Merge branch 'xen/fbdev' of git://git.kernel.org/pub/scm/linux/kernel/git/jeremy/xen
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47
48 #include <asm/processor.h>
49 #include <asm/io.h>
50 #include <asm/uaccess.h>
51 #include <asm/pgtable.h>
52
53 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
54 #include "coalesced_mmio.h"
55 #endif
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/kvm.h>
59
60 MODULE_AUTHOR("Qumranet");
61 MODULE_LICENSE("GPL");
62
63 /*
64 * Ordering of locks:
65 *
66 * kvm->slots_lock --> kvm->lock --> kvm->irq_lock
67 */
68
69 DEFINE_SPINLOCK(kvm_lock);
70 LIST_HEAD(vm_list);
71
72 static cpumask_var_t cpus_hardware_enabled;
73 static int kvm_usage_count = 0;
74 static atomic_t hardware_enable_failed;
75
76 struct kmem_cache *kvm_vcpu_cache;
77 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
78
79 static __read_mostly struct preempt_ops kvm_preempt_ops;
80
81 struct dentry *kvm_debugfs_dir;
82
83 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
84 unsigned long arg);
85 static int hardware_enable_all(void);
86 static void hardware_disable_all(void);
87
88 static bool kvm_rebooting;
89
90 static bool largepages_enabled = true;
91
92 inline int kvm_is_mmio_pfn(pfn_t pfn)
93 {
94 if (pfn_valid(pfn)) {
95 struct page *page = compound_head(pfn_to_page(pfn));
96 return PageReserved(page);
97 }
98
99 return true;
100 }
101
102 /*
103 * Switches to specified vcpu, until a matching vcpu_put()
104 */
105 void vcpu_load(struct kvm_vcpu *vcpu)
106 {
107 int cpu;
108
109 mutex_lock(&vcpu->mutex);
110 cpu = get_cpu();
111 preempt_notifier_register(&vcpu->preempt_notifier);
112 kvm_arch_vcpu_load(vcpu, cpu);
113 put_cpu();
114 }
115
116 void vcpu_put(struct kvm_vcpu *vcpu)
117 {
118 preempt_disable();
119 kvm_arch_vcpu_put(vcpu);
120 preempt_notifier_unregister(&vcpu->preempt_notifier);
121 preempt_enable();
122 mutex_unlock(&vcpu->mutex);
123 }
124
125 static void ack_flush(void *_completed)
126 {
127 }
128
129 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
130 {
131 int i, cpu, me;
132 cpumask_var_t cpus;
133 bool called = true;
134 struct kvm_vcpu *vcpu;
135
136 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
137
138 spin_lock(&kvm->requests_lock);
139 me = smp_processor_id();
140 kvm_for_each_vcpu(i, vcpu, kvm) {
141 if (test_and_set_bit(req, &vcpu->requests))
142 continue;
143 cpu = vcpu->cpu;
144 if (cpus != NULL && cpu != -1 && cpu != me)
145 cpumask_set_cpu(cpu, cpus);
146 }
147 if (unlikely(cpus == NULL))
148 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
149 else if (!cpumask_empty(cpus))
150 smp_call_function_many(cpus, ack_flush, NULL, 1);
151 else
152 called = false;
153 spin_unlock(&kvm->requests_lock);
154 free_cpumask_var(cpus);
155 return called;
156 }
157
158 void kvm_flush_remote_tlbs(struct kvm *kvm)
159 {
160 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
161 ++kvm->stat.remote_tlb_flush;
162 }
163
164 void kvm_reload_remote_mmus(struct kvm *kvm)
165 {
166 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
167 }
168
169 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
170 {
171 struct page *page;
172 int r;
173
174 mutex_init(&vcpu->mutex);
175 vcpu->cpu = -1;
176 vcpu->kvm = kvm;
177 vcpu->vcpu_id = id;
178 init_waitqueue_head(&vcpu->wq);
179
180 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
181 if (!page) {
182 r = -ENOMEM;
183 goto fail;
184 }
185 vcpu->run = page_address(page);
186
187 r = kvm_arch_vcpu_init(vcpu);
188 if (r < 0)
189 goto fail_free_run;
190 return 0;
191
192 fail_free_run:
193 free_page((unsigned long)vcpu->run);
194 fail:
195 return r;
196 }
197 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
198
199 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
200 {
201 kvm_arch_vcpu_uninit(vcpu);
202 free_page((unsigned long)vcpu->run);
203 }
204 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
205
206 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
207 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
208 {
209 return container_of(mn, struct kvm, mmu_notifier);
210 }
211
212 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
213 struct mm_struct *mm,
214 unsigned long address)
215 {
216 struct kvm *kvm = mmu_notifier_to_kvm(mn);
217 int need_tlb_flush;
218
219 /*
220 * When ->invalidate_page runs, the linux pte has been zapped
221 * already but the page is still allocated until
222 * ->invalidate_page returns. So if we increase the sequence
223 * here the kvm page fault will notice if the spte can't be
224 * established because the page is going to be freed. If
225 * instead the kvm page fault establishes the spte before
226 * ->invalidate_page runs, kvm_unmap_hva will release it
227 * before returning.
