush_shadow_all(kvm);
418 srcu_read_unlock(&kvm->srcu, idx);
419 }
420
421 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
422 .invalidate_page = kvm_mmu_notifier_invalidate_page,
423 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
424 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
425 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
426 .test_young = kvm_mmu_notifier_test_young,
427 .change_pte = kvm_mmu_notifier_change_pte,
428 .release = kvm_mmu_notifier_release,
429 };
430
431 static int kvm_init_mmu_notifier(struct kvm *kvm)
432 {
433 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
434 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
435 }
436
437 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
438
439 static int kvm_init_mmu_notifier(struct kvm *kvm)
440 {
441 return 0;
442 }
443
444 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
445
446 static void kvm_init_memslots_id(struct kvm *kvm)
447 {
448 int i;
449 struct kvm_memslots *slots = kvm->memslots;
450
451 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
452 slots->id_to_index[i] = slots->memslots[i].id = i;
453 }
454
455 static struct kvm *kvm_create_vm(unsigned long type)
456 {
457 int r, i;
458 struct kvm *kvm = kvm_arch_alloc_vm();
459
460 if (!kvm)
461 return ERR_PTR(-ENOMEM);
462
463 r = kvm_arch_init_vm(kvm, type);
464 if (r)
465 goto out_err_no_disable;
466
467 r = hardware_enable_all();
468 if (r)
469 goto out_err_no_disable;
470
471 #ifdef CONFIG_HAVE_KVM_IRQCHIP
472 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
473 #endif
474 #ifdef CONFIG_HAVE_KVM_IRQFD
475 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
476 #endif
477
478 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
479
480 r = -ENOMEM;
481 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
482 if (!kvm->memslots)
483 goto out_err_no_srcu;
484
485 /*
486 * Init kvm generation close to the maximum to easily test the
487 * code of handling generation number wrap-around.
488 */
489 kvm->memslots->generation = -150;
490
491 kvm_init_memslots_id(kvm);
492 if (init_srcu_struct(&kvm->srcu))
493 goto out_err_no_srcu;
494 if (init_srcu_struct(&kvm->irq_srcu))
495 goto out_err_no_irq_srcu;
496 for (i = 0; i < KVM_NR_BUSES; i++) {
497 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
498 GFP_KERNEL);
499 if (!kvm->buses[i])
500 goto out_err;
501 }
502
503 spin_lock_init(&kvm->mmu_lock);
504 kvm->mm = current->mm;
505 atomic_inc(&kvm->mm->mm_count);
506 kvm_eventfd_init(kvm);
507 mutex_init(&kvm->lock);
508 mutex_init(&kvm->irq_lock);
509 mutex_init(&kvm->slots_lock);
510 atomic_set(&kvm->users_count, 1);
511 INIT_LIST_HEAD(&kvm->devices);
512
513 r = kvm_init_mmu_notifier(kvm);
514 if (r)
515 goto out_err;
516
517 spin_lock(&kvm_lock);
518 list_add(&kvm->vm_list, &vm_list);
519 spin_unlock(&kvm_lock);
520
521 return kvm;
522
523 out_err:
524 cleanup_srcu_struct(&kvm->irq_srcu);
525 out_err_no_irq_srcu:
526 cleanup_srcu_struct(&kvm->srcu);
527 out_err_no_srcu:
528 hardware_disable_all();
529 out_err_no_disable:
530 for (i = 0; i < KVM_NR_BUSES; i++)
531 kfree(kvm->buses[i]);
532 kfree(kvm->memslots);
533 kvm_arch_free_vm(kvm);
534 return ERR_PTR(r);
535 }
536
537 /*
538 * Avoid using vmalloc for a small buffer.
539 * Should not be used when the size is statically known.
540 */
541 void *kvm_kvzalloc(unsigned long size)
542 {
543 if (size > PAGE_SIZE)
544 return vzalloc(size);
545 else
546 return kzalloc(size, GFP_KERNEL);
547 }
548
549 void kvm_kvfree(const void *addr)
550 {
551 if (is_vmalloc_addr(addr))
552 vfree(addr);
553 else
554 kfree(addr);
555 }
556
557 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
558 {
559 if (!memslot->dirty_bitmap)
560 return;
561
562 kvm_kvfree(memslot->dirty_bitmap);
563 memslot->dirty_bitmap = NULL;
564 }
565
566 /*
567 * Free any memory in @free but not in @dont.
568 */
569 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
570 struct kvm_memory_slot *dont)
571 {
572 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
573 kvm_destroy_dirty_bitmap(free);
574
575 kvm_arch_free_memslot(kvm, free, dont);
576
577 free->npages = 0;
578 }
579
580 static void kvm_free_physmem(struct kvm *kvm)
581 {
582 struct kvm_memslots *slots = kvm->memslots;
583 struct kvm_memory_slot *memslot;
584
585 kvm_for_each_memslot(memslot, slots)
586 kvm_free_physmem_slot(kvm, memslot, NULL);
587
588 kfree(kvm->memslots);
589 }
590
591 static void kvm_destroy_devices(struct kvm *kvm)
592 {
593 struct list_head *node, *tmp;
594
595 list_for_each_safe(node, tmp, &kvm->devices) {
596 struct kvm_device *dev =
597 list_entry(node, struct kvm_device, vm_node);
598
599 list_del(node);
600 dev->ops->destroy(dev);
601 }
602 }
603
604 static void kvm_destroy_vm(struct kvm *kvm)
605 {
606 int i;
607 struct mm_struct *mm = kvm->mm;
608
609 kvm_arch_sync_events(kvm);
610 spin_lock(&kvm_lock);
611 list_del(&kvm->vm_list);
612 spin_unlock(&kvm_lock);
613 kvm_free_irq_routing(kvm);
614 for (i = 0; i < KVM_NR_BUSES; i++)
615 kvm_io_bus_destroy(kvm->buses[i]);
616 kvm_coalesced_mmio_free(kvm);
617 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
618 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
619 #else
620 kvm_arch_flush_shadow_all(kvm);
621 #endif
622 kvm_arch_destroy_vm(kvm);
623 kvm_destroy_devices(kvm);
624 kvm_free_physmem(kvm);
625 cleanup_srcu_struct(&kvm->irq_srcu);
626 cleanup_srcu_struct(&kvm->srcu);
627 kvm_arch_free_vm(kvm);
628 hardware_disable_all();
629 mmdrop(mm);
630 }
631
632 void kvm_get_kvm(struct kvm *kvm)
633 {
634 atomic_inc(&kvm->users_count);
635 }
636 EXPORT_SYMBOL_GPL(kvm_get_kvm);
637
638 void kvm_put_kvm(struct kvm *kvm)
639 {
640 if (atomic_dec_and_test(&kvm->users_count))
641 kvm_destroy_vm(kvm);
642 }
643 EXPORT_SYMBOL_GPL(kvm_put_kvm);
644
645
646 static int kvm_vm_release(struct inode *inode, struct file *filp)
647 {
648 struct kvm *kvm = filp->private_data;
649
650 kvm_irqfd_release(kvm);
651
652 kvm_put_kvm(kvm);
653 return 0;
654 }
655
656 /*
657 * Allocation size is twice as large as the actual dirty bitmap size.
658 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
659 */
660 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
661 {
662 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
663
664 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
665 if (!memslot->dirty_bitmap)
666 return -ENOMEM;
667
668 return 0;
669 }
670
671 static int cmp_memslot(const void *slot1, const void *slot2)
672 {
673 struct kvm_memory_slot *s1, *s2;
674
675 s1 = (struct kvm_memory_slot *)slot1;
676 s2 = (struct kvm_memory_slot *)slot2;
677
678 if (s1->npages < s2->npages)
679 return 1;
680 if (s1->npages > s2->npages)
681 return -1;
682
683 return 0;
684 }
685
686 /*
687 * Sort the memslots base on its size, so the larger slots
688 * will get better fit.
689 */
690 static void sort_memslots(struct kvm_memslots *slots)
691 {
692 int i;
693
694 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
695 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
696
697 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
698 slots->id_to_index[slots->memslots[i].id] = i;
699 }
700
701 static void update_memslots(struct kvm_memslots *slots,
702 struct kvm_memory_slot *new)
703 {
704 if (new) {
705 int id = new->id;
706 struct kvm_memory_slot *old = id_to_memslot(slots, id);
707 unsigned long npages = old->npages;
708
709 *old = *new;
710 if (new->npages != npages)
711 sort_memslots(slots);
712 }
713 }
714
715 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
716 {
717 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
718
719 #ifdef __KVM_HAVE_READONLY_MEM
720 valid_flags |= KVM_MEM_READONLY;
721 #endif
722
723 if (mem->flags & ~valid_flags)
724 return -EINVAL;
725
726 return 0;
727 }
728
729 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
730 struct kvm_memslots *slots, struct kvm_memory_slot *new)
731 {
732 struct kvm_memslots *old_memslots = kvm->memslots;
733
734 /*
735 * Set the low bit in the generation, which disables SPTE caching
736 * until the end of synchronize_srcu_expedited.
737 */
738 WARN_ON(old_memslots->generation & 1);
739 slots->generation = old_memslots->generation + 1;
740
741 update_memslots(slots, new);
742 rcu_assign_pointer(kvm->memslots, slots);
743 synchronize_srcu_expedited(&kvm->srcu);
744
745 /*
746 * Increment the new memslot generation a second time. This prevents
747 * vm exits that race with memslot updates from caching a memslot
748 * generation that will (potentially) be valid forever.
749 */
750 slots->generation++;
751
752 kvm_arch_memslots_updated(kvm);
753
754 return old_memslots;
755 }
756
757 /*
758 * Allocate some memory and give it an address in the guest physical address
759 * space.
760 *
761 * Discontiguous memory is allowed, mostly for framebuffers.
762 *
763 * Must be called holding mmap_sem for write.
