KVM: Introduce kvm_vcpu_is_bsp() function.
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 /*
66 * Ordering of locks:
67 *
68 * kvm->lock --> kvm->irq_lock
69 */
70
71 DEFINE_SPINLOCK(kvm_lock);
72 LIST_HEAD(vm_list);
73
74 static cpumask_var_t cpus_hardware_enabled;
75
76 struct kmem_cache *kvm_vcpu_cache;
77 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
78
79 static __read_mostly struct preempt_ops kvm_preempt_ops;
80
81 struct dentry *kvm_debugfs_dir;
82
83 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
84 unsigned long arg);
85
86 static bool kvm_rebooting;
87
88 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
89 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
90 int assigned_dev_id)
91 {
92 struct list_head *ptr;
93 struct kvm_assigned_dev_kernel *match;
94
95 list_for_each(ptr, head) {
96 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
97 if (match->assigned_dev_id == assigned_dev_id)
98 return match;
99 }
100 return NULL;
101 }
102
103 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
104 *assigned_dev, int irq)
105 {
106 int i, index;
107 struct msix_entry *host_msix_entries;
108
109 host_msix_entries = assigned_dev->host_msix_entries;
110
111 index = -1;
112 for (i = 0; i < assigned_dev->entries_nr; i++)
113 if (irq == host_msix_entries[i].vector) {
114 index = i;
115 break;
116 }
117 if (index < 0) {
118 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
119 return 0;
120 }
121
122 return index;
123 }
124
125 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
126 {
127 struct kvm_assigned_dev_kernel *assigned_dev;
128 struct kvm *kvm;
129 int i;
130
131 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
132 interrupt_work);
133 kvm = assigned_dev->kvm;
134
135 mutex_lock(&kvm->irq_lock);
136 spin_lock_irq(&assigned_dev->assigned_dev_lock);
137 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
138 struct kvm_guest_msix_entry *guest_entries =
139 assigned_dev->guest_msix_entries;
140 for (i = 0; i < assigned_dev->entries_nr; i++) {
141 if (!(guest_entries[i].flags &
142 KVM_ASSIGNED_MSIX_PENDING))
143 continue;
144 guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
145 kvm_set_irq(assigned_dev->kvm,
146 assigned_dev->irq_source_id,
147 guest_entries[i].vector, 1);
148 }
149 } else
150 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
151 assigned_dev->guest_irq, 1);
152
153 spin_unlock_irq(&assigned_dev->assigned_dev_lock);
154 mutex_unlock(&assigned_dev->kvm->irq_lock);
155 }
156
157 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
158 {
159 unsigned long flags;
160 struct kvm_assigned_dev_kernel *assigned_dev =
161 (struct kvm_assigned_dev_kernel *) dev_id;
162
163 spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
164 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
165 int index = find_index_from_host_irq(assigned_dev, irq);
166 if (index < 0)
167 goto out;
168 assigned_dev->guest_msix_entries[index].flags |=
169 KVM_ASSIGNED_MSIX_PENDING;
170 }
171
172 schedule_work(&assigned_dev->interrupt_work);
173
174 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
175 disable_irq_nosync(irq);
176 assigned_dev->host_irq_disabled = true;
177 }
178
179 out:
180 spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
181 return IRQ_HANDLED;
182 }
183
184 /* Ack the irq line for an assigned device */
185 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
186 {
187 struct kvm_assigned_dev_kernel *dev;
188 unsigned long flags;
189
190 if (kian->gsi == -1)
191 return;
192
193 dev = container_of(kian, struct kvm_assigned_dev_kernel,
194 ack_notifier);
195
196 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
197
198 /* The guest irq may be shared so this ack may be
199 * from another device.
200 */
201 spin_lock_irqsave(&dev->assigned_dev_lock, flags);
202 if (dev->host_irq_disabled) {
203 enable_irq(dev->host_irq);
204 dev->host_irq_disabled = false;
205 }
206 spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
207 }
208
209 static void deassign_guest_irq(struct kvm *kvm,
210 struct kvm_assigned_dev_kernel *assigned_dev)
211 {
212 kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
213 assigned_dev->ack_notifier.gsi = -1;
214
215 if (assigned_dev->irq_source_id != -1)
216 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
217 assigned_dev->irq_source_id = -1;
218 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
219 }
220
221 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
222 static void deassign_host_irq(struct kvm *kvm,
223 struct kvm_assigned_dev_kernel *assigned_dev)
224 {
225 /*
226 * In kvm_free_device_irq, cancel_work_sync return true if:
227 * 1. work is scheduled, and then cancelled.
228 * 2. work callback is executed.
229 *
230 * The first one ensured that the irq is disabled and no more events
231 * would happen. But for the second one, the irq may be enabled (e.g.
232 * for MSI). So we disable irq here to prevent further events.
233 *
234 * Notice this maybe result in nested disable if the interrupt type is
235 * INTx, but it's OK for we are going to free it.
236 *
237 * If this function is a part of VM destroy, please ensure that till
238 * now, the kvm state is still legal for probably we also have to wait
239 * interrupt_work done.
240 */
241 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
242 int i;
243 for (i = 0; i < assigned_dev->entries_nr; i++)
244 disable_irq_nosync(assigned_dev->
245 host_msix_entries[i].vector);
246
247 cancel_work_sync(&assigned_dev->interrupt_work);
248
249 for (i = 0; i < assigned_dev->entries_nr; i++)
250 free_irq(assigned_dev->host_msix_entries[i].vector,
251 (void *)assigned_dev);
252
253 assigned_dev->entries_nr = 0;
254 kfree(assigned_dev->host_msix_entries);
255 kfree(assigned_dev->guest_msix_entries);
256 pci_disable_msix(assigned_dev->dev);
257 } else {
258 /* Deal with MSI and INTx */
259 disable_irq_nosync(assigned_dev->host_irq);
260 cancel_work_sync(&assigned_dev->interrupt_work);
261
262 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
263
264 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
265 pci_disable_msi(assigned_dev->dev);
266 }
267
268 assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
269 }
270
271 static int kvm_deassign_irq(struct kvm *kvm,
272 struct kvm_assigned_dev_kernel *assigned_dev,
273 unsigned long irq_requested_type)
274 {
275 unsigned long guest_irq_type, host_irq_type;
276
277 if (!irqchip_in_kernel(kvm))
278 return -EINVAL;
279 /* no irq assignment to deassign */
280 if (!assigned_dev->irq_requested_type)
281 return -ENXIO;
282
283 host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
284 guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
285
286 if (host_irq_type)
287 deassign_host_irq(kvm, assigned_dev);
288 if (guest_irq_type)
289 deassign_guest_irq(kvm, assigned_dev);
290
291 return 0;
292 }
293
294 static void kvm_free_assigned_irq(struct kvm *kvm,
295 struct kvm_assigned_dev_kernel *assigned_dev)
296 {
297 kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
298 }
299
300 static void kvm_free_assigned_device(struct kvm *kvm,
301 struct kvm_assigned_dev_kernel
302 *assigned_dev)
303 {
304 kvm_free_assigned_irq(kvm, assigned_dev);
305
306 pci_reset_function(assigned_dev->dev);
307
308 pci_release_regions(assigned_dev->dev);
309 pci_disable_device(assigned_dev->dev);
310 pci_dev_put(assigned_dev->dev);
311
312 list_del(&assigned_dev->list);
313 kfree(assigned_dev);
314 }
315
316 void kvm_free_all_assigned_devices(struct kvm *kvm)
317 {
318 struct list_head *ptr, *ptr2;
319 struct kvm_assigned_dev_kernel *assigned_dev;
320
321 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
322 assigned_dev = list_entry(ptr,
323 struct kvm_assigned_dev_kernel,
324 list);
325
326 kvm_free_assigned_device(kvm, assigned_dev);
327 }
328 }
329
330 static int assigned_device_enable_host_intx(struct kvm *kvm,
331 struct kvm_assigned_dev_kernel *dev)
332 {
333 dev->host_irq = dev->dev->irq;
334 /* Even though this is PCI, we don't want to use shared
335 * interrupts. Sharing host devices with guest-assigned devices
336 * on the same interrupt line is not a happy situation: there
337 * are going to be long delays in accepting, acking, etc.
