Merge branch 'cpus4096-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef CONFIG_X86
51 #include <asm/msidef.h>
52 #endif
53
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
56 #endif
57
58 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
59 #include <linux/pci.h>
60 #include <linux/interrupt.h>
61 #include "irq.h"
62 #endif
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 static int msi2intx = 1;
68 module_param(msi2intx, bool, 0);
69
70 DEFINE_SPINLOCK(kvm_lock);
71 LIST_HEAD(vm_list);
72
73 static cpumask_var_t cpus_hardware_enabled;
74
75 struct kmem_cache *kvm_vcpu_cache;
76 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
77
78 static __read_mostly struct preempt_ops kvm_preempt_ops;
79
80 struct dentry *kvm_debugfs_dir;
81
82 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
83 unsigned long arg);
84
85 static bool kvm_rebooting;
86
87 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
88
89 #ifdef CONFIG_X86
90 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
91 {
92 int vcpu_id;
93 struct kvm_vcpu *vcpu;
94 struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
95 int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
96 >> MSI_ADDR_DEST_ID_SHIFT;
97 int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
98 >> MSI_DATA_VECTOR_SHIFT;
99 int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
100 (unsigned long *)&dev->guest_msi.address_lo);
101 int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
102 (unsigned long *)&dev->guest_msi.data);
103 int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
104 (unsigned long *)&dev->guest_msi.data);
105 u32 deliver_bitmask;
106
107 BUG_ON(!ioapic);
108
109 deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
110 dest_id, dest_mode);
111 /* IOAPIC delivery mode value is the same as MSI here */
112 switch (delivery_mode) {
113 case IOAPIC_LOWEST_PRIORITY:
114 vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
115 deliver_bitmask);
116 if (vcpu != NULL)
117 kvm_apic_set_irq(vcpu, vector, trig_mode);
118 else
119 printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
120 break;
121 case IOAPIC_FIXED:
122 for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
123 if (!(deliver_bitmask & (1 << vcpu_id)))
124 continue;
125 deliver_bitmask &= ~(1 << vcpu_id);
126 vcpu = ioapic->kvm->vcpus[vcpu_id];
127 if (vcpu)
128 kvm_apic_set_irq(vcpu, vector, trig_mode);
129 }
130 break;
131 default:
132 printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
133 }
134 }
135 #else
136 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
137 #endif
138
139 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
140 int assigned_dev_id)
141 {
142 struct list_head *ptr;
143 struct kvm_assigned_dev_kernel *match;
144
145 list_for_each(ptr, head) {
146 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
147 if (match->assigned_dev_id == assigned_dev_id)
148 return match;
149 }
150 return NULL;
151 }
152
153 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
154 {
155 struct kvm_assigned_dev_kernel *assigned_dev;
156
157 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
158 interrupt_work);
159
160 /* This is taken to safely inject irq inside the guest. When
161 * the interrupt injection (or the ioapic code) uses a
162 * finer-grained lock, update this
163 */
164 mutex_lock(&assigned_dev->kvm->lock);
165 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
166 kvm_set_irq(assigned_dev->kvm,
167 assigned_dev->irq_source_id,
168 assigned_dev->guest_irq, 1);
169 else if (assigned_dev->irq_requested_type &
170 KVM_ASSIGNED_DEV_GUEST_MSI) {
171 assigned_device_msi_dispatch(assigned_dev);
172 enable_irq(assigned_dev->host_irq);
173 assigned_dev->host_irq_disabled = false;
174 }
175 mutex_unlock(&assigned_dev->kvm->lock);
176 kvm_put_kvm(assigned_dev->kvm);
177 }
178
179 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
180 {
181 struct kvm_assigned_dev_kernel *assigned_dev =
182 (struct kvm_assigned_dev_kernel *) dev_id;
183
184 kvm_get_kvm(assigned_dev->kvm);
185
186 schedule_work(&assigned_dev->interrupt_work);
187
188 disable_irq_nosync(irq);
189 assigned_dev->host_irq_disabled = true;
190
191 return IRQ_HANDLED;
192 }
193
194 /* Ack the irq line for an assigned device */
195 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
196 {
197 struct kvm_assigned_dev_kernel *dev;
198
199 if (kian->gsi == -1)
200 return;
201
202 dev = container_of(kian, struct kvm_assigned_dev_kernel,
203 ack_notifier);
204
205 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
206
207 /* The guest irq may be shared so this ack may be
208 * from another device.
209 */
210 if (dev->host_irq_disabled) {
211 enable_irq(dev->host_irq);
212 dev->host_irq_disabled = false;
213 }
214 }
215
216 static void kvm_free_assigned_irq(struct kvm *kvm,
217 struct kvm_assigned_dev_kernel *assigned_dev)
218 {
219 if (!irqchip_in_kernel(kvm))
220 return;
221
222 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
223
224 if (assigned_dev->irq_source_id != -1)
225 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
226 assigned_dev->irq_source_id = -1;
227
228 if (!assigned_dev->irq_requested_type)
229 return;
230
231 if (cancel_work_sync(&assigned_dev->interrupt_work))
232 /* We had pending work. That means we will have to take
233 * care of kvm_put_kvm.
234 */
235 kvm_put_kvm(kvm);
236
237 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
238
239 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
240 pci_disable_msi(assigned_dev->dev);
241
242 assigned_dev->irq_requested_type = 0;
243 }
244
245
246 static void kvm_free_assigned_device(struct kvm *kvm,
247 struct kvm_assigned_dev_kernel
248 *assigned_dev)
249 {
250 kvm_free_assigned_irq(kvm, assigned_dev);
251
252 pci_reset_function(assigned_dev->dev);
253
254 pci_release_regions(assigned_dev->dev);
255 pci_disable_device(assigned_dev->dev);
256 pci_dev_put(assigned_dev->dev);
257
258 list_del(&assigned_dev->list);
259 kfree(assigned_dev);
260 }
261
262 void kvm_free_all_assigned_devices(struct kvm *kvm)
263 {
264 struct list_head *ptr, *ptr2;
265 struct kvm_assigned_dev_kernel *assigned_dev;
266
267 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
268 assigned_dev = list_entry(ptr,
269 struct kvm_assigned_dev_kernel,
270 list);
271
272 kvm_free_assigned_device(kvm, assigned_dev);
273 }
274 }
275
276 static int assigned_device_update_intx(struct kvm *kvm,
277 struct kvm_assigned_dev_kernel *adev,
278 struct kvm_assigned_irq *airq)
279 {
280 adev->guest_irq = airq->guest_irq;
281 adev->ack_notifier.gsi = airq->guest_irq;
282
283 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
284 return 0;
285
286 if (irqchip_in_kernel(kvm)) {
287 if (!msi2intx &&
288 adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) {
289 free_irq(adev->host_irq, (void *)kvm);
290 pci_disable_msi(adev->dev);
291 }
292
293 if (!capable(CAP_SYS_RAWIO))
294 return -EPERM;
295
296 if (airq->host_irq)
297 adev->host_irq = airq->host_irq;
298 else
299 adev->host_irq = adev->dev->irq;
300
301 /* Even though this is PCI, we don't want to use shared
302 * interrupts. Sharing host devices with guest-assigned devices
303 * on the same interrupt line is not a happy situation: there
304 * are going to be long delays in accepting, acking, etc.