764 */
765 int __kvm_set_memory_region(struct kvm *kvm,
766 struct kvm_userspace_memory_region *mem)
767 {
768 int r;
769 gfn_t base_gfn;
770 unsigned long npages;
771 struct kvm_memory_slot *slot;
772 struct kvm_memory_slot old, new;
773 struct kvm_memslots *slots = NULL, *old_memslots;
774 enum kvm_mr_change change;
775
776 r = check_memory_region_flags(mem);
777 if (r)
778 goto out;
779
780 r = -EINVAL;
781 /* General sanity checks */
782 if (mem->memory_size & (PAGE_SIZE - 1))
783 goto out;
784 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
785 goto out;
786 /* We can read the guest memory with __xxx_user() later on. */
787 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
788 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
789 !access_ok(VERIFY_WRITE,
790 (void __user *)(unsigned long)mem->userspace_addr,
791 mem->memory_size)))
792 goto out;
793 if (mem->slot >= KVM_MEM_SLOTS_NUM)
794 goto out;
795 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
796 goto out;
797
798 slot = id_to_memslot(kvm->memslots, mem->slot);
799 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
800 npages = mem->memory_size >> PAGE_SHIFT;
801
802 if (npages > KVM_MEM_MAX_NR_PAGES)
803 goto out;
804
805 if (!npages)
806 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
807
808 new = old = *slot;
809
810 new.id = mem->slot;
811 new.base_gfn = base_gfn;
812 new.npages = npages;
813 new.flags = mem->flags;
814
815 if (npages) {
816 if (!old.npages)
817 change = KVM_MR_CREATE;
818 else { /* Modify an existing slot. */
819 if ((mem->userspace_addr != old.userspace_addr) ||
820 (npages != old.npages) ||
821 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
822 goto out;
823
824 if (base_gfn != old.base_gfn)
825 change = KVM_MR_MOVE;
826 else if (new.flags != old.flags)
827 change = KVM_MR_FLAGS_ONLY;
828 else { /* Nothing to change. */
829 r = 0;
830 goto out;
831 }
832 }
833 } else if (old.npages) {
834 change = KVM_MR_DELETE;
835 } else /* Modify a non-existent slot: disallowed. */
836 goto out;
837
838 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
839 /* Check for overlaps */
840 r = -EEXIST;
841 kvm_for_each_memslot(slot, kvm->memslots) {
842 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
843 (slot->id == mem->slot))
844 continue;
845 if (!((base_gfn + npages <= slot->base_gfn) ||
846 (base_gfn >= slot->base_gfn + slot->npages)))
847 goto out;
848 }
849 }
850
851 /* Free page dirty bitmap if unneeded */
852 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
853 new.dirty_bitmap = NULL;
854
855 r = -ENOMEM;
856 if (change == KVM_MR_CREATE) {
857 new.userspace_addr = mem->userspace_addr;
858
859 if (kvm_arch_create_memslot(kvm, &new, npages))
860 goto out_free;
861 }
862
863 /* Allocate page dirty bitmap if needed */
864 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
865 if (kvm_create_dirty_bitmap(&new) < 0)
866 goto out_free;
867 }
868
869 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
870 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
871 GFP_KERNEL);
872 if (!slots)
873 goto out_free;
874 slot = id_to_memslot(slots, mem->slot);
875 slot->flags |= KVM_MEMSLOT_INVALID;
876
877 old_memslots = install_new_memslots(kvm, slots, NULL);
878
879 /* slot was deleted or moved, clear iommu mapping */
880 kvm_iommu_unmap_pages(kvm, &old);
881 /* From this point no new shadow pages pointing to a deleted,
882 * or moved, memslot will be created.
883 *
884 * validation of sp->gfn happens in:
885 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
886 * - kvm_is_visible_gfn (mmu_check_roots)
887 */
888 kvm_arch_flush_shadow_memslot(kvm, slot);
889 slots = old_memslots;
890 }
891
892 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
893 if (r)
894 goto out_slots;
895
896 r = -ENOMEM;
897 /*
898 * We can re-use the old_memslots from above, the only difference
899 * from the currently installed memslots is the invalid flag. This
900 * will get overwritten by update_memslots anyway.
901 */
902 if (!slots) {
903 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
904 GFP_KERNEL);
905 if (!slots)
906 goto out_free;
907 }
908
909 /* actual memory is freed via old in kvm_free_physmem_slot below */
910 if (change == KVM_MR_DELETE) {
911 new.dirty_bitmap = NULL;
912 memset(&new.arch, 0, sizeof(new.arch));
913 }
914
915 old_memslots = install_new_memslots(kvm, slots, &new);
916
917 kvm_arch_commit_memory_region(kvm, mem, &old, change);
918
919 kvm_free_physmem_slot(kvm, &old, &new);
920 kfree(old_memslots);
921
922 /*
923 * IOMMU mapping: New slots need to be mapped. Old slots need to be
924 * un-mapped and re-mapped if their base changes. Since base change
925 * unmapping is handled above with slot deletion, mapping alone is
926 * needed here. Anything else the iommu might care about for existing
927 * slots (size changes, userspace addr changes and read-only flag
928 * changes) is disallowed above, so any other attribute changes getting
929 * here can be skipped.
930 */
931 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
932 r = kvm_iommu_map_pages(kvm, &new);
933 return r;
934 }
935
936 return 0;
937
938 out_slots:
939 kfree(slots);
940 out_free:
941 kvm_free_physmem_slot(kvm, &new, &old);
942 out:
943 return r;
944 }
945 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
946
947 int kvm_set_memory_region(struct kvm *kvm,
948 struct kvm_userspace_memory_region *mem)
949 {
950 int r;
951
952 mutex_lock(&kvm->slots_lock);
953 r = __kvm_set_memory_region(kvm, mem);
954 mutex_unlock(&kvm->slots_lock);
955 return r;
956 }
957 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
958
959 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
960 struct kvm_userspace_memory_region *mem)
961 {
962 if (mem->slot >= KVM_USER_MEM_SLOTS)
963 return -EINVAL;
964 return kvm_set_memory_region(kvm, mem);
965 }
966
967 int kvm_get_dirty_log(struct kvm *kvm,
968 struct kvm_dirty_log *log, int *is_dirty)
969 {
970 struct kvm_memory_slot *memslot;
971 int r, i;
972 unsigned long n;
973 unsigned long any = 0;
974
975 r = -EINVAL;
976 if (log->slot >= KVM_USER_MEM_SLOTS)
977 goto out;
978
979 memslot = id_to_memslot(kvm->memslots, log->slot);
980 r = -ENOENT;
981 if (!memslot->dirty_bitmap)
982 goto out;
983
984 n = kvm_dirty_bitmap_bytes(memslot);
985
986 for (i = 0; !any && i < n/sizeof(long); ++i)
987 any = memslot->dirty_bitmap[i];
988
989 r = -EFAULT;
990 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
991 goto out;
992
993 if (any)
994 *is_dirty = 1;
995
996 r = 0;
997 out:
998 return r;
999 }
1000 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1001
1002 bool kvm_largepages_enabled(void)
1003 {
1004 return largepages_enabled;
1005 }
1006
1007 void kvm_disable_largepages(void)
1008 {
1009 largepages_enabled = false;
1010 }
1011 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1012
1013 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1014 {
1015 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1016 }
1017 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1018
1019 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1020 {
1021 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1022
1023 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1024 memslot->flags & KVM_MEMSLOT_INVALID)
1025 return 0;
1026
1027 return 1;
1028 }
1029 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1030
1031 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1032 {
1033 struct vm_area_struct *vma;
1034 unsigned long addr, size;
1035
1036 size = PAGE_SIZE;
1037
1038 addr = gfn_to_hva(kvm, gfn);
1039 if (kvm_is_error_hva(addr))
1040 return PAGE_SIZE;
1041
1042 down_read(&current->mm->mmap_sem);
1043 vma = find_vma(current->mm, addr);
1044 if (!vma)
1045 goto out;
1046
1047 size = vma_kernel_pagesize(vma);
1048
1049 out:
1050 up_read(&current->mm->mmap_sem);
1051
1052 return size;
1053 }
1054
1055 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1056 {
1057 return slot->flags & KVM_MEM_READONLY;
1058 }
1059
1060 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1061 gfn_t *nr_pages, bool write)
1062 {
1063 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1064 return KVM_HVA_ERR_BAD;
1065
1066 if (memslot_is_readonly(slot) && write)
1067 return KVM_HVA_ERR_RO_BAD;
1068
1069 if (nr_pages)
1070 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1071
1072 return __gfn_to_hva_memslot(slot, gfn);
1073 }
1074
1075 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1076 gfn_t *nr_pages)
1077 {
1078 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1079 }
1080
1081 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1082 gfn_t gfn)
1083 {
1084 return gfn_to_hva_many(slot, gfn, NULL);
1085 }
1086 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1087
1088 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1089 {
1090 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1091 }
1092 EXPORT_SYMBOL_GPL(gfn_to_hva);
1093
1094 /*
1095 * If writable is set to false, the hva returned by this function is only
1096 * allowed to be read.
1097 */
1098 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1099 gfn_t gfn, bool *writable)
1100 {
1101 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1102
1103 if (!kvm_is_error_hva(hva) && writable)
1104 *writable = !memslot_is_readonly(slot);
1105
1106 return hva;
1107 }
1108
1109 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1110 {
1111 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1112
1113 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1114 }
1115
1116 static int kvm_read_hva(void *data, void __user *hva, int len)
1117 {
1118 return __copy_from_user(data, hva, len);
1119 }
1120
1121 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1122 {
1123 return __copy_from_user_inatomic(data, hva, len);
1124 }
1125
1126 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1127 unsigned long start, int write, struct page **page)
1128 {
1129 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1130
1131 if (write)
1132 flags |= FOLL_WRITE;
1133
1134 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1135 }
1136
1137 int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
1138 unsigned long addr, bool write_fault,
1139 struct page **pagep)
1140 {
1141 int npages;
1142 int locked = 1;
1143 int flags = FOLL_TOUCH | FOLL_HWPOISON |
1144 (pagep ? FOLL_GET : 0) |
1145 (write_fault ? FOLL_WRITE : 0);
1146
1147 /*
1148 * If retrying the fault, we get here *not* having allowed the filemap
1149 * to wait on the page lock. We should now allow waiting on the IO with
1150 * the mmap semaphore released.