338 */
339 if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
340 0, "kvm_assigned_intx_device", (void *)dev))
341 return -EIO;
342 return 0;
343 }
344
345 #ifdef __KVM_HAVE_MSI
346 static int assigned_device_enable_host_msi(struct kvm *kvm,
347 struct kvm_assigned_dev_kernel *dev)
348 {
349 int r;
350
351 if (!dev->dev->msi_enabled) {
352 r = pci_enable_msi(dev->dev);
353 if (r)
354 return r;
355 }
356
357 dev->host_irq = dev->dev->irq;
358 if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
359 "kvm_assigned_msi_device", (void *)dev)) {
360 pci_disable_msi(dev->dev);
361 return -EIO;
362 }
363
364 return 0;
365 }
366 #endif
367
368 #ifdef __KVM_HAVE_MSIX
369 static int assigned_device_enable_host_msix(struct kvm *kvm,
370 struct kvm_assigned_dev_kernel *dev)
371 {
372 int i, r = -EINVAL;
373
374 /* host_msix_entries and guest_msix_entries should have been
375 * initialized */
376 if (dev->entries_nr == 0)
377 return r;
378
379 r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
380 if (r)
381 return r;
382
383 for (i = 0; i < dev->entries_nr; i++) {
384 r = request_irq(dev->host_msix_entries[i].vector,
385 kvm_assigned_dev_intr, 0,
386 "kvm_assigned_msix_device",
387 (void *)dev);
388 /* FIXME: free requested_irq's on failure */
389 if (r)
390 return r;
391 }
392
393 return 0;
394 }
395
396 #endif
397
398 static int assigned_device_enable_guest_intx(struct kvm *kvm,
399 struct kvm_assigned_dev_kernel *dev,
400 struct kvm_assigned_irq *irq)
401 {
402 dev->guest_irq = irq->guest_irq;
403 dev->ack_notifier.gsi = irq->guest_irq;
404 return 0;
405 }
406
407 #ifdef __KVM_HAVE_MSI
408 static int assigned_device_enable_guest_msi(struct kvm *kvm,
409 struct kvm_assigned_dev_kernel *dev,
410 struct kvm_assigned_irq *irq)
411 {
412 dev->guest_irq = irq->guest_irq;
413 dev->ack_notifier.gsi = -1;
414 dev->host_irq_disabled = false;
415 return 0;
416 }
417 #endif
418 #ifdef __KVM_HAVE_MSIX
419 static int assigned_device_enable_guest_msix(struct kvm *kvm,
420 struct kvm_assigned_dev_kernel *dev,
421 struct kvm_assigned_irq *irq)
422 {
423 dev->guest_irq = irq->guest_irq;
424 dev->ack_notifier.gsi = -1;
425 dev->host_irq_disabled = false;
426 return 0;
427 }
428 #endif
429
430 static int assign_host_irq(struct kvm *kvm,
431 struct kvm_assigned_dev_kernel *dev,
432 __u32 host_irq_type)
433 {
434 int r = -EEXIST;
435
436 if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
437 return r;
438
439 switch (host_irq_type) {
440 case KVM_DEV_IRQ_HOST_INTX:
441 r = assigned_device_enable_host_intx(kvm, dev);
442 break;
443 #ifdef __KVM_HAVE_MSI
444 case KVM_DEV_IRQ_HOST_MSI:
445 r = assigned_device_enable_host_msi(kvm, dev);
446 break;
447 #endif
448 #ifdef __KVM_HAVE_MSIX
449 case KVM_DEV_IRQ_HOST_MSIX:
450 r = assigned_device_enable_host_msix(kvm, dev);
451 break;
452 #endif
453 default:
454 r = -EINVAL;
455 }
456
457 if (!r)
458 dev->irq_requested_type |= host_irq_type;
459
460 return r;
461 }
462
463 static int assign_guest_irq(struct kvm *kvm,
464 struct kvm_assigned_dev_kernel *dev,
465 struct kvm_assigned_irq *irq,
466 unsigned long guest_irq_type)
467 {
468 int id;
469 int r = -EEXIST;
470
471 if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
472 return r;
473
474 id = kvm_request_irq_source_id(kvm);
475 if (id < 0)
476 return id;
477
478 dev->irq_source_id = id;
479
480 switch (guest_irq_type) {
481 case KVM_DEV_IRQ_GUEST_INTX:
482 r = assigned_device_enable_guest_intx(kvm, dev, irq);
483 break;
484 #ifdef __KVM_HAVE_MSI
485 case KVM_DEV_IRQ_GUEST_MSI:
486 r = assigned_device_enable_guest_msi(kvm, dev, irq);
487 break;
488 #endif
489 #ifdef __KVM_HAVE_MSIX
490 case KVM_DEV_IRQ_GUEST_MSIX:
491 r = assigned_device_enable_guest_msix(kvm, dev, irq);
492 break;
493 #endif
494 default:
495 r = -EINVAL;
496 }
497
498 if (!r) {
499 dev->irq_requested_type |= guest_irq_type;
500 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
501 } else
502 kvm_free_irq_source_id(kvm, dev->irq_source_id);
503
504 return r;
505 }
506
507 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
508 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
509 struct kvm_assigned_irq *assigned_irq)
510 {
511 int r = -EINVAL;
512 struct kvm_assigned_dev_kernel *match;
513 unsigned long host_irq_type, guest_irq_type;
514
515 if (!capable(CAP_SYS_RAWIO))
516 return -EPERM;
517
518 if (!irqchip_in_kernel(kvm))
519 return r;
520
521 mutex_lock(&kvm->lock);
522 r = -ENODEV;
523 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
524 assigned_irq->assigned_dev_id);
525 if (!match)
526 goto out;
527
528 host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
529 guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
530
531 r = -EINVAL;
532 /* can only assign one type at a time */
533 if (hweight_long(host_irq_type) > 1)
534 goto out;
535 if (hweight_long(guest_irq_type) > 1)
536 goto out;
537 if (host_irq_type == 0 && guest_irq_type == 0)
538 goto out;
539
540 r = 0;
541 if (host_irq_type)
542 r = assign_host_irq(kvm, match, host_irq_type);
543 if (r)
544 goto out;
545
546 if (guest_irq_type)
547 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
548 out:
549 mutex_unlock(&kvm->lock);
550 return r;
551 }
552
553 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
554 struct kvm_assigned_irq
555 *assigned_irq)
556 {
557 int r = -ENODEV;
558 struct kvm_assigned_dev_kernel *match;
559
560 mutex_lock(&kvm->lock);
561
562 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
563 assigned_irq->assigned_dev_id);
564 if (!match)
565 goto out;
566
567 r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
568 out:
569 mutex_unlock(&kvm->lock);
570 return r;
571 }
572
573 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
574 struct kvm_assigned_pci_dev *assigned_dev)
575 {
576 int r = 0;
577 struct kvm_assigned_dev_kernel *match;
578 struct pci_dev *dev;
579
580 down_read(&kvm->slots_lock);
581 mutex_lock(&kvm->lock);
582
583 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
584 assigned_dev->assigned_dev_id);
585 if (match) {
586 /* device already assigned */
587 r = -EEXIST;
588 goto out;
589 }
590
591 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
592 if (match == NULL) {
593 printk(KERN_INFO "%s: Couldn't allocate memory\n",
594 __func__);
595 r = -ENOMEM;
596 goto out;
597 }
598 dev = pci_get_bus_and_slot(assigned_dev->busnr,
599 assigned_dev->devfn);
600 if (!dev) {
601 printk(KERN_INFO "%s: host device not found\n", __func__);
602 r = -EINVAL;
603 goto out_free;
604 }
605 if (pci_enable_device(dev)) {
606 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
607 r = -EBUSY;
608 goto out_put;
609 }
610 r = pci_request_regions(dev, "kvm_assigned_device");
611 if (r) {
612 printk(KERN_INFO "%s: Could not get access to device regions\n",
613 __func__);
614 goto out_disable;
615 }
616
617 pci_reset_function(dev);
618
619 match->assigned_dev_id = assigned_dev->assigned_dev_id;
620 match->host_busnr = assigned_dev->busnr;
621 match->host_devfn = assigned_dev->devfn;
622 match->flags = assigned_dev->flags;
623 match->dev = dev;
624 spin_lock_init(&match->assigned_dev_lock);
625 match->irq_source_id = -1;
626 match->kvm = kvm;
627 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
628 INIT_WORK(&match->interrupt_work,
629 kvm_assigned_dev_interrupt_work_handler);
630
631 list_add(&match->list, &kvm->arch.assigned_dev_head);
632
633 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
634 if (!kvm->arch.iommu_domain) {
635 r = kvm_iommu_map_guest(kvm);
636 if (r)
637 goto out_list_del;
638 }
639 r = kvm_assign_device(kvm, match);
640 if (r)
641 goto out_list_del;
642 }
643
644 out:
645 mutex_unlock(&kvm->lock);
646 up_read(&kvm->slots_lock);
647 return r;
648 out_list_del:
649 list_del(&match->list);
650 pci_release_regions(dev);
651 out_disable:
652 pci_disable_device(dev);
653 out_put:
654 pci_dev_put(dev);
655 out_free:
656 kfree(match);
657 mutex_unlock(&kvm->lock);
658 up_read(&kvm->slots_lock);
659 return r;
660 }
661 #endif
662
663 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
664 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
665 struct kvm_assigned_pci_dev *assigned_dev)
666 {
667 int r = 0;
668 struct kvm_assigned_dev_kernel *match;
669
670 mutex_lock(&kvm->lock);
671
672 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
673 assigned_dev->assigned_dev_id);
674 if (!match) {
675 printk(KERN_INFO "%s: device hasn't been assigned before, "
676 "so cannot be deassigned\n", __func__);
677 r = -EINVAL;
678 goto out;
679 }
680
681 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
682 kvm_deassign_device(kvm, match);
683
684 kvm_free_assigned_device(kvm, match);
