KVM: x86 emulator: Add in/out instructions (opcodes 0xe4-0xe7, 0xec-0xef)
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
51 #include "coalesced_mmio.h"
52 #endif
53
54 MODULE_AUTHOR("Qumranet");
55 MODULE_LICENSE("GPL");
56
57 DEFINE_SPINLOCK(kvm_lock);
58 LIST_HEAD(vm_list);
59
60 static cpumask_t cpus_hardware_enabled;
61
62 struct kmem_cache *kvm_vcpu_cache;
63 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
64
65 static __read_mostly struct preempt_ops kvm_preempt_ops;
66
67 struct dentry *kvm_debugfs_dir;
68
69 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
70 unsigned long arg);
71
72 bool kvm_rebooting;
73
74 static inline int valid_vcpu(int n)
75 {
76 return likely(n >= 0 && n < KVM_MAX_VCPUS);
77 }
78
79 static inline int is_mmio_pfn(pfn_t pfn)
80 {
81 if (pfn_valid(pfn))
82 return PageReserved(pfn_to_page(pfn));
83
84 return true;
85 }
86
87 /*
88 * Switches to specified vcpu, until a matching vcpu_put()
89 */
90 void vcpu_load(struct kvm_vcpu *vcpu)
91 {
92 int cpu;
93
94 mutex_lock(&vcpu->mutex);
95 cpu = get_cpu();
96 preempt_notifier_register(&vcpu->preempt_notifier);
97 kvm_arch_vcpu_load(vcpu, cpu);
98 put_cpu();
99 }
100
101 void vcpu_put(struct kvm_vcpu *vcpu)
102 {
103 preempt_disable();
104 kvm_arch_vcpu_put(vcpu);
105 preempt_notifier_unregister(&vcpu->preempt_notifier);
106 preempt_enable();
107 mutex_unlock(&vcpu->mutex);
108 }
109
110 static void ack_flush(void *_completed)
111 {
112 }
113
114 void kvm_flush_remote_tlbs(struct kvm *kvm)
115 {
116 int i, cpu, me;
117 cpumask_t cpus;
118 struct kvm_vcpu *vcpu;
119
120 me = get_cpu();
121 cpus_clear(cpus);
122 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
123 vcpu = kvm->vcpus[i];
124 if (!vcpu)
125 continue;
126 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
127 continue;
128 cpu = vcpu->cpu;
129 if (cpu != -1 && cpu != me)
130 cpu_set(cpu, cpus);
131 }
132 if (cpus_empty(cpus))
133 goto out;
134 ++kvm->stat.remote_tlb_flush;
135 smp_call_function_mask(cpus, ack_flush, NULL, 1);
136 out:
137 put_cpu();
138 }
139
140 void kvm_reload_remote_mmus(struct kvm *kvm)
141 {
142 int i, cpu, me;
143 cpumask_t cpus;
144 struct kvm_vcpu *vcpu;
145
146 me = get_cpu();
147 cpus_clear(cpus);
148 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
149 vcpu = kvm->vcpus[i];
150 if (!vcpu)
151 continue;
152 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
153 continue;
154 cpu = vcpu->cpu;
155 if (cpu != -1 && cpu != me)
156 cpu_set(cpu, cpus);
157 }
158 if (cpus_empty(cpus))
159 goto out;
160 smp_call_function_mask(cpus, ack_flush, NULL, 1);
161 out:
162 put_cpu();
163 }
164
165
166 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
167 {
168 struct page *page;
169 int r;
170
171 mutex_init(&vcpu->mutex);
172 vcpu->cpu = -1;
173 vcpu->kvm = kvm;
174 vcpu->vcpu_id = id;
175 init_waitqueue_head(&vcpu->wq);
176
177 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
178 if (!page) {
179 r = -ENOMEM;
180 goto fail;
181 }
182 vcpu->run = page_address(page);
183
184 r = kvm_arch_vcpu_init(vcpu);
185 if (r < 0)
186 goto fail_free_run;
187 return 0;
188
189 fail_free_run:
190 free_page((unsigned long)vcpu->run);
191 fail:
192 return r;
193 }
194 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
195
196 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
197 {
198 kvm_arch_vcpu_uninit(vcpu);
199 free_page((unsigned long)vcpu->run);
200 }
201 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
202
203 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
204 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
205 {
206 return container_of(mn, struct kvm, mmu_notifier);
207 }
208
209 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
210 struct mm_struct *mm,
211 unsigned long address)
212 {
213 struct kvm *kvm = mmu_notifier_to_kvm(mn);
214 int need_tlb_flush;
215
216 /*
217 * When ->invalidate_page runs, the linux pte has been zapped
218 * already but the page is still allocated until
219 * ->invalidate_page returns. So if we increase the sequence
220 * here the kvm page fault will notice if the spte can't be
221 * established because the page is going to be freed. If
222 * instead the kvm page fault establishes the spte before
223 * ->invalidate_page runs, kvm_unmap_hva will release it
224 * before returning.
225 *
226 * The sequence increase only need to be seen at spin_unlock
227 * time, and not at spin_lock time.
228 *
229 * Increasing the sequence after the spin_unlock would be
230 * unsafe because the kvm page fault could then establish the
231 * pte after kvm_unmap_hva returned, without noticing the page
232 * is going to be freed.
233 */
234 spin_lock(&kvm->mmu_lock);
235 kvm->mmu_notifier_seq++;
236 need_tlb_flush = kvm_unmap_hva(kvm, address);
237 spin_unlock(&kvm->mmu_lock);
238
239 /* we've to flush the tlb before the pages can be freed */
240 if (need_tlb_flush)
241 kvm_flush_remote_tlbs(kvm);
242
243 }
244
245 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
246 struct mm_struct *mm,
247 unsigned long start,
248 unsigned long end)
249 {
250 struct kvm *kvm = mmu_notifier_to_kvm(mn);
251 int need_tlb_flush = 0;
252
253 spin_lock(&kvm->mmu_lock);
254 /*
255 * The count increase must become visible at unlock time as no
256 * spte can be established without taking the mmu_lock and
257 * count is also read inside the mmu_lock critical section.