228 *
229 * The sequence increase only need to be seen at spin_unlock
230 * time, and not at spin_lock time.
231 *
232 * Increasing the sequence after the spin_unlock would be
233 * unsafe because the kvm page fault could then establish the
234 * pte after kvm_unmap_hva returned, without noticing the page
235 * is going to be freed.
236 */
237 spin_lock(&kvm->mmu_lock);
238 kvm->mmu_notifier_seq++;
239 need_tlb_flush = kvm_unmap_hva(kvm, address);
240 spin_unlock(&kvm->mmu_lock);
241
242 /* we've to flush the tlb before the pages can be freed */
243 if (need_tlb_flush)
244 kvm_flush_remote_tlbs(kvm);
245
246 }
247
248 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
249 struct mm_struct *mm,
250 unsigned long address,
251 pte_t pte)
252 {
253 struct kvm *kvm = mmu_notifier_to_kvm(mn);
254
255 spin_lock(&kvm->mmu_lock);
256 kvm->mmu_notifier_seq++;
257 kvm_set_spte_hva(kvm, address, pte);
258 spin_unlock(&kvm->mmu_lock);
259 }
260
261 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
262 struct mm_struct *mm,
263 unsigned long start,
264 unsigned long end)
265 {
266 struct kvm *kvm = mmu_notifier_to_kvm(mn);
267 int need_tlb_flush = 0;
268
269 spin_lock(&kvm->mmu_lock);
270 /*
271 * The count increase must become visible at unlock time as no
272 * spte can be established without taking the mmu_lock and
273 * count is also read inside the mmu_lock critical section.
274 */
275 kvm->mmu_notifier_count++;
276 for (; start < end; start += PAGE_SIZE)
277 need_tlb_flush |= kvm_unmap_hva(kvm, start);
278 spin_unlock(&kvm->mmu_lock);
279
280 /* we've to flush the tlb before the pages can be freed */
281 if (need_tlb_flush)
282 kvm_flush_remote_tlbs(kvm);
283 }
284
285 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
286 struct mm_struct *mm,
287 unsigned long start,
288 unsigned long end)
289 {
290 struct kvm *kvm = mmu_notifier_to_kvm(mn);
291
292 spin_lock(&kvm->mmu_lock);
293 /*
294 * This sequence increase will notify the kvm page fault that
295 * the page that is going to be mapped in the spte could have
296 * been freed.
297 */
298 kvm->mmu_notifier_seq++;
299 /*
300 * The above sequence increase must be visible before the
301 * below count decrease but both values are read by the kvm
302 * page fault under mmu_lock spinlock so we don't need to add
303 * a smb_wmb() here in between the two.
304 */
305 kvm->mmu_notifier_count--;
306 spin_unlock(&kvm->mmu_lock);
307
308 BUG_ON(kvm->mmu_notifier_count < 0);
309 }
310
311 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
312 struct mm_struct *mm,
313 unsigned long address)
314 {
315 struct kvm *kvm = mmu_notifier_to_kvm(mn);
316 int young;
317
318 spin_lock(&kvm->mmu_lock);
319 young = kvm_age_hva(kvm, address);
320 spin_unlock(&kvm->mmu_lock);
321
322 if (young)
323 kvm_flush_remote_tlbs(kvm);
324
325 return young;
326 }
327
328 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
329 struct mm_struct *mm)
330 {
331 struct kvm *kvm = mmu_notifier_to_kvm(mn);
332 kvm_arch_flush_shadow(kvm);
333 }
334
335 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
336 .invalidate_page = kvm_mmu_notifier_invalidate_page,
337 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
338 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
339 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
340 .change_pte = kvm_mmu_notifier_change_pte,
341 .release = kvm_mmu_notifier_release,
342 };
343 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
344
345 static struct kvm *kvm_create_vm(void)
346 {
347 int r = 0;
348 struct kvm *kvm = kvm_arch_create_vm();
349 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
350 struct page *page;
351 #endif
352
353 if (IS_ERR(kvm))
354 goto out;
355
356 r = hardware_enable_all();
357 if (r)
358 goto out_err_nodisable;
359
360 #ifdef CONFIG_HAVE_KVM_IRQCHIP
361 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
362 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
363 #endif
364
365 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
366 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
367 if (!page) {
368 r = -ENOMEM;
369 goto out_err;
370 }
371 kvm->coalesced_mmio_ring =
372 (struct kvm_coalesced_mmio_ring *)page_address(page);
373 #endif
374
375 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
376 {
377 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
378 r = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
379 if (r) {
380 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
381 put_page(page);
382 #endif
383 goto out_err;
384 }
385 }
386 #endif
387
388 kvm->mm = current->mm;
389 atomic_inc(&kvm->mm->mm_count);
390 spin_lock_init(&kvm->mmu_lock);
391 spin_lock_init(&kvm->requests_lock);
392 kvm_io_bus_init(&kvm->pio_bus);
393 kvm_eventfd_init(kvm);
394 mutex_init(&kvm->lock);
395 mutex_init(&kvm->irq_lock);
396 kvm_io_bus_init(&kvm->mmio_bus);
397 init_rwsem(&kvm->slots_lock);
398 atomic_set(&kvm->users_count, 1);
399 spin_lock(&kvm_lock);
400 list_add(&kvm->vm_list, &vm_list);
401 spin_unlock(&kvm_lock);
402 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
403 kvm_coalesced_mmio_init(kvm);
404 #endif
405 out:
406 return kvm;
407
408 out_err:
409 hardware_disable_all();
410 out_err_nodisable:
411 kfree(kvm);
412 return ERR_PTR(r);
413 }
414
415 /*
416 * Free any memory in @free but not in @dont.