685
686 out:
687 mutex_unlock(&kvm->lock);
688 return r;
689 }
690 #endif
691
692 static inline int valid_vcpu(int n)
693 {
694 return likely(n >= 0 && n < KVM_MAX_VCPUS);
695 }
696
697 inline int kvm_is_mmio_pfn(pfn_t pfn)
698 {
699 if (pfn_valid(pfn)) {
700 struct page *page = compound_head(pfn_to_page(pfn));
701 return PageReserved(page);
702 }
703
704 return true;
705 }
706
707 /*
708 * Switches to specified vcpu, until a matching vcpu_put()
709 */
710 void vcpu_load(struct kvm_vcpu *vcpu)
711 {
712 int cpu;
713
714 mutex_lock(&vcpu->mutex);
715 cpu = get_cpu();
716 preempt_notifier_register(&vcpu->preempt_notifier);
717 kvm_arch_vcpu_load(vcpu, cpu);
718 put_cpu();
719 }
720
721 void vcpu_put(struct kvm_vcpu *vcpu)
722 {
723 preempt_disable();
724 kvm_arch_vcpu_put(vcpu);
725 preempt_notifier_unregister(&vcpu->preempt_notifier);
726 preempt_enable();
727 mutex_unlock(&vcpu->mutex);
728 }
729
730 static void ack_flush(void *_completed)
731 {
732 }
733
734 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
735 {
736 int i, cpu, me;
737 cpumask_var_t cpus;
738 bool called = true;
739 struct kvm_vcpu *vcpu;
740
741 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
742 cpumask_clear(cpus);
743
744 me = get_cpu();
745 spin_lock(&kvm->requests_lock);
746 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
747 vcpu = kvm->vcpus[i];
748 if (!vcpu)
749 continue;
750 if (test_and_set_bit(req, &vcpu->requests))
751 continue;
752 cpu = vcpu->cpu;
753 if (cpus != NULL && cpu != -1 && cpu != me)
754 cpumask_set_cpu(cpu, cpus);
755 }
756 if (unlikely(cpus == NULL))
757 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
758 else if (!cpumask_empty(cpus))
759 smp_call_function_many(cpus, ack_flush, NULL, 1);
760 else
761 called = false;
762 spin_unlock(&kvm->requests_lock);
763 put_cpu();
764 free_cpumask_var(cpus);
765 return called;
766 }
767
768 void kvm_flush_remote_tlbs(struct kvm *kvm)
769 {
770 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
771 ++kvm->stat.remote_tlb_flush;
772 }
773
774 void kvm_reload_remote_mmus(struct kvm *kvm)
775 {
776 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
777 }
778
779 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
780 {
781 struct page *page;
782 int r;
783
784 mutex_init(&vcpu->mutex);
785 vcpu->cpu = -1;
786 vcpu->kvm = kvm;
787 vcpu->vcpu_id = id;
788 init_waitqueue_head(&vcpu->wq);
789
790 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
791 if (!page) {
792 r = -ENOMEM;
793 goto fail;
794 }
795 vcpu->run = page_address(page);
796
797 r = kvm_arch_vcpu_init(vcpu);
798 if (r < 0)
799 goto fail_free_run;
800 return 0;
801
802 fail_free_run:
803 free_page((unsigned long)vcpu->run);
804 fail:
805 return r;
806 }
807 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
808
809 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
810 {
811 kvm_arch_vcpu_uninit(vcpu);
812 free_page((unsigned long)vcpu->run);
813 }
814 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
815
816 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
817 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
818 {
819 return container_of(mn, struct kvm, mmu_notifier);
820 }
821
822 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
823 struct mm_struct *mm,
824 unsigned long address)
825 {
826 struct kvm *kvm = mmu_notifier_to_kvm(mn);
827 int need_tlb_flush;
828
829 /*
830 * When ->invalidate_page runs, the linux pte has been zapped
831 * already but the page is still allocated until
832 * ->invalidate_page returns. So if we increase the sequence
833 * here the kvm page fault will notice if the spte can't be
834 * established because the page is going to be freed. If
835 * instead the kvm page fault establishes the spte before
836 * ->invalidate_page runs, kvm_unmap_hva will release it
837 * before returning.
838 *
839 * The sequence increase only need to be seen at spin_unlock
840 * time, and not at spin_lock time.
841 *
842 * Increasing the sequence after the spin_unlock would be
843 * unsafe because the kvm page fault could then establish the
844 * pte after kvm_unmap_hva returned, without noticing the page
845 * is going to be freed.
846 */
847 spin_lock(&kvm->mmu_lock);
848 kvm->mmu_notifier_seq++;
849 need_tlb_flush = kvm_unmap_hva(kvm, address);
850 spin_unlock(&kvm->mmu_lock);
851
852 /* we've to flush the tlb before the pages can be freed */
853 if (need_tlb_flush)
854 kvm_flush_remote_tlbs(kvm);
855
856 }
857
858 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
859 struct mm_struct *mm,
860 unsigned long start,
861 unsigned long end)
862 {
863 struct kvm *kvm = mmu_notifier_to_kvm(mn);
864 int need_tlb_flush = 0;
865
866 spin_lock(&kvm->mmu_lock);
867 /*
868 * The count increase must become visible at unlock time as no
869 * spte can be established without taking the mmu_lock and
870 * count is also read inside the mmu_lock critical section.
871 */
872 kvm->mmu_notifier_count++;
873 for (; start < end; start += PAGE_SIZE)
874 need_tlb_flush |= kvm_unmap_hva(kvm, start);
875 spin_unlock(&kvm->mmu_lock);
876
877 /* we've to flush the tlb before the pages can be freed */
878 if (need_tlb_flush)
879 kvm_flush_remote_tlbs(kvm);
880 }
881
882 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
883 struct mm_struct *mm,
884 unsigned long start,
885 unsigned long end)
886 {
887 struct kvm *kvm = mmu_notifier_to_kvm(mn);
888
889 spin_lock(&kvm->mmu_lock);
890 /*
891 * This sequence increase will notify the kvm page fault that
892 * the page that is going to be mapped in the spte could have
893 * been freed.
894 */
895 kvm->mmu_notifier_seq++;
896 /*
897 * The above sequence increase must be visible before the
898 * below count decrease but both values are read by the kvm
899 * page fault under mmu_lock spinlock so we don't need to add
900 * a smb_wmb() here in between the two.
901 */
902 kvm->mmu_notifier_count--;
903 spin_unlock(&kvm->mmu_lock);
904
905 BUG_ON(kvm->mmu_notifier_count < 0);
906 }
907
908 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
909 struct mm_struct *mm,
910 unsigned long address)
911 {
912 struct kvm *kvm = mmu_notifier_to_kvm(mn);
913 int young;
914
915 spin_lock(&kvm->mmu_lock);
916 young = kvm_age_hva(kvm, address);
917 spin_unlock(&kvm->mmu_lock);
918
919 if (young)
920 kvm_flush_remote_tlbs(kvm);
921
922 return young;
923 }
924
925 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
926 struct mm_struct *mm)
927 {
928 struct kvm *kvm = mmu_notifier_to_kvm(mn);
929 kvm_arch_flush_shadow(kvm);
930 }
931
932 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
933 .invalidate_page = kvm_mmu_notifier_invalidate_page,
934 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
935 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
936 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
937 .release = kvm_mmu_notifier_release,
938 };
939 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
940
941 static struct kvm *kvm_create_vm(void)
942 {
943 struct kvm *kvm = kvm_arch_create_vm();
944 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
945 struct page *page;
946 #endif
947
948 if (IS_ERR(kvm))
949 goto out;
950 #ifdef CONFIG_HAVE_KVM_IRQCHIP
951 INIT_LIST_HEAD(&kvm->irq_routing);
952 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
953 #endif
954
955 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
956 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
957 if (!page) {
958 kfree(kvm);
959 return ERR_PTR(-ENOMEM);
960 }
961 kvm->coalesced_mmio_ring =
962 (struct kvm_coalesced_mmio_ring *)page_address(page);
963 #endif
964
965 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
966 {
967 int err;
968 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
969 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
970 if (err) {
971 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
972 put_page(page);
973 #endif
974 kfree(kvm);
975 return ERR_PTR(err);
976 }
977 }
978 #endif
979
980 kvm->mm = current->mm;
981 atomic_inc(&kvm->mm->mm_count);
982 spin_lock_init(&kvm->mmu_lock);
983 spin_lock_init(&kvm->requests_lock);
984 kvm_io_bus_init(&kvm->pio_bus);
985 kvm_irqfd_init(kvm);
986 mutex_init(&kvm->lock);
987 mutex_init(&kvm->irq_lock);
988 kvm_io_bus_init(&kvm->mmio_bus);
989 init_rwsem(&kvm->slots_lock);
990 atomic_set(&kvm->users_count, 1);
991 spin_lock(&kvm_lock);
992 list_add(&kvm->vm_list, &vm_list);
993 spin_unlock(&kvm_lock);
994 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
995 kvm_coalesced_mmio_init(kvm);
996 #endif
997 out:
998 return kvm;
999 }
1000
1001 /*
1002 * Free any memory in @free but not in @dont.
