KVM: No disable_irq for MSI/MSI-X interrupt on device assignment
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 DEFINE_SPINLOCK(kvm_lock);
66 LIST_HEAD(vm_list);
67
68 static cpumask_var_t cpus_hardware_enabled;
69
70 struct kmem_cache *kvm_vcpu_cache;
71 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
72
73 static __read_mostly struct preempt_ops kvm_preempt_ops;
74
75 struct dentry *kvm_debugfs_dir;
76
77 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
78 unsigned long arg);
79
80 static bool kvm_rebooting;
81
82 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
83 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
84 int assigned_dev_id)
85 {
86 struct list_head *ptr;
87 struct kvm_assigned_dev_kernel *match;
88
89 list_for_each(ptr, head) {
90 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
91 if (match->assigned_dev_id == assigned_dev_id)
92 return match;
93 }
94 return NULL;
95 }
96
97 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
98 *assigned_dev, int irq)
99 {
100 int i, index;
101 struct msix_entry *host_msix_entries;
102
103 host_msix_entries = assigned_dev->host_msix_entries;
104
105 index = -1;
106 for (i = 0; i < assigned_dev->entries_nr; i++)
107 if (irq == host_msix_entries[i].vector) {
108 index = i;
109 break;
110 }
111 if (index < 0) {
112 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
113 return 0;
114 }
115
116 return index;
117 }
118
119 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
120 {
121 struct kvm_assigned_dev_kernel *assigned_dev;
122 struct kvm *kvm;
123 int i;
124
125 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
126 interrupt_work);
127 kvm = assigned_dev->kvm;
128
129 /* This is taken to safely inject irq inside the guest. When
130 * the interrupt injection (or the ioapic code) uses a
131 * finer-grained lock, update this
132 */
133 mutex_lock(&kvm->lock);
134 spin_lock_irq(&assigned_dev->assigned_dev_lock);
135 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
136 struct kvm_guest_msix_entry *guest_entries =
137 assigned_dev->guest_msix_entries;
138 for (i = 0; i < assigned_dev->entries_nr; i++) {
139 if (!(guest_entries[i].flags &
140 KVM_ASSIGNED_MSIX_PENDING))
141 continue;
142 guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
143 kvm_set_irq(assigned_dev->kvm,
144 assigned_dev->irq_source_id,
145 guest_entries[i].vector, 1);
146 }
147 } else
148 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
149 assigned_dev->guest_irq, 1);
150
151 spin_unlock_irq(&assigned_dev->assigned_dev_lock);
152 mutex_unlock(&assigned_dev->kvm->lock);
153 }
154
155 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
156 {
157 unsigned long flags;
158 struct kvm_assigned_dev_kernel *assigned_dev =
159 (struct kvm_assigned_dev_kernel *) dev_id;
160
161 spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
162 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
163 int index = find_index_from_host_irq(assigned_dev, irq);
164 if (index < 0)
165 goto out;
166 assigned_dev->guest_msix_entries[index].flags |=
167 KVM_ASSIGNED_MSIX_PENDING;
168 }
169
170 schedule_work(&assigned_dev->interrupt_work);
171
172 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
173 disable_irq_nosync(irq);
174 assigned_dev->host_irq_disabled = true;
175 }
176
177 out:
178 spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
179 return IRQ_HANDLED;
180 }
181
182 /* Ack the irq line for an assigned device */
183 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
184 {
185 struct kvm_assigned_dev_kernel *dev;
186 unsigned long flags;
187
188 if (kian->gsi == -1)
189 return;
190
191 dev = container_of(kian, struct kvm_assigned_dev_kernel,
192 ack_notifier);
193
194 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
195
196 /* The guest irq may be shared so this ack may be
197 * from another device.
198 */
199 spin_lock_irqsave(&dev->assigned_dev_lock, flags);
200 if (dev->host_irq_disabled) {
201 enable_irq(dev->host_irq);
202 dev->host_irq_disabled = false;
203 }
204 spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
205 }
206
207 static void deassign_guest_irq(struct kvm *kvm,
208 struct kvm_assigned_dev_kernel *assigned_dev)
209 {
210 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
211 assigned_dev->ack_notifier.gsi = -1;
212
213 if (assigned_dev->irq_source_id != -1)
214 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
215 assigned_dev->irq_source_id = -1;
216 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
217 }
218
219 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
220 static void deassign_host_irq(struct kvm *kvm,
221 struct kvm_assigned_dev_kernel *assigned_dev)
222 {
223 /*
224 * In kvm_free_device_irq, cancel_work_sync return true if:
225 * 1. work is scheduled, and then cancelled.
226 * 2. work callback is executed.
227 *
228 * The first one ensured that the irq is disabled and no more events
229 * would happen. But for the second one, the irq may be enabled (e.g.
230 * for MSI). So we disable irq here to prevent further events.
231 *
232 * Notice this maybe result in nested disable if the interrupt type is
233 * INTx, but it's OK for we are going to free it.
234 *
235 * If this function is a part of VM destroy, please ensure that till
236 * now, the kvm state is still legal for probably we also have to wait
237 * interrupt_work done.
238 */
239 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
240 int i;
241 for (i = 0; i < assigned_dev->entries_nr; i++)
242 disable_irq_nosync(assigned_dev->
243 host_msix_entries[i].vector);
244
245 cancel_work_sync(&assigned_dev->interrupt_work);
246
247 for (i = 0; i < assigned_dev->entries_nr; i++)
248 free_irq(assigned_dev->host_msix_entries[i].vector,
249 (void *)assigned_dev);
250
251 assigned_dev->entries_nr = 0;
252 kfree(assigned_dev->host_msix_entries);
253 kfree(assigned_dev->guest_msix_entries);
254 pci_disable_msix(assigned_dev->dev);
255 } else {
256 /* Deal with MSI and INTx */
257 disable_irq_nosync(assigned_dev->host_irq);
258 cancel_work_sync(&assigned_dev->interrupt_work);
259
260 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
261
262 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
263 pci_disable_msi(assigned_dev->dev);
264 }
265
266 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
267 }
268
269 static int kvm_deassign_irq(struct kvm *kvm,
270 struct kvm_assigned_dev_kernel *assigned_dev,
271 unsigned long irq_requested_type)
272 {
273 unsigned long guest_irq_type, host_irq_type;
274
275 if (!irqchip_in_kernel(kvm))
276 return -EINVAL;
277 /* no irq assignment to deassign */
278 if (!assigned_dev->irq_requested_type)
279 return -ENXIO;
280
281 host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
282 guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
283
284 if (host_irq_type)
285 deassign_host_irq(kvm, assigned_dev);
286 if (guest_irq_type)
287 deassign_guest_irq(kvm, assigned_dev);
288
289 return 0;
290 }
291
292 static void kvm_free_assigned_irq(struct kvm *kvm,
293 struct kvm_assigned_dev_kernel *assigned_dev)
294 {
295 kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
296 }
297
298 static void kvm_free_assigned_device(struct kvm *kvm,
299 struct kvm_assigned_dev_kernel
300 *assigned_dev)
301 {
302 kvm_free_assigned_irq(kvm, assigned_dev);
303
304 pci_reset_function(assigned_dev->dev);
305
306 pci_release_regions(assigned_dev->dev);
307 pci_disable_device(assigned_dev->dev);
308 pci_dev_put(assigned_dev->dev);
309
310 list_del(&assigned_dev->list);
311 kfree(assigned_dev);
312 }
313
314 void kvm_free_all_assigned_devices(struct kvm *kvm)
315 {
316 struct list_head *ptr, *ptr2;
317 struct kvm_assigned_dev_kernel *assigned_dev;
318
319 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
320 assigned_dev = list_entry(ptr,
321 struct kvm_assigned_dev_kernel,
322 list);
323
324 kvm_free_assigned_device(kvm, assigned_dev);
325 }
326 }
327
328 static int assigned_device_enable_host_intx(struct kvm *kvm,
329 struct kvm_assigned_dev_kernel *dev)
330 {
331 dev->host_irq = dev->dev->irq;
332 /* Even though this is PCI, we don't want to use shared
333 * interrupts. Sharing host devices with guest-assigned devices
334 * on the same interrupt line is not a happy situation: there
335 * are going to be long delays in accepting, acking, etc.