1151 */
1152 down_read(&mm->mmap_sem);
1153 npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
1154 &locked);
1155 if (!locked) {
1156 VM_BUG_ON(npages);
1157
1158 if (!pagep)
1159 return 0;
1160
1161 /*
1162 * The previous call has now waited on the IO. Now we can
1163 * retry and complete. Pass TRIED to ensure we do not re
1164 * schedule async IO (see e.g. filemap_fault).
1165 */
1166 down_read(&mm->mmap_sem);
1167 npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
1168 pagep, NULL, NULL);
1169 }
1170 up_read(&mm->mmap_sem);
1171 return npages;
1172 }
1173
1174 static inline int check_user_page_hwpoison(unsigned long addr)
1175 {
1176 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1177
1178 rc = __get_user_pages(current, current->mm, addr, 1,
1179 flags, NULL, NULL, NULL);
1180 return rc == -EHWPOISON;
1181 }
1182
1183 /*
1184 * The atomic path to get the writable pfn which will be stored in @pfn,
1185 * true indicates success, otherwise false is returned.
1186 */
1187 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1188 bool write_fault, bool *writable, pfn_t *pfn)
1189 {
1190 struct page *page[1];
1191 int npages;
1192
1193 if (!(async || atomic))
1194 return false;
1195
1196 /*
1197 * Fast pin a writable pfn only if it is a write fault request
1198 * or the caller allows to map a writable pfn for a read fault
1199 * request.
1200 */
1201 if (!(write_fault || writable))
1202 return false;
1203
1204 npages = __get_user_pages_fast(addr, 1, 1, page);
1205 if (npages == 1) {
1206 *pfn = page_to_pfn(page[0]);
1207
1208 if (writable)
1209 *writable = true;
1210 return true;
1211 }
1212
1213 return false;
1214 }
1215
1216 /*
1217 * The slow path to get the pfn of the specified host virtual address,
1218 * 1 indicates success, -errno is returned if error is detected.
1219 */
1220 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1221 bool *writable, pfn_t *pfn)
1222 {
1223 struct page *page[1];
1224 int npages = 0;
1225
1226 might_sleep();
1227
1228 if (writable)
1229 *writable = write_fault;
1230
1231 if (async) {
1232 down_read(&current->mm->mmap_sem);
1233 npages = get_user_page_nowait(current, current->mm,
1234 addr, write_fault, page);
1235 up_read(&current->mm->mmap_sem);
1236 } else {
1237 /*
1238 * By now we have tried gup_fast, and possibly async_pf, and we
1239 * are certainly not atomic. Time to retry the gup, allowing
1240 * mmap semaphore to be relinquished in the case of IO.
1241 */
1242 npages = kvm_get_user_page_io(current, current->mm, addr,
1243 write_fault, page);
1244 }
1245 if (npages != 1)
1246 return npages;
1247
1248 /* map read fault as writable if possible */
1249 if (unlikely(!write_fault) && writable) {
1250 struct page *wpage[1];
1251
1252 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1253 if (npages == 1) {
1254 *writable = true;
1255 put_page(page[0]);
1256 page[0] = wpage[0];
1257 }
1258
1259 npages = 1;
1260 }
1261 *pfn = page_to_pfn(page[0]);
1262 return npages;
1263 }
1264
1265 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1266 {
1267 if (unlikely(!(vma->vm_flags & VM_READ)))
1268 return false;
1269
1270 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1271 return false;
1272
1273 return true;
1274 }
1275
1276 /*
1277 * Pin guest page in memory and return its pfn.
1278 * @addr: host virtual address which maps memory to the guest
1279 * @atomic: whether this function can sleep
1280 * @async: whether this function need to wait IO complete if the
1281 * host page is not in the memory
1282 * @write_fault: whether we should get a writable host page
1283 * @writable: whether it allows to map a writable host page for !@write_fault
1284 *
1285 * The function will map a writable host page for these two cases:
1286 * 1): @write_fault = true
1287 * 2): @write_fault = false && @writable, @writable will tell the caller
1288 * whether the mapping is writable.
1289 */
1290 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1291 bool write_fault, bool *writable)
1292 {
1293 struct vm_area_struct *vma;
1294 pfn_t pfn = 0;
1295 int npages;
1296
1297 /* we can do it either atomically or asynchronously, not both */
1298 BUG_ON(atomic && async);
1299
1300 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1301 return pfn;
1302
1303 if (atomic)
1304 return KVM_PFN_ERR_FAULT;
1305
1306 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1307 if (npages == 1)
1308 return pfn;
1309
1310 down_read(&current->mm->mmap_sem);
1311 if (npages == -EHWPOISON ||
1312 (!async && check_user_page_hwpoison(addr))) {
1313 pfn = KVM_PFN_ERR_HWPOISON;
1314 goto exit;
1315 }
1316
1317 vma = find_vma_intersection(current->mm, addr, addr + 1);
1318
1319 if (vma == NULL)
1320 pfn = KVM_PFN_ERR_FAULT;
1321 else if ((vma->vm_flags & VM_PFNMAP)) {
1322 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1323 vma->vm_pgoff;
1324 BUG_ON(!kvm_is_mmio_pfn(pfn));
1325 } else {
1326 if (async && vma_is_valid(vma, write_fault))
1327 *async = true;
1328 pfn = KVM_PFN_ERR_FAULT;
1329 }
1330 exit:
1331 up_read(&current->mm->mmap_sem);
1332 return pfn;
1333 }
1334
1335 static pfn_t
1336 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1337 bool *async, bool write_fault, bool *writable)
1338 {
1339 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1340
1341 if (addr == KVM_HVA_ERR_RO_BAD)
1342 return KVM_PFN_ERR_RO_FAULT;
1343
1344 if (kvm_is_error_hva(addr))
1345 return KVM_PFN_NOSLOT;
1346
1347 /* Do not map writable pfn in the readonly memslot. */
1348 if (writable && memslot_is_readonly(slot)) {
1349 *writable = false;
1350 writable = NULL;
1351 }
1352
1353 return hva_to_pfn(addr, atomic, async, write_fault,
1354 writable);
1355 }
1356
1357 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1358 bool write_fault, bool *writable)
1359 {
1360 struct kvm_memory_slot *slot;
1361
1362 if (async)
1363 *async = false;
1364
1365 slot = gfn_to_memslot(kvm, gfn);
1366
1367 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1368 writable);
1369 }
1370
1371 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1372 {
1373 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1374 }
1375 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1376
1377 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1378 bool write_fault, bool *writable)
1379 {
1380 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1381 }
1382 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1383
1384 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1385 {
1386 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1387 }
1388 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1389
1390 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1391 bool *writable)
1392 {
1393 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1394 }
1395 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1396
1397 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1398 {
1399 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1400 }
1401
1402 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1403 {
1404 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1405 }
1406 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1407
1408 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1409 int nr_pages)
1410 {
1411 unsigned long addr;
1412 gfn_t entry;
1413
1414 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1415 if (kvm_is_error_hva(addr))
1416 return -1;
1417
1418 if (entry < nr_pages)
1419 return 0;
1420
1421 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1422 }
1423 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1424
1425 static struct page *kvm_pfn_to_page(pfn_t pfn)
1426 {
1427 if (is_error_noslot_pfn(pfn))
1428 return KVM_ERR_PTR_BAD_PAGE;
1429
1430 if (kvm_is_mmio_pfn(pfn)) {
1431 WARN_ON(1);
1432 return KVM_ERR_PTR_BAD_PAGE;
1433 }
1434
1435 return pfn_to_page(pfn);
1436 }
1437
1438 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1439 {
1440 pfn_t pfn;
1441
1442 pfn = gfn_to_pfn(kvm, gfn);
1443
1444 return kvm_pfn_to_page(pfn);
1445 }
1446
1447 EXPORT_SYMBOL_GPL(gfn_to_page);
1448
1449 void kvm_release_page_clean(struct page *page)
1450 {
1451 WARN_ON(is_error_page(page));
1452
1453 kvm_release_pfn_clean(page_to_pfn(page));
1454 }
1455 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1456
1457 void kvm_release_pfn_clean(pfn_t pfn)
1458 {
1459 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1460 put_page(pfn_to_page(pfn));
1461 }
1462 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1463
1464 void kvm_release_page_dirty(struct page *page)
1465 {
1466 WARN_ON(is_error_page(page));
1467
1468 kvm_release_pfn_dirty(page_to_pfn(page));
1469 }
1470 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1471
1472 static void kvm_release_pfn_dirty(pfn_t pfn)
1473 {
1474 kvm_set_pfn_dirty(pfn);
1475 kvm_release_pfn_clean(pfn);
1476 }
1477
1478 void kvm_set_pfn_dirty(pfn_t pfn)
1479 {
1480 if (!kvm_is_mmio_pfn(pfn)) {
1481 struct page *page = pfn_to_page(pfn);
1482 if (!PageReserved(page))
1483 SetPageDirty(page);
1484 }
1485 }
1486 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1487
1488 void kvm_set_pfn_accessed(pfn_t pfn)
1489 {
1490 if (!kvm_is_mmio_pfn(pfn))
1491 mark_page_accessed(pfn_to_page(pfn));
1492 }
1493 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1494
1495 void kvm_get_pfn(pfn_t pfn)
1496 {
1497 if (!kvm_is_mmio_pfn(pfn))
1498 get_page(pfn_to_page(pfn));
1499 }
1500 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1501
1502 static int next_segment(unsigned long len, int offset)
1503 {
1504 if (len > PAGE_SIZE - offset)
1505 return PAGE_SIZE - offset;
1506 else
1507 return len;
1508 }
1509
1510 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1511 int len)
1512 {
1513 int r;
1514 unsigned long addr;
1515
1516 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1517 if (kvm_is_error_hva(addr))
1518 return -EFAULT;
1519 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1520 if (r)
1521 return -EFAULT;
1522 return 0;
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1525
1526 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1527 {
1528 gfn_t gfn = gpa >> PAGE_SHIFT;
1529 int seg;
1530 int offset = offset_in_page(gpa);
1531 int ret;
1532
1533 while ((seg = next_segment(len, offset)) != 0) {
1534 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1535 if (ret < 0)
1536 return ret;
1537 offset = 0;
1538 len -= seg;
1539 data += seg;
1540 ++gfn;
1541 }
1542 return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_read_guest);
1545
1546 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1547 unsigned long len)
1548 {
1549 int r;
1550 unsigned long addr;
1551 gfn_t gfn = gpa >> PAGE_SHIFT;
1552 int offset = offset_in_page(gpa);
1553
1554 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1555 if (kvm_is_error_hva(addr))
1556 return -EFAULT;
1557 pagefault_disable();
1558 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1559 pagefault_enable();
1560 if (r)
1561 return -EFAULT;
1562 return 0;
1563 }
1564 EXPORT_SYMBOL(kvm_read_guest_atomic);
1565
1566 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1567 int offset, int len)
1568 {
1569 int r;
1570 unsigned long addr;
1571
1572 addr = gfn_to_hva(kvm, gfn);
1573 if (kvm_is_error_hva(addr))
1574 return -EFAULT;
1575 r = __copy_to_user((void __user *)addr + offset, data, len);
1576 if (r)
1577 return -EFAULT;
1578 mark_page_dirty(kvm, gfn);
1579 return 0;
1580 }
1581 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1582
1583 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1584 unsigned long len)
1585 {
1586 gfn_t gfn = gpa >> PAGE_SHIFT;
1587 int seg;
1588 int offset = offset_in_page(gpa);
1589 int ret;
1590
1591 while ((seg = next_segment(len, offset)) != 0) {
1592 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1593 if (ret < 0)
1594 return ret;
1595 offset = 0;
1596 len -= seg;
1597 data += seg;
1598 ++gfn;
1599 }
1600 return 0;
1601 }
1602
1603 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1604 gpa_t gpa, unsigned long len)
1605 {
1606 struct kvm_memslots *slots = kvm_memslots(kvm);
1607 int offset = offset_in_page(gpa);
1608 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1609 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1610 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1611 gfn_t nr_pages_avail;
1612
1613 ghc->gpa = gpa;
1614 ghc->generation = slots->generation;
1615 ghc->len = len;
1616 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1617 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1618 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1619 ghc->hva += offset;
1620 } else {
1621 /*
1622 * If the requested region crosses two memslots, we still
1623 * verify that the entire region is valid here.