1003 */
1004 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1005 struct kvm_memory_slot *dont)
1006 {
1007 if (!dont || free->rmap != dont->rmap)
1008 vfree(free->rmap);
1009
1010 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1011 vfree(free->dirty_bitmap);
1012
1013 if (!dont || free->lpage_info != dont->lpage_info)
1014 vfree(free->lpage_info);
1015
1016 free->npages = 0;
1017 free->dirty_bitmap = NULL;
1018 free->rmap = NULL;
1019 free->lpage_info = NULL;
1020 }
1021
1022 void kvm_free_physmem(struct kvm *kvm)
1023 {
1024 int i;
1025
1026 for (i = 0; i < kvm->nmemslots; ++i)
1027 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1028 }
1029
1030 static void kvm_destroy_vm(struct kvm *kvm)
1031 {
1032 struct mm_struct *mm = kvm->mm;
1033
1034 kvm_arch_sync_events(kvm);
1035 spin_lock(&kvm_lock);
1036 list_del(&kvm->vm_list);
1037 spin_unlock(&kvm_lock);
1038 kvm_free_irq_routing(kvm);
1039 kvm_io_bus_destroy(&kvm->pio_bus);
1040 kvm_io_bus_destroy(&kvm->mmio_bus);
1041 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1042 if (kvm->coalesced_mmio_ring != NULL)
1043 free_page((unsigned long)kvm->coalesced_mmio_ring);
1044 #endif
1045 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1046 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1047 #else
1048 kvm_arch_flush_shadow(kvm);
1049 #endif
1050 kvm_arch_destroy_vm(kvm);
1051 mmdrop(mm);
1052 }
1053
1054 void kvm_get_kvm(struct kvm *kvm)
1055 {
1056 atomic_inc(&kvm->users_count);
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1059
1060 void kvm_put_kvm(struct kvm *kvm)
1061 {
1062 if (atomic_dec_and_test(&kvm->users_count))
1063 kvm_destroy_vm(kvm);
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1066
1067
1068 static int kvm_vm_release(struct inode *inode, struct file *filp)
1069 {
1070 struct kvm *kvm = filp->private_data;
1071
1072 kvm_irqfd_release(kvm);
1073
1074 kvm_put_kvm(kvm);
1075 return 0;
1076 }
1077
1078 /*
1079 * Allocate some memory and give it an address in the guest physical address
1080 * space.
1081 *
1082 * Discontiguous memory is allowed, mostly for framebuffers.
1083 *
1084 * Must be called holding mmap_sem for write.
1085 */
1086 int __kvm_set_memory_region(struct kvm *kvm,
1087 struct kvm_userspace_memory_region *mem,
1088 int user_alloc)
1089 {
1090 int r;
1091 gfn_t base_gfn;
1092 unsigned long npages, ugfn;
1093 unsigned long largepages, i;
1094 struct kvm_memory_slot *memslot;
1095 struct kvm_memory_slot old, new;
1096
1097 r = -EINVAL;
1098 /* General sanity checks */
1099 if (mem->memory_size & (PAGE_SIZE - 1))
1100 goto out;
1101 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1102 goto out;
1103 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1104 goto out;
1105 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1106 goto out;
1107 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1108 goto out;
1109
1110 memslot = &kvm->memslots[mem->slot];
1111 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1112 npages = mem->memory_size >> PAGE_SHIFT;
1113
1114 if (!npages)
1115 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1116
1117 new = old = *memslot;
1118
1119 new.base_gfn = base_gfn;
1120 new.npages = npages;
1121 new.flags = mem->flags;
1122
1123 /* Disallow changing a memory slot's size. */
1124 r = -EINVAL;
1125 if (npages && old.npages && npages != old.npages)
1126 goto out_free;
1127
1128 /* Check for overlaps */
1129 r = -EEXIST;
1130 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1131 struct kvm_memory_slot *s = &kvm->memslots[i];
1132
1133 if (s == memslot || !s->npages)
1134 continue;
1135 if (!((base_gfn + npages <= s->base_gfn) ||
1136 (base_gfn >= s->base_gfn + s->npages)))
1137 goto out_free;
1138 }
1139
1140 /* Free page dirty bitmap if unneeded */
1141 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1142 new.dirty_bitmap = NULL;
1143
1144 r = -ENOMEM;
1145
1146 /* Allocate if a slot is being created */
1147 #ifndef CONFIG_S390
1148 if (npages && !new.rmap) {
1149 new.rmap = vmalloc(npages * sizeof(struct page *));
1150
1151 if (!new.rmap)
1152 goto out_free;
1153
1154 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1155
1156 new.user_alloc = user_alloc;
1157 /*
1158 * hva_to_rmmap() serialzies with the mmu_lock and to be
1159 * safe it has to ignore memslots with !user_alloc &&
1160 * !userspace_addr.
1161 */
1162 if (user_alloc)
1163 new.userspace_addr = mem->userspace_addr;
1164 else
1165 new.userspace_addr = 0;
1166 }
1167 if (npages && !new.lpage_info) {
1168 largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
1169 largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
1170
1171 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1172
1173 if (!new.lpage_info)
1174 goto out_free;
1175
1176 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1177
1178 if (base_gfn % KVM_PAGES_PER_HPAGE)
1179 new.lpage_info[0].write_count = 1;
1180 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1181 new.lpage_info[largepages-1].write_count = 1;
1182 ugfn = new.userspace_addr >> PAGE_SHIFT;
1183 /*
1184 * If the gfn and userspace address are not aligned wrt each
1185 * other, disable large page support for this slot
1186 */
1187 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1))
1188 for (i = 0; i < largepages; ++i)
1189 new.lpage_info[i].write_count = 1;
1190 }
1191
1192 /* Allocate page dirty bitmap if needed */
1193 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1194 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1195
1196 new.dirty_bitmap = vmalloc(dirty_bytes);
1197 if (!new.dirty_bitmap)
1198 goto out_free;
1199 memset(new.dirty_bitmap, 0, dirty_bytes);
1200 if (old.npages)
1201 kvm_arch_flush_shadow(kvm);
1202 }
1203 #endif /* not defined CONFIG_S390 */
1204
1205 if (!npages)
1206 kvm_arch_flush_shadow(kvm);
1207
1208 spin_lock(&kvm->mmu_lock);
1209 if (mem->slot >= kvm->nmemslots)
1210 kvm->nmemslots = mem->slot + 1;
1211
1212 *memslot = new;
1213 spin_unlock(&kvm->mmu_lock);
1214
1215 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1216 if (r) {
1217 spin_lock(&kvm->mmu_lock);
1218 *memslot = old;
1219 spin_unlock(&kvm->mmu_lock);
1220 goto out_free;
1221 }
1222
1223 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1224 /* Slot deletion case: we have to update the current slot */
1225 spin_lock(&kvm->mmu_lock);
1226 if (!npages)
1227 *memslot = old;
1228 spin_unlock(&kvm->mmu_lock);
1229 #ifdef CONFIG_DMAR
1230 /* map the pages in iommu page table */
1231 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1232 if (r)
1233 goto out;
1234 #endif
1235 return 0;
1236
1237 out_free:
1238 kvm_free_physmem_slot(&new, &old);
1239 out:
1240 return r;
1241
1242 }
1243 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1244
1245 int kvm_set_memory_region(struct kvm *kvm,
1246 struct kvm_userspace_memory_region *mem,
1247 int user_alloc)
1248 {
1249 int r;
1250
1251 down_write(&kvm->slots_lock);
1252 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1253 up_write(&kvm->slots_lock);
1254 return r;
1255 }
1256 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1257
1258 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1259 struct
1260 kvm_userspace_memory_region *mem,
1261 int user_alloc)
1262 {
1263 if (mem->slot >= KVM_MEMORY_SLOTS)
1264 return -EINVAL;
1265 return kvm_set_memory_region(kvm, mem, user_alloc);
1266 }
1267
1268 int kvm_get_dirty_log(struct kvm *kvm,
1269 struct kvm_dirty_log *log, int *is_dirty)
1270 {
1271 struct kvm_memory_slot *memslot;
1272 int r, i;
1273 int n;
1274 unsigned long any = 0;
1275
1276 r = -EINVAL;
1277 if (log->slot >= KVM_MEMORY_SLOTS)
1278 goto out;
1279
1280 memslot = &kvm->memslots[log->slot];
1281 r = -ENOENT;
1282 if (!memslot->dirty_bitmap)
1283 goto out;
1284
1285 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1286
1287 for (i = 0; !any && i < n/sizeof(long); ++i)
1288 any = memslot->dirty_bitmap[i];
1289
1290 r = -EFAULT;
1291 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1292 goto out;
1293
1294 if (any)
1295 *is_dirty = 1;
1296
1297 r = 0;
1298 out:
1299 return r;
1300 }
1301
1302 int is_error_page(struct page *page)
1303 {
1304 return page == bad_page;
1305 }
1306 EXPORT_SYMBOL_GPL(is_error_page);
1307
1308 int is_error_pfn(pfn_t pfn)
1309 {
1310 return pfn == bad_pfn;
1311 }
1312 EXPORT_SYMBOL_GPL(is_error_pfn);
1313
1314 static inline unsigned long bad_hva(void)
1315 {
1316 return PAGE_OFFSET;
1317 }
1318
1319 int kvm_is_error_hva(unsigned long addr)
1320 {
1321 return addr == bad_hva();
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1324
1325 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1326 {
1327 int i;
1328
1329 for (i = 0; i < kvm->nmemslots; ++i) {
1330 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1331
1332 if (gfn >= memslot->base_gfn
1333 && gfn < memslot->base_gfn + memslot->npages)
1334 return memslot;
1335 }
1336 return NULL;
1337 }
1338 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1339
1340 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1341 {
1342 gfn = unalias_gfn(kvm, gfn);
1343 return gfn_to_memslot_unaliased(kvm, gfn);
1344 }
1345
1346 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1347 {
1348 int i;
1349
1350 gfn = unalias_gfn(kvm, gfn);
1351 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1352 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1353