336 */
337 if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
338 0, "kvm_assigned_intx_device", (void *)dev))
339 return -EIO;
340 return 0;
341 }
342
343 #ifdef __KVM_HAVE_MSI
344 static int assigned_device_enable_host_msi(struct kvm *kvm,
345 struct kvm_assigned_dev_kernel *dev)
346 {
347 int r;
348
349 if (!dev->dev->msi_enabled) {
350 r = pci_enable_msi(dev->dev);
351 if (r)
352 return r;
353 }
354
355 dev->host_irq = dev->dev->irq;
356 if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
357 "kvm_assigned_msi_device", (void *)dev)) {
358 pci_disable_msi(dev->dev);
359 return -EIO;
360 }
361
362 return 0;
363 }
364 #endif
365
366 #ifdef __KVM_HAVE_MSIX
367 static int assigned_device_enable_host_msix(struct kvm *kvm,
368 struct kvm_assigned_dev_kernel *dev)
369 {
370 int i, r = -EINVAL;
371
372 /* host_msix_entries and guest_msix_entries should have been
373 * initialized */
374 if (dev->entries_nr == 0)
375 return r;
376
377 r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
378 if (r)
379 return r;
380
381 for (i = 0; i < dev->entries_nr; i++) {
382 r = request_irq(dev->host_msix_entries[i].vector,
383 kvm_assigned_dev_intr, 0,
384 "kvm_assigned_msix_device",
385 (void *)dev);
386 /* FIXME: free requested_irq's on failure */
387 if (r)
388 return r;
389 }
390
391 return 0;
392 }
393
394 #endif
395
396 static int assigned_device_enable_guest_intx(struct kvm *kvm,
397 struct kvm_assigned_dev_kernel *dev,
398 struct kvm_assigned_irq *irq)
399 {
400 dev->guest_irq = irq->guest_irq;
401 dev->ack_notifier.gsi = irq->guest_irq;
402 return 0;
403 }
404
405 #ifdef __KVM_HAVE_MSI
406 static int assigned_device_enable_guest_msi(struct kvm *kvm,
407 struct kvm_assigned_dev_kernel *dev,
408 struct kvm_assigned_irq *irq)
409 {
410 dev->guest_irq = irq->guest_irq;
411 dev->ack_notifier.gsi = -1;
412 dev->host_irq_disabled = false;
413 return 0;
414 }
415 #endif
416 #ifdef __KVM_HAVE_MSIX
417 static int assigned_device_enable_guest_msix(struct kvm *kvm,
418 struct kvm_assigned_dev_kernel *dev,
419 struct kvm_assigned_irq *irq)
420 {
421 dev->guest_irq = irq->guest_irq;
422 dev->ack_notifier.gsi = -1;
423 dev->host_irq_disabled = false;
424 return 0;
425 }
426 #endif
427
428 static int assign_host_irq(struct kvm *kvm,
429 struct kvm_assigned_dev_kernel *dev,
430 __u32 host_irq_type)
431 {
432 int r = -EEXIST;
433
434 if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
435 return r;
436
437 switch (host_irq_type) {
438 case KVM_DEV_IRQ_HOST_INTX:
439 r = assigned_device_enable_host_intx(kvm, dev);
440 break;
441 #ifdef __KVM_HAVE_MSI
442 case KVM_DEV_IRQ_HOST_MSI:
443 r = assigned_device_enable_host_msi(kvm, dev);
444 break;
445 #endif
446 #ifdef __KVM_HAVE_MSIX
447 case KVM_DEV_IRQ_HOST_MSIX:
448 r = assigned_device_enable_host_msix(kvm, dev);
449 break;
450 #endif
451 default:
452 r = -EINVAL;
453 }
454
455 if (!r)
456 dev->irq_requested_type |= host_irq_type;
457
458 return r;
459 }
460
461 static int assign_guest_irq(struct kvm *kvm,
462 struct kvm_assigned_dev_kernel *dev,
463 struct kvm_assigned_irq *irq,
464 unsigned long guest_irq_type)
465 {
466 int id;
467 int r = -EEXIST;
468
469 if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
470 return r;
471
472 id = kvm_request_irq_source_id(kvm);
473 if (id < 0)
474 return id;
475
476 dev->irq_source_id = id;
477
478 switch (guest_irq_type) {
479 case KVM_DEV_IRQ_GUEST_INTX:
480 r = assigned_device_enable_guest_intx(kvm, dev, irq);
481 break;
482 #ifdef __KVM_HAVE_MSI
483 case KVM_DEV_IRQ_GUEST_MSI:
484 r = assigned_device_enable_guest_msi(kvm, dev, irq);
485 break;
486 #endif
487 #ifdef __KVM_HAVE_MSIX
488 case KVM_DEV_IRQ_GUEST_MSIX:
489 r = assigned_device_enable_guest_msix(kvm, dev, irq);
490 break;
491 #endif
492 default:
493 r = -EINVAL;
494 }
495
496 if (!r) {
497 dev->irq_requested_type |= guest_irq_type;
498 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
499 } else
500 kvm_free_irq_source_id(kvm, dev->irq_source_id);
501
502 return r;
503 }
504
505 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
506 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
507 struct kvm_assigned_irq *assigned_irq)
508 {
509 int r = -EINVAL;
510 struct kvm_assigned_dev_kernel *match;
511 unsigned long host_irq_type, guest_irq_type;
512
513 if (!capable(CAP_SYS_RAWIO))
514 return -EPERM;
515
516 if (!irqchip_in_kernel(kvm))
517 return r;
518
519 mutex_lock(&kvm->lock);
520 r = -ENODEV;
521 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
522 assigned_irq->assigned_dev_id);
523 if (!match)
524 goto out;
525
526 host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
527 guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
528
529 r = -EINVAL;
530 /* can only assign one type at a time */
531 if (hweight_long(host_irq_type) > 1)
532 goto out;
533 if (hweight_long(guest_irq_type) > 1)
534 goto out;
535 if (host_irq_type == 0 && guest_irq_type == 0)
536 goto out;
537
538 r = 0;
539 if (host_irq_type)
540 r = assign_host_irq(kvm, match, host_irq_type);
541 if (r)
542 goto out;
543
544 if (guest_irq_type)
545 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
546 out:
547 mutex_unlock(&kvm->lock);
548 return r;
549 }
550
551 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
552 struct kvm_assigned_irq
553 *assigned_irq)
554 {
555 int r = -ENODEV;
556 struct kvm_assigned_dev_kernel *match;
557
558 mutex_lock(&kvm->lock);
559
560 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
561 assigned_irq->assigned_dev_id);
562 if (!match)
563 goto out;
564
565 r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
566 out:
567 mutex_unlock(&kvm->lock);
568 return r;
569 }
570
571 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
572 struct kvm_assigned_pci_dev *assigned_dev)
573 {
574 int r = 0;
575 struct kvm_assigned_dev_kernel *match;
576 struct pci_dev *dev;
577
578 down_read(&kvm->slots_lock);
579 mutex_lock(&kvm->lock);
580
581 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
582 assigned_dev->assigned_dev_id);
583 if (match) {
584 /* device already assigned */
585 r = -EEXIST;
586 goto out;
587 }
588
589 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
590 if (match == NULL) {
591 printk(KERN_INFO "%s: Couldn't allocate memory\n",
592 __func__);
593 r = -ENOMEM;
594 goto out;
595 }
596 dev = pci_get_bus_and_slot(assigned_dev->busnr,
597 assigned_dev->devfn);
598 if (!dev) {
599 printk(KERN_INFO "%s: host device not found\n", __func__);
600 r = -EINVAL;
601 goto out_free;
602 }
603 if (pci_enable_device(dev)) {
604 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
605 r = -EBUSY;
606 goto out_put;
607 }
608 r = pci_request_regions(dev, "kvm_assigned_device");
609 if (r) {
610 printk(KERN_INFO "%s: Could not get access to device regions\n",
611 __func__);
612 goto out_disable;
613 }
614
615 pci_reset_function(dev);
616
617 match->assigned_dev_id = assigned_dev->assigned_dev_id;
618 match->host_busnr = assigned_dev->busnr;
619 match->host_devfn = assigned_dev->devfn;
620 match->flags = assigned_dev->flags;
621 match->dev = dev;
622 spin_lock_init(&match->assigned_dev_lock);
623 match->irq_source_id = -1;
624 match->kvm = kvm;
625 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
626 INIT_WORK(&match->interrupt_work,
627 kvm_assigned_dev_interrupt_work_handler);
628
629 list_add(&match->list, &kvm->arch.assigned_dev_head);
630
631 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
632 if (!kvm->arch.iommu_domain) {
633 r = kvm_iommu_map_guest(kvm);
634 if (r)
635 goto out_list_del;
636 }
637 r = kvm_assign_device(kvm, match);
638 if (r)
639 goto out_list_del;
640 }
641
642 out:
643 mutex_unlock(&kvm->lock);
644 up_read(&kvm->slots_lock);
645 return r;
646 out_list_del:
647 list_del(&match->list);
648 pci_release_regions(dev);
649 out_disable:
650 pci_disable_device(dev);
651 out_put:
652 pci_dev_put(dev);
653 out_free:
654 kfree(match);
655 mutex_unlock(&kvm->lock);
656 up_read(&kvm->slots_lock);
657 return r;
658 }
659 #endif
660
661 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
662 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
663 struct kvm_assigned_pci_dev *assigned_dev)
664 {
665 int r = 0;
666 struct kvm_assigned_dev_kernel *match;
667
668 mutex_lock(&kvm->lock);
669
670 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
671 assigned_dev->assigned_dev_id);
672 if (!match) {
673 printk(KERN_INFO "%s: device hasn't been assigned before, "
674 "so cannot be deassigned\n", __func__);
675 r = -EINVAL;
676 goto out;
677 }
678
679 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
680 kvm_deassign_device(kvm, match);
681