305 */
306 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
307 0, "kvm_assigned_intx_device", (void *)adev))
308 return -EIO;
309 }
310
311 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
312 KVM_ASSIGNED_DEV_HOST_INTX;
313 return 0;
314 }
315
316 #ifdef CONFIG_X86
317 static int assigned_device_update_msi(struct kvm *kvm,
318 struct kvm_assigned_dev_kernel *adev,
319 struct kvm_assigned_irq *airq)
320 {
321 int r;
322
323 if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
324 /* x86 don't care upper address of guest msi message addr */
325 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
326 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
327 adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
328 adev->guest_msi.data = airq->guest_msi.data;
329 adev->ack_notifier.gsi = -1;
330 } else if (msi2intx) {
331 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
332 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
333 adev->guest_irq = airq->guest_irq;
334 adev->ack_notifier.gsi = airq->guest_irq;
335 }
336
337 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
338 return 0;
339
340 if (irqchip_in_kernel(kvm)) {
341 if (!msi2intx) {
342 if (adev->irq_requested_type &
343 KVM_ASSIGNED_DEV_HOST_INTX)
344 free_irq(adev->host_irq, (void *)adev);
345
346 r = pci_enable_msi(adev->dev);
347 if (r)
348 return r;
349 }
350
351 adev->host_irq = adev->dev->irq;
352 if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
353 "kvm_assigned_msi_device", (void *)adev))
354 return -EIO;
355 }
356
357 if (!msi2intx)
358 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
359
360 adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
361 return 0;
362 }
363 #endif
364
365 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
366 struct kvm_assigned_irq
367 *assigned_irq)
368 {
369 int r = 0;
370 struct kvm_assigned_dev_kernel *match;
371
372 mutex_lock(&kvm->lock);
373
374 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
375 assigned_irq->assigned_dev_id);
376 if (!match) {
377 mutex_unlock(&kvm->lock);
378 return -EINVAL;
379 }
380
381 if (!match->irq_requested_type) {
382 INIT_WORK(&match->interrupt_work,
383 kvm_assigned_dev_interrupt_work_handler);
384 if (irqchip_in_kernel(kvm)) {
385 /* Register ack nofitier */
386 match->ack_notifier.gsi = -1;
387 match->ack_notifier.irq_acked =
388 kvm_assigned_dev_ack_irq;
389 kvm_register_irq_ack_notifier(kvm,
390 &match->ack_notifier);
391
392 /* Request IRQ source ID */
393 r = kvm_request_irq_source_id(kvm);
394 if (r < 0)
395 goto out_release;
396 else
397 match->irq_source_id = r;
398
399 #ifdef CONFIG_X86
400 /* Determine host device irq type, we can know the
401 * result from dev->msi_enabled */
402 if (msi2intx)
403 pci_enable_msi(match->dev);
404 #endif
405 }
406 }
407
408 if ((!msi2intx &&
409 (assigned_irq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI)) ||
410 (msi2intx && match->dev->msi_enabled)) {
411 #ifdef CONFIG_X86
412 r = assigned_device_update_msi(kvm, match, assigned_irq);
413 if (r) {
414 printk(KERN_WARNING "kvm: failed to enable "
415 "MSI device!\n");
416 goto out_release;
417 }
418 #else
419 r = -ENOTTY;
420 #endif
421 } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
422 /* Host device IRQ 0 means don't support INTx */
423 if (!msi2intx) {
424 printk(KERN_WARNING
425 "kvm: wait device to enable MSI!\n");
426 r = 0;
427 } else {
428 printk(KERN_WARNING
429 "kvm: failed to enable MSI device!\n");
430 r = -ENOTTY;
431 goto out_release;
432 }
433 } else {
434 /* Non-sharing INTx mode */
435 r = assigned_device_update_intx(kvm, match, assigned_irq);
436 if (r) {
437 printk(KERN_WARNING "kvm: failed to enable "
438 "INTx device!\n");
439 goto out_release;
440 }
441 }
442
443 mutex_unlock(&kvm->lock);
444 return r;
445 out_release:
446 mutex_unlock(&kvm->lock);
447 kvm_free_assigned_device(kvm, match);
448 return r;
449 }
450
451 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
452 struct kvm_assigned_pci_dev *assigned_dev)
453 {
454 int r = 0;
455 struct kvm_assigned_dev_kernel *match;
456 struct pci_dev *dev;
457
458 mutex_lock(&kvm->lock);
459
460 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
461 assigned_dev->assigned_dev_id);
462 if (match) {
463 /* device already assigned */
464 r = -EINVAL;
465 goto out;
466 }
467
468 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
469 if (match == NULL) {
470 printk(KERN_INFO "%s: Couldn't allocate memory\n",
471 __func__);
472 r = -ENOMEM;
473 goto out;
474 }
475 dev = pci_get_bus_and_slot(assigned_dev->busnr,
476 assigned_dev->devfn);
477 if (!dev) {
478 printk(KERN_INFO "%s: host device not found\n", __func__);
479 r = -EINVAL;
480 goto out_free;
481 }
482 if (pci_enable_device(dev)) {
483 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
484 r = -EBUSY;
485 goto out_put;
486 }
487 r = pci_request_regions(dev, "kvm_assigned_device");
488 if (r) {
489 printk(KERN_INFO "%s: Could not get access to device regions\n",
490 __func__);
491 goto out_disable;
492 }
493
494 pci_reset_function(dev);
495
496 match->assigned_dev_id = assigned_dev->assigned_dev_id;
497 match->host_busnr = assigned_dev->busnr;
498 match->host_devfn = assigned_dev->devfn;
499 match->dev = dev;
500 match->irq_source_id = -1;
501 match->kvm = kvm;
502
503 list_add(&match->list, &kvm->arch.assigned_dev_head);
504
505 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
506 r = kvm_iommu_map_guest(kvm, match);
507 if (r)
508 goto out_list_del;
509 }
510
511 out:
512 mutex_unlock(&kvm->lock);
513 return r;
514 out_list_del:
515 list_del(&match->list);
516 pci_release_regions(dev);
517 out_disable:
518 pci_disable_device(dev);
519 out_put:
520 pci_dev_put(dev);
521 out_free:
522 kfree(match);
523 mutex_unlock(&kvm->lock);
524 return r;
525 }
526 #endif
527
528 static inline int valid_vcpu(int n)
529 {
530 return likely(n >= 0 && n < KVM_MAX_VCPUS);
531 }
532
533 inline int kvm_is_mmio_pfn(pfn_t pfn)
534 {
535 if (pfn_valid(pfn))
536 return PageReserved(pfn_to_page(pfn));
537
538 return true;
539 }
540
541 /*
542 * Switches to specified vcpu, until a matching vcpu_put()
543 */
544 void vcpu_load(struct kvm_vcpu *vcpu)
545 {
546 int cpu;
547
548 mutex_lock(&vcpu->mutex);
549 cpu = get_cpu();
550 preempt_notifier_register(&vcpu->preempt_notifier);
551 kvm_arch_vcpu_load(vcpu, cpu);
552 put_cpu();
553 }
554
555 void vcpu_put(struct kvm_vcpu *vcpu)
556 {
557 preempt_disable();
558 kvm_arch_vcpu_put(vcpu);
559 preempt_notifier_unregister(&vcpu->preempt_notifier);
560 preempt_enable();
561 mutex_unlock(&vcpu->mutex);
562 }
563
564 static void ack_flush(void *_completed)
565 {
566 }
567
568 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
569 {
570 int i, cpu, me;
571 cpumask_var_t cpus;
572 bool called = true;
573 struct kvm_vcpu *vcpu;
574
575 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
576 cpumask_clear(cpus);
577
578 me = get_cpu();
579 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
580 vcpu = kvm->vcpus[i];
581 if (!vcpu)
582 continue;
583 if (test_and_set_bit(req, &vcpu->requests))
584 continue;
585 cpu = vcpu->cpu;
586 if (cpus != NULL && cpu != -1 && cpu != me)
587 cpumask_set_cpu(cpu, cpus);
588 }
589 if (unlikely(cpus == NULL))
590 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
591 else if (!cpumask_empty(cpus))
592 smp_call_function_many(cpus, ack_flush, NULL, 1);
593 else
594 called = false;
595 put_cpu();
596 free_cpumask_var(cpus);
597 return called;
598 }
599
600 void kvm_flush_remote_tlbs(struct kvm *kvm)
601 {
602 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
603 ++kvm->stat.remote_tlb_flush;
604 }
605
606 void kvm_reload_remote_mmus(struct kvm *kvm)
607 {
608 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
609 }
610
611 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
612 {
613 struct page *page;
614 int r;
615
616 mutex_init(&vcpu->mutex);
617 vcpu->cpu = -1;
618 vcpu->kvm = kvm;
619 vcpu->vcpu_id = id;
620 init_waitqueue_head(&vcpu->wq);
621
622 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
623 if (!page) {
624 r = -ENOMEM;
625 goto fail;
626 }
627 vcpu->run = page_address(page);
628
629 r = kvm_arch_vcpu_init(vcpu);
630 if (r < 0)
631 goto fail_free_run;
632 return 0;
633
634 fail_free_run:
635 free_page((unsigned long)vcpu->run);
636 fail:
637 return r;
638 }
639 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
640
641 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
642 {
643 kvm_arch_vcpu_uninit(vcpu);
644 free_page((unsigned long)vcpu->run);
645 }
646 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
647
648 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
649 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
650 {
651 return container_of(mn, struct kvm, mmu_notifier);
652 }
653
654 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
655 struct mm_struct *mm,
656 unsigned long address)
657 {
658 struct kvm *kvm = mmu_notifier_to_kvm(mn);
659 int need_tlb_flush;
660
661 /*
662 * When ->invalidate_page runs, the linux pte has been zapped
663 * already but the page is still allocated until
664 * ->invalidate_page returns. So if we increase the sequence
665 * here the kvm page fault will notice if the spte can't be
666 * established because the page is going to be freed. If
667 * instead the kvm page fault establishes the spte before
668 * ->invalidate_page runs, kvm_unmap_hva will release it
669 * before returning.