258 */
259 kvm->mmu_notifier_count++;
260 for (; start < end; start += PAGE_SIZE)
261 need_tlb_flush |= kvm_unmap_hva(kvm, start);
262 spin_unlock(&kvm->mmu_lock);
263
264 /* we've to flush the tlb before the pages can be freed */
265 if (need_tlb_flush)
266 kvm_flush_remote_tlbs(kvm);
267 }
268
269 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
270 struct mm_struct *mm,
271 unsigned long start,
272 unsigned long end)
273 {
274 struct kvm *kvm = mmu_notifier_to_kvm(mn);
275
276 spin_lock(&kvm->mmu_lock);
277 /*
278 * This sequence increase will notify the kvm page fault that
279 * the page that is going to be mapped in the spte could have
280 * been freed.
281 */
282 kvm->mmu_notifier_seq++;
283 /*
284 * The above sequence increase must be visible before the
285 * below count decrease but both values are read by the kvm
286 * page fault under mmu_lock spinlock so we don't need to add
287 * a smb_wmb() here in between the two.
288 */
289 kvm->mmu_notifier_count--;
290 spin_unlock(&kvm->mmu_lock);
291
292 BUG_ON(kvm->mmu_notifier_count < 0);
293 }
294
295 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
296 struct mm_struct *mm,
297 unsigned long address)
298 {
299 struct kvm *kvm = mmu_notifier_to_kvm(mn);
300 int young;
301
302 spin_lock(&kvm->mmu_lock);
303 young = kvm_age_hva(kvm, address);
304 spin_unlock(&kvm->mmu_lock);
305
306 if (young)
307 kvm_flush_remote_tlbs(kvm);
308
309 return young;
310 }
311
312 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
313 .invalidate_page = kvm_mmu_notifier_invalidate_page,
314 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
315 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
316 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
317 };
318 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
319
320 static struct kvm *kvm_create_vm(void)
321 {
322 struct kvm *kvm = kvm_arch_create_vm();
323 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
324 struct page *page;
325 #endif
326
327 if (IS_ERR(kvm))
328 goto out;
329
330 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
331 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
332 if (!page) {
333 kfree(kvm);
334 return ERR_PTR(-ENOMEM);
335 }
336 kvm->coalesced_mmio_ring =
337 (struct kvm_coalesced_mmio_ring *)page_address(page);
338 #endif
339
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 {
342 int err;
343 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
344 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
345 if (err) {
346 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
347 put_page(page);
348 #endif
349 kfree(kvm);
350 return ERR_PTR(err);
351 }
352 }
353 #endif
354
355 kvm->mm = current->mm;
356 atomic_inc(&kvm->mm->mm_count);
357 spin_lock_init(&kvm->mmu_lock);
358 kvm_io_bus_init(&kvm->pio_bus);
359 mutex_init(&kvm->lock);
360 kvm_io_bus_init(&kvm->mmio_bus);
361 init_rwsem(&kvm->slots_lock);
362 atomic_set(&kvm->users_count, 1);
363 spin_lock(&kvm_lock);
364 list_add(&kvm->vm_list, &vm_list);
365 spin_unlock(&kvm_lock);
366 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
367 kvm_coalesced_mmio_init(kvm);
368 #endif
369 out:
370 return kvm;
371 }
372
373 /*
374 * Free any memory in @free but not in @dont.
375 */
376 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
377 struct kvm_memory_slot *dont)
378 {
379 if (!dont || free->rmap != dont->rmap)
380 vfree(free->rmap);
381
382 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
383 vfree(free->dirty_bitmap);
384
385 if (!dont || free->lpage_info != dont->lpage_info)
386 vfree(free->lpage_info);
387
388 free->npages = 0;
389 free->dirty_bitmap = NULL;
390 free->rmap = NULL;
391 free->lpage_info = NULL;
392 }
393
394 void kvm_free_physmem(struct kvm *kvm)
395 {
396 int i;
397
398 for (i = 0; i < kvm->nmemslots; ++i)
399 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
400 }
401
402 static void kvm_destroy_vm(struct kvm *kvm)
403 {
404 struct mm_struct *mm = kvm->mm;
405
406 spin_lock(&kvm_lock);
407 list_del(&kvm->vm_list);
408 spin_unlock(&kvm_lock);
409 kvm_io_bus_destroy(&kvm->pio_bus);
410 kvm_io_bus_destroy(&kvm->mmio_bus);
411 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
412 if (kvm->coalesced_mmio_ring != NULL)
413 free_page((unsigned long)kvm->coalesced_mmio_ring);
414 #endif
415 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
416 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
417 #endif
418 kvm_arch_destroy_vm(kvm);
419 mmdrop(mm);
420 }
421
422 void kvm_get_kvm(struct kvm *kvm)
423 {
424 atomic_inc(&kvm->users_count);
425 }
426 EXPORT_SYMBOL_GPL(kvm_get_kvm);
427
428 void kvm_put_kvm(struct kvm *kvm)
429 {
430 if (atomic_dec_and_test(&kvm->users_count))
431 kvm_destroy_vm(kvm);
432 }
433 EXPORT_SYMBOL_GPL(kvm_put_kvm);
434
435
436 static int kvm_vm_release(struct inode *inode, struct file *filp)
437 {
438 struct kvm *kvm = filp->private_data;
439
440 kvm_put_kvm(kvm);
441 return 0;
442 }
443
444 /*
445 * Allocate some memory and give it an address in the guest physical address
446 * space.
447 *
448 * Discontiguous memory is allowed, mostly for framebuffers.
449 *
450 * Must be called holding mmap_sem for write.