1624 */
1625 while (start_gfn <= end_gfn) {
1626 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1627 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1628 &nr_pages_avail);
1629 if (kvm_is_error_hva(ghc->hva))
1630 return -EFAULT;
1631 start_gfn += nr_pages_avail;
1632 }
1633 /* Use the slow path for cross page reads and writes. */
1634 ghc->memslot = NULL;
1635 }
1636 return 0;
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1639
1640 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1641 void *data, unsigned long len)
1642 {
1643 struct kvm_memslots *slots = kvm_memslots(kvm);
1644 int r;
1645
1646 BUG_ON(len > ghc->len);
1647
1648 if (slots->generation != ghc->generation)
1649 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1650
1651 if (unlikely(!ghc->memslot))
1652 return kvm_write_guest(kvm, ghc->gpa, data, len);
1653
1654 if (kvm_is_error_hva(ghc->hva))
1655 return -EFAULT;
1656
1657 r = __copy_to_user((void __user *)ghc->hva, data, len);
1658 if (r)
1659 return -EFAULT;
1660 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1661
1662 return 0;
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1665
1666 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1667 void *data, unsigned long len)
1668 {
1669 struct kvm_memslots *slots = kvm_memslots(kvm);
1670 int r;
1671
1672 BUG_ON(len > ghc->len);
1673
1674 if (slots->generation != ghc->generation)
1675 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1676
1677 if (unlikely(!ghc->memslot))
1678 return kvm_read_guest(kvm, ghc->gpa, data, len);
1679
1680 if (kvm_is_error_hva(ghc->hva))
1681 return -EFAULT;
1682
1683 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1684 if (r)
1685 return -EFAULT;
1686
1687 return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1690
1691 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1692 {
1693 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1694
1695 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1698
1699 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1700 {
1701 gfn_t gfn = gpa >> PAGE_SHIFT;
1702 int seg;
1703 int offset = offset_in_page(gpa);
1704 int ret;
1705
1706 while ((seg = next_segment(len, offset)) != 0) {
1707 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1708 if (ret < 0)
1709 return ret;
1710 offset = 0;
1711 len -= seg;
1712 ++gfn;
1713 }
1714 return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1717
1718 static void mark_page_dirty_in_slot(struct kvm *kvm,
1719 struct kvm_memory_slot *memslot,
1720 gfn_t gfn)
1721 {
1722 if (memslot && memslot->dirty_bitmap) {
1723 unsigned long rel_gfn = gfn - memslot->base_gfn;
1724
1725 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1726 }
1727 }
1728
1729 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1730 {
1731 struct kvm_memory_slot *memslot;
1732
1733 memslot = gfn_to_memslot(kvm, gfn);
1734 mark_page_dirty_in_slot(kvm, memslot, gfn);
1735 }
1736 EXPORT_SYMBOL_GPL(mark_page_dirty);
1737
1738 /*
1739 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1740 */
1741 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1742 {
1743 DEFINE_WAIT(wait);
1744
1745 for (;;) {
1746 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1747
1748 if (kvm_arch_vcpu_runnable(vcpu)) {
1749 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1750 break;
1751 }
1752 if (kvm_cpu_has_pending_timer(vcpu))
1753 break;
1754 if (signal_pending(current))
1755 break;
1756
1757 schedule();
1758 }
1759
1760 finish_wait(&vcpu->wq, &wait);
1761 }
1762 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1763
1764 #ifndef CONFIG_S390
1765 /*
1766 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1767 */
1768 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1769 {
1770 int me;
1771 int cpu = vcpu->cpu;
1772 wait_queue_head_t *wqp;
1773
1774 wqp = kvm_arch_vcpu_wq(vcpu);
1775 if (waitqueue_active(wqp)) {
1776 wake_up_interruptible(wqp);
1777 ++vcpu->stat.halt_wakeup;
1778 }
1779
1780 me = get_cpu();
1781 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1782 if (kvm_arch_vcpu_should_kick(vcpu))
1783 smp_send_reschedule(cpu);
1784 put_cpu();
1785 }
1786 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1787 #endif /* !CONFIG_S390 */
1788
1789 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1790 {
1791 struct pid *pid;
1792 struct task_struct *task = NULL;
1793 int ret = 0;
1794
1795 rcu_read_lock();
1796 pid = rcu_dereference(target->pid);
1797 if (pid)
1798 task = get_pid_task(pid, PIDTYPE_PID);
1799 rcu_read_unlock();
1800 if (!task)
1801 return ret;
1802 if (task->flags & PF_VCPU) {
1803 put_task_struct(task);
1804 return ret;
1805 }
1806 ret = yield_to(task, 1);
1807 put_task_struct(task);
1808
1809 return ret;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1812
1813 /*
1814 * Helper that checks whether a VCPU is eligible for directed yield.
1815 * Most eligible candidate to yield is decided by following heuristics:
1816 *
1817 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1818 * (preempted lock holder), indicated by @in_spin_loop.
1819 * Set at the beiginning and cleared at the end of interception/PLE handler.
1820 *
1821 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1822 * chance last time (mostly it has become eligible now since we have probably
1823 * yielded to lockholder in last iteration. This is done by toggling
1824 * @dy_eligible each time a VCPU checked for eligibility.)
1825 *
1826 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1827 * to preempted lock-holder could result in wrong VCPU selection and CPU
1828 * burning. Giving priority for a potential lock-holder increases lock
1829 * progress.
1830 *
1831 * Since algorithm is based on heuristics, accessing another VCPU data without
1832 * locking does not harm. It may result in trying to yield to same VCPU, fail
1833 * and continue with next VCPU and so on.
1834 */
1835 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1836 {
1837 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1838 bool eligible;
1839
1840 eligible = !vcpu->spin_loop.in_spin_loop ||
1841 vcpu->spin_loop.dy_eligible;
1842
1843 if (vcpu->spin_loop.in_spin_loop)
1844 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1845
1846 return eligible;
1847 #else
1848 return true;
1849 #endif
1850 }
1851
1852 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1853 {
1854 struct kvm *kvm = me->kvm;
1855 struct kvm_vcpu *vcpu;
1856 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1857 int yielded = 0;
1858 int try = 3;
1859 int pass;
1860 int i;
1861
1862 kvm_vcpu_set_in_spin_loop(me, true);
1863 /*
1864 * We boost the priority of a VCPU that is runnable but not
1865 * currently running, because it got preempted by something
1866 * else and called schedule in __vcpu_run. Hopefully that
1867 * VCPU is holding the lock that we need and will release it.
1868 * We approximate round-robin by starting at the last boosted VCPU.