670 *
671 * The sequence increase only need to be seen at spin_unlock
672 * time, and not at spin_lock time.
673 *
674 * Increasing the sequence after the spin_unlock would be
675 * unsafe because the kvm page fault could then establish the
676 * pte after kvm_unmap_hva returned, without noticing the page
677 * is going to be freed.
678 */
679 spin_lock(&kvm->mmu_lock);
680 kvm->mmu_notifier_seq++;
681 need_tlb_flush = kvm_unmap_hva(kvm, address);
682 spin_unlock(&kvm->mmu_lock);
683
684 /* we've to flush the tlb before the pages can be freed */
685 if (need_tlb_flush)
686 kvm_flush_remote_tlbs(kvm);
687
688 }
689
690 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
691 struct mm_struct *mm,
692 unsigned long start,
693 unsigned long end)
694 {
695 struct kvm *kvm = mmu_notifier_to_kvm(mn);
696 int need_tlb_flush = 0;
697
698 spin_lock(&kvm->mmu_lock);
699 /*
700 * The count increase must become visible at unlock time as no
701 * spte can be established without taking the mmu_lock and
702 * count is also read inside the mmu_lock critical section.
703 */
704 kvm->mmu_notifier_count++;
705 for (; start < end; start += PAGE_SIZE)
706 need_tlb_flush |= kvm_unmap_hva(kvm, start);
707 spin_unlock(&kvm->mmu_lock);
708
709 /* we've to flush the tlb before the pages can be freed */
710 if (need_tlb_flush)
711 kvm_flush_remote_tlbs(kvm);
712 }
713
714 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
715 struct mm_struct *mm,
716 unsigned long start,
717 unsigned long end)
718 {
719 struct kvm *kvm = mmu_notifier_to_kvm(mn);
720
721 spin_lock(&kvm->mmu_lock);
722 /*
723 * This sequence increase will notify the kvm page fault that
724 * the page that is going to be mapped in the spte could have
725 * been freed.
726 */
727 kvm->mmu_notifier_seq++;
728 /*
729 * The above sequence increase must be visible before the
730 * below count decrease but both values are read by the kvm
731 * page fault under mmu_lock spinlock so we don't need to add
732 * a smb_wmb() here in between the two.
733 */
734 kvm->mmu_notifier_count--;
735 spin_unlock(&kvm->mmu_lock);
736
737 BUG_ON(kvm->mmu_notifier_count < 0);
738 }
739
740 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
741 struct mm_struct *mm,
742 unsigned long address)
743 {
744 struct kvm *kvm = mmu_notifier_to_kvm(mn);
745 int young;
746
747 spin_lock(&kvm->mmu_lock);
748 young = kvm_age_hva(kvm, address);
749 spin_unlock(&kvm->mmu_lock);
750
751 if (young)
752 kvm_flush_remote_tlbs(kvm);
753
754 return young;
755 }
756
757 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
758 .invalidate_page = kvm_mmu_notifier_invalidate_page,
759 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
760 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
761 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
762 };
763 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
764
765 static struct kvm *kvm_create_vm(void)
766 {
767 struct kvm *kvm = kvm_arch_create_vm();
768 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
769 struct page *page;
770 #endif
771
772 if (IS_ERR(kvm))
773 goto out;
774
775 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
776 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
777 if (!page) {
778 kfree(kvm);
779 return ERR_PTR(-ENOMEM);
780 }
781 kvm->coalesced_mmio_ring =
782 (struct kvm_coalesced_mmio_ring *)page_address(page);
783 #endif
784
785 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
786 {
787 int err;
788 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
789 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
790 if (err) {
791 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
792 put_page(page);
793 #endif
794 kfree(kvm);
795 return ERR_PTR(err);
796 }
797 }
798 #endif
799
800 kvm->mm = current->mm;
801 atomic_inc(&kvm->mm->mm_count);
802 spin_lock_init(&kvm->mmu_lock);
803 kvm_io_bus_init(&kvm->pio_bus);
804 mutex_init(&kvm->lock);
805 kvm_io_bus_init(&kvm->mmio_bus);
806 init_rwsem(&kvm->slots_lock);
807 atomic_set(&kvm->users_count, 1);
808 spin_lock(&kvm_lock);
809 list_add(&kvm->vm_list, &vm_list);
810 spin_unlock(&kvm_lock);
811 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
812 kvm_coalesced_mmio_init(kvm);
813 #endif
814 out:
815 return kvm;
816 }
817
818 /*
819 * Free any memory in @free but not in @dont.
820 */
821 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
822 struct kvm_memory_slot *dont)
823 {
824 if (!dont || free->rmap != dont->rmap)
825 vfree(free->rmap);
826
827 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
828 vfree(free->dirty_bitmap);
829
830 if (!dont || free->lpage_info != dont->lpage_info)
831 vfree(free->lpage_info);
832
833 free->npages = 0;
834 free->dirty_bitmap = NULL;
835 free->rmap = NULL;
836 free->lpage_info = NULL;
837 }
838
839 void kvm_free_physmem(struct kvm *kvm)
840 {
841 int i;
842
843 for (i = 0; i < kvm->nmemslots; ++i)
844 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
845 }
846
847 static void kvm_destroy_vm(struct kvm *kvm)
848 {
849 struct mm_struct *mm = kvm->mm;
850
851 spin_lock(&kvm_lock);
852 list_del(&kvm->vm_list);
853 spin_unlock(&kvm_lock);
854 kvm_io_bus_destroy(&kvm->pio_bus);
855 kvm_io_bus_destroy(&kvm->mmio_bus);
856 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
857 if (kvm->coalesced_mmio_ring != NULL)
858 free_page((unsigned long)kvm->coalesced_mmio_ring);
859 #endif
860 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
861 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
862 #endif
863 kvm_arch_destroy_vm(kvm);
864 mmdrop(mm);
865 }
866
867 void kvm_get_kvm(struct kvm *kvm)
868 {
869 atomic_inc(&kvm->users_count);
870 }
871 EXPORT_SYMBOL_GPL(kvm_get_kvm);
872
873 void kvm_put_kvm(struct kvm *kvm)
874 {
875 if (atomic_dec_and_test(&kvm->users_count))
876 kvm_destroy_vm(kvm);
877 }
878 EXPORT_SYMBOL_GPL(kvm_put_kvm);
879
880
881 static int kvm_vm_release(struct inode *inode, struct file *filp)
882 {
883 struct kvm *kvm = filp->private_data;
884
885 kvm_put_kvm(kvm);
886 return 0;
887 }
888
889 /*
890 * Allocate some memory and give it an address in the guest physical address
891 * space.