451 */
452 int __kvm_set_memory_region(struct kvm *kvm,
453 struct kvm_userspace_memory_region *mem,
454 int user_alloc)
455 {
456 int r;
457 gfn_t base_gfn;
458 unsigned long npages;
459 unsigned long i;
460 struct kvm_memory_slot *memslot;
461 struct kvm_memory_slot old, new;
462
463 r = -EINVAL;
464 /* General sanity checks */
465 if (mem->memory_size & (PAGE_SIZE - 1))
466 goto out;
467 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
468 goto out;
469 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
470 goto out;
471 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
472 goto out;
473
474 memslot = &kvm->memslots[mem->slot];
475 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
476 npages = mem->memory_size >> PAGE_SHIFT;
477
478 if (!npages)
479 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
480
481 new = old = *memslot;
482
483 new.base_gfn = base_gfn;
484 new.npages = npages;
485 new.flags = mem->flags;
486
487 /* Disallow changing a memory slot's size. */
488 r = -EINVAL;
489 if (npages && old.npages && npages != old.npages)
490 goto out_free;
491
492 /* Check for overlaps */
493 r = -EEXIST;
494 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
495 struct kvm_memory_slot *s = &kvm->memslots[i];
496
497 if (s == memslot)
498 continue;
499 if (!((base_gfn + npages <= s->base_gfn) ||
500 (base_gfn >= s->base_gfn + s->npages)))
501 goto out_free;
502 }
503
504 /* Free page dirty bitmap if unneeded */
505 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
506 new.dirty_bitmap = NULL;
507
508 r = -ENOMEM;
509
510 /* Allocate if a slot is being created */
511 #ifndef CONFIG_S390
512 if (npages && !new.rmap) {
513 new.rmap = vmalloc(npages * sizeof(struct page *));
514
515 if (!new.rmap)
516 goto out_free;
517
518 memset(new.rmap, 0, npages * sizeof(*new.rmap));
519
520 new.user_alloc = user_alloc;
521 /*
522 * hva_to_rmmap() serialzies with the mmu_lock and to be
523 * safe it has to ignore memslots with !user_alloc &&
524 * !userspace_addr.
525 */
526 if (user_alloc)
527 new.userspace_addr = mem->userspace_addr;
528 else
529 new.userspace_addr = 0;
530 }
531 if (npages && !new.lpage_info) {
532 int largepages = npages / KVM_PAGES_PER_HPAGE;
533 if (npages % KVM_PAGES_PER_HPAGE)
534 largepages++;
535 if (base_gfn % KVM_PAGES_PER_HPAGE)
536 largepages++;
537
538 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
539
540 if (!new.lpage_info)
541 goto out_free;
542
543 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
544
545 if (base_gfn % KVM_PAGES_PER_HPAGE)
546 new.lpage_info[0].write_count = 1;
547 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
548 new.lpage_info[largepages-1].write_count = 1;
549 }
550
551 /* Allocate page dirty bitmap if needed */
552 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
553 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
554
555 new.dirty_bitmap = vmalloc(dirty_bytes);
556 if (!new.dirty_bitmap)
557 goto out_free;
558 memset(new.dirty_bitmap, 0, dirty_bytes);
559 }
560 #endif /* not defined CONFIG_S390 */
561
562 if (!npages)
563 kvm_arch_flush_shadow(kvm);
564
565 spin_lock(&kvm->mmu_lock);
566 if (mem->slot >= kvm->nmemslots)
567 kvm->nmemslots = mem->slot + 1;
568
569 *memslot = new;
570 spin_unlock(&kvm->mmu_lock);
571
572 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
573 if (r) {
574 spin_lock(&kvm->mmu_lock);
575 *memslot = old;
576 spin_unlock(&kvm->mmu_lock);
577 goto out_free;
578 }
579
580 kvm_free_physmem_slot(&old, &new);
581 return 0;
582
583 out_free:
584 kvm_free_physmem_slot(&new, &old);
585 out:
586 return r;
587
588 }
589 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
590
591 int kvm_set_memory_region(struct kvm *kvm,
592 struct kvm_userspace_memory_region *mem,
593 int user_alloc)
594 {
595 int r;
596
597 down_write(&kvm->slots_lock);
598 r = __kvm_set_memory_region(kvm, mem, user_alloc);
599 up_write(&kvm->slots_lock);
600 return r;
601 }
602 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
603
604 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
605 struct
606 kvm_userspace_memory_region *mem,
607 int user_alloc)
608 {
609 if (mem->slot >= KVM_MEMORY_SLOTS)
610 return -EINVAL;
611 return kvm_set_memory_region(kvm, mem, user_alloc);
612 }
613
614 int kvm_get_dirty_log(struct kvm *kvm,
615 struct kvm_dirty_log *log, int *is_dirty)
616 {
617 struct kvm_memory_slot *memslot;
618 int r, i;
619 int n;
620 unsigned long any = 0;
621
622 r = -EINVAL;
623 if (log->slot >= KVM_MEMORY_SLOTS)
624 goto out;
625
626 memslot = &kvm->memslots[log->slot];
627 r = -ENOENT;
628 if (!memslot->dirty_bitmap)
629 goto out;
630
631 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
632
633 for (i = 0; !any && i < n/sizeof(long); ++i)
634 any = memslot->dirty_bitmap[i];
635
636 r = -EFAULT;
637 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
638 goto out;
639
640 if (any)
641 *is_dirty = 1;
642
643 r = 0;
644 out:
645 return r;
646 }
647
648 int is_error_page(struct page *page)
649 {
650 return page == bad_page;
651 }
652 EXPORT_SYMBOL_GPL(is_error_page);
653
654 int is_error_pfn(pfn_t pfn)
655 {
656 return pfn == bad_pfn;
657 }
658 EXPORT_SYMBOL_GPL(is_error_pfn);
659
660 static inline unsigned long bad_hva(void)
661 {
662 return PAGE_OFFSET;
663 }
664
665 int kvm_is_error_hva(unsigned long addr)
666 {
667 return addr == bad_hva();
668 }
669 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
670
671 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
672 {
673 int i;
674
675 for (i = 0; i < kvm->nmemslots; ++i) {