1869 */
1870 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1871 kvm_for_each_vcpu(i, vcpu, kvm) {
1872 if (!pass && i <= last_boosted_vcpu) {
1873 i = last_boosted_vcpu;
1874 continue;
1875 } else if (pass && i > last_boosted_vcpu)
1876 break;
1877 if (!ACCESS_ONCE(vcpu->preempted))
1878 continue;
1879 if (vcpu == me)
1880 continue;
1881 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1882 continue;
1883 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1884 continue;
1885
1886 yielded = kvm_vcpu_yield_to(vcpu);
1887 if (yielded > 0) {
1888 kvm->last_boosted_vcpu = i;
1889 break;
1890 } else if (yielded < 0) {
1891 try--;
1892 if (!try)
1893 break;
1894 }
1895 }
1896 }
1897 kvm_vcpu_set_in_spin_loop(me, false);
1898
1899 /* Ensure vcpu is not eligible during next spinloop */
1900 kvm_vcpu_set_dy_eligible(me, false);
1901 }
1902 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1903
1904 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1905 {
1906 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1907 struct page *page;
1908
1909 if (vmf->pgoff == 0)
1910 page = virt_to_page(vcpu->run);
1911 #ifdef CONFIG_X86
1912 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1913 page = virt_to_page(vcpu->arch.pio_data);
1914 #endif
1915 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1916 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1917 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1918 #endif
1919 else
1920 return kvm_arch_vcpu_fault(vcpu, vmf);
1921 get_page(page);
1922 vmf->page = page;
1923 return 0;
1924 }
1925
1926 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1927 .fault = kvm_vcpu_fault,
1928 };
1929
1930 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1931 {
1932 vma->vm_ops = &kvm_vcpu_vm_ops;
1933 return 0;
1934 }
1935
1936 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1937 {
1938 struct kvm_vcpu *vcpu = filp->private_data;
1939
1940 kvm_put_kvm(vcpu->kvm);
1941 return 0;
1942 }
1943
1944 static struct file_operations kvm_vcpu_fops = {
1945 .release = kvm_vcpu_release,
1946 .unlocked_ioctl = kvm_vcpu_ioctl,
1947 #ifdef CONFIG_COMPAT
1948 .compat_ioctl = kvm_vcpu_compat_ioctl,
1949 #endif
1950 .mmap = kvm_vcpu_mmap,
1951 .llseek = noop_llseek,
1952 };
1953
1954 /*
1955 * Allocates an inode for the vcpu.
1956 */
1957 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1958 {
1959 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1960 }
1961
1962 /*
1963 * Creates some virtual cpus. Good luck creating more than one.
1964 */
1965 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1966 {
1967 int r;
1968 struct kvm_vcpu *vcpu, *v;
1969
1970 if (id >= KVM_MAX_VCPUS)
1971 return -EINVAL;
1972
1973 vcpu = kvm_arch_vcpu_create(kvm, id);
1974 if (IS_ERR(vcpu))
1975 return PTR_ERR(vcpu);
1976
1977 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1978
1979 r = kvm_arch_vcpu_setup(vcpu);
1980 if (r)
1981 goto vcpu_destroy;
1982
1983 mutex_lock(&kvm->lock);
1984 if (!kvm_vcpu_compatible(vcpu)) {
1985 r = -EINVAL;
1986 goto unlock_vcpu_destroy;
1987 }
1988 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1989 r = -EINVAL;
1990 goto unlock_vcpu_destroy;
1991 }
1992
1993 kvm_for_each_vcpu(r, v, kvm)
1994 if (v->vcpu_id == id) {
1995 r = -EEXIST;
1996 goto unlock_vcpu_destroy;
1997 }
1998
1999 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2000
2001 /* Now it's all set up, let userspace reach it */
2002 kvm_get_kvm(kvm);
2003 r = create_vcpu_fd(vcpu);
2004 if (r < 0) {
2005 kvm_put_kvm(kvm);
2006 goto unlock_vcpu_destroy;
2007 }
2008
2009 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2010 smp_wmb();
2011 atomic_inc(&kvm->online_vcpus);
2012
2013 mutex_unlock(&kvm->lock);
2014 kvm_arch_vcpu_postcreate(vcpu);
2015 return r;
2016
2017 unlock_vcpu_destroy:
2018 mutex_unlock(&kvm->lock);
2019 vcpu_destroy:
2020 kvm_arch_vcpu_destroy(vcpu);
2021 return r;
2022 }
2023
2024 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2025 {
2026 if (sigset) {
2027 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2028 vcpu->sigset_active = 1;
2029 vcpu->sigset = *sigset;
2030 } else
2031 vcpu->sigset_active = 0;
2032 return 0;
2033 }
2034
2035 static long kvm_vcpu_ioctl(struct file *filp,
2036 unsigned int ioctl, unsigned long arg)
2037 {
2038 struct kvm_vcpu *vcpu = filp->private_data;
2039 void __user *argp = (void __user *)arg;
2040 int r;
2041 struct kvm_fpu *fpu = NULL;
2042 struct kvm_sregs *kvm_sregs = NULL;
2043
2044 if (vcpu->kvm->mm != current->mm)
2045 return -EIO;
2046
2047 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2048 return -EINVAL;
2049
2050 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2051 /*
2052 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2053 * so vcpu_load() would break it.
2054 */
2055 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
2056 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2057 #endif
2058
2059
2060 r = vcpu_load(vcpu);
2061 if (r)
2062 return r;
2063 switch (ioctl) {
2064 case KVM_RUN:
2065 r = -EINVAL;
2066 if (arg)
2067 goto out;
2068 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2069 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2070 break;
2071 case KVM_GET_REGS: {
2072 struct kvm_regs *kvm_regs;
2073
2074 r = -ENOMEM;
2075 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2076 if (!kvm_regs)
2077 goto out;
2078 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2079 if (r)
2080 goto out_free1;
2081 r = -EFAULT;
2082 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2083 goto out_free1;
2084 r = 0;
2085 out_free1:
2086 kfree(kvm_regs);
2087 break;
2088 }
2089 case KVM_SET_REGS: {
2090 struct kvm_regs *kvm_regs;
2091
2092 r = -ENOMEM;
2093 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2094 if (IS_ERR(kvm_regs)) {
2095 r = PTR_ERR(kvm_regs);
2096 goto out;
2097 }
2098 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2099 kfree(kvm_regs);
2100 break;
2101 }
2102 case KVM_GET_SREGS: {
2103 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2104 r = -ENOMEM;
2105 if (!kvm_sregs)
2106 goto out;
2107 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2108 if (r)
2109 goto out;
2110 r = -EFAULT;
2111 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2112 goto out;
2113 r = 0;
2114 break;
2115 }
2116 case KVM_SET_SREGS: {
2117 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2118 if (IS_ERR(kvm_sregs)) {
2119 r = PTR_ERR(kvm_sregs);
2120 kvm_sregs = NULL;
2121 goto out;
2122 }
2123 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2124 break;
2125 }
2126 case KVM_GET_MP_STATE: {
2127 struct kvm_mp_state mp_state;
2128
2129 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2130 if (r)
2131 goto out;
2132 r = -EFAULT;
2133 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2134 goto out;
2135 r = 0;
2136 break;
2137 }
2138 case KVM_SET_MP_STATE: {
2139 struct kvm_mp_state mp_state;
2140
2141 r = -EFAULT;
2142 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2143 goto out;
2144 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2145 break;
2146 }
2147 case KVM_TRANSLATE: {
2148 struct kvm_translation tr;
2149
2150 r = -EFAULT;
2151 if (copy_from_user(&tr, argp, sizeof tr))
2152 goto out;
2153 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2154 if (r)
2155 goto out;
2156 r = -EFAULT;
2157 if (copy_to_user(argp, &tr, sizeof tr))
2158 goto out;
2159 r = 0;
2160 break;
2161 }
2162 case KVM_SET_GUEST_DEBUG: {
2163 struct kvm_guest_debug dbg;
2164
2165 r = -EFAULT;
2166 if (copy_from_user(&dbg, argp, sizeof dbg))
2167 goto out;
2168 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2169 break;
2170 }
2171 case KVM_SET_SIGNAL_MASK: {
2172 struct kvm_signal_mask __user *sigmask_arg = argp;
2173 struct kvm_signal_mask kvm_sigmask;
2174 sigset_t sigset, *p;
2175
2176 p = NULL;
2177 if (argp) {
2178 r = -EFAULT;
2179 if (copy_from_user(&kvm_sigmask, argp,
2180 sizeof kvm_sigmask))
2181 goto out;
2182 r = -EINVAL;
2183 if (kvm_sigmask.len != sizeof sigset)
2184 goto out;
2185 r = -EFAULT;
2186 if (copy_from_user(&sigset, sigmask_arg->sigset,
2187 sizeof sigset))
2188 goto out;
2189 p = &sigset;
2190 }
2191 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2192 break;
2193 }
2194 case KVM_GET_FPU: {
2195 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2196 r = -ENOMEM;
2197 if (!fpu)
2198 goto out;
2199 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2200 if (r)
2201 goto out;
2202 r = -EFAULT;
2203 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2204 goto out;
2205 r = 0;
2206 break;
2207 }
2208 case KVM_SET_FPU: {
2209 fpu = memdup_user(argp, sizeof(*fpu));
2210 if (IS_ERR(fpu)) {
2211 r = PTR_ERR(fpu);
2212 fpu = NULL;
2213 goto out;
2214 }
2215 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2216 break;
2217 }
2218 default:
2219 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2220 }
2221 out:
2222 vcpu_put(vcpu);
2223 kfree(fpu);
2224 kfree(kvm_sregs);
2225 return r;
2226 }
2227
2228 #ifdef CONFIG_COMPAT
2229 static long kvm_vcpu_compat_ioctl(struct file *filp,
2230 unsigned int ioctl, unsigned long arg)
2231 {
2232 struct kvm_vcpu *vcpu = filp->private_data;
2233 void __user *argp = compat_ptr(arg);
2234 int r;
2235
2236 if (vcpu->kvm->mm != current->mm)
2237 return -EIO;
2238
2239 switch (ioctl) {
2240 case KVM_SET_SIGNAL_MASK: {