1354 if (gfn >= memslot->base_gfn
1355 && gfn < memslot->base_gfn + memslot->npages)
1356 return 1;
1357 }
1358 return 0;
1359 }
1360 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1361
1362 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1363 {
1364 struct kvm_memory_slot *slot;
1365
1366 gfn = unalias_gfn(kvm, gfn);
1367 slot = gfn_to_memslot_unaliased(kvm, gfn);
1368 if (!slot)
1369 return bad_hva();
1370 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1371 }
1372 EXPORT_SYMBOL_GPL(gfn_to_hva);
1373
1374 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1375 {
1376 struct page *page[1];
1377 unsigned long addr;
1378 int npages;
1379 pfn_t pfn;
1380
1381 might_sleep();
1382
1383 addr = gfn_to_hva(kvm, gfn);
1384 if (kvm_is_error_hva(addr)) {
1385 get_page(bad_page);
1386 return page_to_pfn(bad_page);
1387 }
1388
1389 npages = get_user_pages_fast(addr, 1, 1, page);
1390
1391 if (unlikely(npages != 1)) {
1392 struct vm_area_struct *vma;
1393
1394 down_read(&current->mm->mmap_sem);
1395 vma = find_vma(current->mm, addr);
1396
1397 if (vma == NULL || addr < vma->vm_start ||
1398 !(vma->vm_flags & VM_PFNMAP)) {
1399 up_read(&current->mm->mmap_sem);
1400 get_page(bad_page);
1401 return page_to_pfn(bad_page);
1402 }
1403
1404 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1405 up_read(&current->mm->mmap_sem);
1406 BUG_ON(!kvm_is_mmio_pfn(pfn));
1407 } else
1408 pfn = page_to_pfn(page[0]);
1409
1410 return pfn;
1411 }
1412
1413 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1414
1415 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1416 {
1417 pfn_t pfn;
1418
1419 pfn = gfn_to_pfn(kvm, gfn);
1420 if (!kvm_is_mmio_pfn(pfn))
1421 return pfn_to_page(pfn);
1422
1423 WARN_ON(kvm_is_mmio_pfn(pfn));
1424
1425 get_page(bad_page);
1426 return bad_page;
1427 }
1428
1429 EXPORT_SYMBOL_GPL(gfn_to_page);
1430
1431 void kvm_release_page_clean(struct page *page)
1432 {
1433 kvm_release_pfn_clean(page_to_pfn(page));
1434 }
1435 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1436
1437 void kvm_release_pfn_clean(pfn_t pfn)
1438 {
1439 if (!kvm_is_mmio_pfn(pfn))
1440 put_page(pfn_to_page(pfn));
1441 }
1442 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1443
1444 void kvm_release_page_dirty(struct page *page)
1445 {
1446 kvm_release_pfn_dirty(page_to_pfn(page));
1447 }
1448 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1449
1450 void kvm_release_pfn_dirty(pfn_t pfn)
1451 {
1452 kvm_set_pfn_dirty(pfn);
1453 kvm_release_pfn_clean(pfn);
1454 }
1455 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1456
1457 void kvm_set_page_dirty(struct page *page)
1458 {
1459 kvm_set_pfn_dirty(page_to_pfn(page));
1460 }
1461 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1462
1463 void kvm_set_pfn_dirty(pfn_t pfn)
1464 {
1465 if (!kvm_is_mmio_pfn(pfn)) {
1466 struct page *page = pfn_to_page(pfn);
1467 if (!PageReserved(page))
1468 SetPageDirty(page);
1469 }
1470 }
1471 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1472
1473 void kvm_set_pfn_accessed(pfn_t pfn)
1474 {
1475 if (!kvm_is_mmio_pfn(pfn))
1476 mark_page_accessed(pfn_to_page(pfn));
1477 }
1478 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1479
1480 void kvm_get_pfn(pfn_t pfn)
1481 {
1482 if (!kvm_is_mmio_pfn(pfn))
1483 get_page(pfn_to_page(pfn));
1484 }
1485 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1486
1487 static int next_segment(unsigned long len, int offset)
1488 {
1489 if (len > PAGE_SIZE - offset)
1490 return PAGE_SIZE - offset;
1491 else
1492 return len;
1493 }
1494
1495 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1496 int len)
1497 {
1498 int r;
1499 unsigned long addr;
1500
1501 addr = gfn_to_hva(kvm, gfn);
1502 if (kvm_is_error_hva(addr))
1503 return -EFAULT;
1504 r = copy_from_user(data, (void __user *)addr + offset, len);
1505 if (r)
1506 return -EFAULT;
1507 return 0;
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1510
1511 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1512 {
1513 gfn_t gfn = gpa >> PAGE_SHIFT;
1514 int seg;
1515 int offset = offset_in_page(gpa);
1516 int ret;
1517
1518 while ((seg = next_segment(len, offset)) != 0) {
1519 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1520 if (ret < 0)
1521 return ret;
1522 offset = 0;
1523 len -= seg;
1524 data += seg;
1525 ++gfn;
1526 }
1527 return 0;
1528 }
1529 EXPORT_SYMBOL_GPL(kvm_read_guest);
1530
1531 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1532 unsigned long len)
1533 {
1534 int r;
1535 unsigned long addr;
1536 gfn_t gfn = gpa >> PAGE_SHIFT;
1537 int offset = offset_in_page(gpa);
1538
1539 addr = gfn_to_hva(kvm, gfn);
1540 if (kvm_is_error_hva(addr))
1541 return -EFAULT;
1542 pagefault_disable();
1543 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1544 pagefault_enable();
1545 if (r)
1546 return -EFAULT;
1547 return 0;
1548 }
1549 EXPORT_SYMBOL(kvm_read_guest_atomic);
1550
1551 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1552 int offset, int len)
1553 {
1554 int r;
1555 unsigned long addr;
1556
1557 addr = gfn_to_hva(kvm, gfn);
1558 if (kvm_is_error_hva(addr))
1559 return -EFAULT;
1560 r = copy_to_user((void __user *)addr + offset, data, len);
1561 if (r)
1562 return -EFAULT;
1563 mark_page_dirty(kvm, gfn);
1564 return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1567
1568 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1569 unsigned long len)
1570 {
1571 gfn_t gfn = gpa >> PAGE_SHIFT;
1572 int seg;
1573 int offset = offset_in_page(gpa);
1574 int ret;
1575
1576 while ((seg = next_segment(len, offset)) != 0) {
1577 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1578 if (ret < 0)
1579 return ret;
1580 offset = 0;
1581 len -= seg;
1582 data += seg;
1583 ++gfn;
1584 }
1585 return 0;
1586 }
1587
1588 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1589 {
1590 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1591 }
1592 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1593
1594 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1595 {
1596 gfn_t gfn = gpa >> PAGE_SHIFT;
1597 int seg;
1598 int offset = offset_in_page(gpa);
1599 int ret;
1600
1601 while ((seg = next_segment(len, offset)) != 0) {
1602 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1603 if (ret < 0)
1604 return ret;
1605 offset = 0;
1606 len -= seg;
1607 ++gfn;
1608 }
1609 return 0;
1610 }
1611 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1612
1613 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1614 {
1615 struct kvm_memory_slot *memslot;
1616
1617 gfn = unalias_gfn(kvm, gfn);
1618 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1619 if (memslot && memslot->dirty_bitmap) {
1620 unsigned long rel_gfn = gfn - memslot->base_gfn;
1621
1622 /* avoid RMW */
1623 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1624 set_bit(rel_gfn, memslot->dirty_bitmap);
1625 }
1626 }
1627
1628 /*
1629 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1630 */
1631 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1632 {
1633 DEFINE_WAIT(wait);
1634
1635 for (;;) {
1636 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1637
1638 if ((kvm_arch_interrupt_allowed(vcpu) &&
1639 kvm_cpu_has_interrupt(vcpu)) ||
1640 kvm_arch_vcpu_runnable(vcpu)) {
1641 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1642 break;
1643 }
1644 if (kvm_cpu_has_pending_timer(vcpu))
1645 break;
1646 if (signal_pending(current))
1647 break;
1648
1649 vcpu_put(vcpu);
1650 schedule();
1651 vcpu_load(vcpu);
1652 }
1653
1654 finish_wait(&vcpu->wq, &wait);
1655 }
1656
1657 void kvm_resched(struct kvm_vcpu *vcpu)
1658 {
1659 if (!need_resched())
1660 return;
1661 cond_resched();
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_resched);
1664
1665 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1666 {
1667 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1668 struct page *page;
1669
1670 if (vmf->pgoff == 0)
1671 page = virt_to_page(vcpu->run);
1672 #ifdef CONFIG_X86
1673 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1674 page = virt_to_page(vcpu->arch.pio_data);
1675 #endif
1676 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1677 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1678 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1679 #endif
1680 else
1681 return VM_FAULT_SIGBUS;
1682 get_page(page);
1683 vmf->page = page;
1684 return 0;
1685 }
1686
1687 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1688 .fault = kvm_vcpu_fault,
1689 };
1690
1691 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1692 {
1693 vma->vm_ops = &kvm_vcpu_vm_ops;
1694 return 0;
1695 }
1696
1697 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1698 {
1699 struct kvm_vcpu *vcpu = filp->private_data;
1700
1701 kvm_put_kvm(vcpu->kvm);
1702 return 0;
1703 }
1704
1705 static struct file_operations kvm_vcpu_fops = {
1706 .release = kvm_vcpu_release,
1707 .unlocked_ioctl = kvm_vcpu_ioctl,
1708 .compat_ioctl = kvm_vcpu_ioctl,
1709 .mmap = kvm_vcpu_mmap,
1710 };
1711
1712 /*
1713 * Allocates an inode for the vcpu.
1714 */
1715 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1716 {
1717 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1718 if (fd < 0)
1719 kvm_put_kvm(vcpu->kvm);
1720 return fd;
1721 }
1722
1723 /*
1724 * Creates some virtual cpus. Good luck creating more than one.