676 struct kvm_memory_slot *memslot = &kvm->memslots[i];
677
678 if (gfn >= memslot->base_gfn
679 && gfn < memslot->base_gfn + memslot->npages)
680 return memslot;
681 }
682 return NULL;
683 }
684
685 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
686 {
687 gfn = unalias_gfn(kvm, gfn);
688 return __gfn_to_memslot(kvm, gfn);
689 }
690
691 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
692 {
693 int i;
694
695 gfn = unalias_gfn(kvm, gfn);
696 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
697 struct kvm_memory_slot *memslot = &kvm->memslots[i];
698
699 if (gfn >= memslot->base_gfn
700 && gfn < memslot->base_gfn + memslot->npages)
701 return 1;
702 }
703 return 0;
704 }
705 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
706
707 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
708 {
709 struct kvm_memory_slot *slot;
710
711 gfn = unalias_gfn(kvm, gfn);
712 slot = __gfn_to_memslot(kvm, gfn);
713 if (!slot)
714 return bad_hva();
715 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
716 }
717 EXPORT_SYMBOL_GPL(gfn_to_hva);
718
719 /*
720 * Requires current->mm->mmap_sem to be held
721 */
722 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
723 {
724 struct page *page[1];
725 unsigned long addr;
726 int npages;
727 pfn_t pfn;
728
729 might_sleep();
730
731 addr = gfn_to_hva(kvm, gfn);
732 if (kvm_is_error_hva(addr)) {
733 get_page(bad_page);
734 return page_to_pfn(bad_page);
735 }
736
737 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
738 NULL);
739
740 if (unlikely(npages != 1)) {
741 struct vm_area_struct *vma;
742
743 vma = find_vma(current->mm, addr);
744 if (vma == NULL || addr < vma->vm_start ||
745 !(vma->vm_flags & VM_PFNMAP)) {
746 get_page(bad_page);
747 return page_to_pfn(bad_page);
748 }
749
750 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
751 BUG_ON(!is_mmio_pfn(pfn));
752 } else
753 pfn = page_to_pfn(page[0]);
754
755 return pfn;
756 }
757
758 EXPORT_SYMBOL_GPL(gfn_to_pfn);
759
760 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
761 {
762 pfn_t pfn;
763
764 pfn = gfn_to_pfn(kvm, gfn);
765 if (!is_mmio_pfn(pfn))
766 return pfn_to_page(pfn);
767
768 WARN_ON(is_mmio_pfn(pfn));
769
770 get_page(bad_page);
771 return bad_page;
772 }
773
774 EXPORT_SYMBOL_GPL(gfn_to_page);
775
776 void kvm_release_page_clean(struct page *page)
777 {
778 kvm_release_pfn_clean(page_to_pfn(page));
779 }
780 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
781
782 void kvm_release_pfn_clean(pfn_t pfn)
783 {
784 if (!is_mmio_pfn(pfn))
785 put_page(pfn_to_page(pfn));
786 }
787 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
788
789 void kvm_release_page_dirty(struct page *page)
790 {
791 kvm_release_pfn_dirty(page_to_pfn(page));
792 }
793 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
794
795 void kvm_release_pfn_dirty(pfn_t pfn)
796 {
797 kvm_set_pfn_dirty(pfn);
798 kvm_release_pfn_clean(pfn);
799 }
800 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
801
802 void kvm_set_page_dirty(struct page *page)
803 {
804 kvm_set_pfn_dirty(page_to_pfn(page));
805 }
806 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
807
808 void kvm_set_pfn_dirty(pfn_t pfn)
809 {
810 if (!is_mmio_pfn(pfn)) {
811 struct page *page = pfn_to_page(pfn);
812 if (!PageReserved(page))
813 SetPageDirty(page);
814 }
815 }
816 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
817
818 void kvm_set_pfn_accessed(pfn_t pfn)
819 {
820 if (!is_mmio_pfn(pfn))
821 mark_page_accessed(pfn_to_page(pfn));
822 }
823 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
824
825 void kvm_get_pfn(pfn_t pfn)
826 {
827 if (!is_mmio_pfn(pfn))
828 get_page(pfn_to_page(pfn));
829 }
830 EXPORT_SYMBOL_GPL(kvm_get_pfn);
831
832 static int next_segment(unsigned long len, int offset)
833 {
834 if (len > PAGE_SIZE - offset)
835 return PAGE_SIZE - offset;
836 else
837 return len;
838 }
839
840 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
841 int len)
842 {
843 int r;
844 unsigned long addr;
845
846 addr = gfn_to_hva(kvm, gfn);
847 if (kvm_is_error_hva(addr))
848 return -EFAULT;
849 r = copy_from_user(data, (void __user *)addr + offset, len);
850 if (r)
851 return -EFAULT;
852 return 0;
853 }
854 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
855
856 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
857 {
858 gfn_t gfn = gpa >> PAGE_SHIFT;
859 int seg;
860 int offset = offset_in_page(gpa);
861 int ret;
862
863 while ((seg = next_segment(len, offset)) != 0) {
864 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
865 if (ret < 0)
866 return ret;
867 offset = 0;
868 len -= seg;
869 data += seg;
870 ++gfn;
871 }
872 return 0;
873 }
874 EXPORT_SYMBOL_GPL(kvm_read_guest);
875
876 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
877 unsigned long len)
878 {
879 int r;
880 unsigned long addr;
881 gfn_t gfn = gpa >> PAGE_SHIFT;
882 int offset = offset_in_page(gpa);
883
884 addr = gfn_to_hva(kvm, gfn);
885 if (kvm_is_error_hva(addr))
886 return -EFAULT;
887 pagefault_disable();
888 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
889 pagefault_enable();
890 if (r)
891 return -EFAULT;
892 return 0;
893 }
894 EXPORT_SYMBOL(kvm_read_guest_atomic);
895
896 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
897 int offset, int len)
898 {
899 int r;
900 unsigned long addr;
901
902 addr = gfn_to_hva(kvm, gfn);
903 if (kvm_is_error_hva(addr))
904 return -EFAULT;
905 r = copy_to_user((void __user *)addr + offset, data, len);
906 if (r)
907 return -EFAULT;
908 mark_page_dirty(kvm, gfn);
909 return 0;
910 }
911 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