892 *
893 * Discontiguous memory is allowed, mostly for framebuffers.
894 *
895 * Must be called holding mmap_sem for write.
896 */
897 int __kvm_set_memory_region(struct kvm *kvm,
898 struct kvm_userspace_memory_region *mem,
899 int user_alloc)
900 {
901 int r;
902 gfn_t base_gfn;
903 unsigned long npages;
904 unsigned long i;
905 struct kvm_memory_slot *memslot;
906 struct kvm_memory_slot old, new;
907
908 r = -EINVAL;
909 /* General sanity checks */
910 if (mem->memory_size & (PAGE_SIZE - 1))
911 goto out;
912 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
913 goto out;
914 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
915 goto out;
916 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
917 goto out;
918 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
919 goto out;
920
921 memslot = &kvm->memslots[mem->slot];
922 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
923 npages = mem->memory_size >> PAGE_SHIFT;
924
925 if (!npages)
926 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
927
928 new = old = *memslot;
929
930 new.base_gfn = base_gfn;
931 new.npages = npages;
932 new.flags = mem->flags;
933
934 /* Disallow changing a memory slot's size. */
935 r = -EINVAL;
936 if (npages && old.npages && npages != old.npages)
937 goto out_free;
938
939 /* Check for overlaps */
940 r = -EEXIST;
941 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
942 struct kvm_memory_slot *s = &kvm->memslots[i];
943
944 if (s == memslot)
945 continue;
946 if (!((base_gfn + npages <= s->base_gfn) ||
947 (base_gfn >= s->base_gfn + s->npages)))
948 goto out_free;
949 }
950
951 /* Free page dirty bitmap if unneeded */
952 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
953 new.dirty_bitmap = NULL;
954
955 r = -ENOMEM;
956
957 /* Allocate if a slot is being created */
958 #ifndef CONFIG_S390
959 if (npages && !new.rmap) {
960 new.rmap = vmalloc(npages * sizeof(struct page *));
961
962 if (!new.rmap)
963 goto out_free;
964
965 memset(new.rmap, 0, npages * sizeof(*new.rmap));
966
967 new.user_alloc = user_alloc;
968 /*
969 * hva_to_rmmap() serialzies with the mmu_lock and to be
970 * safe it has to ignore memslots with !user_alloc &&
971 * !userspace_addr.
972 */
973 if (user_alloc)
974 new.userspace_addr = mem->userspace_addr;
975 else
976 new.userspace_addr = 0;
977 }
978 if (npages && !new.lpage_info) {
979 int largepages = npages / KVM_PAGES_PER_HPAGE;
980 if (npages % KVM_PAGES_PER_HPAGE)
981 largepages++;
982 if (base_gfn % KVM_PAGES_PER_HPAGE)
983 largepages++;
984
985 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
986
987 if (!new.lpage_info)
988 goto out_free;
989
990 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
991
992 if (base_gfn % KVM_PAGES_PER_HPAGE)
993 new.lpage_info[0].write_count = 1;
994 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
995 new.lpage_info[largepages-1].write_count = 1;
996 }
997
998 /* Allocate page dirty bitmap if needed */
999 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1000 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1001
1002 new.dirty_bitmap = vmalloc(dirty_bytes);
1003 if (!new.dirty_bitmap)
1004 goto out_free;
1005 memset(new.dirty_bitmap, 0, dirty_bytes);
1006 }
1007 #endif /* not defined CONFIG_S390 */
1008
1009 if (!npages)
1010 kvm_arch_flush_shadow(kvm);
1011
1012 spin_lock(&kvm->mmu_lock);
1013 if (mem->slot >= kvm->nmemslots)
1014 kvm->nmemslots = mem->slot + 1;
1015
1016 *memslot = new;
1017 spin_unlock(&kvm->mmu_lock);
1018
1019 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1020 if (r) {
1021 spin_lock(&kvm->mmu_lock);
1022 *memslot = old;
1023 spin_unlock(&kvm->mmu_lock);
1024 goto out_free;
1025 }
1026
1027 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1028 /* Slot deletion case: we have to update the current slot */
1029 if (!npages)
1030 *memslot = old;
1031 #ifdef CONFIG_DMAR
1032 /* map the pages in iommu page table */
1033 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1034 if (r)
1035 goto out;
1036 #endif
1037 return 0;
1038
1039 out_free:
1040 kvm_free_physmem_slot(&new, &old);
1041 out:
1042 return r;
1043
1044 }
1045 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1046
1047 int kvm_set_memory_region(struct kvm *kvm,
1048 struct kvm_userspace_memory_region *mem,
1049 int user_alloc)
1050 {
1051 int r;
1052
1053 down_write(&kvm->slots_lock);
1054 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1055 up_write(&kvm->slots_lock);
1056 return r;
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1059
1060 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1061 struct
1062 kvm_userspace_memory_region *mem,
1063 int user_alloc)
1064 {
1065 if (mem->slot >= KVM_MEMORY_SLOTS)
1066 return -EINVAL;
1067 return kvm_set_memory_region(kvm, mem, user_alloc);
1068 }
1069
1070 int kvm_get_dirty_log(struct kvm *kvm,
1071 struct kvm_dirty_log *log, int *is_dirty)
1072 {
1073 struct kvm_memory_slot *memslot;
1074 int r, i;
1075 int n;
1076 unsigned long any = 0;
1077
1078 r = -EINVAL;
1079 if (log->slot >= KVM_MEMORY_SLOTS)
1080 goto out;
1081
1082 memslot = &kvm->memslots[log->slot];
1083 r = -ENOENT;
1084 if (!memslot->dirty_bitmap)
1085 goto out;
1086
1087 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1088
1089 for (i = 0; !any && i < n/sizeof(long); ++i)
1090 any = memslot->dirty_bitmap[i];
1091
1092 r = -EFAULT;
1093 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1094 goto out;
1095
1096 if (any)
1097 *is_dirty = 1;
1098
1099 r = 0;
1100 out:
1101 return r;
1102 }
1103
1104 int is_error_page(struct page *page)
1105 {
1106 return page == bad_page;
1107 }
1108 EXPORT_SYMBOL_GPL(is_error_page);
1109
1110 int is_error_pfn(pfn_t pfn)
1111 {
1112 return pfn == bad_pfn;
1113 }
1114 EXPORT_SYMBOL_GPL(is_error_pfn);
1115
1116 static inline unsigned long bad_hva(void)
1117 {
1118 return PAGE_OFFSET;
1119 }
1120
1121 int kvm_is_error_hva(unsigned long addr)
1122 {
1123 return addr == bad_hva();
1124 }
1125 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1126
1127 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1128 {
1129 int i;
1130
1131 for (i = 0; i < kvm->nmemslots; ++i) {
1132 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1133
1134 if (gfn >= memslot->base_gfn
1135 && gfn < memslot->base_gfn + memslot->npages)
1136 return memslot;
1137 }
1138 return NULL;
1139 }
1140 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1141
1142 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1143 {
1144 gfn = unalias_gfn(kvm, gfn);
1145 return gfn_to_memslot_unaliased(kvm, gfn);
1146 }
1147
1148 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1149 {
1150 int i;
1151
1152 gfn = unalias_gfn(kvm, gfn);
1153 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1154 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1155
1156 if (gfn >= memslot->base_gfn
1157 && gfn < memslot->base_gfn + memslot->npages)
1158 return 1;
1159 }
1160 return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1163
1164 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1165 {
1166 struct kvm_memory_slot *slot;
1167
1168 gfn = unalias_gfn(kvm, gfn);
1169 slot = gfn_to_memslot_unaliased(kvm, gfn);
1170 if (!slot)
1171 return bad_hva();
1172 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1173 }
1174 EXPORT_SYMBOL_GPL(gfn_to_hva);
1175
1176 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1177 {
1178 struct page *page[1];
1179 unsigned long addr;
1180 int npages;
1181 pfn_t pfn;
1182
1183 might_sleep();
1184
1185 addr = gfn_to_hva(kvm, gfn);
1186 if (kvm_is_error_hva(addr)) {
1187 get_page(bad_page);
1188 return page_to_pfn(bad_page);
1189 }
1190
1191 npages = get_user_pages_fast(addr, 1, 1, page);
1192
1193 if (unlikely(npages != 1)) {
1194 struct vm_area_struct *vma;
1195
1196 down_read(&current->mm->mmap_sem);
1197 vma = find_vma(current->mm, addr);