417 */
418 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
419 struct kvm_memory_slot *dont)
420 {
421 int i;
422
423 if (!dont || free->rmap != dont->rmap)
424 vfree(free->rmap);
425
426 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
427 vfree(free->dirty_bitmap);
428
429
430 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
431 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
432 vfree(free->lpage_info[i]);
433 free->lpage_info[i] = NULL;
434 }
435 }
436
437 free->npages = 0;
438 free->dirty_bitmap = NULL;
439 free->rmap = NULL;
440 }
441
442 void kvm_free_physmem(struct kvm *kvm)
443 {
444 int i;
445
446 for (i = 0; i < kvm->nmemslots; ++i)
447 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
448 }
449
450 static void kvm_destroy_vm(struct kvm *kvm)
451 {
452 struct mm_struct *mm = kvm->mm;
453
454 kvm_arch_sync_events(kvm);
455 spin_lock(&kvm_lock);
456 list_del(&kvm->vm_list);
457 spin_unlock(&kvm_lock);
458 kvm_free_irq_routing(kvm);
459 kvm_io_bus_destroy(&kvm->pio_bus);
460 kvm_io_bus_destroy(&kvm->mmio_bus);
461 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
462 if (kvm->coalesced_mmio_ring != NULL)
463 free_page((unsigned long)kvm->coalesced_mmio_ring);
464 #endif
465 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
466 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
467 #else
468 kvm_arch_flush_shadow(kvm);
469 #endif
470 kvm_arch_destroy_vm(kvm);
471 hardware_disable_all();
472 mmdrop(mm);
473 }
474
475 void kvm_get_kvm(struct kvm *kvm)
476 {
477 atomic_inc(&kvm->users_count);
478 }
479 EXPORT_SYMBOL_GPL(kvm_get_kvm);
480
481 void kvm_put_kvm(struct kvm *kvm)
482 {
483 if (atomic_dec_and_test(&kvm->users_count))
484 kvm_destroy_vm(kvm);
485 }
486 EXPORT_SYMBOL_GPL(kvm_put_kvm);
487
488
489 static int kvm_vm_release(struct inode *inode, struct file *filp)
490 {
491 struct kvm *kvm = filp->private_data;
492
493 kvm_irqfd_release(kvm);
494
495 kvm_put_kvm(kvm);
496 return 0;
497 }
498
499 /*
500 * Allocate some memory and give it an address in the guest physical address
501 * space.
502 *
503 * Discontiguous memory is allowed, mostly for framebuffers.
504 *
505 * Must be called holding mmap_sem for write.
506 */
507 int __kvm_set_memory_region(struct kvm *kvm,
508 struct kvm_userspace_memory_region *mem,
509 int user_alloc)
510 {
511 int r;
512 gfn_t base_gfn;
513 unsigned long npages;
514 unsigned long i;
515 struct kvm_memory_slot *memslot;
516 struct kvm_memory_slot old, new;
517
518 r = -EINVAL;
519 /* General sanity checks */
520 if (mem->memory_size & (PAGE_SIZE - 1))
521 goto out;
522 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
523 goto out;
524 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
525 goto out;
526 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
527 goto out;
528 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
529 goto out;
530
531 memslot = &kvm->memslots[mem->slot];
532 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
533 npages = mem->memory_size >> PAGE_SHIFT;
534
535 if (!npages)
536 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
537
538 new = old = *memslot;
539
540 new.base_gfn = base_gfn;
541 new.npages = npages;
542 new.flags = mem->flags;
543
544 /* Disallow changing a memory slot's size. */
545 r = -EINVAL;
546 if (npages && old.npages && npages != old.npages)
547 goto out_free;
548
549 /* Check for overlaps */
550 r = -EEXIST;
551 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
552 struct kvm_memory_slot *s = &kvm->memslots[i];
553
554 if (s == memslot || !s->npages)
555 continue;
556 if (!((base_gfn + npages <= s->base_gfn) ||
557 (base_gfn >= s->base_gfn + s->npages)))
558 goto out_free;
559 }
560
561 /* Free page dirty bitmap if unneeded */
562 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
563 new.dirty_bitmap = NULL;
564
565 r = -ENOMEM;
566
567 /* Allocate if a slot is being created */
568 #ifndef CONFIG_S390
569 if (npages && !new.rmap) {
570 new.rmap = vmalloc(npages * sizeof(struct page *));
571
572 if (!new.rmap)
573 goto out_free;
574
575 memset(new.rmap, 0, npages * sizeof(*new.rmap));
576
577 new.user_alloc = user_alloc;
578 /*
579 * hva_to_rmmap() serialzies with the mmu_lock and to be
580 * safe it has to ignore memslots with !user_alloc &&
581 * !userspace_addr.