912
913 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
914 unsigned long len)
915 {
916 gfn_t gfn = gpa >> PAGE_SHIFT;
917 int seg;
918 int offset = offset_in_page(gpa);
919 int ret;
920
921 while ((seg = next_segment(len, offset)) != 0) {
922 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
923 if (ret < 0)
924 return ret;
925 offset = 0;
926 len -= seg;
927 data += seg;
928 ++gfn;
929 }
930 return 0;
931 }
932
933 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
934 {
935 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
936 }
937 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
938
939 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
940 {
941 gfn_t gfn = gpa >> PAGE_SHIFT;
942 int seg;
943 int offset = offset_in_page(gpa);
944 int ret;
945
946 while ((seg = next_segment(len, offset)) != 0) {
947 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
948 if (ret < 0)
949 return ret;
950 offset = 0;
951 len -= seg;
952 ++gfn;
953 }
954 return 0;
955 }
956 EXPORT_SYMBOL_GPL(kvm_clear_guest);
957
958 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
959 {
960 struct kvm_memory_slot *memslot;
961
962 gfn = unalias_gfn(kvm, gfn);
963 memslot = __gfn_to_memslot(kvm, gfn);
964 if (memslot && memslot->dirty_bitmap) {
965 unsigned long rel_gfn = gfn - memslot->base_gfn;
966
967 /* avoid RMW */
968 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
969 set_bit(rel_gfn, memslot->dirty_bitmap);
970 }
971 }
972
973 /*
974 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
975 */
976 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
977 {
978 DEFINE_WAIT(wait);
979
980 for (;;) {
981 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
982
983 if (kvm_cpu_has_interrupt(vcpu))
984 break;
985 if (kvm_cpu_has_pending_timer(vcpu))
986 break;
987 if (kvm_arch_vcpu_runnable(vcpu))
988 break;
989 if (signal_pending(current))
990 break;
991
992 vcpu_put(vcpu);
993 schedule();
994 vcpu_load(vcpu);
995 }
996
997 finish_wait(&vcpu->wq, &wait);
998 }
999
1000 void kvm_resched(struct kvm_vcpu *vcpu)
1001 {
1002 if (!need_resched())
1003 return;
1004 cond_resched();
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_resched);
1007
1008 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1009 {
1010 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1011 struct page *page;
1012
1013 if (vmf->pgoff == 0)
1014 page = virt_to_page(vcpu->run);
1015 #ifdef CONFIG_X86
1016 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1017 page = virt_to_page(vcpu->arch.pio_data);
1018 #endif
1019 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1020 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1021 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1022 #endif
1023 else
1024 return VM_FAULT_SIGBUS;
1025 get_page(page);
1026 vmf->page = page;
1027 return 0;
1028 }
1029
1030 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1031 .fault = kvm_vcpu_fault,
1032 };
1033
1034 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1035 {
1036 vma->vm_ops = &kvm_vcpu_vm_ops;
1037 return 0;
1038 }
1039
1040 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1041 {
1042 struct kvm_vcpu *vcpu = filp->private_data;
1043
1044 kvm_put_kvm(vcpu->kvm);
1045 return 0;
1046 }
1047
1048 static const struct file_operations kvm_vcpu_fops = {
1049 .release = kvm_vcpu_release,
1050 .unlocked_ioctl = kvm_vcpu_ioctl,
1051 .compat_ioctl = kvm_vcpu_ioctl,
1052 .mmap = kvm_vcpu_mmap,
1053 };
1054
1055 /*
1056 * Allocates an inode for the vcpu.
1057 */
1058 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1059 {
1060 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1061 if (fd < 0)
1062 kvm_put_kvm(vcpu->kvm);
1063 return fd;
1064 }
1065
1066 /*
1067 * Creates some virtual cpus. Good luck creating more than one.
1068 */
1069 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1070 {
1071 int r;
1072 struct kvm_vcpu *vcpu;
1073
1074 if (!valid_vcpu(n))
1075 return -EINVAL;
1076
1077 vcpu = kvm_arch_vcpu_create(kvm, n);
1078 if (IS_ERR(vcpu))
1079 return PTR_ERR(vcpu);
1080
1081 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1082
1083 r = kvm_arch_vcpu_setup(vcpu);
1084 if (r)
1085 goto vcpu_destroy;
1086
1087 mutex_lock(&kvm->lock);
1088 if (kvm->vcpus[n]) {
1089 r = -EEXIST;
1090 mutex_unlock(&kvm->lock);
1091 goto vcpu_destroy;
1092 }
1093 kvm->vcpus[n] = vcpu;
1094 mutex_unlock(&kvm->lock);
1095
1096 /* Now it's all set up, let userspace reach it */
1097 kvm_get_kvm(kvm);
1098 r = create_vcpu_fd(vcpu);
1099 if (r < 0)
1100 goto unlink;
1101 return r;
1102
1103 unlink:
1104 mutex_lock(&kvm->lock);
1105 kvm->vcpus[n] = NULL;
1106 mutex_unlock(&kvm->lock);
1107 vcpu_destroy:
1108 kvm_arch_vcpu_destroy(vcpu);
1109 return r;
1110 }
1111
1112 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1113 {
1114 if (sigset) {
1115 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1116 vcpu->sigset_active = 1;
1117 vcpu->sigset = *sigset;
1118 } else
1119 vcpu->sigset_active = 0;
1120 return 0;
1121 }
1122
1123 static long kvm_vcpu_ioctl(struct file *filp,
1124 unsigned int ioctl, unsigned long arg)
1125 {
1126 struct kvm_vcpu *vcpu = filp->private_data;
1127 void __user *argp = (void __user *)arg;
1128 int r;
1129 struct kvm_fpu *fpu = NULL;
1130 struct kvm_sregs *kvm_sregs = NULL;
1131
1132 if (vcpu->kvm->mm != current->mm)
1133 return -EIO;
1134 switch (ioctl) {
1135 case KVM_RUN:
1136 r = -EINVAL;
1137 if (arg)
1138 goto out;
1139 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1140 break;
1141 case KVM_GET_REGS: {
1142 struct kvm_regs *kvm_regs;