2241 struct kvm_signal_mask __user *sigmask_arg = argp;
2242 struct kvm_signal_mask kvm_sigmask;
2243 compat_sigset_t csigset;
2244 sigset_t sigset;
2245
2246 if (argp) {
2247 r = -EFAULT;
2248 if (copy_from_user(&kvm_sigmask, argp,
2249 sizeof kvm_sigmask))
2250 goto out;
2251 r = -EINVAL;
2252 if (kvm_sigmask.len != sizeof csigset)
2253 goto out;
2254 r = -EFAULT;
2255 if (copy_from_user(&csigset, sigmask_arg->sigset,
2256 sizeof csigset))
2257 goto out;
2258 sigset_from_compat(&sigset, &csigset);
2259 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2260 } else
2261 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2262 break;
2263 }
2264 default:
2265 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2266 }
2267
2268 out:
2269 return r;
2270 }
2271 #endif
2272
2273 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2274 int (*accessor)(struct kvm_device *dev,
2275 struct kvm_device_attr *attr),
2276 unsigned long arg)
2277 {
2278 struct kvm_device_attr attr;
2279
2280 if (!accessor)
2281 return -EPERM;
2282
2283 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2284 return -EFAULT;
2285
2286 return accessor(dev, &attr);
2287 }
2288
2289 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2290 unsigned long arg)
2291 {
2292 struct kvm_device *dev = filp->private_data;
2293
2294 switch (ioctl) {
2295 case KVM_SET_DEVICE_ATTR:
2296 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2297 case KVM_GET_DEVICE_ATTR:
2298 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2299 case KVM_HAS_DEVICE_ATTR:
2300 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2301 default:
2302 if (dev->ops->ioctl)
2303 return dev->ops->ioctl(dev, ioctl, arg);
2304
2305 return -ENOTTY;
2306 }
2307 }
2308
2309 static int kvm_device_release(struct inode *inode, struct file *filp)
2310 {
2311 struct kvm_device *dev = filp->private_data;
2312 struct kvm *kvm = dev->kvm;
2313
2314 kvm_put_kvm(kvm);
2315 return 0;
2316 }
2317
2318 static const struct file_operations kvm_device_fops = {
2319 .unlocked_ioctl = kvm_device_ioctl,
2320 #ifdef CONFIG_COMPAT
2321 .compat_ioctl = kvm_device_ioctl,
2322 #endif
2323 .release = kvm_device_release,
2324 };
2325
2326 struct kvm_device *kvm_device_from_filp(struct file *filp)
2327 {
2328 if (filp->f_op != &kvm_device_fops)
2329 return NULL;
2330
2331 return filp->private_data;
2332 }
2333
2334 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2335 #ifdef CONFIG_KVM_MPIC
2336 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2337 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2338 #endif
2339
2340 #ifdef CONFIG_KVM_XICS
2341 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2342 #endif
2343 };
2344
2345 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2346 {
2347 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2348 return -ENOSPC;
2349
2350 if (kvm_device_ops_table[type] != NULL)
2351 return -EEXIST;
2352
2353 kvm_device_ops_table[type] = ops;
2354 return 0;
2355 }
2356
2357 void kvm_unregister_device_ops(u32 type)
2358 {
2359 if (kvm_device_ops_table[type] != NULL)
2360 kvm_device_ops_table[type] = NULL;
2361 }
2362
2363 static int kvm_ioctl_create_device(struct kvm *kvm,
2364 struct kvm_create_device *cd)
2365 {
2366 struct kvm_device_ops *ops = NULL;
2367 struct kvm_device *dev;
2368 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2369 int ret;
2370
2371 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2372 return -ENODEV;
2373
2374 ops = kvm_device_ops_table[cd->type];
2375 if (ops == NULL)
2376 return -ENODEV;
2377
2378 if (test)
2379 return 0;
2380
2381 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2382 if (!dev)
2383 return -ENOMEM;
2384
2385 dev->ops = ops;
2386 dev->kvm = kvm;
2387
2388 ret = ops->create(dev, cd->type);
2389 if (ret < 0) {
2390 kfree(dev);
2391 return ret;
2392 }
2393
2394 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2395 if (ret < 0) {
2396 ops->destroy(dev);
2397 return ret;
2398 }
2399
2400 list_add(&dev->vm_node, &kvm->devices);
2401 kvm_get_kvm(kvm);
2402 cd->fd = ret;
2403 return 0;
2404 }
2405
2406 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2407 {
2408 switch (arg) {
2409 case KVM_CAP_USER_MEMORY:
2410 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2411 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2412 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2413 case KVM_CAP_SET_BOOT_CPU_ID:
2414 #endif
2415 case KVM_CAP_INTERNAL_ERROR_DATA:
2416 #ifdef CONFIG_HAVE_KVM_MSI
2417 case KVM_CAP_SIGNAL_MSI:
2418 #endif
2419 #ifdef CONFIG_HAVE_KVM_IRQFD
2420 case KVM_CAP_IRQFD_RESAMPLE:
2421 #endif
2422 case KVM_CAP_CHECK_EXTENSION_VM:
2423 return 1;
2424 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2425 case KVM_CAP_IRQ_ROUTING:
2426 return KVM_MAX_IRQ_ROUTES;
2427 #endif
2428 default:
2429 break;
2430 }
2431 return kvm_vm_ioctl_check_extension(kvm, arg);
2432 }
2433
2434 static long kvm_vm_ioctl(struct file *filp,
2435 unsigned int ioctl, unsigned long arg)
2436 {
2437 struct kvm *kvm = filp->private_data;
2438 void __user *argp = (void __user *)arg;
2439 int r;
2440
2441 if (kvm->mm != current->mm)
2442 return -EIO;
2443 switch (ioctl) {
2444 case KVM_CREATE_VCPU:
2445 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2446 break;
2447 case KVM_SET_USER_MEMORY_REGION: {
2448 struct kvm_userspace_memory_region kvm_userspace_mem;
2449
2450 r = -EFAULT;
2451 if (copy_from_user(&kvm_userspace_mem, argp,
2452 sizeof kvm_userspace_mem))
2453 goto out;
2454
2455 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2456 break;
2457 }
2458 case KVM_GET_DIRTY_LOG: {
2459 struct kvm_dirty_log log;
2460
2461 r = -EFAULT;
2462 if (copy_from_user(&log, argp, sizeof log))
2463 goto out;
2464 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2465 break;
2466 }
2467 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2468 case KVM_REGISTER_COALESCED_MMIO: {
2469 struct kvm_coalesced_mmio_zone zone;
2470 r = -EFAULT;
2471 if (copy_from_user(&zone, argp, sizeof zone))
2472 goto out;
2473 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2474 break;
2475 }
2476 case KVM_UNREGISTER_COALESCED_MMIO: {
2477 struct kvm_coalesced_mmio_zone zone;
2478 r = -EFAULT;
2479 if (copy_from_user(&zone, argp, sizeof zone))
2480 goto out;
2481 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2482 break;
2483 }
2484 #endif
2485 case KVM_IRQFD: {
2486 struct kvm_irqfd data;
2487
2488 r = -EFAULT;
2489 if (copy_from_user(&data, argp, sizeof data))
2490 goto out;
2491 r = kvm_irqfd(kvm, &data);
2492 break;
2493 }
2494 case KVM_IOEVENTFD: {
2495 struct kvm_ioeventfd data;
2496
2497 r = -EFAULT;
2498 if (copy_from_user(&data, argp, sizeof data))
2499 goto out;
2500 r = kvm_ioeventfd(kvm, &data);
2501 break;
2502 }
2503 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2504 case KVM_SET_BOOT_CPU_ID:
2505 r = 0;
2506 mutex_lock(&kvm->lock);
2507 if (atomic_read(&kvm->online_vcpus) != 0)
2508 r = -EBUSY;
2509 else
2510 kvm->bsp_vcpu_id = arg;
2511 mutex_unlock(&kvm->lock);
2512 break;
2513 #endif
2514 #ifdef CONFIG_HAVE_KVM_MSI
2515 case KVM_SIGNAL_MSI: {
2516 struct kvm_msi msi;
2517
2518 r = -EFAULT;
2519 if (copy_from_user(&msi, argp, sizeof msi))
2520 goto out;
2521 r = kvm_send_userspace_msi(kvm, &msi);
2522 break;
2523 }
2524 #endif
2525 #ifdef __KVM_HAVE_IRQ_LINE
2526 case KVM_IRQ_LINE_STATUS:
2527 case KVM_IRQ_LINE: {
2528 struct kvm_irq_level irq_event;
2529
2530 r = -EFAULT;
2531 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2532 goto out;
2533
2534 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2535 ioctl == KVM_IRQ_LINE_STATUS);
2536 if (r)
2537 goto out;
2538
2539 r = -EFAULT;
2540 if (ioctl == KVM_IRQ_LINE_STATUS) {
2541 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2542 goto out;
2543 }
2544
2545 r = 0;
2546 break;
2547 }
2548 #endif
2549 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2550 case KVM_SET_GSI_ROUTING: {
2551 struct kvm_irq_routing routing;
2552 struct kvm_irq_routing __user *urouting;
2553 struct kvm_irq_routing_entry *entries;
2554
2555 r = -EFAULT;
2556 if (copy_from_user(&routing, argp, sizeof(routing)))
2557 goto out;
2558 r = -EINVAL;
2559 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2560 goto out;
2561 if (routing.flags)
2562 goto out;
2563 r = -ENOMEM;
2564 entries = vmalloc(routing.nr * sizeof(*entries));
2565 if (!entries)
2566 goto out;
2567 r = -EFAULT;
2568 urouting = argp;
2569 if (copy_from_user(entries, urouting->entries,
2570 routing.nr * sizeof(*entries)))
2571 goto out_free_irq_routing;
2572 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2573 routing.flags);
2574 out_free_irq_routing:
2575 vfree(entries);
2576 break;
2577 }
2578 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2579 case KVM_CREATE_DEVICE: {
2580 struct kvm_create_device cd;
2581
2582 r = -EFAULT;
2583 if (copy_from_user(&cd, argp, sizeof(cd)))
2584 goto out;
2585
2586 r = kvm_ioctl_create_device(kvm, &cd);
2587 if (r)
2588 goto out;
2589
2590 r = -EFAULT;
2591 if (copy_to_user(argp, &cd, sizeof(cd)))
2592 goto out;
2593
2594 r = 0;
2595 break;
2596 }
2597 case KVM_CHECK_EXTENSION:
2598 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2599 break;
2600 default:
2601 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2602 if (r == -ENOTTY)
2603 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2604 }