682 kvm_free_assigned_device(kvm, match);
683
684 out:
685 mutex_unlock(&kvm->lock);
686 return r;
687 }
688 #endif
689
690 static inline int valid_vcpu(int n)
691 {
692 return likely(n >= 0 && n < KVM_MAX_VCPUS);
693 }
694
695 inline int kvm_is_mmio_pfn(pfn_t pfn)
696 {
697 if (pfn_valid(pfn)) {
698 struct page *page = compound_head(pfn_to_page(pfn));
699 return PageReserved(page);
700 }
701
702 return true;
703 }
704
705 /*
706 * Switches to specified vcpu, until a matching vcpu_put()
707 */
708 void vcpu_load(struct kvm_vcpu *vcpu)
709 {
710 int cpu;
711
712 mutex_lock(&vcpu->mutex);
713 cpu = get_cpu();
714 preempt_notifier_register(&vcpu->preempt_notifier);
715 kvm_arch_vcpu_load(vcpu, cpu);
716 put_cpu();
717 }
718
719 void vcpu_put(struct kvm_vcpu *vcpu)
720 {
721 preempt_disable();
722 kvm_arch_vcpu_put(vcpu);
723 preempt_notifier_unregister(&vcpu->preempt_notifier);
724 preempt_enable();
725 mutex_unlock(&vcpu->mutex);
726 }
727
728 static void ack_flush(void *_completed)
729 {
730 }
731
732 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
733 {
734 int i, cpu, me;
735 cpumask_var_t cpus;
736 bool called = true;
737 struct kvm_vcpu *vcpu;
738
739 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
740 cpumask_clear(cpus);
741
742 me = get_cpu();
743 spin_lock(&kvm->requests_lock);
744 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
745 vcpu = kvm->vcpus[i];
746 if (!vcpu)
747 continue;
748 if (test_and_set_bit(req, &vcpu->requests))
749 continue;
750 cpu = vcpu->cpu;
751 if (cpus != NULL && cpu != -1 && cpu != me)
752 cpumask_set_cpu(cpu, cpus);
753 }
754 if (unlikely(cpus == NULL))
755 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
756 else if (!cpumask_empty(cpus))
757 smp_call_function_many(cpus, ack_flush, NULL, 1);
758 else
759 called = false;
760 spin_unlock(&kvm->requests_lock);
761 put_cpu();
762 free_cpumask_var(cpus);
763 return called;
764 }
765
766 void kvm_flush_remote_tlbs(struct kvm *kvm)
767 {
768 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
769 ++kvm->stat.remote_tlb_flush;
770 }
771
772 void kvm_reload_remote_mmus(struct kvm *kvm)
773 {
774 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
775 }
776
777 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
778 {
779 struct page *page;
780 int r;
781
782 mutex_init(&vcpu->mutex);
783 vcpu->cpu = -1;
784 vcpu->kvm = kvm;
785 vcpu->vcpu_id = id;
786 init_waitqueue_head(&vcpu->wq);
787
788 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
789 if (!page) {
790 r = -ENOMEM;
791 goto fail;
792 }
793 vcpu->run = page_address(page);
794
795 r = kvm_arch_vcpu_init(vcpu);
796 if (r < 0)
797 goto fail_free_run;
798 return 0;
799
800 fail_free_run:
801 free_page((unsigned long)vcpu->run);
802 fail:
803 return r;
804 }
805 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
806
807 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
808 {
809 kvm_arch_vcpu_uninit(vcpu);
810 free_page((unsigned long)vcpu->run);
811 }
812 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
813
814 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
815 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
816 {
817 return container_of(mn, struct kvm, mmu_notifier);
818 }
819
820 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
821 struct mm_struct *mm,
822 unsigned long address)
823 {
824 struct kvm *kvm = mmu_notifier_to_kvm(mn);
825 int need_tlb_flush;
826
827 /*
828 * When ->invalidate_page runs, the linux pte has been zapped
829 * already but the page is still allocated until
830 * ->invalidate_page returns. So if we increase the sequence
831 * here the kvm page fault will notice if the spte can't be
832 * established because the page is going to be freed. If
833 * instead the kvm page fault establishes the spte before
834 * ->invalidate_page runs, kvm_unmap_hva will release it
835 * before returning.
836 *
837 * The sequence increase only need to be seen at spin_unlock
838 * time, and not at spin_lock time.
839 *
840 * Increasing the sequence after the spin_unlock would be
841 * unsafe because the kvm page fault could then establish the
842 * pte after kvm_unmap_hva returned, without noticing the page
843 * is going to be freed.
844 */
845 spin_lock(&kvm->mmu_lock);
846 kvm->mmu_notifier_seq++;
847 need_tlb_flush = kvm_unmap_hva(kvm, address);
848 spin_unlock(&kvm->mmu_lock);
849
850 /* we've to flush the tlb before the pages can be freed */
851 if (need_tlb_flush)
852 kvm_flush_remote_tlbs(kvm);
853
854 }
855
856 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
857 struct mm_struct *mm,
858 unsigned long start,
859 unsigned long end)
860 {
861 struct kvm *kvm = mmu_notifier_to_kvm(mn);
862 int need_tlb_flush = 0;
863
864 spin_lock(&kvm->mmu_lock);
865 /*
866 * The count increase must become visible at unlock time as no
867 * spte can be established without taking the mmu_lock and
868 * count is also read inside the mmu_lock critical section.
869 */
870 kvm->mmu_notifier_count++;
871 for (; start < end; start += PAGE_SIZE)
872 need_tlb_flush |= kvm_unmap_hva(kvm, start);
873 spin_unlock(&kvm->mmu_lock);
874
875 /* we've to flush the tlb before the pages can be freed */
876 if (need_tlb_flush)
877 kvm_flush_remote_tlbs(kvm);
878 }
879
880 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
881 struct mm_struct *mm,
882 unsigned long start,
883 unsigned long end)
884 {
885 struct kvm *kvm = mmu_notifier_to_kvm(mn);
886
887 spin_lock(&kvm->mmu_lock);
888 /*
889 * This sequence increase will notify the kvm page fault that
890 * the page that is going to be mapped in the spte could have
891 * been freed.
892 */
893 kvm->mmu_notifier_seq++;
894 /*
895 * The above sequence increase must be visible before the
896 * below count decrease but both values are read by the kvm
897 * page fault under mmu_lock spinlock so we don't need to add
898 * a smb_wmb() here in between the two.
899 */
900 kvm->mmu_notifier_count--;
901 spin_unlock(&kvm->mmu_lock);
902
903 BUG_ON(kvm->mmu_notifier_count < 0);
904 }
905
906 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
907 struct mm_struct *mm,
908 unsigned long address)
909 {
910 struct kvm *kvm = mmu_notifier_to_kvm(mn);
911 int young;
912
913 spin_lock(&kvm->mmu_lock);
914 young = kvm_age_hva(kvm, address);
915 spin_unlock(&kvm->mmu_lock);
916
917 if (young)
918 kvm_flush_remote_tlbs(kvm);
919
920 return young;
921 }
922
923 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
924 struct mm_struct *mm)
925 {
926 struct kvm *kvm = mmu_notifier_to_kvm(mn);
927 kvm_arch_flush_shadow(kvm);
928 }
929
930 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
931 .invalidate_page = kvm_mmu_notifier_invalidate_page,
932 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
933 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
934 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
935 .release = kvm_mmu_notifier_release,
936 };
937 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
938
939 static struct kvm *kvm_create_vm(void)
940 {
941 struct kvm *kvm = kvm_arch_create_vm();
942 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
943 struct page *page;
944 #endif
945
946 if (IS_ERR(kvm))
947 goto out;
948 #ifdef CONFIG_HAVE_KVM_IRQCHIP
949 INIT_LIST_HEAD(&kvm->irq_routing);
950 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
951 #endif
952
953 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
954 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
955 if (!page) {
956 kfree(kvm);
957 return ERR_PTR(-ENOMEM);
958 }
959 kvm->coalesced_mmio_ring =
960 (struct kvm_coalesced_mmio_ring *)page_address(page);
961 #endif
962
963 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
964 {
965 int err;
966 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
967 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
968 if (err) {
969 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
970 put_page(page);
971 #endif
972 kfree(kvm);
973 return ERR_PTR(err);
974 }
975 }
976 #endif
977
978 kvm->mm = current->mm;
979 atomic_inc(&kvm->mm->mm_count);
980 spin_lock_init(&kvm->mmu_lock);
981 spin_lock_init(&kvm->requests_lock);
982 kvm_io_bus_init(&kvm->pio_bus);
983 kvm_irqfd_init(kvm);
984 mutex_init(&kvm->lock);
985 kvm_io_bus_init(&kvm->mmio_bus);
986 init_rwsem(&kvm->slots_lock);
987 atomic_set(&kvm->users_count, 1);
988 spin_lock(&kvm_lock);
989 list_add(&kvm->vm_list, &vm_list);
990 spin_unlock(&kvm_lock);
991 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
992 kvm_coalesced_mmio_init(kvm);
993 #endif
994 out:
995 return kvm;
996 }
997
998 /*
999 * Free any memory in @free but not in @dont.