1198
1199 if (vma == NULL || addr < vma->vm_start ||
1200 !(vma->vm_flags & VM_PFNMAP)) {
1201 up_read(&current->mm->mmap_sem);
1202 get_page(bad_page);
1203 return page_to_pfn(bad_page);
1204 }
1205
1206 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1207 up_read(&current->mm->mmap_sem);
1208 BUG_ON(!kvm_is_mmio_pfn(pfn));
1209 } else
1210 pfn = page_to_pfn(page[0]);
1211
1212 return pfn;
1213 }
1214
1215 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1216
1217 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1218 {
1219 pfn_t pfn;
1220
1221 pfn = gfn_to_pfn(kvm, gfn);
1222 if (!kvm_is_mmio_pfn(pfn))
1223 return pfn_to_page(pfn);
1224
1225 WARN_ON(kvm_is_mmio_pfn(pfn));
1226
1227 get_page(bad_page);
1228 return bad_page;
1229 }
1230
1231 EXPORT_SYMBOL_GPL(gfn_to_page);
1232
1233 void kvm_release_page_clean(struct page *page)
1234 {
1235 kvm_release_pfn_clean(page_to_pfn(page));
1236 }
1237 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1238
1239 void kvm_release_pfn_clean(pfn_t pfn)
1240 {
1241 if (!kvm_is_mmio_pfn(pfn))
1242 put_page(pfn_to_page(pfn));
1243 }
1244 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1245
1246 void kvm_release_page_dirty(struct page *page)
1247 {
1248 kvm_release_pfn_dirty(page_to_pfn(page));
1249 }
1250 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1251
1252 void kvm_release_pfn_dirty(pfn_t pfn)
1253 {
1254 kvm_set_pfn_dirty(pfn);
1255 kvm_release_pfn_clean(pfn);
1256 }
1257 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1258
1259 void kvm_set_page_dirty(struct page *page)
1260 {
1261 kvm_set_pfn_dirty(page_to_pfn(page));
1262 }
1263 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1264
1265 void kvm_set_pfn_dirty(pfn_t pfn)
1266 {
1267 if (!kvm_is_mmio_pfn(pfn)) {
1268 struct page *page = pfn_to_page(pfn);
1269 if (!PageReserved(page))
1270 SetPageDirty(page);
1271 }
1272 }
1273 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1274
1275 void kvm_set_pfn_accessed(pfn_t pfn)
1276 {
1277 if (!kvm_is_mmio_pfn(pfn))
1278 mark_page_accessed(pfn_to_page(pfn));
1279 }
1280 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1281
1282 void kvm_get_pfn(pfn_t pfn)
1283 {
1284 if (!kvm_is_mmio_pfn(pfn))
1285 get_page(pfn_to_page(pfn));
1286 }
1287 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1288
1289 static int next_segment(unsigned long len, int offset)
1290 {
1291 if (len > PAGE_SIZE - offset)
1292 return PAGE_SIZE - offset;
1293 else
1294 return len;
1295 }
1296
1297 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1298 int len)
1299 {
1300 int r;
1301 unsigned long addr;
1302
1303 addr = gfn_to_hva(kvm, gfn);
1304 if (kvm_is_error_hva(addr))
1305 return -EFAULT;
1306 r = copy_from_user(data, (void __user *)addr + offset, len);
1307 if (r)
1308 return -EFAULT;
1309 return 0;
1310 }
1311 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1312
1313 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1314 {
1315 gfn_t gfn = gpa >> PAGE_SHIFT;
1316 int seg;
1317 int offset = offset_in_page(gpa);
1318 int ret;
1319
1320 while ((seg = next_segment(len, offset)) != 0) {
1321 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1322 if (ret < 0)
1323 return ret;
1324 offset = 0;
1325 len -= seg;
1326 data += seg;
1327 ++gfn;
1328 }
1329 return 0;
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_read_guest);
1332
1333 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1334 unsigned long len)
1335 {
1336 int r;
1337 unsigned long addr;
1338 gfn_t gfn = gpa >> PAGE_SHIFT;
1339 int offset = offset_in_page(gpa);
1340
1341 addr = gfn_to_hva(kvm, gfn);
1342 if (kvm_is_error_hva(addr))
1343 return -EFAULT;
1344 pagefault_disable();
1345 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1346 pagefault_enable();
1347 if (r)
1348 return -EFAULT;
1349 return 0;
1350 }
1351 EXPORT_SYMBOL(kvm_read_guest_atomic);
1352
1353 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1354 int offset, int len)
1355 {
1356 int r;
1357 unsigned long addr;
1358
1359 addr = gfn_to_hva(kvm, gfn);
1360 if (kvm_is_error_hva(addr))
1361 return -EFAULT;
1362 r = copy_to_user((void __user *)addr + offset, data, len);
1363 if (r)
1364 return -EFAULT;
1365 mark_page_dirty(kvm, gfn);
1366 return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1369
1370 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1371 unsigned long len)
1372 {
1373 gfn_t gfn = gpa >> PAGE_SHIFT;
1374 int seg;
1375 int offset = offset_in_page(gpa);
1376 int ret;
1377
1378 while ((seg = next_segment(len, offset)) != 0) {
1379 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1380 if (ret < 0)
1381 return ret;
1382 offset = 0;
1383 len -= seg;
1384 data += seg;
1385 ++gfn;
1386 }
1387 return 0;
1388 }
1389
1390 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1391 {
1392 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1395
1396 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1397 {
1398 gfn_t gfn = gpa >> PAGE_SHIFT;
1399 int seg;
1400 int offset = offset_in_page(gpa);
1401 int ret;
1402
1403 while ((seg = next_segment(len, offset)) != 0) {
1404 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1405 if (ret < 0)
1406 return ret;
1407 offset = 0;
1408 len -= seg;
1409 ++gfn;
1410 }
1411 return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1414
1415 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1416 {
1417 struct kvm_memory_slot *memslot;
1418
1419 gfn = unalias_gfn(kvm, gfn);
1420 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1421 if (memslot && memslot->dirty_bitmap) {
1422 unsigned long rel_gfn = gfn - memslot->base_gfn;
1423
1424 /* avoid RMW */
1425 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1426 set_bit(rel_gfn, memslot->dirty_bitmap);
1427 }
1428 }
1429
1430 /*
1431 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1432 */
1433 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1434 {
1435 DEFINE_WAIT(wait);
1436
1437 for (;;) {
1438 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1439
1440 if (kvm_cpu_has_interrupt(vcpu) ||
1441 kvm_cpu_has_pending_timer(vcpu) ||
1442 kvm_arch_vcpu_runnable(vcpu)) {
1443 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1444 break;
1445 }
1446 if (signal_pending(current))
1447 break;
1448
1449 vcpu_put(vcpu);
1450 schedule();
1451 vcpu_load(vcpu);
1452 }
1453
1454 finish_wait(&vcpu->wq, &wait);
1455 }
1456
1457 void kvm_resched(struct kvm_vcpu *vcpu)
1458 {
1459 if (!need_resched())
1460 return;
1461 cond_resched();
1462 }
1463 EXPORT_SYMBOL_GPL(kvm_resched);
1464
1465 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1466 {
1467 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1468 struct page *page;
1469
1470 if (vmf->pgoff == 0)
1471 page = virt_to_page(vcpu->run);
1472 #ifdef CONFIG_X86
1473 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1474 page = virt_to_page(vcpu->arch.pio_data);
1475 #endif
1476 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1477 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1478 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1479 #endif
1480 else
1481 return VM_FAULT_SIGBUS;
1482 get_page(page);
1483 vmf->page = page;
1484 return 0;
1485 }
1486
1487 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1488 .fault = kvm_vcpu_fault,
1489 };
1490
1491 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1492 {
1493 vma->vm_ops = &kvm_vcpu_vm_ops;
1494 return 0;
1495 }
1496
1497 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1498 {
1499 struct kvm_vcpu *vcpu = filp->private_data;
1500
1501 kvm_put_kvm(vcpu->kvm);
1502 return 0;
1503 }
1504
1505 static struct file_operations kvm_vcpu_fops = {
1506 .release = kvm_vcpu_release,
1507 .unlocked_ioctl = kvm_vcpu_ioctl,
1508 .compat_ioctl = kvm_vcpu_ioctl,
1509 .mmap = kvm_vcpu_mmap,
1510 };
1511
1512 /*
1513 * Allocates an inode for the vcpu.