2605 out:
2606 return r;
2607 }
2608
2609 #ifdef CONFIG_COMPAT
2610 struct compat_kvm_dirty_log {
2611 __u32 slot;
2612 __u32 padding1;
2613 union {
2614 compat_uptr_t dirty_bitmap; /* one bit per page */
2615 __u64 padding2;
2616 };
2617 };
2618
2619 static long kvm_vm_compat_ioctl(struct file *filp,
2620 unsigned int ioctl, unsigned long arg)
2621 {
2622 struct kvm *kvm = filp->private_data;
2623 int r;
2624
2625 if (kvm->mm != current->mm)
2626 return -EIO;
2627 switch (ioctl) {
2628 case KVM_GET_DIRTY_LOG: {
2629 struct compat_kvm_dirty_log compat_log;
2630 struct kvm_dirty_log log;
2631
2632 r = -EFAULT;
2633 if (copy_from_user(&compat_log, (void __user *)arg,
2634 sizeof(compat_log)))
2635 goto out;
2636 log.slot = compat_log.slot;
2637 log.padding1 = compat_log.padding1;
2638 log.padding2 = compat_log.padding2;
2639 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2640
2641 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2642 break;
2643 }
2644 default:
2645 r = kvm_vm_ioctl(filp, ioctl, arg);
2646 }
2647
2648 out:
2649 return r;
2650 }
2651 #endif
2652
2653 static struct file_operations kvm_vm_fops = {
2654 .release = kvm_vm_release,
2655 .unlocked_ioctl = kvm_vm_ioctl,
2656 #ifdef CONFIG_COMPAT
2657 .compat_ioctl = kvm_vm_compat_ioctl,
2658 #endif
2659 .llseek = noop_llseek,
2660 };
2661
2662 static int kvm_dev_ioctl_create_vm(unsigned long type)
2663 {
2664 int r;
2665 struct kvm *kvm;
2666
2667 kvm = kvm_create_vm(type);
2668 if (IS_ERR(kvm))
2669 return PTR_ERR(kvm);
2670 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2671 r = kvm_coalesced_mmio_init(kvm);
2672 if (r < 0) {
2673 kvm_put_kvm(kvm);
2674 return r;
2675 }
2676 #endif
2677 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2678 if (r < 0)
2679 kvm_put_kvm(kvm);
2680
2681 return r;
2682 }
2683
2684 static long kvm_dev_ioctl(struct file *filp,
2685 unsigned int ioctl, unsigned long arg)
2686 {
2687 long r = -EINVAL;
2688
2689 switch (ioctl) {
2690 case KVM_GET_API_VERSION:
2691 if (arg)
2692 goto out;
2693 r = KVM_API_VERSION;
2694 break;
2695 case KVM_CREATE_VM:
2696 r = kvm_dev_ioctl_create_vm(arg);
2697 break;
2698 case KVM_CHECK_EXTENSION:
2699 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2700 break;
2701 case KVM_GET_VCPU_MMAP_SIZE:
2702 if (arg)
2703 goto out;
2704 r = PAGE_SIZE; /* struct kvm_run */
2705 #ifdef CONFIG_X86
2706 r += PAGE_SIZE; /* pio data page */
2707 #endif
2708 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2709 r += PAGE_SIZE; /* coalesced mmio ring page */
2710 #endif
2711 break;
2712 case KVM_TRACE_ENABLE:
2713 case KVM_TRACE_PAUSE:
2714 case KVM_TRACE_DISABLE:
2715 r = -EOPNOTSUPP;
2716 break;
2717 default:
2718 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2719 }
2720 out:
2721 return r;
2722 }
2723
2724 static struct file_operations kvm_chardev_ops = {
2725 .unlocked_ioctl = kvm_dev_ioctl,
2726 .compat_ioctl = kvm_dev_ioctl,
2727 .llseek = noop_llseek,
2728 };
2729
2730 static struct miscdevice kvm_dev = {
2731 KVM_MINOR,
2732 "kvm",
2733 &kvm_chardev_ops,
2734 };
2735
2736 static void hardware_enable_nolock(void *junk)
2737 {
2738 int cpu = raw_smp_processor_id();
2739 int r;
2740
2741 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2742 return;
2743
2744 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2745
2746 r = kvm_arch_hardware_enable();
2747
2748 if (r) {
2749 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2750 atomic_inc(&hardware_enable_failed);
2751 printk(KERN_INFO "kvm: enabling virtualization on "
2752 "CPU%d failed\n", cpu);
2753 }
2754 }
2755
2756 static void hardware_enable(void)
2757 {
2758 raw_spin_lock(&kvm_count_lock);
2759 if (kvm_usage_count)
2760 hardware_enable_nolock(NULL);
2761 raw_spin_unlock(&kvm_count_lock);
2762 }
2763
2764 static void hardware_disable_nolock(void *junk)
2765 {
2766 int cpu = raw_smp_processor_id();
2767
2768 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2769 return;
2770 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2771 kvm_arch_hardware_disable();
2772 }
2773
2774 static void hardware_disable(void)
2775 {
2776 raw_spin_lock(&kvm_count_lock);
2777 if (kvm_usage_count)
2778 hardware_disable_nolock(NULL);
2779 raw_spin_unlock(&kvm_count_lock);
2780 }
2781
2782 static void hardware_disable_all_nolock(void)
2783 {
2784 BUG_ON(!kvm_usage_count);
2785
2786 kvm_usage_count--;
2787 if (!kvm_usage_count)
2788 on_each_cpu(hardware_disable_nolock, NULL, 1);
2789 }
2790
2791 static void hardware_disable_all(void)
2792 {
2793 raw_spin_lock(&kvm_count_lock);
2794 hardware_disable_all_nolock();
2795 raw_spin_unlock(&kvm_count_lock);
2796 }
2797
2798 static int hardware_enable_all(void)
2799 {
2800 int r = 0;
2801
2802 raw_spin_lock(&kvm_count_lock);
2803
2804 kvm_usage_count++;
2805 if (kvm_usage_count == 1) {
2806 atomic_set(&hardware_enable_failed, 0);
2807 on_each_cpu(hardware_enable_nolock, NULL, 1);
2808
2809 if (atomic_read(&hardware_enable_failed)) {
2810 hardware_disable_all_nolock();
2811 r = -EBUSY;
2812 }
2813 }
2814
2815 raw_spin_unlock(&kvm_count_lock);
2816
2817 return r;
2818 }
2819
2820 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2821 void *v)
2822 {
2823 int cpu = (long)v;
2824
2825 val &= ~CPU_TASKS_FROZEN;
2826 switch (val) {
2827 case CPU_DYING:
2828 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2829 cpu);
2830 hardware_disable();
2831 break;
2832 case CPU_STARTING:
2833 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2834 cpu);
2835 hardware_enable();
2836 break;
2837 }
2838 return NOTIFY_OK;
2839 }
2840
2841 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2842 void *v)
2843 {
2844 /*
2845 * Some (well, at least mine) BIOSes hang on reboot if
2846 * in vmx root mode.
2847 *
2848 * And Intel TXT required VMX off for all cpu when system shutdown.
2849 */
2850 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2851 kvm_rebooting = true;
2852 on_each_cpu(hardware_disable_nolock, NULL, 1);
2853 return NOTIFY_OK;
2854 }
2855
2856 static struct notifier_block kvm_reboot_notifier = {
2857 .notifier_call = kvm_reboot,
2858 .priority = 0,
2859 };
2860
2861 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2862 {
2863 int i;
2864
2865 for (i = 0; i < bus->dev_count; i++) {
2866 struct kvm_io_device *pos = bus->range[i].dev;
2867
2868 kvm_iodevice_destructor(pos);
2869 }
2870 kfree(bus);
2871 }
2872
2873 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2874 const struct kvm_io_range *r2)
2875 {
2876 if (r1->addr < r2->addr)
2877 return -1;
2878 if (r1->addr + r1->len > r2->addr + r2->len)
2879 return 1;
2880 return 0;
2881 }
2882
2883 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2884 {
2885 return kvm_io_bus_cmp(p1, p2);
2886 }
2887
2888 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2889 gpa_t addr, int len)
2890 {
2891 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2892 .addr = addr,
2893 .len = len,
2894 .dev = dev,
2895 };
2896
2897 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2898 kvm_io_bus_sort_cmp, NULL);
2899
2900 return 0;
2901 }
2902
2903 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2904 gpa_t addr, int len)
2905 {
2906 struct kvm_io_range *range, key;
2907 int off;
2908
2909 key = (struct kvm_io_range) {
2910 .addr = addr,
2911 .len = len,
2912 };
2913
2914 range = bsearch(&key, bus->range, bus->dev_count,
2915 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2916 if (range == NULL)
2917 return -ENOENT;
2918
2919 off = range - bus->range;
2920
2921 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2922 off--;
2923
2924 return off;
2925 }
2926
2927 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2928 struct kvm_io_range *range, const void *val)
2929 {
2930 int idx;
2931
2932 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2933 if (idx < 0)
2934 return -EOPNOTSUPP;
2935
2936 while (idx < bus->dev_count &&
2937 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2938 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2939 range->len, val))
2940 return idx;
2941 idx++;
2942 }
2943
2944 return -EOPNOTSUPP;
2945 }
2946
2947 /* kvm_io_bus_write - called under kvm->slots_lock */
2948 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2949 int len, const void *val)
2950 {
2951 struct kvm_io_bus *bus;
2952 struct kvm_io_range range;
2953 int r;
2954
2955 range = (struct kvm_io_range) {
2956 .addr = addr,
2957 .len = len,
2958 };
2959
2960 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2961 r = __kvm_io_bus_write(bus, &range, val);
2962 return r < 0 ? r : 0;
2963 }
2964
2965 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2966 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2967 int len, const void *val, long cookie)
2968 {
2969 struct kvm_io_bus *bus;
2970 struct kvm_io_range range;
2971
2972 range = (struct kvm_io_range) {
2973 .addr = addr,
2974 .len = len,
2975 };
2976
2977 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2978
2979 /* First try the device referenced by cookie. */
2980 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2981 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2982 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2983 val))
2984 return cookie;
2985
2986 /*
2987 * cookie contained garbage; fall back to search and return the
2988 * correct cookie value.