1000 */
1001 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1002 struct kvm_memory_slot *dont)
1003 {
1004 if (!dont || free->rmap != dont->rmap)
1005 vfree(free->rmap);
1006
1007 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1008 vfree(free->dirty_bitmap);
1009
1010 if (!dont || free->lpage_info != dont->lpage_info)
1011 vfree(free->lpage_info);
1012
1013 free->npages = 0;
1014 free->dirty_bitmap = NULL;
1015 free->rmap = NULL;
1016 free->lpage_info = NULL;
1017 }
1018
1019 void kvm_free_physmem(struct kvm *kvm)
1020 {
1021 int i;
1022
1023 for (i = 0; i < kvm->nmemslots; ++i)
1024 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1025 }
1026
1027 static void kvm_destroy_vm(struct kvm *kvm)
1028 {
1029 struct mm_struct *mm = kvm->mm;
1030
1031 kvm_arch_sync_events(kvm);
1032 spin_lock(&kvm_lock);
1033 list_del(&kvm->vm_list);
1034 spin_unlock(&kvm_lock);
1035 kvm_free_irq_routing(kvm);
1036 kvm_io_bus_destroy(&kvm->pio_bus);
1037 kvm_io_bus_destroy(&kvm->mmio_bus);
1038 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1039 if (kvm->coalesced_mmio_ring != NULL)
1040 free_page((unsigned long)kvm->coalesced_mmio_ring);
1041 #endif
1042 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1043 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1044 #else
1045 kvm_arch_flush_shadow(kvm);
1046 #endif
1047 kvm_arch_destroy_vm(kvm);
1048 mmdrop(mm);
1049 }
1050
1051 void kvm_get_kvm(struct kvm *kvm)
1052 {
1053 atomic_inc(&kvm->users_count);
1054 }
1055 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1056
1057 void kvm_put_kvm(struct kvm *kvm)
1058 {
1059 if (atomic_dec_and_test(&kvm->users_count))
1060 kvm_destroy_vm(kvm);
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1063
1064
1065 static int kvm_vm_release(struct inode *inode, struct file *filp)
1066 {
1067 struct kvm *kvm = filp->private_data;
1068
1069 kvm_irqfd_release(kvm);
1070
1071 kvm_put_kvm(kvm);
1072 return 0;
1073 }
1074
1075 /*
1076 * Allocate some memory and give it an address in the guest physical address
1077 * space.
1078 *
1079 * Discontiguous memory is allowed, mostly for framebuffers.
1080 *
1081 * Must be called holding mmap_sem for write.
1082 */
1083 int __kvm_set_memory_region(struct kvm *kvm,
1084 struct kvm_userspace_memory_region *mem,
1085 int user_alloc)
1086 {
1087 int r;
1088 gfn_t base_gfn;
1089 unsigned long npages, ugfn;
1090 unsigned long largepages, i;
1091 struct kvm_memory_slot *memslot;
1092 struct kvm_memory_slot old, new;
1093
1094 r = -EINVAL;
1095 /* General sanity checks */
1096 if (mem->memory_size & (PAGE_SIZE - 1))
1097 goto out;
1098 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1099 goto out;
1100 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1101 goto out;
1102 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1103 goto out;
1104 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1105 goto out;
1106
1107 memslot = &kvm->memslots[mem->slot];
1108 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1109 npages = mem->memory_size >> PAGE_SHIFT;
1110
1111 if (!npages)
1112 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1113
1114 new = old = *memslot;
1115
1116 new.base_gfn = base_gfn;
1117 new.npages = npages;
1118 new.flags = mem->flags;
1119
1120 /* Disallow changing a memory slot's size. */
1121 r = -EINVAL;
1122 if (npages && old.npages && npages != old.npages)
1123 goto out_free;
1124
1125 /* Check for overlaps */
1126 r = -EEXIST;
1127 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1128 struct kvm_memory_slot *s = &kvm->memslots[i];
1129
1130 if (s == memslot || !s->npages)
1131 continue;
1132 if (!((base_gfn + npages <= s->base_gfn) ||
1133 (base_gfn >= s->base_gfn + s->npages)))
1134 goto out_free;
1135 }
1136
1137 /* Free page dirty bitmap if unneeded */
1138 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1139 new.dirty_bitmap = NULL;
1140
1141 r = -ENOMEM;
1142
1143 /* Allocate if a slot is being created */
1144 #ifndef CONFIG_S390
1145 if (npages && !new.rmap) {
1146 new.rmap = vmalloc(npages * sizeof(struct page *));
1147
1148 if (!new.rmap)
1149 goto out_free;
1150
1151 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1152
1153 new.user_alloc = user_alloc;
1154 /*
1155 * hva_to_rmmap() serialzies with the mmu_lock and to be
1156 * safe it has to ignore memslots with !user_alloc &&
1157 * !userspace_addr.
1158 */
1159 if (user_alloc)
1160 new.userspace_addr = mem->userspace_addr;
1161 else
1162 new.userspace_addr = 0;
1163 }
1164 if (npages && !new.lpage_info) {
1165 largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
1166 largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
1167
1168 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1169
1170 if (!new.lpage_info)
1171 goto out_free;
1172
1173 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1174
1175 if (base_gfn % KVM_PAGES_PER_HPAGE)
1176 new.lpage_info[0].write_count = 1;
1177 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1178 new.lpage_info[largepages-1].write_count = 1;
1179 ugfn = new.userspace_addr >> PAGE_SHIFT;
1180 /*
1181 * If the gfn and userspace address are not aligned wrt each
1182 * other, disable large page support for this slot
1183 */
1184 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1))
1185 for (i = 0; i < largepages; ++i)
1186 new.lpage_info[i].write_count = 1;
1187 }
1188
1189 /* Allocate page dirty bitmap if needed */
1190 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1191 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1192
1193 new.dirty_bitmap = vmalloc(dirty_bytes);
1194 if (!new.dirty_bitmap)
1195 goto out_free;
1196 memset(new.dirty_bitmap, 0, dirty_bytes);
1197 if (old.npages)
1198 kvm_arch_flush_shadow(kvm);
1199 }
1200 #endif /* not defined CONFIG_S390 */
1201
1202 if (!npages)
1203 kvm_arch_flush_shadow(kvm);
1204
1205 spin_lock(&kvm->mmu_lock);
1206 if (mem->slot >= kvm->nmemslots)
1207 kvm->nmemslots = mem->slot + 1;
1208
1209 *memslot = new;
1210 spin_unlock(&kvm->mmu_lock);
1211
1212 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1213 if (r) {
1214 spin_lock(&kvm->mmu_lock);
1215 *memslot = old;
1216 spin_unlock(&kvm->mmu_lock);
1217 goto out_free;
1218 }
1219
1220 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1221 /* Slot deletion case: we have to update the current slot */
1222 spin_lock(&kvm->mmu_lock);
1223 if (!npages)
1224 *memslot = old;
1225 spin_unlock(&kvm->mmu_lock);
1226 #ifdef CONFIG_DMAR
1227 /* map the pages in iommu page table */
1228 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1229 if (r)
1230 goto out;
1231 #endif
1232 return 0;
1233
1234 out_free:
1235 kvm_free_physmem_slot(&new, &old);
1236 out:
1237 return r;
1238
1239 }
1240 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1241
1242 int kvm_set_memory_region(struct kvm *kvm,
1243 struct kvm_userspace_memory_region *mem,
1244 int user_alloc)
1245 {
1246 int r;
1247
1248 down_write(&kvm->slots_lock);
1249 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1250 up_write(&kvm->slots_lock);
1251 return r;
1252 }
1253 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1254
1255 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1256 struct
1257 kvm_userspace_memory_region *mem,
1258 int user_alloc)
1259 {
1260 if (mem->slot >= KVM_MEMORY_SLOTS)
1261 return -EINVAL;
1262 return kvm_set_memory_region(kvm, mem, user_alloc);
1263 }
1264
1265 int kvm_get_dirty_log(struct kvm *kvm,
1266 struct kvm_dirty_log *log, int *is_dirty)
1267 {
1268 struct kvm_memory_slot *memslot;
1269 int r, i;
1270 int n;
1271 unsigned long any = 0;
1272
1273 r = -EINVAL;
1274 if (log->slot >= KVM_MEMORY_SLOTS)
1275 goto out;
1276
1277 memslot = &kvm->memslots[log->slot];
1278 r = -ENOENT;
1279 if (!memslot->dirty_bitmap)
1280 goto out;
1281
1282 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1283
1284 for (i = 0; !any && i < n/sizeof(long); ++i)
1285 any = memslot->dirty_bitmap[i];
1286
1287 r = -EFAULT;
1288 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1289 goto out;
1290
1291 if (any)
1292 *is_dirty = 1;
1293
1294 r = 0;
1295 out:
1296 return r;
1297 }
1298
1299 int is_error_page(struct page *page)
1300 {
1301 return page == bad_page;
1302 }
1303 EXPORT_SYMBOL_GPL(is_error_page);
1304
1305 int is_error_pfn(pfn_t pfn)
1306 {
1307 return pfn == bad_pfn;
1308 }
1309 EXPORT_SYMBOL_GPL(is_error_pfn);
1310
1311 static inline unsigned long bad_hva(void)
1312 {
1313 return PAGE_OFFSET;
1314 }
1315
1316 int kvm_is_error_hva(unsigned long addr)
1317 {
1318 return addr == bad_hva();
1319 }
1320 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1321
1322 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1323 {
1324 int i;
1325
1326 for (i = 0; i < kvm->nmemslots; ++i) {
1327 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1328
1329 if (gfn >= memslot->base_gfn
1330 && gfn < memslot->base_gfn + memslot->npages)
1331 return memslot;
1332 }
1333 return NULL;
1334 }
1335 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1336
1337 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1338 {
1339 gfn = unalias_gfn(kvm, gfn);
1340 return gfn_to_memslot_unaliased(kvm, gfn);
1341 }
1342
1343 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1344 {