1514 */
1515 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1516 {
1517 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1518 if (fd < 0)
1519 kvm_put_kvm(vcpu->kvm);
1520 return fd;
1521 }
1522
1523 /*
1524 * Creates some virtual cpus. Good luck creating more than one.
1525 */
1526 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1527 {
1528 int r;
1529 struct kvm_vcpu *vcpu;
1530
1531 if (!valid_vcpu(n))
1532 return -EINVAL;
1533
1534 vcpu = kvm_arch_vcpu_create(kvm, n);
1535 if (IS_ERR(vcpu))
1536 return PTR_ERR(vcpu);
1537
1538 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1539
1540 r = kvm_arch_vcpu_setup(vcpu);
1541 if (r)
1542 return r;
1543
1544 mutex_lock(&kvm->lock);
1545 if (kvm->vcpus[n]) {
1546 r = -EEXIST;
1547 goto vcpu_destroy;
1548 }
1549 kvm->vcpus[n] = vcpu;
1550 mutex_unlock(&kvm->lock);
1551
1552 /* Now it's all set up, let userspace reach it */
1553 kvm_get_kvm(kvm);
1554 r = create_vcpu_fd(vcpu);
1555 if (r < 0)
1556 goto unlink;
1557 return r;
1558
1559 unlink:
1560 mutex_lock(&kvm->lock);
1561 kvm->vcpus[n] = NULL;
1562 vcpu_destroy:
1563 mutex_unlock(&kvm->lock);
1564 kvm_arch_vcpu_destroy(vcpu);
1565 return r;
1566 }
1567
1568 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1569 {
1570 if (sigset) {
1571 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1572 vcpu->sigset_active = 1;
1573 vcpu->sigset = *sigset;
1574 } else
1575 vcpu->sigset_active = 0;
1576 return 0;
1577 }
1578
1579 static long kvm_vcpu_ioctl(struct file *filp,
1580 unsigned int ioctl, unsigned long arg)
1581 {
1582 struct kvm_vcpu *vcpu = filp->private_data;
1583 void __user *argp = (void __user *)arg;
1584 int r;
1585 struct kvm_fpu *fpu = NULL;
1586 struct kvm_sregs *kvm_sregs = NULL;
1587
1588 if (vcpu->kvm->mm != current->mm)
1589 return -EIO;
1590 switch (ioctl) {
1591 case KVM_RUN:
1592 r = -EINVAL;
1593 if (arg)
1594 goto out;
1595 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1596 break;
1597 case KVM_GET_REGS: {
1598 struct kvm_regs *kvm_regs;
1599
1600 r = -ENOMEM;
1601 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1602 if (!kvm_regs)
1603 goto out;
1604 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1605 if (r)
1606 goto out_free1;
1607 r = -EFAULT;
1608 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1609 goto out_free1;
1610 r = 0;
1611 out_free1:
1612 kfree(kvm_regs);
1613 break;
1614 }
1615 case KVM_SET_REGS: {
1616 struct kvm_regs *kvm_regs;
1617
1618 r = -ENOMEM;
1619 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1620 if (!kvm_regs)
1621 goto out;
1622 r = -EFAULT;
1623 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1624 goto out_free2;
1625 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1626 if (r)
1627 goto out_free2;
1628 r = 0;
1629 out_free2:
1630 kfree(kvm_regs);
1631 break;
1632 }
1633 case KVM_GET_SREGS: {
1634 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1635 r = -ENOMEM;
1636 if (!kvm_sregs)
1637 goto out;
1638 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1639 if (r)
1640 goto out;
1641 r = -EFAULT;
1642 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1643 goto out;
1644 r = 0;
1645 break;
1646 }
1647 case KVM_SET_SREGS: {
1648 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1649 r = -ENOMEM;
1650 if (!kvm_sregs)
1651 goto out;
1652 r = -EFAULT;
1653 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1654 goto out;
1655 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1656 if (r)
1657 goto out;
1658 r = 0;
1659 break;
1660 }
1661 case KVM_GET_MP_STATE: {
1662 struct kvm_mp_state mp_state;
1663
1664 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1665 if (r)
1666 goto out;
1667 r = -EFAULT;
1668 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1669 goto out;
1670 r = 0;
1671 break;
1672 }
1673 case KVM_SET_MP_STATE: {
1674 struct kvm_mp_state mp_state;
1675
1676 r = -EFAULT;
1677 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1678 goto out;
1679 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1680 if (r)
1681 goto out;
1682 r = 0;
1683 break;
1684 }
1685 case KVM_TRANSLATE: {
1686 struct kvm_translation tr;
1687
1688 r = -EFAULT;
1689 if (copy_from_user(&tr, argp, sizeof tr))
1690 goto out;
1691 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1692 if (r)
1693 goto out;
1694 r = -EFAULT;
1695 if (copy_to_user(argp, &tr, sizeof tr))
1696 goto out;
1697 r = 0;
1698 break;
1699 }
1700 case KVM_DEBUG_GUEST: {
1701 struct kvm_debug_guest dbg;
1702
1703 r = -EFAULT;
1704 if (copy_from_user(&dbg, argp, sizeof dbg))
1705 goto out;
1706 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1707 if (r)
1708 goto out;
1709 r = 0;
1710 break;
1711 }
1712 case KVM_SET_SIGNAL_MASK: {
1713 struct kvm_signal_mask __user *sigmask_arg = argp;
1714 struct kvm_signal_mask kvm_sigmask;
1715 sigset_t sigset, *p;
1716
1717 p = NULL;
1718 if (argp) {
1719 r = -EFAULT;
1720 if (copy_from_user(&kvm_sigmask, argp,
1721 sizeof kvm_sigmask))
1722 goto out;
1723 r = -EINVAL;
1724 if (kvm_sigmask.len != sizeof sigset)
1725 goto out;
1726 r = -EFAULT;
1727 if (copy_from_user(&sigset, sigmask_arg->sigset,
1728 sizeof sigset))
1729 goto out;
1730 p = &sigset;
1731 }
1732 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1733 break;
1734 }
1735 case KVM_GET_FPU: {
1736 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1737 r = -ENOMEM;
1738 if (!fpu)
1739 goto out;
1740 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1741 if (r)
1742 goto out;
1743 r = -EFAULT;
1744 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1745 goto out;
1746 r = 0;
1747 break;
1748 }
1749 case KVM_SET_FPU: {
1750 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1751 r = -ENOMEM;
1752 if (!fpu)
1753 goto out;
1754 r = -EFAULT;
1755 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1756 goto out;
1757 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1758 if (r)
1759 goto out;
1760 r = 0;
1761 break;
1762 }
1763 default:
1764 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1765 }
1766 out:
1767 kfree(fpu);
1768 kfree(kvm_sregs);
1769 return r;
1770 }
1771
1772 static long kvm_vm_ioctl(struct file *filp,
1773 unsigned int ioctl, unsigned long arg)
1774 {
1775 struct kvm *kvm = filp->private_data;
1776 void __user *argp = (void __user *)arg;
1777 int r;
1778
1779 if (kvm->mm != current->mm)
1780 return -EIO;
1781 switch (ioctl) {
1782 case KVM_CREATE_VCPU:
1783 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1784 if (r < 0)
1785 goto out;
1786 break;