2989 */
2990 return __kvm_io_bus_write(bus, &range, val);
2991 }
2992
2993 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2994 void *val)
2995 {
2996 int idx;
2997
2998 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2999 if (idx < 0)
3000 return -EOPNOTSUPP;
3001
3002 while (idx < bus->dev_count &&
3003 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3004 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
3005 range->len, val))
3006 return idx;
3007 idx++;
3008 }
3009
3010 return -EOPNOTSUPP;
3011 }
3012 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3013
3014 /* kvm_io_bus_read - called under kvm->slots_lock */
3015 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3016 int len, void *val)
3017 {
3018 struct kvm_io_bus *bus;
3019 struct kvm_io_range range;
3020 int r;
3021
3022 range = (struct kvm_io_range) {
3023 .addr = addr,
3024 .len = len,
3025 };
3026
3027 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3028 r = __kvm_io_bus_read(bus, &range, val);
3029 return r < 0 ? r : 0;
3030 }
3031
3032
3033 /* Caller must hold slots_lock. */
3034 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3035 int len, struct kvm_io_device *dev)
3036 {
3037 struct kvm_io_bus *new_bus, *bus;
3038
3039 bus = kvm->buses[bus_idx];
3040 /* exclude ioeventfd which is limited by maximum fd */
3041 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3042 return -ENOSPC;
3043
3044 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3045 sizeof(struct kvm_io_range)), GFP_KERNEL);
3046 if (!new_bus)
3047 return -ENOMEM;
3048 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3049 sizeof(struct kvm_io_range)));
3050 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3051 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3052 synchronize_srcu_expedited(&kvm->srcu);
3053 kfree(bus);
3054
3055 return 0;
3056 }
3057
3058 /* Caller must hold slots_lock. */
3059 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3060 struct kvm_io_device *dev)
3061 {
3062 int i, r;
3063 struct kvm_io_bus *new_bus, *bus;
3064
3065 bus = kvm->buses[bus_idx];
3066 r = -ENOENT;
3067 for (i = 0; i < bus->dev_count; i++)
3068 if (bus->range[i].dev == dev) {
3069 r = 0;
3070 break;
3071 }
3072
3073 if (r)
3074 return r;
3075
3076 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3077 sizeof(struct kvm_io_range)), GFP_KERNEL);
3078 if (!new_bus)
3079 return -ENOMEM;
3080
3081 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3082 new_bus->dev_count--;
3083 memcpy(new_bus->range + i, bus->range + i + 1,
3084 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3085
3086 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3087 synchronize_srcu_expedited(&kvm->srcu);
3088 kfree(bus);
3089 return r;
3090 }
3091
3092 static struct notifier_block kvm_cpu_notifier = {
3093 .notifier_call = kvm_cpu_hotplug,
3094 };
3095
3096 static int vm_stat_get(void *_offset, u64 *val)
3097 {
3098 unsigned offset = (long)_offset;
3099 struct kvm *kvm;
3100
3101 *val = 0;
3102 spin_lock(&kvm_lock);
3103 list_for_each_entry(kvm, &vm_list, vm_list)
3104 *val += *(u32 *)((void *)kvm + offset);
3105 spin_unlock(&kvm_lock);
3106 return 0;
3107 }
3108
3109 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3110
3111 static int vcpu_stat_get(void *_offset, u64 *val)
3112 {
3113 unsigned offset = (long)_offset;
3114 struct kvm *kvm;
3115 struct kvm_vcpu *vcpu;
3116 int i;
3117
3118 *val = 0;
3119 spin_lock(&kvm_lock);
3120 list_for_each_entry(kvm, &vm_list, vm_list)
3121 kvm_for_each_vcpu(i, vcpu, kvm)
3122 *val += *(u32 *)((void *)vcpu + offset);
3123
3124 spin_unlock(&kvm_lock);
3125 return 0;
3126 }
3127
3128 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3129
3130 static const struct file_operations *stat_fops[] = {
3131 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3132 [KVM_STAT_VM] = &vm_stat_fops,
3133 };
3134
3135 static int kvm_init_debug(void)
3136 {
3137 int r = -EEXIST;
3138 struct kvm_stats_debugfs_item *p;
3139
3140 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3141 if (kvm_debugfs_dir == NULL)
3142 goto out;
3143
3144 for (p = debugfs_entries; p->name; ++p) {
3145 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3146 (void *)(long)p->offset,
3147 stat_fops[p->kind]);
3148 if (p->dentry == NULL)
3149 goto out_dir;
3150 }
3151
3152 return 0;
3153
3154 out_dir:
3155 debugfs_remove_recursive(kvm_debugfs_dir);
3156 out:
3157 return r;
3158 }
3159
3160 static void kvm_exit_debug(void)
3161 {
3162 struct kvm_stats_debugfs_item *p;
3163
3164 for (p = debugfs_entries; p->name; ++p)
3165 debugfs_remove(p->dentry);
3166 debugfs_remove(kvm_debugfs_dir);
3167 }
3168
3169 static int kvm_suspend(void)
3170 {
3171 if (kvm_usage_count)
3172 hardware_disable_nolock(NULL);
3173 return 0;
3174 }
3175
3176 static void kvm_resume(void)
3177 {
3178 if (kvm_usage_count) {
3179 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3180 hardware_enable_nolock(NULL);
3181 }
3182 }
3183
3184 static struct syscore_ops kvm_syscore_ops = {
3185 .suspend = kvm_suspend,
3186 .resume = kvm_resume,
3187 };
3188
3189 static inline
3190 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3191 {
3192 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3193 }
3194
3195 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3196 {
3197 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3198 if (vcpu->preempted)
3199 vcpu->preempted = false;
3200
3201 kvm_arch_sched_in(vcpu, cpu);
3202
3203 kvm_arch_vcpu_load(vcpu, cpu);
3204 }
3205
3206 static void kvm_sched_out(struct preempt_notifier *pn,
3207 struct task_struct *next)
3208 {
3209 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3210
3211 if (current->state == TASK_RUNNING)
3212 vcpu->preempted = true;
3213 kvm_arch_vcpu_put(vcpu);
3214 }
3215
3216 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3217 struct module *module)
3218 {
3219 int r;
3220 int cpu;
3221
3222 r = kvm_arch_init(opaque);
3223 if (r)
3224 goto out_fail;
3225
3226 /*
3227 * kvm_arch_init makes sure there's at most one caller
3228 * for architectures that support multiple implementations,
3229 * like intel and amd on x86.
3230 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3231 * conflicts in case kvm is already setup for another implementation.
3232 */
3233 r = kvm_irqfd_init();
3234 if (r)
3235 goto out_irqfd;
3236
3237 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3238 r = -ENOMEM;
3239 goto out_free_0;
3240 }
3241
3242 r = kvm_arch_hardware_setup();
3243 if (r < 0)
3244 goto out_free_0a;
3245
3246 for_each_online_cpu(cpu) {
3247 smp_call_function_single(cpu,
3248 kvm_arch_check_processor_compat,
3249 &r, 1);
3250 if (r < 0)
3251 goto out_free_1;
3252 }
3253
3254 r = register_cpu_notifier(&kvm_cpu_notifier);
3255 if (r)
3256 goto out_free_2;
3257 register_reboot_notifier(&kvm_reboot_notifier);
3258
3259 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3260 if (!vcpu_align)
3261 vcpu_align = __alignof__(struct kvm_vcpu);
3262 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3263 0, NULL);
3264 if (!kvm_vcpu_cache) {
3265 r = -ENOMEM;
3266 goto out_free_3;
3267 }
3268
3269 r = kvm_async_pf_init();
3270 if (r)
3271 goto out_free;
3272
3273 kvm_chardev_ops.owner = module;
3274 kvm_vm_fops.owner = module;
3275 kvm_vcpu_fops.owner = module;
3276
3277 r = misc_register(&kvm_dev);
3278 if (r) {
3279 printk(KERN_ERR "kvm: misc device register failed\n");
3280 goto out_unreg;
3281 }
3282
3283 register_syscore_ops(&kvm_syscore_ops);
3284
3285 kvm_preempt_ops.sched_in = kvm_sched_in;
3286 kvm_preempt_ops.sched_out = kvm_sched_out;
3287
3288 r = kvm_init_debug();
3289 if (r) {
3290 printk(KERN_ERR "kvm: create debugfs files failed\n");
3291 goto out_undebugfs;
3292 }
3293
3294 r = kvm_vfio_ops_init();
3295 WARN_ON(r);
3296
3297 return 0;
3298
3299 out_undebugfs:
3300 unregister_syscore_ops(&kvm_syscore_ops);
3301 misc_deregister(&kvm_dev);
3302 out_unreg:
3303 kvm_async_pf_deinit();
3304 out_free:
3305 kmem_cache_destroy(kvm_vcpu_cache);
3306 out_free_3:
3307 unregister_reboot_notifier(&kvm_reboot_notifier);
3308 unregister_cpu_notifier(&kvm_cpu_notifier);
3309 out_free_2:
3310 out_free_1:
3311 kvm_arch_hardware_unsetup();
3312 out_free_0a:
3313 free_cpumask_var(cpus_hardware_enabled);
3314 out_free_0:
3315 kvm_irqfd_exit();
3316 out_irqfd:
3317 kvm_arch_exit();
3318 out_fail:
3319 return r;
3320 }
3321 EXPORT_SYMBOL_GPL(kvm_init);
3322
3323 void kvm_exit(void)
3324 {
3325 kvm_exit_debug();
3326 misc_deregister(&kvm_dev);
3327 kmem_cache_destroy(kvm_vcpu_cache);
3328 kvm_async_pf_deinit();
3329 unregister_syscore_ops(&kvm_syscore_ops);
3330 unregister_reboot_notifier(&kvm_reboot_notifier);
3331 unregister_cpu_notifier(&kvm_cpu_notifier);
3332 on_each_cpu(hardware_disable_nolock, NULL, 1);
3333 kvm_arch_hardware_unsetup();
3334 kvm_arch_exit();
3335 kvm_irqfd_exit();
3336 free_cpumask_var(cpus_hardware_enabled);
3337 kvm_vfio_ops_exit();
3338 }
3339 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.101797 seconds and 6 git commands to generate.