1725 */
1726 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1727 {
1728 int r;
1729 struct kvm_vcpu *vcpu;
1730
1731 if (!valid_vcpu(n))
1732 return -EINVAL;
1733
1734 vcpu = kvm_arch_vcpu_create(kvm, n);
1735 if (IS_ERR(vcpu))
1736 return PTR_ERR(vcpu);
1737
1738 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1739
1740 r = kvm_arch_vcpu_setup(vcpu);
1741 if (r)
1742 return r;
1743
1744 mutex_lock(&kvm->lock);
1745 if (kvm->vcpus[n]) {
1746 r = -EEXIST;
1747 goto vcpu_destroy;
1748 }
1749 kvm->vcpus[n] = vcpu;
1750 if (n == 0)
1751 kvm->bsp_vcpu = vcpu;
1752 mutex_unlock(&kvm->lock);
1753
1754 /* Now it's all set up, let userspace reach it */
1755 kvm_get_kvm(kvm);
1756 r = create_vcpu_fd(vcpu);
1757 if (r < 0)
1758 goto unlink;
1759 return r;
1760
1761 unlink:
1762 mutex_lock(&kvm->lock);
1763 kvm->vcpus[n] = NULL;
1764 vcpu_destroy:
1765 mutex_unlock(&kvm->lock);
1766 kvm_arch_vcpu_destroy(vcpu);
1767 return r;
1768 }
1769
1770 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1771 {
1772 if (sigset) {
1773 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1774 vcpu->sigset_active = 1;
1775 vcpu->sigset = *sigset;
1776 } else
1777 vcpu->sigset_active = 0;
1778 return 0;
1779 }
1780
1781 #ifdef __KVM_HAVE_MSIX
1782 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1783 struct kvm_assigned_msix_nr *entry_nr)
1784 {
1785 int r = 0;
1786 struct kvm_assigned_dev_kernel *adev;
1787
1788 mutex_lock(&kvm->lock);
1789
1790 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1791 entry_nr->assigned_dev_id);
1792 if (!adev) {
1793 r = -EINVAL;
1794 goto msix_nr_out;
1795 }
1796
1797 if (adev->entries_nr == 0) {
1798 adev->entries_nr = entry_nr->entry_nr;
1799 if (adev->entries_nr == 0 ||
1800 adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1801 r = -EINVAL;
1802 goto msix_nr_out;
1803 }
1804
1805 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1806 entry_nr->entry_nr,
1807 GFP_KERNEL);
1808 if (!adev->host_msix_entries) {
1809 r = -ENOMEM;
1810 goto msix_nr_out;
1811 }
1812 adev->guest_msix_entries = kzalloc(
1813 sizeof(struct kvm_guest_msix_entry) *
1814 entry_nr->entry_nr, GFP_KERNEL);
1815 if (!adev->guest_msix_entries) {
1816 kfree(adev->host_msix_entries);
1817 r = -ENOMEM;
1818 goto msix_nr_out;
1819 }
1820 } else /* Not allowed set MSI-X number twice */
1821 r = -EINVAL;
1822 msix_nr_out:
1823 mutex_unlock(&kvm->lock);
1824 return r;
1825 }
1826
1827 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1828 struct kvm_assigned_msix_entry *entry)
1829 {
1830 int r = 0, i;
1831 struct kvm_assigned_dev_kernel *adev;
1832
1833 mutex_lock(&kvm->lock);
1834
1835 adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1836 entry->assigned_dev_id);
1837
1838 if (!adev) {
1839 r = -EINVAL;
1840 goto msix_entry_out;
1841 }
1842
1843 for (i = 0; i < adev->entries_nr; i++)
1844 if (adev->guest_msix_entries[i].vector == 0 ||
1845 adev->guest_msix_entries[i].entry == entry->entry) {
1846 adev->guest_msix_entries[i].entry = entry->entry;
1847 adev->guest_msix_entries[i].vector = entry->gsi;
1848 adev->host_msix_entries[i].entry = entry->entry;
1849 break;
1850 }
1851 if (i == adev->entries_nr) {
1852 r = -ENOSPC;
1853 goto msix_entry_out;
1854 }
1855
1856 msix_entry_out:
1857 mutex_unlock(&kvm->lock);
1858
1859 return r;
1860 }
1861 #endif
1862
1863 static long kvm_vcpu_ioctl(struct file *filp,
1864 unsigned int ioctl, unsigned long arg)
1865 {
1866 struct kvm_vcpu *vcpu = filp->private_data;
1867 void __user *argp = (void __user *)arg;
1868 int r;
1869 struct kvm_fpu *fpu = NULL;
1870 struct kvm_sregs *kvm_sregs = NULL;
1871
1872 if (vcpu->kvm->mm != current->mm)
1873 return -EIO;
1874 switch (ioctl) {
1875 case KVM_RUN:
1876 r = -EINVAL;
1877 if (arg)
1878 goto out;
1879 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1880 break;
1881 case KVM_GET_REGS: {
1882 struct kvm_regs *kvm_regs;
1883
1884 r = -ENOMEM;
1885 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1886 if (!kvm_regs)
1887 goto out;
1888 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1889 if (r)
1890 goto out_free1;
1891 r = -EFAULT;
1892 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1893 goto out_free1;
1894 r = 0;
1895 out_free1:
1896 kfree(kvm_regs);
1897 break;
1898 }
1899 case KVM_SET_REGS: {
1900 struct kvm_regs *kvm_regs;
1901
1902 r = -ENOMEM;
1903 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1904 if (!kvm_regs)
1905 goto out;
1906 r = -EFAULT;
1907 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1908 goto out_free2;
1909 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1910 if (r)
1911 goto out_free2;
1912 r = 0;
1913 out_free2:
1914 kfree(kvm_regs);
1915 break;
1916 }
1917 case KVM_GET_SREGS: {
1918 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1919 r = -ENOMEM;
1920 if (!kvm_sregs)
1921 goto out;
1922 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1923 if (r)
1924 goto out;
1925 r = -EFAULT;
1926 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1927 goto out;
1928 r = 0;
1929 break;
1930 }
1931 case KVM_SET_SREGS: {
1932 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1933 r = -ENOMEM;
1934 if (!kvm_sregs)
1935 goto out;
1936 r = -EFAULT;
1937 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1938 goto out;
1939 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1940 if (r)
1941 goto out;
1942 r = 0;
1943 break;
1944 }
1945 case KVM_GET_MP_STATE: {
1946 struct kvm_mp_state mp_state;
1947
1948 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1949 if (r)
1950 goto out;
1951 r = -EFAULT;
1952 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1953 goto out;
1954 r = 0;
1955 break;
1956 }
1957 case KVM_SET_MP_STATE: {
1958 struct kvm_mp_state mp_state;
1959
1960 r = -EFAULT;
1961 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1962 goto out;
1963 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1964 if (r)
1965 goto out;
1966 r = 0;
1967 break;
1968 }
1969 case KVM_TRANSLATE: {
1970 struct kvm_translation tr;
1971
1972 r = -EFAULT;
1973 if (copy_from_user(&tr, argp, sizeof tr))
1974 goto out;
1975 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1976 if (r)
1977 goto out;
1978 r = -EFAULT;
1979 if (copy_to_user(argp, &tr, sizeof tr))
1980 goto out;
1981 r = 0;
1982 break;
1983 }
1984 case KVM_SET_GUEST_DEBUG: {
1985 struct kvm_guest_debug dbg;
1986
1987 r = -EFAULT;
1988 if (copy_from_user(&dbg, argp, sizeof dbg))
1989 goto out;
1990 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1991 if (r)
1992 goto out;
1993 r = 0;
1994 break;
1995 }
1996 case KVM_SET_SIGNAL_MASK: {
1997 struct kvm_signal_mask __user *sigmask_arg = argp;
1998 struct kvm_signal_mask kvm_sigmask;
1999 sigset_t sigset, *p;
2000
2001 p = NULL;
2002 if (argp) {
2003 r = -EFAULT;
2004 if (copy_from_user(&kvm_sigmask, argp,
2005 sizeof kvm_sigmask))
2006 goto out;
2007 r = -EINVAL;
2008 if (kvm_sigmask.len != sizeof sigset)
2009 goto out;
2010 r = -EFAULT;
2011 if (copy_from_user(&sigset, sigmask_arg->sigset,
2012 sizeof sigset))
2013 goto out;
2014 p = &sigset;
2015 }
2016 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2017 break;
2018 }
2019 case KVM_GET_FPU: {
2020 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2021 r = -ENOMEM;
2022 if (!fpu)
2023 goto out;
2024 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2025 if (r)
2026 goto out;
2027 r = -EFAULT;
2028 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2029 goto out;
2030 r = 0;
2031 break;
2032 }
2033 case KVM_SET_FPU: {
2034 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2035 r = -ENOMEM;
2036 if (!fpu)
2037 goto out;
2038 r = -EFAULT;
2039 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2040 goto out;
2041 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2042 if (r)
2043 goto out;
2044 r = 0;
2045 break;
2046 }
2047 default:
2048 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2049 }
2050 out:
2051 kfree(fpu);
2052 kfree(kvm_sregs);
2053 return r;
2054 }
2055
2056 static long kvm_vm_ioctl(struct file *filp,
2057 unsigned int ioctl, unsigned long arg)
2058 {
2059 struct kvm *kvm = filp->private_data;
2060 void __user *argp = (void __user *)arg;
2061 int r;
2062
2063 if (kvm->mm != current->mm)
2064 return -EIO;
2065 switch (ioctl) {
2066 case KVM_CREATE_VCPU:
2067 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2068 if (r < 0)
2069 goto out;
2070 break;
2071 case KVM_SET_USER_MEMORY_REGION: {
2072 struct kvm_userspace_memory_region kvm_userspace_mem;
2073
2074 r = -EFAULT;
2075 if (copy_from_user(&kvm_userspace_mem, argp,
2076 sizeof kvm_userspace_mem))
2077 goto out;
2078
2079 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2080 if (r)
2081 goto out;
2082 break;
2083 }
2084 case KVM_GET_DIRTY_LOG: {
2085 struct kvm_dirty_log log;