582 */
583 if (user_alloc)
584 new.userspace_addr = mem->userspace_addr;
585 else
586 new.userspace_addr = 0;
587 }
588 if (!npages)
589 goto skip_lpage;
590
591 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
592 unsigned long ugfn;
593 unsigned long j;
594 int lpages;
595 int level = i + 2;
596
597 /* Avoid unused variable warning if no large pages */
598 (void)level;
599
600 if (new.lpage_info[i])
601 continue;
602
603 lpages = 1 + (base_gfn + npages - 1) /
604 KVM_PAGES_PER_HPAGE(level);
605 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
606
607 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
608
609 if (!new.lpage_info[i])
610 goto out_free;
611
612 memset(new.lpage_info[i], 0,
613 lpages * sizeof(*new.lpage_info[i]));
614
615 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
616 new.lpage_info[i][0].write_count = 1;
617 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
618 new.lpage_info[i][lpages - 1].write_count = 1;
619 ugfn = new.userspace_addr >> PAGE_SHIFT;
620 /*
621 * If the gfn and userspace address are not aligned wrt each
622 * other, or if explicitly asked to, disable large page
623 * support for this slot
624 */
625 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
626 !largepages_enabled)
627 for (j = 0; j < lpages; ++j)
628 new.lpage_info[i][j].write_count = 1;
629 }
630
631 skip_lpage:
632
633 /* Allocate page dirty bitmap if needed */
634 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
635 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
636
637 new.dirty_bitmap = vmalloc(dirty_bytes);
638 if (!new.dirty_bitmap)
639 goto out_free;
640 memset(new.dirty_bitmap, 0, dirty_bytes);
641 if (old.npages)
642 kvm_arch_flush_shadow(kvm);
643 }
644 #else /* not defined CONFIG_S390 */
645 new.user_alloc = user_alloc;
646 if (user_alloc)
647 new.userspace_addr = mem->userspace_addr;
648 #endif /* not defined CONFIG_S390 */
649
650 if (!npages)
651 kvm_arch_flush_shadow(kvm);
652
653 spin_lock(&kvm->mmu_lock);
654 if (mem->slot >= kvm->nmemslots)
655 kvm->nmemslots = mem->slot + 1;
656
657 *memslot = new;
658 spin_unlock(&kvm->mmu_lock);
659
660 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
661 if (r) {
662 spin_lock(&kvm->mmu_lock);
663 *memslot = old;
664 spin_unlock(&kvm->mmu_lock);
665 goto out_free;
666 }
667
668 kvm_free_physmem_slot(&old, npages ? &new : NULL);
669 /* Slot deletion case: we have to update the current slot */
670 spin_lock(&kvm->mmu_lock);
671 if (!npages)
672 *memslot = old;
673 spin_unlock(&kvm->mmu_lock);
674 #ifdef CONFIG_DMAR
675 /* map the pages in iommu page table */
676 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
677 if (r)
678 goto out;
679 #endif
680 return 0;
681
682 out_free:
683 kvm_free_physmem_slot(&new, &old);
684 out:
685 return r;
686
687 }
688 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
689
690 int kvm_set_memory_region(struct kvm *kvm,
691 struct kvm_userspace_memory_region *mem,
692 int user_alloc)
693 {
694 int r;
695
696 down_write(&kvm->slots_lock);
697 r = __kvm_set_memory_region(kvm, mem, user_alloc);
698 up_write(&kvm->slots_lock);
699 return r;
700 }
701 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
702
703 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
704 struct
705 kvm_userspace_memory_region *mem,
706 int user_alloc)
707 {
708 if (mem->slot >= KVM_MEMORY_SLOTS)
709 return -EINVAL;
710 return kvm_set_memory_region(kvm, mem, user_alloc);
711 }
712
713 int kvm_get_dirty_log(struct kvm *kvm,
714 struct kvm_dirty_log *log, int *is_dirty)
715 {
716 struct kvm_memory_slot *memslot;
717 int r, i;
718 int n;
719 unsigned long any = 0;
720
721 r = -EINVAL;
722 if (log->slot >= KVM_MEMORY_SLOTS)
723 goto out;
724
725 memslot = &kvm->memslots[log->slot];
726 r = -ENOENT;
727 if (!memslot->dirty_bitmap)
728 goto out;
729
730 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
731
732 for (i = 0; !any && i < n/sizeof(long); ++i)
733 any = memslot->dirty_bitmap[i];
734
735 r = -EFAULT;
736 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
737 goto out;
738
739 if (any)
740 *is_dirty = 1;
741
742 r = 0;
743 out:
744 return r;
745 }
746
747 void kvm_disable_largepages(void)
748 {
749 largepages_enabled = false;
750 }
751 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
752