1787 case KVM_SET_USER_MEMORY_REGION: {
1788 struct kvm_userspace_memory_region kvm_userspace_mem;
1789
1790 r = -EFAULT;
1791 if (copy_from_user(&kvm_userspace_mem, argp,
1792 sizeof kvm_userspace_mem))
1793 goto out;
1794
1795 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1796 if (r)
1797 goto out;
1798 break;
1799 }
1800 case KVM_GET_DIRTY_LOG: {
1801 struct kvm_dirty_log log;
1802
1803 r = -EFAULT;
1804 if (copy_from_user(&log, argp, sizeof log))
1805 goto out;
1806 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1807 if (r)
1808 goto out;
1809 break;
1810 }
1811 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1812 case KVM_REGISTER_COALESCED_MMIO: {
1813 struct kvm_coalesced_mmio_zone zone;
1814 r = -EFAULT;
1815 if (copy_from_user(&zone, argp, sizeof zone))
1816 goto out;
1817 r = -ENXIO;
1818 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1819 if (r)
1820 goto out;
1821 r = 0;
1822 break;
1823 }
1824 case KVM_UNREGISTER_COALESCED_MMIO: {
1825 struct kvm_coalesced_mmio_zone zone;
1826 r = -EFAULT;
1827 if (copy_from_user(&zone, argp, sizeof zone))
1828 goto out;
1829 r = -ENXIO;
1830 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1831 if (r)
1832 goto out;
1833 r = 0;
1834 break;
1835 }
1836 #endif
1837 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1838 case KVM_ASSIGN_PCI_DEVICE: {
1839 struct kvm_assigned_pci_dev assigned_dev;
1840
1841 r = -EFAULT;
1842 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1843 goto out;
1844 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1845 if (r)
1846 goto out;
1847 break;
1848 }
1849 case KVM_ASSIGN_IRQ: {
1850 struct kvm_assigned_irq assigned_irq;
1851
1852 r = -EFAULT;
1853 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1854 goto out;
1855 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1856 if (r)
1857 goto out;
1858 break;
1859 }
1860 #endif
1861 default:
1862 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1863 }
1864 out:
1865 return r;
1866 }
1867
1868 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1869 {
1870 struct page *page[1];
1871 unsigned long addr;
1872 int npages;
1873 gfn_t gfn = vmf->pgoff;
1874 struct kvm *kvm = vma->vm_file->private_data;
1875
1876 addr = gfn_to_hva(kvm, gfn);
1877 if (kvm_is_error_hva(addr))
1878 return VM_FAULT_SIGBUS;
1879
1880 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1881 NULL);
1882 if (unlikely(npages != 1))
1883 return VM_FAULT_SIGBUS;
1884
1885 vmf->page = page[0];
1886 return 0;
1887 }
1888
1889 static struct vm_operations_struct kvm_vm_vm_ops = {
1890 .fault = kvm_vm_fault,
1891 };
1892
1893 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1894 {
1895 vma->vm_ops = &kvm_vm_vm_ops;
1896 return 0;
1897 }
1898
1899 static struct file_operations kvm_vm_fops = {
1900 .release = kvm_vm_release,
1901 .unlocked_ioctl = kvm_vm_ioctl,
1902 .compat_ioctl = kvm_vm_ioctl,
1903 .mmap = kvm_vm_mmap,
1904 };
1905
1906 static int kvm_dev_ioctl_create_vm(void)
1907 {
1908 int fd;
1909 struct kvm *kvm;
1910
1911 kvm = kvm_create_vm();
1912 if (IS_ERR(kvm))
1913 return PTR_ERR(kvm);
1914 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1915 if (fd < 0)
1916 kvm_put_kvm(kvm);
1917
1918 return fd;
1919 }
1920
1921 static long kvm_dev_ioctl_check_extension_generic(long arg)
1922 {
1923 switch (arg) {
1924 case KVM_CAP_USER_MEMORY:
1925 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1926 return 1;
1927 default:
1928 break;
1929 }
1930 return kvm_dev_ioctl_check_extension(arg);
1931 }
1932
1933 static long kvm_dev_ioctl(struct file *filp,
1934 unsigned int ioctl, unsigned long arg)
1935 {
1936 long r = -EINVAL;
1937
1938 switch (ioctl) {
1939 case KVM_GET_API_VERSION:
1940 r = -EINVAL;
1941 if (arg)
1942 goto out;
1943 r = KVM_API_VERSION;
1944 break;
1945 case KVM_CREATE_VM:
1946 r = -EINVAL;
1947 if (arg)
1948 goto out;
1949 r = kvm_dev_ioctl_create_vm();
1950 break;
1951 case KVM_CHECK_EXTENSION:
1952 r = kvm_dev_ioctl_check_extension_generic(arg);
1953 break;
1954 case KVM_GET_VCPU_MMAP_SIZE:
1955 r = -EINVAL;
1956 if (arg)
1957 goto out;
1958 r = PAGE_SIZE; /* struct kvm_run */
1959 #ifdef CONFIG_X86
1960 r += PAGE_SIZE; /* pio data page */
1961 #endif
1962 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1963 r += PAGE_SIZE; /* coalesced mmio ring page */
1964 #endif
1965 break;
1966 case KVM_TRACE_ENABLE:
1967 case KVM_TRACE_PAUSE:
1968 case KVM_TRACE_DISABLE:
1969 r = kvm_trace_ioctl(ioctl, arg);
1970 break;
1971 default:
1972 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1973 }
1974 out:
1975 return r;
1976 }
1977
1978 static struct file_operations kvm_chardev_ops = {
1979 .unlocked_ioctl = kvm_dev_ioctl,
1980 .compat_ioctl = kvm_dev_ioctl,
1981 };
1982
1983 static struct miscdevice kvm_dev = {
1984 KVM_MINOR,
1985 "kvm",
1986 &kvm_chardev_ops,
1987 };
1988
1989 static void hardware_enable(void *junk)
1990 {
1991 int cpu = raw_smp_processor_id();
1992
1993 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1994 return;
1995 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1996 kvm_arch_hardware_enable(NULL);
1997 }
1998
1999 static void hardware_disable(void *junk)
2000 {
2001 int cpu = raw_smp_processor_id();
2002
2003 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2004 return;
2005 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2006 kvm_arch_hardware_disable(NULL);
2007 }
2008
2009 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2010 void *v)
2011 {
2012 int cpu = (long)v;
2013
2014 val &= ~CPU_TASKS_FROZEN;
2015 switch (val) {
2016 case CPU_DYING:
2017 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2018 cpu);
2019 hardware_disable(NULL);
2020 break;
2021 case CPU_UP_CANCELED:
2022 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2023 cpu);
2024 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2025 break;
2026 case CPU_ONLINE:
2027 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2028 cpu);
2029 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2030 break;
2031 }
2032 return NOTIFY_OK;
2033 }
2034
2035
2036 asmlinkage void kvm_handle_fault_on_reboot(void)
2037 {
2038 if (kvm_rebooting)
2039 /* spin while reset goes on */
2040 while (true)
2041 ;
2042 /* Fault while not rebooting. We want the trace. */
2043 BUG();
2044 }
2045 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2046
2047 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2048 void *v)
2049 {
2050 if (val == SYS_RESTART) {
2051 /*
2052 * Some (well, at least mine) BIOSes hang on reboot if
2053 * in vmx root mode.