2086
2087 r = -EFAULT;
2088 if (copy_from_user(&log, argp, sizeof log))
2089 goto out;
2090 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2091 if (r)
2092 goto out;
2093 break;
2094 }
2095 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2096 case KVM_REGISTER_COALESCED_MMIO: {
2097 struct kvm_coalesced_mmio_zone zone;
2098 r = -EFAULT;
2099 if (copy_from_user(&zone, argp, sizeof zone))
2100 goto out;
2101 r = -ENXIO;
2102 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2103 if (r)
2104 goto out;
2105 r = 0;
2106 break;
2107 }
2108 case KVM_UNREGISTER_COALESCED_MMIO: {
2109 struct kvm_coalesced_mmio_zone zone;
2110 r = -EFAULT;
2111 if (copy_from_user(&zone, argp, sizeof zone))
2112 goto out;
2113 r = -ENXIO;
2114 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2115 if (r)
2116 goto out;
2117 r = 0;
2118 break;
2119 }
2120 #endif
2121 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2122 case KVM_ASSIGN_PCI_DEVICE: {
2123 struct kvm_assigned_pci_dev assigned_dev;
2124
2125 r = -EFAULT;
2126 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2127 goto out;
2128 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2129 if (r)
2130 goto out;
2131 break;
2132 }
2133 case KVM_ASSIGN_IRQ: {
2134 r = -EOPNOTSUPP;
2135 break;
2136 }
2137 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2138 case KVM_ASSIGN_DEV_IRQ: {
2139 struct kvm_assigned_irq assigned_irq;
2140
2141 r = -EFAULT;
2142 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2143 goto out;
2144 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2145 if (r)
2146 goto out;
2147 break;
2148 }
2149 case KVM_DEASSIGN_DEV_IRQ: {
2150 struct kvm_assigned_irq assigned_irq;
2151
2152 r = -EFAULT;
2153 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2154 goto out;
2155 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2156 if (r)
2157 goto out;
2158 break;
2159 }
2160 #endif
2161 #endif
2162 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2163 case KVM_DEASSIGN_PCI_DEVICE: {
2164 struct kvm_assigned_pci_dev assigned_dev;
2165
2166 r = -EFAULT;
2167 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2168 goto out;
2169 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2170 if (r)
2171 goto out;
2172 break;
2173 }
2174 #endif
2175 #ifdef KVM_CAP_IRQ_ROUTING
2176 case KVM_SET_GSI_ROUTING: {
2177 struct kvm_irq_routing routing;
2178 struct kvm_irq_routing __user *urouting;
2179 struct kvm_irq_routing_entry *entries;
2180
2181 r = -EFAULT;
2182 if (copy_from_user(&routing, argp, sizeof(routing)))
2183 goto out;
2184 r = -EINVAL;
2185 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2186 goto out;
2187 if (routing.flags)
2188 goto out;
2189 r = -ENOMEM;
2190 entries = vmalloc(routing.nr * sizeof(*entries));
2191 if (!entries)
2192 goto out;
2193 r = -EFAULT;
2194 urouting = argp;
2195 if (copy_from_user(entries, urouting->entries,
2196 routing.nr * sizeof(*entries)))
2197 goto out_free_irq_routing;
2198 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2199 routing.flags);
2200 out_free_irq_routing:
2201 vfree(entries);
2202 break;
2203 }
2204 #ifdef __KVM_HAVE_MSIX
2205 case KVM_ASSIGN_SET_MSIX_NR: {
2206 struct kvm_assigned_msix_nr entry_nr;
2207 r = -EFAULT;
2208 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2209 goto out;
2210 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2211 if (r)
2212 goto out;
2213 break;
2214 }
2215 case KVM_ASSIGN_SET_MSIX_ENTRY: {
2216 struct kvm_assigned_msix_entry entry;
2217 r = -EFAULT;
2218 if (copy_from_user(&entry, argp, sizeof entry))
2219 goto out;
2220 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2221 if (r)
2222 goto out;
2223 break;
2224 }
2225 #endif
2226 #endif /* KVM_CAP_IRQ_ROUTING */
2227 case KVM_IRQFD: {
2228 struct kvm_irqfd data;
2229
2230 r = -EFAULT;
2231 if (copy_from_user(&data, argp, sizeof data))
2232 goto out;
2233 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2234 break;
2235 }
2236 default:
2237 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2238 }
2239 out:
2240 return r;
2241 }
2242
2243 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2244 {
2245 struct page *page[1];
2246 unsigned long addr;
2247 int npages;
2248 gfn_t gfn = vmf->pgoff;
2249 struct kvm *kvm = vma->vm_file->private_data;
2250
2251 addr = gfn_to_hva(kvm, gfn);
2252 if (kvm_is_error_hva(addr))
2253 return VM_FAULT_SIGBUS;
2254
2255 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2256 NULL);
2257 if (unlikely(npages != 1))
2258 return VM_FAULT_SIGBUS;
2259
2260 vmf->page = page[0];
2261 return 0;
2262 }
2263
2264 static struct vm_operations_struct kvm_vm_vm_ops = {
2265 .fault = kvm_vm_fault,
2266 };
2267
2268 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2269 {
2270 vma->vm_ops = &kvm_vm_vm_ops;
2271 return 0;
2272 }
2273
2274 static struct file_operations kvm_vm_fops = {
2275 .release = kvm_vm_release,
2276 .unlocked_ioctl = kvm_vm_ioctl,
2277 .compat_ioctl = kvm_vm_ioctl,
2278 .mmap = kvm_vm_mmap,
2279 };
2280
2281 static int kvm_dev_ioctl_create_vm(void)
2282 {
2283 int fd;
2284 struct kvm *kvm;
2285
2286 kvm = kvm_create_vm();
2287 if (IS_ERR(kvm))
2288 return PTR_ERR(kvm);
2289 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2290 if (fd < 0)
2291 kvm_put_kvm(kvm);
2292
2293 return fd;
2294 }
2295
2296 static long kvm_dev_ioctl_check_extension_generic(long arg)
2297 {
2298 switch (arg) {
2299 case KVM_CAP_USER_MEMORY:
2300 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2301 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2302 return 1;
2303 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2304 case KVM_CAP_IRQ_ROUTING:
2305 return KVM_MAX_IRQ_ROUTES;
2306 #endif
2307 default:
2308 break;
2309 }
2310 return kvm_dev_ioctl_check_extension(arg);
2311 }
2312
2313 static long kvm_dev_ioctl(struct file *filp,
2314 unsigned int ioctl, unsigned long arg)
2315 {
2316 long r = -EINVAL;
2317
2318 switch (ioctl) {
2319 case KVM_GET_API_VERSION:
2320 r = -EINVAL;
2321 if (arg)
2322 goto out;
2323 r = KVM_API_VERSION;
2324 break;
2325 case KVM_CREATE_VM:
2326 r = -EINVAL;
2327 if (arg)
2328 goto out;
2329 r = kvm_dev_ioctl_create_vm();
2330 break;
2331 case KVM_CHECK_EXTENSION:
2332 r = kvm_dev_ioctl_check_extension_generic(arg);
2333 break;
2334 case KVM_GET_VCPU_MMAP_SIZE:
2335 r = -EINVAL;
2336 if (arg)
2337 goto out;
2338 r = PAGE_SIZE; /* struct kvm_run */
2339 #ifdef CONFIG_X86
2340 r += PAGE_SIZE; /* pio data page */
2341 #endif
2342 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2343 r += PAGE_SIZE; /* coalesced mmio ring page */
2344 #endif
2345 break;
2346 case KVM_TRACE_ENABLE:
2347 case KVM_TRACE_PAUSE:
2348 case KVM_TRACE_DISABLE:
2349 r = kvm_trace_ioctl(ioctl, arg);
2350 break;
2351 default:
2352 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2353 }
2354 out:
2355 return r;
2356 }
2357
2358 static struct file_operations kvm_chardev_ops = {
2359 .unlocked_ioctl = kvm_dev_ioctl,
2360 .compat_ioctl = kvm_dev_ioctl,
2361 };
2362
2363 static struct miscdevice kvm_dev = {
2364 KVM_MINOR,
2365 "kvm",
2366 &kvm_chardev_ops,
2367 };
2368
2369 static void hardware_enable(void *junk)
2370 {
2371 int cpu = raw_smp_processor_id();
2372
2373 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2374 return;
2375 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2376 kvm_arch_hardware_enable(NULL);
2377 }
2378
2379 static void hardware_disable(void *junk)
2380 {
2381 int cpu = raw_smp_processor_id();
2382
2383 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2384 return;
2385 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2386 kvm_arch_hardware_disable(NULL);
2387 }
2388
2389 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2390 void *v)
2391 {
2392 int cpu = (long)v;
2393
2394 val &= ~CPU_TASKS_FROZEN;
2395 switch (val) {
2396 case CPU_DYING:
2397 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2398 cpu);
2399 hardware_disable(NULL);
2400 break;
2401 case CPU_UP_CANCELED:
2402 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2403 cpu);
2404 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2405 break;
2406 case CPU_ONLINE:
2407 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2408 cpu);
2409 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2410 break;
2411 }
2412 return NOTIFY_OK;
2413 }
2414
2415
2416 asmlinkage void kvm_handle_fault_on_reboot(void)
2417 {
2418 if (kvm_rebooting)
2419 /* spin while reset goes on */
2420 while (true)
2421 ;
2422 /* Fault while not rebooting. We want the trace. */
2423 BUG();
2424 }
2425 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2426
2427 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2428 void *v)
2429 {
2430 /*
2431 * Some (well, at least mine) BIOSes hang on reboot if
2432 * in vmx root mode.