753 int is_error_page(struct page *page)
754 {
755 return page == bad_page;
756 }
757 EXPORT_SYMBOL_GPL(is_error_page);
758
759 int is_error_pfn(pfn_t pfn)
760 {
761 return pfn == bad_pfn;
762 }
763 EXPORT_SYMBOL_GPL(is_error_pfn);
764
765 static inline unsigned long bad_hva(void)
766 {
767 return PAGE_OFFSET;
768 }
769
770 int kvm_is_error_hva(unsigned long addr)
771 {
772 return addr == bad_hva();
773 }
774 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
775
776 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
777 {
778 int i;
779
780 for (i = 0; i < kvm->nmemslots; ++i) {
781 struct kvm_memory_slot *memslot = &kvm->memslots[i];
782
783 if (gfn >= memslot->base_gfn
784 && gfn < memslot->base_gfn + memslot->npages)
785 return memslot;
786 }
787 return NULL;
788 }
789 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
790
791 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
792 {
793 gfn = unalias_gfn(kvm, gfn);
794 return gfn_to_memslot_unaliased(kvm, gfn);
795 }
796
797 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
798 {
799 int i;
800
801 gfn = unalias_gfn(kvm, gfn);
802 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
803 struct kvm_memory_slot *memslot = &kvm->memslots[i];
804
805 if (gfn >= memslot->base_gfn
806 && gfn < memslot->base_gfn + memslot->npages)
807 return 1;
808 }
809 return 0;
810 }
811 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
812
813 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
814 {
815 struct kvm_memory_slot *slot;
816
817 gfn = unalias_gfn(kvm, gfn);
818 slot = gfn_to_memslot_unaliased(kvm, gfn);
819 if (!slot)
820 return bad_hva();
821 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
822 }
823 EXPORT_SYMBOL_GPL(gfn_to_hva);
824
825 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
826 {
827 struct page *page[1];
828 unsigned long addr;
829 int npages;
830 pfn_t pfn;
831
832 might_sleep();
833
834 addr = gfn_to_hva(kvm, gfn);
835 if (kvm_is_error_hva(addr)) {
836 get_page(bad_page);
837 return page_to_pfn(bad_page);
838 }
839
840 npages = get_user_pages_fast(addr, 1, 1, page);
841
842 if (unlikely(npages != 1)) {
843 struct vm_area_struct *vma;
844
845 down_read(&current->mm->mmap_sem);
846 vma = find_vma(current->mm, addr);
847
848 if (vma == NULL || addr < vma->vm_start ||
849 !(vma->vm_flags & VM_PFNMAP)) {
850 up_read(&current->mm->mmap_sem);
851 get_page(bad_page);
852 return page_to_pfn(bad_page);
853 }
854
855 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
856 up_read(&current->mm->mmap_sem);
857 BUG_ON(!kvm_is_mmio_pfn(pfn));
858 } else
859 pfn = page_to_pfn(page[0]);
860
861 return pfn;
862 }
863
864 EXPORT_SYMBOL_GPL(gfn_to_pfn);
865
866 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
867 {
868 pfn_t pfn;
869
870 pfn = gfn_to_pfn(kvm, gfn);
871 if (!kvm_is_mmio_pfn(pfn))
872 return pfn_to_page(pfn);
873
874 WARN_ON(kvm_is_mmio_pfn(pfn));
875
876 get_page(bad_page);
877 return bad_page;
878 }
879
880 EXPORT_SYMBOL_GPL(gfn_to_page);
881
882 void kvm_release_page_clean(struct page *page)
883 {
884 kvm_release_pfn_clean(page_to_pfn(page));
885 }
886 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
887
888 void kvm_release_pfn_clean(pfn_t pfn)
889 {
890 if (!kvm_is_mmio_pfn(pfn))
891 put_page(pfn_to_page(pfn));
892 }
893 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
894
895 void kvm_release_page_dirty(struct page *page)
896 {
897 kvm_release_pfn_dirty(page_to_pfn(page));
898 }
899 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
900
901 void kvm_release_pfn_dirty(pfn_t pfn)
902 {
903 kvm_set_pfn_dirty(pfn);
904 kvm_release_pfn_clean(pfn);
905 }
906 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
907
908 void kvm_set_page_dirty(struct page *page)
909 {
910 kvm_set_pfn_dirty(page_to_pfn(page));
911 }
912 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
913
914 void kvm_set_pfn_dirty(pfn_t pfn)
915 {
916 if (!kvm_is_mmio_pfn(pfn)) {
917 struct page *page = pfn_to_page(pfn);
918 if (!PageReserved(page))
919 SetPageDirty(page);
920 }
921 }
922 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
923
924 void kvm_set_pfn_accessed(pfn_t pfn)
925 {
926 if (!kvm_is_mmio_pfn(pfn))
927 mark_page_accessed(pfn_to_page(pfn));
928 }
929 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
930
931 void kvm_get_pfn(pfn_t pfn)