1143
1144 r = -ENOMEM;
1145 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1146 if (!kvm_regs)
1147 goto out;
1148 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1149 if (r)
1150 goto out_free1;
1151 r = -EFAULT;
1152 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1153 goto out_free1;
1154 r = 0;
1155 out_free1:
1156 kfree(kvm_regs);
1157 break;
1158 }
1159 case KVM_SET_REGS: {
1160 struct kvm_regs *kvm_regs;
1161
1162 r = -ENOMEM;
1163 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1164 if (!kvm_regs)
1165 goto out;
1166 r = -EFAULT;
1167 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1168 goto out_free2;
1169 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1170 if (r)
1171 goto out_free2;
1172 r = 0;
1173 out_free2:
1174 kfree(kvm_regs);
1175 break;
1176 }
1177 case KVM_GET_SREGS: {
1178 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1179 r = -ENOMEM;
1180 if (!kvm_sregs)
1181 goto out;
1182 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1183 if (r)
1184 goto out;
1185 r = -EFAULT;
1186 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1187 goto out;
1188 r = 0;
1189 break;
1190 }
1191 case KVM_SET_SREGS: {
1192 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1193 r = -ENOMEM;
1194 if (!kvm_sregs)
1195 goto out;
1196 r = -EFAULT;
1197 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1198 goto out;
1199 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1200 if (r)
1201 goto out;
1202 r = 0;
1203 break;
1204 }
1205 case KVM_GET_MP_STATE: {
1206 struct kvm_mp_state mp_state;
1207
1208 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1209 if (r)
1210 goto out;
1211 r = -EFAULT;
1212 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1213 goto out;
1214 r = 0;
1215 break;
1216 }
1217 case KVM_SET_MP_STATE: {
1218 struct kvm_mp_state mp_state;
1219
1220 r = -EFAULT;
1221 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1222 goto out;
1223 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1224 if (r)
1225 goto out;
1226 r = 0;
1227 break;
1228 }
1229 case KVM_TRANSLATE: {
1230 struct kvm_translation tr;
1231
1232 r = -EFAULT;
1233 if (copy_from_user(&tr, argp, sizeof tr))
1234 goto out;
1235 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1236 if (r)
1237 goto out;
1238 r = -EFAULT;
1239 if (copy_to_user(argp, &tr, sizeof tr))
1240 goto out;
1241 r = 0;
1242 break;
1243 }
1244 case KVM_DEBUG_GUEST: {
1245 struct kvm_debug_guest dbg;
1246
1247 r = -EFAULT;
1248 if (copy_from_user(&dbg, argp, sizeof dbg))
1249 goto out;
1250 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1251 if (r)
1252 goto out;
1253 r = 0;
1254 break;
1255 }
1256 case KVM_SET_SIGNAL_MASK: {
1257 struct kvm_signal_mask __user *sigmask_arg = argp;
1258 struct kvm_signal_mask kvm_sigmask;
1259 sigset_t sigset, *p;
1260
1261 p = NULL;
1262 if (argp) {
1263 r = -EFAULT;
1264 if (copy_from_user(&kvm_sigmask, argp,
1265 sizeof kvm_sigmask))
1266 goto out;
1267 r = -EINVAL;
1268 if (kvm_sigmask.len != sizeof sigset)
1269 goto out;
1270 r = -EFAULT;
1271 if (copy_from_user(&sigset, sigmask_arg->sigset,
1272 sizeof sigset))
1273 goto out;
1274 p = &sigset;
1275 }
1276 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1277 break;
1278 }
1279 case KVM_GET_FPU: {
1280 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1281 r = -ENOMEM;
1282 if (!fpu)
1283 goto out;
1284 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1285 if (r)
1286 goto out;
1287 r = -EFAULT;
1288 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1289 goto out;
1290 r = 0;
1291 break;
1292 }
1293 case KVM_SET_FPU: {
1294 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1295 r = -ENOMEM;
1296 if (!fpu)
1297 goto out;
1298 r = -EFAULT;
1299 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1300 goto out;
1301 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1302 if (r)
1303 goto out;
1304 r = 0;
1305 break;
1306 }
1307 default:
1308 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1309 }
1310 out:
1311 kfree(fpu);
1312 kfree(kvm_sregs);
1313 return r;
1314 }
1315
1316 static long kvm_vm_ioctl(struct file *filp,
1317 unsigned int ioctl, unsigned long arg)
1318 {
1319 struct kvm *kvm = filp->private_data;
1320 void __user *argp = (void __user *)arg;
1321 int r;
1322
1323 if (kvm->mm != current->mm)
1324 return -EIO;
1325 switch (ioctl) {
1326 case KVM_CREATE_VCPU:
1327 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1328 if (r < 0)
1329 goto out;
1330 break;
1331 case KVM_SET_USER_MEMORY_REGION: {
1332 struct kvm_userspace_memory_region kvm_userspace_mem;
1333
1334 r = -EFAULT;
1335 if (copy_from_user(&kvm_userspace_mem, argp,
1336 sizeof kvm_userspace_mem))
1337 goto out;
1338
1339 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1340 if (r)
1341 goto out;
1342 break;
1343 }
1344 case KVM_GET_DIRTY_LOG: {
1345 struct kvm_dirty_log log;
1346
1347 r = -EFAULT;
1348 if (copy_from_user(&log, argp, sizeof log))
1349 goto out;
1350 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1351 if (r)
1352 goto out;
1353 break;
1354 }
1355 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1356 case KVM_REGISTER_COALESCED_MMIO: {
1357 struct kvm_coalesced_mmio_zone zone;
1358 r = -EFAULT;
1359 if (copy_from_user(&zone, argp, sizeof zone))
1360 goto out;
1361 r = -ENXIO;
1362 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1363 if (r)
1364 goto out;
1365 r = 0;
1366 break;
1367 }
1368 case KVM_UNREGISTER_COALESCED_MMIO: {
1369 struct kvm_coalesced_mmio_zone zone;
1370 r = -EFAULT;
1371 if (copy_from_user(&zone, argp, sizeof zone))