1345 int i;
1346
1347 gfn = unalias_gfn(kvm, gfn);
1348 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1349 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1350
1351 if (gfn >= memslot->base_gfn
1352 && gfn < memslot->base_gfn + memslot->npages)
1353 return 1;
1354 }
1355 return 0;
1356 }
1357 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1358
1359 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1360 {
1361 struct kvm_memory_slot *slot;
1362
1363 gfn = unalias_gfn(kvm, gfn);
1364 slot = gfn_to_memslot_unaliased(kvm, gfn);
1365 if (!slot)
1366 return bad_hva();
1367 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1368 }
1369 EXPORT_SYMBOL_GPL(gfn_to_hva);
1370
1371 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1372 {
1373 struct page *page[1];
1374 unsigned long addr;
1375 int npages;
1376 pfn_t pfn;
1377
1378 might_sleep();
1379
1380 addr = gfn_to_hva(kvm, gfn);
1381 if (kvm_is_error_hva(addr)) {
1382 get_page(bad_page);
1383 return page_to_pfn(bad_page);
1384 }
1385
1386 npages = get_user_pages_fast(addr, 1, 1, page);
1387
1388 if (unlikely(npages != 1)) {
1389 struct vm_area_struct *vma;
1390
1391 down_read(&current->mm->mmap_sem);
1392 vma = find_vma(current->mm, addr);
1393
1394 if (vma == NULL || addr < vma->vm_start ||
1395 !(vma->vm_flags & VM_PFNMAP)) {
1396 up_read(&current->mm->mmap_sem);
1397 get_page(bad_page);
1398 return page_to_pfn(bad_page);
1399 }
1400
1401 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1402 up_read(&current->mm->mmap_sem);
1403 BUG_ON(!kvm_is_mmio_pfn(pfn));
1404 } else
1405 pfn = page_to_pfn(page[0]);
1406
1407 return pfn;
1408 }
1409
1410 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1411
1412 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1413 {
1414 pfn_t pfn;
1415
1416 pfn = gfn_to_pfn(kvm, gfn);
1417 if (!kvm_is_mmio_pfn(pfn))
1418 return pfn_to_page(pfn);
1419
1420 WARN_ON(kvm_is_mmio_pfn(pfn));
1421
1422 get_page(bad_page);
1423 return bad_page;
1424 }
1425
1426 EXPORT_SYMBOL_GPL(gfn_to_page);
1427
1428 void kvm_release_page_clean(struct page *page)
1429 {
1430 kvm_release_pfn_clean(page_to_pfn(page));
1431 }
1432 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1433
1434 void kvm_release_pfn_clean(pfn_t pfn)
1435 {
1436 if (!kvm_is_mmio_pfn(pfn))
1437 put_page(pfn_to_page(pfn));
1438 }
1439 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1440
1441 void kvm_release_page_dirty(struct page *page)
1442 {
1443 kvm_release_pfn_dirty(page_to_pfn(page));
1444 }
1445 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1446
1447 void kvm_release_pfn_dirty(pfn_t pfn)
1448 {
1449 kvm_set_pfn_dirty(pfn);
1450 kvm_release_pfn_clean(pfn);
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1453
1454 void kvm_set_page_dirty(struct page *page)
1455 {
1456 kvm_set_pfn_dirty(page_to_pfn(page));
1457 }
1458 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1459
1460 void kvm_set_pfn_dirty(pfn_t pfn)
1461 {
1462 if (!kvm_is_mmio_pfn(pfn)) {
1463 struct page *page = pfn_to_page(pfn);
1464 if (!PageReserved(page))
1465 SetPageDirty(page);
1466 }
1467 }
1468 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1469
1470 void kvm_set_pfn_accessed(pfn_t pfn)
1471 {
1472 if (!kvm_is_mmio_pfn(pfn))
1473 mark_page_accessed(pfn_to_page(pfn));
1474 }
1475 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1476
1477 void kvm_get_pfn(pfn_t pfn)
1478 {
1479 if (!kvm_is_mmio_pfn(pfn))
1480 get_page(pfn_to_page(pfn));
1481 }
1482 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1483
1484 static int next_segment(unsigned long len, int offset)
1485 {
1486 if (len > PAGE_SIZE - offset)
1487 return PAGE_SIZE - offset;
1488 else
1489 return len;
1490 }
1491
1492 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1493 int len)
1494 {
1495 int r;
1496 unsigned long addr;
1497
1498 addr = gfn_to_hva(kvm, gfn);
1499 if (kvm_is_error_hva(addr))
1500 return -EFAULT;
1501 r = copy_from_user(data, (void __user *)addr + offset, len);
1502 if (r)
1503 return -EFAULT;
1504 return 0;
1505 }
1506 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1507
1508 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1509 {
1510 gfn_t gfn = gpa >> PAGE_SHIFT;
1511 int seg;
1512 int offset = offset_in_page(gpa);
1513 int ret;
1514
1515 while ((seg = next_segment(len, offset)) != 0) {
1516 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1517 if (ret < 0)
1518 return ret;
1519 offset = 0;
1520 len -= seg;
1521 data += seg;
1522 ++gfn;
1523 }
1524 return 0;
1525 }
1526 EXPORT_SYMBOL_GPL(kvm_read_guest);
1527
1528 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1529 unsigned long len)
1530 {
1531 int r;
1532 unsigned long addr;
1533 gfn_t gfn = gpa >> PAGE_SHIFT;
1534 int offset = offset_in_page(gpa);
1535
1536 addr = gfn_to_hva(kvm, gfn);
1537 if (kvm_is_error_hva(addr))
1538 return -EFAULT;
1539 pagefault_disable();
1540 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1541 pagefault_enable();
1542 if (r)
1543 return -EFAULT;
1544 return 0;
1545 }
1546 EXPORT_SYMBOL(kvm_read_guest_atomic);
1547
1548 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1549 int offset, int len)
1550 {
1551 int r;
1552 unsigned long addr;
1553
1554 addr = gfn_to_hva(kvm, gfn);
1555 if (kvm_is_error_hva(addr))
1556 return -EFAULT;
1557 r = copy_to_user((void __user *)addr + offset, data, len);
1558 if (r)
1559 return -EFAULT;
1560 mark_page_dirty(kvm, gfn);
1561 return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1564
1565 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1566 unsigned long len)
1567 {
1568 gfn_t gfn = gpa >> PAGE_SHIFT;
1569 int seg;
1570 int offset = offset_in_page(gpa);
1571 int ret;
1572
1573 while ((seg = next_segment(len, offset)) != 0) {
1574 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1575 if (ret < 0)
1576 return ret;
1577 offset = 0;
1578 len -= seg;
1579 data += seg;
1580 ++gfn;
1581 }
1582 return 0;
1583 }
1584
1585 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1586 {
1587 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1588 }
1589 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1590
1591 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1592 {
1593 gfn_t gfn = gpa >> PAGE_SHIFT;
1594 int seg;
1595 int offset = offset_in_page(gpa);
1596 int ret;
1597
1598 while ((seg = next_segment(len, offset)) != 0) {
1599 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1600 if (ret < 0)
1601 return ret;
1602 offset = 0;
1603 len -= seg;
1604 ++gfn;
1605 }
1606 return 0;
1607 }
1608 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1609
1610 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1611 {
1612 struct kvm_memory_slot *memslot;
1613
1614 gfn = unalias_gfn(kvm, gfn);
1615 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1616 if (memslot && memslot->dirty_bitmap) {
1617 unsigned long rel_gfn = gfn - memslot->base_gfn;
1618
1619 /* avoid RMW */
1620 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1621 set_bit(rel_gfn, memslot->dirty_bitmap);
1622 }
1623 }
1624
1625 /*
1626 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1627 */
1628 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1629 {
1630 DEFINE_WAIT(wait);
1631
1632 for (;;) {
1633 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1634
1635 if ((kvm_arch_interrupt_allowed(vcpu) &&
1636 kvm_cpu_has_interrupt(vcpu)) ||
1637 kvm_arch_vcpu_runnable(vcpu)) {
1638 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1639 break;
1640 }
1641 if (kvm_cpu_has_pending_timer(vcpu))
1642 break;
1643 if (signal_pending(current))
1644 break;
1645
1646 vcpu_put(vcpu);
1647 schedule();
1648 vcpu_load(vcpu);
1649 }
1650
1651 finish_wait(&vcpu->wq, &wait);
1652 }
1653
1654 void kvm_resched(struct kvm_vcpu *vcpu)
1655 {
1656 if (!need_resched())
1657 return;
1658 cond_resched();
1659 }
1660 EXPORT_SYMBOL_GPL(kvm_resched);
1661
1662 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1663 {
1664 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1665 struct page *page;
1666
1667 if (vmf->pgoff == 0)
1668 page = virt_to_page(vcpu->run);
1669 #ifdef CONFIG_X86
1670 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1671 page = virt_to_page(vcpu->arch.pio_data);
1672 #endif
1673 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1674 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1675 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1676 #endif
1677 else
1678 return VM_FAULT_SIGBUS;
1679 get_page(page);
1680 vmf->page = page;
1681 return 0;
1682 }
1683
1684 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1685 .fault = kvm_vcpu_fault,
1686 };
1687
1688 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1689 {
1690 vma->vm_ops = &kvm_vcpu_vm_ops;
1691 return 0;
1692 }
1693
1694 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1695 {
1696 struct kvm_vcpu *vcpu = filp->private_data;
1697
1698 kvm_put_kvm(vcpu->kvm);
1699 return 0;
1700 }
1701
1702 static struct file_operations kvm_vcpu_fops = {
1703 .release = kvm_vcpu_release,
1704 .unlocked_ioctl = kvm_vcpu_ioctl,
1705 .compat_ioctl = kvm_vcpu_ioctl,
1706 .mmap = kvm_vcpu_mmap,
1707 };
1708
1709 /*
1710 * Allocates an inode for the vcpu.