932 {
933 if (!kvm_is_mmio_pfn(pfn))
934 get_page(pfn_to_page(pfn));
935 }
936 EXPORT_SYMBOL_GPL(kvm_get_pfn);
937
938 static int next_segment(unsigned long len, int offset)
939 {
940 if (len > PAGE_SIZE - offset)
941 return PAGE_SIZE - offset;
942 else
943 return len;
944 }
945
946 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
947 int len)
948 {
949 int r;
950 unsigned long addr;
951
952 addr = gfn_to_hva(kvm, gfn);
953 if (kvm_is_error_hva(addr))
954 return -EFAULT;
955 r = copy_from_user(data, (void __user *)addr + offset, len);
956 if (r)
957 return -EFAULT;
958 return 0;
959 }
960 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
961
962 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
963 {
964 gfn_t gfn = gpa >> PAGE_SHIFT;
965 int seg;
966 int offset = offset_in_page(gpa);
967 int ret;
968
969 while ((seg = next_segment(len, offset)) != 0) {
970 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
971 if (ret < 0)
972 return ret;
973 offset = 0;
974 len -= seg;
975 data += seg;
976 ++gfn;
977 }
978 return 0;
979 }
980 EXPORT_SYMBOL_GPL(kvm_read_guest);
981
982 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
983 unsigned long len)
984 {
985 int r;
986 unsigned long addr;
987 gfn_t gfn = gpa >> PAGE_SHIFT;
988 int offset = offset_in_page(gpa);
989
990 addr = gfn_to_hva(kvm, gfn);
991 if (kvm_is_error_hva(addr))
992 return -EFAULT;
993 pagefault_disable();
994 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
995 pagefault_enable();
996 if (r)
997 return -EFAULT;
998 return 0;
999 }
1000 EXPORT_SYMBOL(kvm_read_guest_atomic);
1001
1002 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1003 int offset, int len)
1004 {
1005 int r;
1006 unsigned long addr;
1007
1008 addr = gfn_to_hva(kvm, gfn);
1009 if (kvm_is_error_hva(addr))
1010 return -EFAULT;
1011 r = copy_to_user((void __user *)addr + offset, data, len);
1012 if (r)
1013 return -EFAULT;
1014 mark_page_dirty(kvm, gfn);
1015 return 0;
1016 }
1017 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1018
1019 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1020 unsigned long len)
1021 {
1022 gfn_t gfn = gpa >> PAGE_SHIFT;
1023 int seg;
1024 int offset = offset_in_page(gpa);
1025 int ret;
1026
1027 while ((seg = next_segment(len, offset)) != 0) {
1028 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1029 if (ret < 0)
1030 return ret;
1031 offset = 0;
1032 len -= seg;
1033 data += seg;
1034 ++gfn;
1035 }
1036 return 0;
1037 }
1038
1039 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1040 {
1041 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1044
1045 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1046 {
1047 gfn_t gfn = gpa >> PAGE_SHIFT;
1048 int seg;
1049 int offset = offset_in_page(gpa);
1050 int ret;
1051
1052 while ((seg = next_segment(len, offset)) != 0) {
1053 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1054 if (ret < 0)
1055 return ret;
1056 offset = 0;
1057 len -= seg;
1058 ++gfn;
1059 }
1060 return 0;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1063
1064 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1065 {
1066 struct kvm_memory_slot *memslot;
1067
1068 gfn = unalias_gfn(kvm, gfn);
1069 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1070 if (memslot && memslot->dirty_bitmap) {
1071 unsigned long rel_gfn = gfn - memslot->base_gfn;
1072
1073 /* avoid RMW */
1074 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1075 set_bit(rel_gfn, memslot->dirty_bitmap);
1076 }
1077 }
1078
1079 /*
1080 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1081 */
1082 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1083 {
1084 DEFINE_WAIT(wait);
1085
1086 for (;;) {
1087 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1088
1089 if (kvm_arch_vcpu_runnable(vcpu)) {
1090 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1091 break;
1092 }
1093 if (kvm_cpu_has_pending_timer(vcpu))
1094 break;
1095 if (signal_pending(current))
1096 break;
1097
1098 schedule();
1099 }
1100
1101 finish_wait(&vcpu->wq, &wait);
1102 }
1103
1104 void kvm_resched(struct kvm_vcpu *vcpu)
1105 {
1106 if (!need_resched())
1107 return;
1108 cond_resched();
1109 }
1110 EXPORT_SYMBOL_GPL(kvm_resched);
1111
1112 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
1113 {
1114 ktime_t expires;
1115 DEFINE_WAIT(wait);