1372 goto out;
1373 r = -ENXIO;
1374 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1375 if (r)
1376 goto out;
1377 r = 0;
1378 break;
1379 }
1380 #endif
1381 default:
1382 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1383 }
1384 out:
1385 return r;
1386 }
1387
1388 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1389 {
1390 struct kvm *kvm = vma->vm_file->private_data;
1391 struct page *page;
1392
1393 if (!kvm_is_visible_gfn(kvm, vmf->pgoff))
1394 return VM_FAULT_SIGBUS;
1395 page = gfn_to_page(kvm, vmf->pgoff);
1396 if (is_error_page(page)) {
1397 kvm_release_page_clean(page);
1398 return VM_FAULT_SIGBUS;
1399 }
1400 vmf->page = page;
1401 return 0;
1402 }
1403
1404 static struct vm_operations_struct kvm_vm_vm_ops = {
1405 .fault = kvm_vm_fault,
1406 };
1407
1408 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1409 {
1410 vma->vm_ops = &kvm_vm_vm_ops;
1411 return 0;
1412 }
1413
1414 static const struct file_operations kvm_vm_fops = {
1415 .release = kvm_vm_release,
1416 .unlocked_ioctl = kvm_vm_ioctl,
1417 .compat_ioctl = kvm_vm_ioctl,
1418 .mmap = kvm_vm_mmap,
1419 };
1420
1421 static int kvm_dev_ioctl_create_vm(void)
1422 {
1423 int fd;
1424 struct kvm *kvm;
1425
1426 kvm = kvm_create_vm();
1427 if (IS_ERR(kvm))
1428 return PTR_ERR(kvm);
1429 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1430 if (fd < 0)
1431 kvm_put_kvm(kvm);
1432
1433 return fd;
1434 }
1435
1436 static long kvm_dev_ioctl(struct file *filp,
1437 unsigned int ioctl, unsigned long arg)
1438 {
1439 long r = -EINVAL;
1440
1441 switch (ioctl) {
1442 case KVM_GET_API_VERSION:
1443 r = -EINVAL;
1444 if (arg)
1445 goto out;
1446 r = KVM_API_VERSION;
1447 break;
1448 case KVM_CREATE_VM:
1449 r = -EINVAL;
1450 if (arg)
1451 goto out;
1452 r = kvm_dev_ioctl_create_vm();
1453 break;
1454 case KVM_CHECK_EXTENSION:
1455 r = kvm_dev_ioctl_check_extension(arg);
1456 break;
1457 case KVM_GET_VCPU_MMAP_SIZE:
1458 r = -EINVAL;
1459 if (arg)
1460 goto out;
1461 r = PAGE_SIZE; /* struct kvm_run */
1462 #ifdef CONFIG_X86
1463 r += PAGE_SIZE; /* pio data page */
1464 #endif
1465 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1466 r += PAGE_SIZE; /* coalesced mmio ring page */
1467 #endif
1468 break;
1469 case KVM_TRACE_ENABLE:
1470 case KVM_TRACE_PAUSE:
1471 case KVM_TRACE_DISABLE:
1472 r = kvm_trace_ioctl(ioctl, arg);
1473 break;
1474 default:
1475 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1476 }
1477 out:
1478 return r;
1479 }
1480
1481 static struct file_operations kvm_chardev_ops = {
1482 .unlocked_ioctl = kvm_dev_ioctl,
1483 .compat_ioctl = kvm_dev_ioctl,
1484 };
1485
1486 static struct miscdevice kvm_dev = {
1487 KVM_MINOR,
1488 "kvm",
1489 &kvm_chardev_ops,
1490 };
1491
1492 static void hardware_enable(void *junk)
1493 {
1494 int cpu = raw_smp_processor_id();
1495
1496 if (cpu_isset(cpu, cpus_hardware_enabled))
1497 return;
1498 cpu_set(cpu, cpus_hardware_enabled);
1499 kvm_arch_hardware_enable(NULL);
1500 }
1501
1502 static void hardware_disable(void *junk)
1503 {
1504 int cpu = raw_smp_processor_id();
1505
1506 if (!cpu_isset(cpu, cpus_hardware_enabled))
1507 return;
1508 cpu_clear(cpu, cpus_hardware_enabled);
1509 kvm_arch_hardware_disable(NULL);
1510 }
1511
1512 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1513 void *v)
1514 {
1515 int cpu = (long)v;
1516
1517 val &= ~CPU_TASKS_FROZEN;
1518 switch (val) {
1519 case CPU_DYING:
1520 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1521 cpu);
1522 hardware_disable(NULL);
1523 break;
1524 case CPU_UP_CANCELED:
1525 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1526 cpu);
1527 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1528 break;
1529 case CPU_ONLINE:
1530 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1531 cpu);
1532 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1533 break;
1534 }
1535 return NOTIFY_OK;
1536 }
1537
1538
1539 asmlinkage void kvm_handle_fault_on_reboot(void)
1540 {
1541 if (kvm_rebooting)
1542 /* spin while reset goes on */
1543 while (true)
1544 ;
1545 /* Fault while not rebooting. We want the trace. */
1546 BUG();
1547 }
1548 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1549
1550 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1551 void *v)
1552 {
1553 if (val == SYS_RESTART) {
1554 /*
1555 * Some (well, at least mine) BIOSes hang on reboot if
1556 * in vmx root mode.
1557 */
1558 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1559 kvm_rebooting = true;
1560 on_each_cpu(hardware_disable, NULL, 1);
1561 }
1562 return NOTIFY_OK;
1563 }
1564
1565 static struct notifier_block kvm_reboot_notifier = {
1566 .notifier_call = kvm_reboot,
1567 .priority = 0,
1568 };
1569
1570 void kvm_io_bus_init(struct kvm_io_bus *bus)
1571 {
1572 memset(bus, 0, sizeof(*bus));
1573 }
1574
1575 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1576 {
1577 int i;
1578
1579 for (i = 0; i < bus->dev_count; i++) {
1580 struct kvm_io_device *pos = bus->devs[i];
1581
1582 kvm_iodevice_destructor(pos);
1583 }
1584 }
1585
1586 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
1587 gpa_t addr, int len, int is_write)
1588 {
1589 int i;
1590
1591 for (i = 0; i < bus->dev_count; i++) {
1592 struct kvm_io_device *pos = bus->devs[i];
1593
1594 if (pos->in_range(pos, addr, len, is_write))
1595 return pos;
1596 }
1597
1598 return NULL;
1599 }
1600
1601 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1602 {
1603 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1604
1605 bus->devs[bus->dev_count++] = dev;
1606 }
1607
1608 static struct notifier_block kvm_cpu_notifier = {