1711 */
1712 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1713 {
1714 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1715 if (fd < 0)
1716 kvm_put_kvm(vcpu->kvm);
1717 return fd;
1718 }
1719
1720 /*
1721 * Creates some virtual cpus. Good luck creating more than one.
1722 */
1723 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1724 {
1725 int r;
1726 struct kvm_vcpu *vcpu;
1727
1728 if (!valid_vcpu(n))
1729 return -EINVAL;
1730
1731 vcpu = kvm_arch_vcpu_create(kvm, n);
1732 if (IS_ERR(vcpu))
1733 return PTR_ERR(vcpu);
1734
1735 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1736
1737 r = kvm_arch_vcpu_setup(vcpu);
1738 if (r)
1739 return r;
1740
1741 mutex_lock(&kvm->lock);
1742 if (kvm->vcpus[n]) {
1743 r = -EEXIST;
1744 goto vcpu_destroy;
1745 }
1746 kvm->vcpus[n] = vcpu;
1747 mutex_unlock(&kvm->lock);
1748
1749 /* Now it's all set up, let userspace reach it */
1750 kvm_get_kvm(kvm);
1751 r = create_vcpu_fd(vcpu);
1752 if (r < 0)
1753 goto unlink;
1754 return r;
1755
1756 unlink:
1757 mutex_lock(&kvm->lock);
1758 kvm->vcpus[n] = NULL;
1759 vcpu_destroy:
1760 mutex_unlock(&kvm->lock);
1761 kvm_arch_vcpu_destroy(vcpu);
1762 return r;
1763 }
1764
1765 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1766 {
1767 if (sigset) {
1768 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1769 vcpu->sigset_active = 1;
1770 vcpu->sigset = *sigset;
1771 } else
1772 vcpu->sigset_active = 0;
1773 return 0;
1774 }
1775
1776 #ifdef __KVM_HAVE_MSIX
1777 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1778 struct kvm_assigned_msix_nr *entry_nr)
1779 {
1780 int r = 0;
1781 struct kvm_assigned_dev_kernel *adev;
1782
1783 mutex_lock(&kvm->lock);
1784
1785 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1786 entry_nr->assigned_dev_id);
1787 if (!adev) {
1788 r = -EINVAL;
1789 goto msix_nr_out;
1790 }
1791
1792 if (adev->entries_nr == 0) {
1793 adev->entries_nr = entry_nr->entry_nr;
1794 if (adev->entries_nr == 0 ||
1795 adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1796 r = -EINVAL;
1797 goto msix_nr_out;
1798 }
1799
1800 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1801 entry_nr->entry_nr,
1802 GFP_KERNEL);
1803 if (!adev->host_msix_entries) {
1804 r = -ENOMEM;
1805 goto msix_nr_out;
1806 }
1807 adev->guest_msix_entries = kzalloc(
1808 sizeof(struct kvm_guest_msix_entry) *
1809 entry_nr->entry_nr, GFP_KERNEL);
1810 if (!adev->guest_msix_entries) {
1811 kfree(adev->host_msix_entries);
1812 r = -ENOMEM;
1813 goto msix_nr_out;
1814 }
1815 } else /* Not allowed set MSI-X number twice */
1816 r = -EINVAL;
1817 msix_nr_out:
1818 mutex_unlock(&kvm->lock);
1819 return r;
1820 }
1821
1822 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1823 struct kvm_assigned_msix_entry *entry)
1824 {
1825 int r = 0, i;
1826 struct kvm_assigned_dev_kernel *adev;
1827
1828 mutex_lock(&kvm->lock);
1829
1830 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1831 entry->assigned_dev_id);
1832
1833 if (!adev) {
1834 r = -EINVAL;
1835 goto msix_entry_out;
1836 }
1837
1838 for (i = 0; i < adev->entries_nr; i++)
1839 if (adev->guest_msix_entries[i].vector == 0 ||
1840 adev->guest_msix_entries[i].entry == entry->entry) {
1841 adev->guest_msix_entries[i].entry = entry->entry;
1842 adev->guest_msix_entries[i].vector = entry->gsi;
1843 adev->host_msix_entries[i].entry = entry->entry;
1844 break;
1845 }
1846 if (i == adev->entries_nr) {
1847 r = -ENOSPC;
1848 goto msix_entry_out;
1849 }
1850
1851 msix_entry_out:
1852 mutex_unlock(&kvm->lock);
1853
1854 return r;
1855 }
1856 #endif
1857
1858 static long kvm_vcpu_ioctl(struct file *filp,
1859 unsigned int ioctl, unsigned long arg)
1860 {
1861 struct kvm_vcpu *vcpu = filp->private_data;
1862 void __user *argp = (void __user *)arg;
1863 int r;
1864 struct kvm_fpu *fpu = NULL;
1865 struct kvm_sregs *kvm_sregs = NULL;
1866
1867 if (vcpu->kvm->mm != current->mm)
1868 return -EIO;
1869 switch (ioctl) {
1870 case KVM_RUN:
1871 r = -EINVAL;
1872 if (arg)
1873 goto out;
1874 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1875 break;
1876 case KVM_GET_REGS: {
1877 struct kvm_regs *kvm_regs;
1878
1879 r = -ENOMEM;
1880 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1881 if (!kvm_regs)
1882 goto out;
1883 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1884 if (r)
1885 goto out_free1;
1886 r = -EFAULT;
1887 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1888 goto out_free1;
1889 r = 0;
1890 out_free1:
1891 kfree(kvm_regs);
1892 break;
1893 }
1894 case KVM_SET_REGS: {
1895 struct kvm_regs *kvm_regs;
1896
1897 r = -ENOMEM;
1898 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1899 if (!kvm_regs)
1900 goto out;
1901 r = -EFAULT;
1902 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1903 goto out_free2;
1904 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1905 if (r)
1906 goto out_free2;
1907 r = 0;
1908 out_free2:
1909 kfree(kvm_regs);
1910 break;
1911 }
1912 case KVM_GET_SREGS: {
1913 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1914 r = -ENOMEM;
1915 if (!kvm_sregs)
1916 goto out;
1917 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1918 if (r)
1919 goto out;
1920 r = -EFAULT;
1921 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1922 goto out;
1923 r = 0;
1924 break;
1925 }
1926 case KVM_SET_SREGS: {
1927 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1928 r = -ENOMEM;
1929 if (!kvm_sregs)
1930 goto out;
1931 r = -EFAULT;
1932 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1933 goto out;
1934 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1935 if (r)
1936 goto out;
1937 r = 0;
1938 break;
1939 }
1940 case KVM_GET_MP_STATE: {
1941 struct kvm_mp_state mp_state;
1942
1943 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1944 if (r)
1945 goto out;
1946 r = -EFAULT;
1947 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1948 goto out;
1949 r = 0;
1950 break;
1951 }
1952 case KVM_SET_MP_STATE: {
1953 struct kvm_mp_state mp_state;
1954
1955 r = -EFAULT;
1956 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1957 goto out;
1958 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1959 if (r)
1960 goto out;
1961 r = 0;
1962 break;
1963 }
1964 case KVM_TRANSLATE: {
1965 struct kvm_translation tr;
1966
1967 r = -EFAULT;
1968 if (copy_from_user(&tr, argp, sizeof tr))
1969 goto out;
1970 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1971 if (r)
1972 goto out;
1973 r = -EFAULT;
1974 if (copy_to_user(argp, &tr, sizeof tr))
1975 goto out;
1976 r = 0;
1977 break;
1978 }
1979 case KVM_SET_GUEST_DEBUG: {
1980 struct kvm_guest_debug dbg;
1981
1982 r = -EFAULT;
1983 if (copy_from_user(&dbg, argp, sizeof dbg))
1984 goto out;
1985 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1986 if (r)
1987 goto out;
1988 r = 0;
1989 break;
1990 }
1991 case KVM_SET_SIGNAL_MASK: {
1992 struct kvm_signal_mask __user *sigmask_arg = argp;
1993 struct kvm_signal_mask kvm_sigmask;
1994 sigset_t sigset, *p;
1995
1996 p = NULL;
1997 if (argp) {
1998 r = -EFAULT;
1999 if (copy_from_user(&kvm_sigmask, argp,
2000 sizeof kvm_sigmask))
2001 goto out;
2002 r = -EINVAL;
2003 if (kvm_sigmask.len != sizeof sigset)
2004 goto out;
2005 r = -EFAULT;
2006 if (copy_from_user(&sigset, sigmask_arg->sigset,
2007 sizeof sigset))
2008 goto out;
2009 p = &sigset;
2010 }
2011 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2012 break;
2013 }
2014 case KVM_GET_FPU: {
2015 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2016 r = -ENOMEM;
2017 if (!fpu)
2018 goto out;
2019 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2020 if (r)
2021 goto out;
2022 r = -EFAULT;
2023 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2024 goto out;
2025 r = 0;
2026 break;
2027 }
2028 case KVM_SET_FPU: {
2029 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2030 r = -ENOMEM;
2031 if (!fpu)
2032 goto out;
2033 r = -EFAULT;
2034 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2035 goto out;
2036 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2037 if (r)
2038 goto out;
2039 r = 0;
2040 break;
2041 }
2042 default:
2043 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2044 }
2045 out:
2046 kfree(fpu);
2047 kfree(kvm_sregs);
2048 return r;
2049 }
2050
2051 static long kvm_vm_ioctl(struct file *filp,
2052 unsigned int ioctl, unsigned long arg)
2053 {
2054 struct kvm *kvm = filp->private_data;
2055 void __user *argp = (void __user *)arg;
2056 int r;
2057
2058 if (kvm->mm != current->mm)
2059 return -EIO;
2060 switch (ioctl) {
2061 case KVM_CREATE_VCPU:
2062 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2063 if (r < 0)
2064 goto out;
2065 break;
2066 case KVM_SET_USER_MEMORY_REGION: {
2067 struct kvm_userspace_memory_region kvm_userspace_mem;
2068
2069 r = -EFAULT;
2070 if (copy_from_user(&kvm_userspace_mem, argp,
2071 sizeof kvm_userspace_mem))
2072 goto out;
2073
2074 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2075 if (r)