2054 */
2055 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2056 kvm_rebooting = true;
2057 on_each_cpu(hardware_disable, NULL, 1);
2058 }
2059 return NOTIFY_OK;
2060 }
2061
2062 static struct notifier_block kvm_reboot_notifier = {
2063 .notifier_call = kvm_reboot,
2064 .priority = 0,
2065 };
2066
2067 void kvm_io_bus_init(struct kvm_io_bus *bus)
2068 {
2069 memset(bus, 0, sizeof(*bus));
2070 }
2071
2072 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2073 {
2074 int i;
2075
2076 for (i = 0; i < bus->dev_count; i++) {
2077 struct kvm_io_device *pos = bus->devs[i];
2078
2079 kvm_iodevice_destructor(pos);
2080 }
2081 }
2082
2083 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2084 gpa_t addr, int len, int is_write)
2085 {
2086 int i;
2087
2088 for (i = 0; i < bus->dev_count; i++) {
2089 struct kvm_io_device *pos = bus->devs[i];
2090
2091 if (pos->in_range(pos, addr, len, is_write))
2092 return pos;
2093 }
2094
2095 return NULL;
2096 }
2097
2098 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2099 {
2100 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2101
2102 bus->devs[bus->dev_count++] = dev;
2103 }
2104
2105 static struct notifier_block kvm_cpu_notifier = {
2106 .notifier_call = kvm_cpu_hotplug,
2107 .priority = 20, /* must be > scheduler priority */
2108 };
2109
2110 static int vm_stat_get(void *_offset, u64 *val)
2111 {
2112 unsigned offset = (long)_offset;
2113 struct kvm *kvm;
2114
2115 *val = 0;
2116 spin_lock(&kvm_lock);
2117 list_for_each_entry(kvm, &vm_list, vm_list)
2118 *val += *(u32 *)((void *)kvm + offset);
2119 spin_unlock(&kvm_lock);
2120 return 0;
2121 }
2122
2123 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2124
2125 static int vcpu_stat_get(void *_offset, u64 *val)
2126 {
2127 unsigned offset = (long)_offset;
2128 struct kvm *kvm;
2129 struct kvm_vcpu *vcpu;
2130 int i;
2131
2132 *val = 0;
2133 spin_lock(&kvm_lock);
2134 list_for_each_entry(kvm, &vm_list, vm_list)
2135 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2136 vcpu = kvm->vcpus[i];
2137 if (vcpu)
2138 *val += *(u32 *)((void *)vcpu + offset);
2139 }
2140 spin_unlock(&kvm_lock);
2141 return 0;
2142 }
2143
2144 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2145
2146 static struct file_operations *stat_fops[] = {
2147 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2148 [KVM_STAT_VM] = &vm_stat_fops,
2149 };
2150
2151 static void kvm_init_debug(void)
2152 {
2153 struct kvm_stats_debugfs_item *p;
2154
2155 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2156 for (p = debugfs_entries; p->name; ++p)
2157 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2158 (void *)(long)p->offset,
2159 stat_fops[p->kind]);
2160 }
2161
2162 static void kvm_exit_debug(void)
2163 {
2164 struct kvm_stats_debugfs_item *p;
2165
2166 for (p = debugfs_entries; p->name; ++p)
2167 debugfs_remove(p->dentry);
2168 debugfs_remove(kvm_debugfs_dir);
2169 }
2170
2171 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2172 {
2173 hardware_disable(NULL);
2174 return 0;
2175 }
2176
2177 static int kvm_resume(struct sys_device *dev)
2178 {
2179 hardware_enable(NULL);
2180 return 0;
2181 }
2182
2183 static struct sysdev_class kvm_sysdev_class = {
2184 .name = "kvm",
2185 .suspend = kvm_suspend,
2186 .resume = kvm_resume,
2187 };
2188
2189 static struct sys_device kvm_sysdev = {
2190 .id = 0,
2191 .cls = &kvm_sysdev_class,
2192 };
2193
2194 struct page *bad_page;
2195 pfn_t bad_pfn;
2196
2197 static inline
2198 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2199 {
2200 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2201 }
2202
2203 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2204 {
2205 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2206
2207 kvm_arch_vcpu_load(vcpu, cpu);
2208 }
2209
2210 static void kvm_sched_out(struct preempt_notifier *pn,
2211 struct task_struct *next)
2212 {
2213 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2214
2215 kvm_arch_vcpu_put(vcpu);
2216 }
2217
2218 int kvm_init(void *opaque, unsigned int vcpu_size,
2219 struct module *module)
2220 {
2221 int r;
2222 int cpu;
2223
2224 kvm_init_debug();
2225
2226 r = kvm_arch_init(opaque);
2227 if (r)
2228 goto out_fail;
2229
2230 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2231
2232 if (bad_page == NULL) {
2233 r = -ENOMEM;
2234 goto out;
2235 }
2236
2237 bad_pfn = page_to_pfn(bad_page);
2238
2239 if (!alloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2240 r = -ENOMEM;
2241 goto out_free_0;
2242 }
2243
2244 r = kvm_arch_hardware_setup();
2245 if (r < 0)
2246 goto out_free_0a;
2247
2248 for_each_online_cpu(cpu) {
2249 smp_call_function_single(cpu,
2250 kvm_arch_check_processor_compat,
2251 &r, 1);
2252 if (r < 0)
2253 goto out_free_1;
2254 }
2255
2256 on_each_cpu(hardware_enable, NULL, 1);
2257 r = register_cpu_notifier(&kvm_cpu_notifier);
2258 if (r)
2259 goto out_free_2;
2260 register_reboot_notifier(&kvm_reboot_notifier);
2261
2262 r = sysdev_class_register(&kvm_sysdev_class);
2263 if (r)
2264 goto out_free_3;
2265
2266 r = sysdev_register(&kvm_sysdev);
2267 if (r)
2268 goto out_free_4;
2269
2270 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2271 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2272 __alignof__(struct kvm_vcpu),
2273 0, NULL);
2274 if (!kvm_vcpu_cache) {
2275 r = -ENOMEM;
2276 goto out_free_5;
2277 }
2278
2279 kvm_chardev_ops.owner = module;
2280 kvm_vm_fops.owner = module;
2281 kvm_vcpu_fops.owner = module;
2282
2283 r = misc_register(&kvm_dev);
2284 if (r) {
2285 printk(KERN_ERR "kvm: misc device register failed\n");
2286 goto out_free;
2287 }
2288
2289 kvm_preempt_ops.sched_in = kvm_sched_in;
2290 kvm_preempt_ops.sched_out = kvm_sched_out;
2291 #ifndef CONFIG_X86
2292 msi2intx = 0;
2293 #endif
2294
2295 return 0;
2296
2297 out_free:
2298 kmem_cache_destroy(kvm_vcpu_cache);
2299 out_free_5:
2300 sysdev_unregister(&kvm_sysdev);
2301 out_free_4:
2302 sysdev_class_unregister(&kvm_sysdev_class);
2303 out_free_3:
2304 unregister_reboot_notifier(&kvm_reboot_notifier);
2305 unregister_cpu_notifier(&kvm_cpu_notifier);
2306 out_free_2:
2307 on_each_cpu(hardware_disable, NULL, 1);
2308 out_free_1:
2309 kvm_arch_hardware_unsetup();
2310 out_free_0a:
2311 free_cpumask_var(cpus_hardware_enabled);
2312 out_free_0:
2313 __free_page(bad_page);
2314 out:
2315 kvm_arch_exit();
2316 kvm_exit_debug();
2317 out_fail:
2318 return r;
2319 }
2320 EXPORT_SYMBOL_GPL(kvm_init);
2321
2322 void kvm_exit(void)
2323 {
2324 kvm_trace_cleanup();
2325 misc_deregister(&kvm_dev);
2326 kmem_cache_destroy(kvm_vcpu_cache);
2327 sysdev_unregister(&kvm_sysdev);
2328 sysdev_class_unregister(&kvm_sysdev_class);
2329 unregister_reboot_notifier(&kvm_reboot_notifier);
2330 unregister_cpu_notifier(&kvm_cpu_notifier);
2331 on_each_cpu(hardware_disable, NULL, 1);
2332 kvm_arch_hardware_unsetup();
2333 kvm_arch_exit();
2334 kvm_exit_debug();
2335 free_cpumask_var(cpus_hardware_enabled);
2336 __free_page(bad_page);
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.077136 seconds and 6 git commands to generate.