1609 .notifier_call = kvm_cpu_hotplug,
1610 .priority = 20, /* must be > scheduler priority */
1611 };
1612
1613 static int vm_stat_get(void *_offset, u64 *val)
1614 {
1615 unsigned offset = (long)_offset;
1616 struct kvm *kvm;
1617
1618 *val = 0;
1619 spin_lock(&kvm_lock);
1620 list_for_each_entry(kvm, &vm_list, vm_list)
1621 *val += *(u32 *)((void *)kvm + offset);
1622 spin_unlock(&kvm_lock);
1623 return 0;
1624 }
1625
1626 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1627
1628 static int vcpu_stat_get(void *_offset, u64 *val)
1629 {
1630 unsigned offset = (long)_offset;
1631 struct kvm *kvm;
1632 struct kvm_vcpu *vcpu;
1633 int i;
1634
1635 *val = 0;
1636 spin_lock(&kvm_lock);
1637 list_for_each_entry(kvm, &vm_list, vm_list)
1638 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1639 vcpu = kvm->vcpus[i];
1640 if (vcpu)
1641 *val += *(u32 *)((void *)vcpu + offset);
1642 }
1643 spin_unlock(&kvm_lock);
1644 return 0;
1645 }
1646
1647 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1648
1649 static struct file_operations *stat_fops[] = {
1650 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1651 [KVM_STAT_VM] = &vm_stat_fops,
1652 };
1653
1654 static void kvm_init_debug(void)
1655 {
1656 struct kvm_stats_debugfs_item *p;
1657
1658 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1659 for (p = debugfs_entries; p->name; ++p)
1660 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1661 (void *)(long)p->offset,
1662 stat_fops[p->kind]);
1663 }
1664
1665 static void kvm_exit_debug(void)
1666 {
1667 struct kvm_stats_debugfs_item *p;
1668
1669 for (p = debugfs_entries; p->name; ++p)
1670 debugfs_remove(p->dentry);
1671 debugfs_remove(kvm_debugfs_dir);
1672 }
1673
1674 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1675 {
1676 hardware_disable(NULL);
1677 return 0;
1678 }
1679
1680 static int kvm_resume(struct sys_device *dev)
1681 {
1682 hardware_enable(NULL);
1683 return 0;
1684 }
1685
1686 static struct sysdev_class kvm_sysdev_class = {
1687 .name = "kvm",
1688 .suspend = kvm_suspend,
1689 .resume = kvm_resume,
1690 };
1691
1692 static struct sys_device kvm_sysdev = {
1693 .id = 0,
1694 .cls = &kvm_sysdev_class,
1695 };
1696
1697 struct page *bad_page;
1698 pfn_t bad_pfn;
1699
1700 static inline
1701 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1702 {
1703 return container_of(pn, struct kvm_vcpu, preempt_notifier);
1704 }
1705
1706 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1707 {
1708 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1709
1710 kvm_arch_vcpu_load(vcpu, cpu);
1711 }
1712
1713 static void kvm_sched_out(struct preempt_notifier *pn,
1714 struct task_struct *next)
1715 {
1716 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1717
1718 kvm_arch_vcpu_put(vcpu);
1719 }
1720
1721 int kvm_init(void *opaque, unsigned int vcpu_size,
1722 struct module *module)
1723 {
1724 int r;
1725 int cpu;
1726
1727 kvm_init_debug();
1728
1729 r = kvm_arch_init(opaque);
1730 if (r)
1731 goto out_fail;
1732
1733 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1734
1735 if (bad_page == NULL) {
1736 r = -ENOMEM;
1737 goto out;
1738 }
1739
1740 bad_pfn = page_to_pfn(bad_page);
1741
1742 r = kvm_arch_hardware_setup();
1743 if (r < 0)
1744 goto out_free_0;
1745
1746 for_each_online_cpu(cpu) {
1747 smp_call_function_single(cpu,
1748 kvm_arch_check_processor_compat,
1749 &r, 1);
1750 if (r < 0)
1751 goto out_free_1;
1752 }
1753
1754 on_each_cpu(hardware_enable, NULL, 1);
1755 r = register_cpu_notifier(&kvm_cpu_notifier);
1756 if (r)
1757 goto out_free_2;
1758 register_reboot_notifier(&kvm_reboot_notifier);
1759
1760 r = sysdev_class_register(&kvm_sysdev_class);
1761 if (r)
1762 goto out_free_3;
1763
1764 r = sysdev_register(&kvm_sysdev);
1765 if (r)
1766 goto out_free_4;
1767
1768 /* A kmem cache lets us meet the alignment requirements of fx_save. */
1769 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
1770 __alignof__(struct kvm_vcpu),
1771 0, NULL);
1772 if (!kvm_vcpu_cache) {
1773 r = -ENOMEM;
1774 goto out_free_5;
1775 }
1776
1777 kvm_chardev_ops.owner = module;
1778
1779 r = misc_register(&kvm_dev);
1780 if (r) {
1781 printk(KERN_ERR "kvm: misc device register failed\n");
1782 goto out_free;
1783 }
1784
1785 kvm_preempt_ops.sched_in = kvm_sched_in;
1786 kvm_preempt_ops.sched_out = kvm_sched_out;
1787
1788 return 0;
1789
1790 out_free:
1791 kmem_cache_destroy(kvm_vcpu_cache);
1792 out_free_5:
1793 sysdev_unregister(&kvm_sysdev);
1794 out_free_4:
1795 sysdev_class_unregister(&kvm_sysdev_class);
1796 out_free_3:
1797 unregister_reboot_notifier(&kvm_reboot_notifier);
1798 unregister_cpu_notifier(&kvm_cpu_notifier);
1799 out_free_2:
1800 on_each_cpu(hardware_disable, NULL, 1);
1801 out_free_1:
1802 kvm_arch_hardware_unsetup();
1803 out_free_0:
1804 __free_page(bad_page);
1805 out:
1806 kvm_arch_exit();
1807 kvm_exit_debug();
1808 out_fail:
1809 return r;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_init);
1812
1813 void kvm_exit(void)
1814 {
1815 kvm_trace_cleanup();
1816 misc_deregister(&kvm_dev);
1817 kmem_cache_destroy(kvm_vcpu_cache);
1818 sysdev_unregister(&kvm_sysdev);
1819 sysdev_class_unregister(&kvm_sysdev_class);
1820 unregister_reboot_notifier(&kvm_reboot_notifier);
1821 unregister_cpu_notifier(&kvm_cpu_notifier);
1822 on_each_cpu(hardware_disable, NULL, 1);
1823 kvm_arch_hardware_unsetup();
1824 kvm_arch_exit();
1825 kvm_exit_debug();
1826 __free_page(bad_page);
1827 }
1828 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.068099 seconds and 6 git commands to generate.