2076 goto out;
2077 break;
2078 }
2079 case KVM_GET_DIRTY_LOG: {
2080 struct kvm_dirty_log log;
2081
2082 r = -EFAULT;
2083 if (copy_from_user(&log, argp, sizeof log))
2084 goto out;
2085 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2086 if (r)
2087 goto out;
2088 break;
2089 }
2090 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2091 case KVM_REGISTER_COALESCED_MMIO: {
2092 struct kvm_coalesced_mmio_zone zone;
2093 r = -EFAULT;
2094 if (copy_from_user(&zone, argp, sizeof zone))
2095 goto out;
2096 r = -ENXIO;
2097 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2098 if (r)
2099 goto out;
2100 r = 0;
2101 break;
2102 }
2103 case KVM_UNREGISTER_COALESCED_MMIO: {
2104 struct kvm_coalesced_mmio_zone zone;
2105 r = -EFAULT;
2106 if (copy_from_user(&zone, argp, sizeof zone))
2107 goto out;
2108 r = -ENXIO;
2109 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2110 if (r)
2111 goto out;
2112 r = 0;
2113 break;
2114 }
2115 #endif
2116 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2117 case KVM_ASSIGN_PCI_DEVICE: {
2118 struct kvm_assigned_pci_dev assigned_dev;
2119
2120 r = -EFAULT;
2121 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2122 goto out;
2123 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2124 if (r)
2125 goto out;
2126 break;
2127 }
2128 case KVM_ASSIGN_IRQ: {
2129 r = -EOPNOTSUPP;
2130 break;
2131 }
2132 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2133 case KVM_ASSIGN_DEV_IRQ: {
2134 struct kvm_assigned_irq assigned_irq;
2135
2136 r = -EFAULT;
2137 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2138 goto out;
2139 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2140 if (r)
2141 goto out;
2142 break;
2143 }
2144 case KVM_DEASSIGN_DEV_IRQ: {
2145 struct kvm_assigned_irq assigned_irq;
2146
2147 r = -EFAULT;
2148 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2149 goto out;
2150 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2151 if (r)
2152 goto out;
2153 break;
2154 }
2155 #endif
2156 #endif
2157 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2158 case KVM_DEASSIGN_PCI_DEVICE: {
2159 struct kvm_assigned_pci_dev assigned_dev;
2160
2161 r = -EFAULT;
2162 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2163 goto out;
2164 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2165 if (r)
2166 goto out;
2167 break;
2168 }
2169 #endif
2170 #ifdef KVM_CAP_IRQ_ROUTING
2171 case KVM_SET_GSI_ROUTING: {
2172 struct kvm_irq_routing routing;
2173 struct kvm_irq_routing __user *urouting;
2174 struct kvm_irq_routing_entry *entries;
2175
2176 r = -EFAULT;
2177 if (copy_from_user(&routing, argp, sizeof(routing)))
2178 goto out;
2179 r = -EINVAL;
2180 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2181 goto out;
2182 if (routing.flags)
2183 goto out;
2184 r = -ENOMEM;
2185 entries = vmalloc(routing.nr * sizeof(*entries));
2186 if (!entries)
2187 goto out;
2188 r = -EFAULT;
2189 urouting = argp;
2190 if (copy_from_user(entries, urouting->entries,
2191 routing.nr * sizeof(*entries)))
2192 goto out_free_irq_routing;
2193 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2194 routing.flags);
2195 out_free_irq_routing:
2196 vfree(entries);
2197 break;
2198 }
2199 #ifdef __KVM_HAVE_MSIX
2200 case KVM_ASSIGN_SET_MSIX_NR: {
2201 struct kvm_assigned_msix_nr entry_nr;
2202 r = -EFAULT;
2203 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2204 goto out;
2205 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2206 if (r)
2207 goto out;
2208 break;
2209 }
2210 case KVM_ASSIGN_SET_MSIX_ENTRY: {
2211 struct kvm_assigned_msix_entry entry;
2212 r = -EFAULT;
2213 if (copy_from_user(&entry, argp, sizeof entry))
2214 goto out;
2215 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2216 if (r)
2217 goto out;
2218 break;
2219 }
2220 #endif
2221 #endif /* KVM_CAP_IRQ_ROUTING */
2222 case KVM_IRQFD: {
2223 struct kvm_irqfd data;
2224
2225 r = -EFAULT;
2226 if (copy_from_user(&data, argp, sizeof data))
2227 goto out;
2228 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2229 break;
2230 }
2231 default:
2232 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2233 }
2234 out:
2235 return r;
2236 }
2237
2238 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2239 {
2240 struct page *page[1];
2241 unsigned long addr;
2242 int npages;
2243 gfn_t gfn = vmf->pgoff;
2244 struct kvm *kvm = vma->vm_file->private_data;
2245
2246 addr = gfn_to_hva(kvm, gfn);
2247 if (kvm_is_error_hva(addr))
2248 return VM_FAULT_SIGBUS;
2249
2250 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2251 NULL);
2252 if (unlikely(npages != 1))
2253 return VM_FAULT_SIGBUS;
2254
2255 vmf->page = page[0];
2256 return 0;
2257 }
2258
2259 static struct vm_operations_struct kvm_vm_vm_ops = {
2260 .fault = kvm_vm_fault,
2261 };
2262
2263 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2264 {
2265 vma->vm_ops = &kvm_vm_vm_ops;
2266 return 0;
2267 }
2268
2269 static struct file_operations kvm_vm_fops = {
2270 .release = kvm_vm_release,
2271 .unlocked_ioctl = kvm_vm_ioctl,
2272 .compat_ioctl = kvm_vm_ioctl,
2273 .mmap = kvm_vm_mmap,
2274 };
2275
2276 static int kvm_dev_ioctl_create_vm(void)
2277 {
2278 int fd;
2279 struct kvm *kvm;
2280
2281 kvm = kvm_create_vm();
2282 if (IS_ERR(kvm))
2283 return PTR_ERR(kvm);
2284 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2285 if (fd < 0)
2286 kvm_put_kvm(kvm);
2287
2288 return fd;
2289 }
2290
2291 static long kvm_dev_ioctl_check_extension_generic(long arg)
2292 {
2293 switch (arg) {
2294 case KVM_CAP_USER_MEMORY:
2295 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2296 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2297 return 1;
2298 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2299 case KVM_CAP_IRQ_ROUTING:
2300 return KVM_MAX_IRQ_ROUTES;
2301 #endif
2302 default:
2303 break;
2304 }
2305 return kvm_dev_ioctl_check_extension(arg);
2306 }
2307
2308 static long kvm_dev_ioctl(struct file *filp,
2309 unsigned int ioctl, unsigned long arg)
2310 {
2311 long r = -EINVAL;
2312
2313 switch (ioctl) {
2314 case KVM_GET_API_VERSION:
2315 r = -EINVAL;
2316 if (arg)
2317 goto out;
2318 r = KVM_API_VERSION;
2319 break;
2320 case KVM_CREATE_VM:
2321 r = -EINVAL;
2322 if (arg)
2323 goto out;
2324 r = kvm_dev_ioctl_create_vm();
2325 break;
2326 case KVM_CHECK_EXTENSION:
2327 r = kvm_dev_ioctl_check_extension_generic(arg);
2328 break;
2329 case KVM_GET_VCPU_MMAP_SIZE:
2330 r = -EINVAL;
2331 if (arg)
2332 goto out;
2333 r = PAGE_SIZE; /* struct kvm_run */
2334 #ifdef CONFIG_X86
2335 r += PAGE_SIZE; /* pio data page */
2336 #endif
2337 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2338 r += PAGE_SIZE; /* coalesced mmio ring page */
2339 #endif
2340 break;
2341 case KVM_TRACE_ENABLE:
2342 case KVM_TRACE_PAUSE:
2343 case KVM_TRACE_DISABLE:
2344 r = kvm_trace_ioctl(ioctl, arg);
2345 break;
2346 default:
2347 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2348 }
2349 out:
2350 return r;
2351 }
2352
2353 static struct file_operations kvm_chardev_ops = {
2354 .unlocked_ioctl = kvm_dev_ioctl,
2355 .compat_ioctl = kvm_dev_ioctl,
2356 };
2357
2358 static struct miscdevice kvm_dev = {
2359 KVM_MINOR,
2360 "kvm",
2361 &kvm_chardev_ops,
2362 };
2363
2364 static void hardware_enable(void *junk)
2365 {
2366 int cpu = raw_smp_processor_id();
2367
2368 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2369 return;
2370 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2371 kvm_arch_hardware_enable(NULL);
2372 }
2373
2374 static void hardware_disable(void *junk)
2375 {
2376 int cpu = raw_smp_processor_id();
2377
2378 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2379 return;
2380 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2381 kvm_arch_hardware_disable(NULL);
2382 }
2383
2384 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2385 void *v)
2386 {
2387 int cpu = (long)v;
2388
2389 val &= ~CPU_TASKS_FROZEN;
2390 switch (val) {
2391 case CPU_DYING:
2392 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2393 cpu);
2394 hardware_disable(NULL);
2395 break;
2396 case CPU_UP_CANCELED:
2397 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2398 cpu);
2399 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2400 break;
2401 case CPU_ONLINE:
2402 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2403 cpu);
2404 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2405 break;
2406 }
2407 return NOTIFY_OK;
2408 }
2409
2410
2411 asmlinkage void kvm_handle_fault_on_reboot(void)
2412 {
2413 if (kvm_rebooting)
2414 /* spin while reset goes on */
2415 while (true)
2416 ;
2417 /* Fault while not rebooting. We want the trace. */
2418 BUG();
2419 }
2420 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2421
2422 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2423 void *v)
2424 {
2425 /*
2426 * Some (well, at least mine) BIOSes hang on reboot if
2427 * in vmx root mode.