2433 *
2434 * And Intel TXT required VMX off for all cpu when system shutdown.
2435 */
2436 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2437 kvm_rebooting = true;
2438 on_each_cpu(hardware_disable, NULL, 1);
2439 return NOTIFY_OK;
2440 }
2441
2442 static struct notifier_block kvm_reboot_notifier = {
2443 .notifier_call = kvm_reboot,
2444 .priority = 0,
2445 };
2446
2447 void kvm_io_bus_init(struct kvm_io_bus *bus)
2448 {
2449 memset(bus, 0, sizeof(*bus));
2450 }
2451
2452 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2453 {
2454 int i;
2455
2456 for (i = 0; i < bus->dev_count; i++) {
2457 struct kvm_io_device *pos = bus->devs[i];
2458
2459 kvm_iodevice_destructor(pos);
2460 }
2461 }
2462
2463 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2464 gpa_t addr, int len, int is_write)
2465 {
2466 int i;
2467
2468 for (i = 0; i < bus->dev_count; i++) {
2469 struct kvm_io_device *pos = bus->devs[i];
2470
2471 if (kvm_iodevice_in_range(pos, addr, len, is_write))
2472 return pos;
2473 }
2474
2475 return NULL;
2476 }
2477
2478 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2479 {
2480 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2481
2482 bus->devs[bus->dev_count++] = dev;
2483 }
2484
2485 static struct notifier_block kvm_cpu_notifier = {
2486 .notifier_call = kvm_cpu_hotplug,
2487 .priority = 20, /* must be > scheduler priority */
2488 };
2489
2490 static int vm_stat_get(void *_offset, u64 *val)
2491 {
2492 unsigned offset = (long)_offset;
2493 struct kvm *kvm;
2494
2495 *val = 0;
2496 spin_lock(&kvm_lock);
2497 list_for_each_entry(kvm, &vm_list, vm_list)
2498 *val += *(u32 *)((void *)kvm + offset);
2499 spin_unlock(&kvm_lock);
2500 return 0;
2501 }
2502
2503 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2504
2505 static int vcpu_stat_get(void *_offset, u64 *val)
2506 {
2507 unsigned offset = (long)_offset;
2508 struct kvm *kvm;
2509 struct kvm_vcpu *vcpu;
2510 int i;
2511
2512 *val = 0;
2513 spin_lock(&kvm_lock);
2514 list_for_each_entry(kvm, &vm_list, vm_list)
2515 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2516 vcpu = kvm->vcpus[i];
2517 if (vcpu)
2518 *val += *(u32 *)((void *)vcpu + offset);
2519 }
2520 spin_unlock(&kvm_lock);
2521 return 0;
2522 }
2523
2524 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2525
2526 static struct file_operations *stat_fops[] = {
2527 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2528 [KVM_STAT_VM] = &vm_stat_fops,
2529 };
2530
2531 static void kvm_init_debug(void)
2532 {
2533 struct kvm_stats_debugfs_item *p;
2534
2535 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2536 for (p = debugfs_entries; p->name; ++p)
2537 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2538 (void *)(long)p->offset,
2539 stat_fops[p->kind]);
2540 }
2541
2542 static void kvm_exit_debug(void)
2543 {
2544 struct kvm_stats_debugfs_item *p;
2545
2546 for (p = debugfs_entries; p->name; ++p)
2547 debugfs_remove(p->dentry);
2548 debugfs_remove(kvm_debugfs_dir);
2549 }
2550
2551 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2552 {
2553 hardware_disable(NULL);
2554 return 0;
2555 }
2556
2557 static int kvm_resume(struct sys_device *dev)
2558 {
2559 hardware_enable(NULL);
2560 return 0;
2561 }
2562
2563 static struct sysdev_class kvm_sysdev_class = {
2564 .name = "kvm",
2565 .suspend = kvm_suspend,
2566 .resume = kvm_resume,
2567 };
2568
2569 static struct sys_device kvm_sysdev = {
2570 .id = 0,
2571 .cls = &kvm_sysdev_class,
2572 };
2573
2574 struct page *bad_page;
2575 pfn_t bad_pfn;
2576
2577 static inline
2578 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2579 {
2580 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2581 }
2582
2583 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2584 {
2585 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2586
2587 kvm_arch_vcpu_load(vcpu, cpu);
2588 }
2589
2590 static void kvm_sched_out(struct preempt_notifier *pn,
2591 struct task_struct *next)
2592 {
2593 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2594
2595 kvm_arch_vcpu_put(vcpu);
2596 }
2597
2598 int kvm_init(void *opaque, unsigned int vcpu_size,
2599 struct module *module)
2600 {
2601 int r;
2602 int cpu;
2603
2604 kvm_init_debug();
2605
2606 r = kvm_arch_init(opaque);
2607 if (r)
2608 goto out_fail;
2609
2610 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2611
2612 if (bad_page == NULL) {
2613 r = -ENOMEM;
2614 goto out;
2615 }
2616
2617 bad_pfn = page_to_pfn(bad_page);
2618
2619 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2620 r = -ENOMEM;
2621 goto out_free_0;
2622 }
2623
2624 r = kvm_arch_hardware_setup();
2625 if (r < 0)
2626 goto out_free_0a;
2627
2628 for_each_online_cpu(cpu) {
2629 smp_call_function_single(cpu,
2630 kvm_arch_check_processor_compat,
2631 &r, 1);
2632 if (r < 0)
2633 goto out_free_1;
2634 }
2635
2636 on_each_cpu(hardware_enable, NULL, 1);
2637 r = register_cpu_notifier(&kvm_cpu_notifier);
2638 if (r)
2639 goto out_free_2;
2640 register_reboot_notifier(&kvm_reboot_notifier);
2641
2642 r = sysdev_class_register(&kvm_sysdev_class);
2643 if (r)
2644 goto out_free_3;
2645
2646 r = sysdev_register(&kvm_sysdev);
2647 if (r)
2648 goto out_free_4;
2649
2650 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2651 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2652 __alignof__(struct kvm_vcpu),
2653 0, NULL);
2654 if (!kvm_vcpu_cache) {
2655 r = -ENOMEM;
2656 goto out_free_5;
2657 }
2658
2659 kvm_chardev_ops.owner = module;
2660 kvm_vm_fops.owner = module;
2661 kvm_vcpu_fops.owner = module;
2662
2663 r = misc_register(&kvm_dev);
2664 if (r) {
2665 printk(KERN_ERR "kvm: misc device register failed\n");
2666 goto out_free;
2667 }
2668
2669 kvm_preempt_ops.sched_in = kvm_sched_in;
2670 kvm_preempt_ops.sched_out = kvm_sched_out;
2671
2672 return 0;
2673
2674 out_free:
2675 kmem_cache_destroy(kvm_vcpu_cache);
2676 out_free_5:
2677 sysdev_unregister(&kvm_sysdev);
2678 out_free_4:
2679 sysdev_class_unregister(&kvm_sysdev_class);
2680 out_free_3:
2681 unregister_reboot_notifier(&kvm_reboot_notifier);
2682 unregister_cpu_notifier(&kvm_cpu_notifier);
2683 out_free_2:
2684 on_each_cpu(hardware_disable, NULL, 1);
2685 out_free_1:
2686 kvm_arch_hardware_unsetup();
2687 out_free_0a:
2688 free_cpumask_var(cpus_hardware_enabled);
2689 out_free_0:
2690 __free_page(bad_page);
2691 out:
2692 kvm_arch_exit();
2693 kvm_exit_debug();
2694 out_fail:
2695 return r;
2696 }
2697 EXPORT_SYMBOL_GPL(kvm_init);
2698
2699 void kvm_exit(void)
2700 {
2701 kvm_trace_cleanup();
2702 misc_deregister(&kvm_dev);
2703 kmem_cache_destroy(kvm_vcpu_cache);
2704 sysdev_unregister(&kvm_sysdev);
2705 sysdev_class_unregister(&kvm_sysdev_class);
2706 unregister_reboot_notifier(&kvm_reboot_notifier);
2707 unregister_cpu_notifier(&kvm_cpu_notifier);
2708 on_each_cpu(hardware_disable, NULL, 1);
2709 kvm_arch_hardware_unsetup();
2710 kvm_arch_exit();
2711 kvm_exit_debug();
2712 free_cpumask_var(cpus_hardware_enabled);
2713 __free_page(bad_page);
2714 }
2715 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.082664 seconds and 6 git commands to generate.