2428 *
2429 * And Intel TXT required VMX off for all cpu when system shutdown.
2430 */
2431 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2432 kvm_rebooting = true;
2433 on_each_cpu(hardware_disable, NULL, 1);
2434 return NOTIFY_OK;
2435 }
2436
2437 static struct notifier_block kvm_reboot_notifier = {
2438 .notifier_call = kvm_reboot,
2439 .priority = 0,
2440 };
2441
2442 void kvm_io_bus_init(struct kvm_io_bus *bus)
2443 {
2444 memset(bus, 0, sizeof(*bus));
2445 }
2446
2447 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2448 {
2449 int i;
2450
2451 for (i = 0; i < bus->dev_count; i++) {
2452 struct kvm_io_device *pos = bus->devs[i];
2453
2454 kvm_iodevice_destructor(pos);
2455 }
2456 }
2457
2458 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2459 gpa_t addr, int len, int is_write)
2460 {
2461 int i;
2462
2463 for (i = 0; i < bus->dev_count; i++) {
2464 struct kvm_io_device *pos = bus->devs[i];
2465
2466 if (pos->in_range(pos, addr, len, is_write))
2467 return pos;
2468 }
2469
2470 return NULL;
2471 }
2472
2473 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2474 {
2475 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2476
2477 bus->devs[bus->dev_count++] = dev;
2478 }
2479
2480 static struct notifier_block kvm_cpu_notifier = {
2481 .notifier_call = kvm_cpu_hotplug,
2482 .priority = 20, /* must be > scheduler priority */
2483 };
2484
2485 static int vm_stat_get(void *_offset, u64 *val)
2486 {
2487 unsigned offset = (long)_offset;
2488 struct kvm *kvm;
2489
2490 *val = 0;
2491 spin_lock(&kvm_lock);
2492 list_for_each_entry(kvm, &vm_list, vm_list)
2493 *val += *(u32 *)((void *)kvm + offset);
2494 spin_unlock(&kvm_lock);
2495 return 0;
2496 }
2497
2498 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2499
2500 static int vcpu_stat_get(void *_offset, u64 *val)
2501 {
2502 unsigned offset = (long)_offset;
2503 struct kvm *kvm;
2504 struct kvm_vcpu *vcpu;
2505 int i;
2506
2507 *val = 0;
2508 spin_lock(&kvm_lock);
2509 list_for_each_entry(kvm, &vm_list, vm_list)
2510 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2511 vcpu = kvm->vcpus[i];
2512 if (vcpu)
2513 *val += *(u32 *)((void *)vcpu + offset);
2514 }
2515 spin_unlock(&kvm_lock);
2516 return 0;
2517 }
2518
2519 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2520
2521 static struct file_operations *stat_fops[] = {
2522 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2523 [KVM_STAT_VM] = &vm_stat_fops,
2524 };
2525
2526 static void kvm_init_debug(void)
2527 {
2528 struct kvm_stats_debugfs_item *p;
2529
2530 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2531 for (p = debugfs_entries; p->name; ++p)
2532 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2533 (void *)(long)p->offset,
2534 stat_fops[p->kind]);
2535 }
2536
2537 static void kvm_exit_debug(void)
2538 {
2539 struct kvm_stats_debugfs_item *p;
2540
2541 for (p = debugfs_entries; p->name; ++p)
2542 debugfs_remove(p->dentry);
2543 debugfs_remove(kvm_debugfs_dir);
2544 }
2545
2546 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2547 {
2548 hardware_disable(NULL);
2549 return 0;
2550 }
2551
2552 static int kvm_resume(struct sys_device *dev)
2553 {
2554 hardware_enable(NULL);
2555 return 0;
2556 }
2557
2558 static struct sysdev_class kvm_sysdev_class = {
2559 .name = "kvm",
2560 .suspend = kvm_suspend,
2561 .resume = kvm_resume,
2562 };
2563
2564 static struct sys_device kvm_sysdev = {
2565 .id = 0,
2566 .cls = &kvm_sysdev_class,
2567 };
2568
2569 struct page *bad_page;
2570 pfn_t bad_pfn;
2571
2572 static inline
2573 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2574 {
2575 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2576 }
2577
2578 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2579 {
2580 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2581
2582 kvm_arch_vcpu_load(vcpu, cpu);
2583 }
2584
2585 static void kvm_sched_out(struct preempt_notifier *pn,
2586 struct task_struct *next)
2587 {
2588 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2589
2590 kvm_arch_vcpu_put(vcpu);
2591 }
2592
2593 int kvm_init(void *opaque, unsigned int vcpu_size,
2594 struct module *module)
2595 {
2596 int r;
2597 int cpu;
2598
2599 kvm_init_debug();
2600
2601 r = kvm_arch_init(opaque);
2602 if (r)
2603 goto out_fail;
2604
2605 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2606
2607 if (bad_page == NULL) {
2608 r = -ENOMEM;
2609 goto out;
2610 }
2611
2612 bad_pfn = page_to_pfn(bad_page);
2613
2614 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2615 r = -ENOMEM;
2616 goto out_free_0;
2617 }
2618
2619 r = kvm_arch_hardware_setup();
2620 if (r < 0)
2621 goto out_free_0a;
2622
2623 for_each_online_cpu(cpu) {
2624 smp_call_function_single(cpu,
2625 kvm_arch_check_processor_compat,
2626 &r, 1);
2627 if (r < 0)
2628 goto out_free_1;
2629 }
2630
2631 on_each_cpu(hardware_enable, NULL, 1);
2632 r = register_cpu_notifier(&kvm_cpu_notifier);
2633 if (r)
2634 goto out_free_2;
2635 register_reboot_notifier(&kvm_reboot_notifier);
2636
2637 r = sysdev_class_register(&kvm_sysdev_class);
2638 if (r)
2639 goto out_free_3;
2640
2641 r = sysdev_register(&kvm_sysdev);
2642 if (r)
2643 goto out_free_4;
2644
2645 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2646 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2647 __alignof__(struct kvm_vcpu),
2648 0, NULL);
2649 if (!kvm_vcpu_cache) {
2650 r = -ENOMEM;
2651 goto out_free_5;
2652 }
2653
2654 kvm_chardev_ops.owner = module;
2655 kvm_vm_fops.owner = module;
2656 kvm_vcpu_fops.owner = module;
2657
2658 r = misc_register(&kvm_dev);
2659 if (r) {
2660 printk(KERN_ERR "kvm: misc device register failed\n");
2661 goto out_free;
2662 }
2663
2664 kvm_preempt_ops.sched_in = kvm_sched_in;
2665 kvm_preempt_ops.sched_out = kvm_sched_out;
2666
2667 return 0;
2668
2669 out_free:
2670 kmem_cache_destroy(kvm_vcpu_cache);
2671 out_free_5:
2672 sysdev_unregister(&kvm_sysdev);
2673 out_free_4:
2674 sysdev_class_unregister(&kvm_sysdev_class);
2675 out_free_3:
2676 unregister_reboot_notifier(&kvm_reboot_notifier);
2677 unregister_cpu_notifier(&kvm_cpu_notifier);
2678 out_free_2:
2679 on_each_cpu(hardware_disable, NULL, 1);
2680 out_free_1:
2681 kvm_arch_hardware_unsetup();
2682 out_free_0a:
2683 free_cpumask_var(cpus_hardware_enabled);
2684 out_free_0:
2685 __free_page(bad_page);
2686 out:
2687 kvm_arch_exit();
2688 kvm_exit_debug();
2689 out_fail:
2690 return r;
2691 }
2692 EXPORT_SYMBOL_GPL(kvm_init);
2693
2694 void kvm_exit(void)
2695 {
2696 kvm_trace_cleanup();
2697 misc_deregister(&kvm_dev);
2698 kmem_cache_destroy(kvm_vcpu_cache);
2699 sysdev_unregister(&kvm_sysdev);
2700 sysdev_class_unregister(&kvm_sysdev_class);
2701 unregister_reboot_notifier(&kvm_reboot_notifier);
2702 unregister_cpu_notifier(&kvm_cpu_notifier);
2703 on_each_cpu(hardware_disable, NULL, 1);
2704 kvm_arch_hardware_unsetup();
2705 kvm_arch_exit();
2706 kvm_exit_debug();
2707 free_cpumask_var(cpus_hardware_enabled);
2708 __free_page(bad_page);
2709 }
2710 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.082794 seconds and 6 git commands to generate.