1116
1117 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1118
1119 /* Sleep for 100 us, and hope lock-holder got scheduled */
1120 expires = ktime_add_ns(ktime_get(), 100000UL);
1121 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1122
1123 finish_wait(&vcpu->wq, &wait);
1124 }
1125 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1126
1127 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1128 {
1129 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1130 struct page *page;
1131
1132 if (vmf->pgoff == 0)
1133 page = virt_to_page(vcpu->run);
1134 #ifdef CONFIG_X86
1135 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1136 page = virt_to_page(vcpu->arch.pio_data);
1137 #endif
1138 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1139 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1140 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1141 #endif
1142 else
1143 return VM_FAULT_SIGBUS;
1144 get_page(page);
1145 vmf->page = page;
1146 return 0;
1147 }
1148
1149 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1150 .fault = kvm_vcpu_fault,
1151 };
1152
1153 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1154 {
1155 vma->vm_ops = &kvm_vcpu_vm_ops;
1156 return 0;
1157 }
1158
1159 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1160 {
1161 struct kvm_vcpu *vcpu = filp->private_data;
1162
1163 kvm_put_kvm(vcpu->kvm);
1164 return 0;
1165 }
1166
1167 static struct file_operations kvm_vcpu_fops = {
1168 .release = kvm_vcpu_release,
1169 .unlocked_ioctl = kvm_vcpu_ioctl,
1170 .compat_ioctl = kvm_vcpu_ioctl,
1171 .mmap = kvm_vcpu_mmap,
1172 };
1173
1174 /*
1175 * Allocates an inode for the vcpu.
1176 */
1177 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1178 {
1179 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1180 }
1181
1182 /*
1183 * Creates some virtual cpus. Good luck creating more than one.
1184 */
1185 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1186 {
1187 int r;
1188 struct kvm_vcpu *vcpu, *v;
1189
1190 vcpu = kvm_arch_vcpu_create(kvm, id);
1191 if (IS_ERR(vcpu))
1192 return PTR_ERR(vcpu);
1193
1194 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1195
1196 r = kvm_arch_vcpu_setup(vcpu);
1197 if (r)
1198 return r;
1199
1200 mutex_lock(&kvm->lock);
1201 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1202 r = -EINVAL;
1203 goto vcpu_destroy;
1204 }
1205
1206 kvm_for_each_vcpu(r, v, kvm)
1207 if (v->vcpu_id == id) {
1208 r = -EEXIST;
1209 goto vcpu_destroy;
1210 }
1211
1212 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1213
1214 /* Now it's all set up, let userspace reach it */
1215 kvm_get_kvm(kvm);
1216 r = create_vcpu_fd(vcpu);
1217 if (r < 0) {
1218 kvm_put_kvm(kvm);
1219 goto vcpu_destroy;
1220 }
1221
1222 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1223 smp_wmb();
1224 atomic_inc(&kvm->online_vcpus);
1225
1226 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1227 if (kvm->bsp_vcpu_id == id)
1228 kvm->bsp_vcpu = vcpu;
1229 #endif
1230 mutex_unlock(&kvm->lock);
1231 return r;
1232
1233 vcpu_destroy:
1234 mutex_unlock(&kvm->lock);
1235 kvm_arch_vcpu_destroy(vcpu);
1236 return r;
1237 }
1238
1239 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1240 {
1241 if (sigset) {
1242 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1243 vcpu->sigset_active = 1;
1244 vcpu->sigset = *sigset;
1245 } else
1246 vcpu->sigset_active = 0;
1247 return 0;
1248 }
1249
1250 static long kvm_vcpu_ioctl(struct file *filp,
1251 unsigned int ioctl, unsigned long arg)
1252 {
1253 struct kvm_vcpu *vcpu = filp->private_data;
1254 void __user *argp = (void __user *)arg;
1255 int r;
1256 struct kvm_fpu *fpu = NULL;
1257 struct kvm_sregs *kvm_sregs = NULL;
1258
1259 if (vcpu->kvm->mm != current->mm)
1260 return -EIO;
1261 switch (ioctl) {
1262 case KVM_RUN:
1263 r = -EINVAL;
1264 if (arg)
1265 goto out;
1266 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1267 break;
1268 case KVM_GET_REGS: {
1269 struct kvm_regs *kvm_regs;
1270
1271 r = -ENOMEM;
1272 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1273 if (!kvm_regs)
1274 goto out;
1275 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1276 if (r)
1277 goto out_free1;
1278 r = -EFAULT;
1279 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1280 goto out_free1;
1281 r = 0;
1282 out_free1:
1283 kfree(kvm_regs);
1284 break;
1285 }
1286 case KVM_SET_REGS: {
1287 struct kvm_regs *kvm_regs;
1288
1289 r = -ENOMEM;
1290 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1291 if (!kvm_regs)
1292 goto out;
1293 r = -EFAULT;
1294 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1295 goto out_free2;
1296 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1297 if (r)
1298 goto out_free2;
1299 r = 0;
1300 out_free2:
1301 kfree(kvm_regs);
1302 break;
1303 }
1304 case KVM_GET_SREGS: {
1305 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1306 r = -ENOMEM;
1307 if (!kvm_sregs)
1308 goto out;
1309 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1310 if (r)
1311 goto out;
1312 r = -EFAULT;
1313 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1314 goto out;
1315 r = 0;
1316 break;
1317 }
1318 case KVM_SET_SREGS: {
1319 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1320 r = -ENOMEM;
1321 if (!kvm_sregs)
1322 goto out;
1323 r = -EFAULT;
1324 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1325 goto out;
1326 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1327 if (r)
1328 goto out;
1329 r = 0;
1330 break;
1331 }
1332 case KVM_GET_MP_STATE: {
1333 struct kvm_mp_state mp_state;
1334
1335 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1336 if (r)
1337 goto out;
1338 r = -EFAULT;
1339 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1340 goto out;
1341 r = 0;
1342 break;
1343 }
1344 case KVM_SET_MP_STATE: {
1345 struct kvm_mp_state mp_state;
1346
1347 r = -EFAULT;
1348 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1349 goto out;
1350 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1351 if (r)
1352 goto out;
1353 r = 0;
1354 break;
1355 }
1356 case KVM_TRANSLATE: {
1357 struct kvm_translation tr;
1358
1359 r = -EFAULT;
1360 if (copy_from_user(&tr, argp, sizeof tr))
1361 goto out;
1362 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1363 if (r)
1364 goto out;
1365 r = -EFAULT;
1366 if (copy_to_user(argp, &tr, sizeof tr))
1367 goto out;
1368 r = 0;
1369 break;
1370 }
1371 case KVM_SET_GUEST_DEBUG: {
1372 struct kvm_guest_debug dbg;
1373
1374 r = -EFAULT;
1375 if (copy_from_user(&dbg, argp, sizeof dbg))
1376 goto out;
1377 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1378 if (r)
1379 goto out;
1380 r = 0;
1381 break;
1382 }
1383 case KVM_SET_SIGNAL_MASK: {
1384 struct kvm_signal_mask __user *sigmask_arg = argp;
1385 struct kvm_signal_mask kvm_sigmask;
1386 sigset_t sigset, *p;
1387
1388 p = NULL;
1389 if (argp) {
1390 r = -EFAULT;
1391 if (copy_from_user(&kvm_sigmask, argp,
1392 sizeof kvm_sigmask))
1393 goto out;
1394 r = -EINVAL;
1395 if (kvm_sigmask.len != sizeof sigset)
1396 goto out;
1397 r = -EFAULT;
1398 if (copy_from_user(&sigset, sigmask_arg->sigset,
1399 sizeof sigset))
1400 goto out;
1401 p = &sigset;
1402 }
1403 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1404 break;
1405 }
1406 case KVM_GET_FPU: {
1407 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1408 r = -ENOMEM;
1409 if (!fpu)
1410 goto out;
1411 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1412 if (r)
1413 goto out;
1414 r = -EFAULT;
1415 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1416 goto out;
1417 r = 0;
1418 break;
1419 }
1420 case KVM_SET_FPU: {
1421 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1422 r = -ENOMEM;
1423 if (!fpu)
1424 goto out;
1425 r = -EFAULT;
1426 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1427 goto out;
1428 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1429 if (r)
1430 goto out;
1431 r = 0;
1432 break;
1433 }
1434 default:
1435 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1436 }
1437 out:
1438 kfree(fpu);
1439 kfree(kvm_sregs);
1440 return r;
1441 }
1442
1443 static long kvm_vm_ioctl(struct file *filp,
1444 unsigned int ioctl, unsigned long arg)
1445 {
1446 struct kvm *kvm = filp->private_data;
1447 void __user *argp = (void __user *)arg;
1448 int r;
1449
1450 if (kvm->mm != current->mm)
1451 return -EIO;
1452 switch (ioctl) {
1453 case KVM_CREATE_VCPU:
1454 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1455 if (r < 0)
1456 goto out;
1457 break;
1458 case KVM_SET_USER_MEMORY_REGION: {
1459 struct kvm_userspace_memory_region kvm_userspace_mem;
1460
1461 r = -EFAULT;
1462 if (copy_from_user(&kvm_userspace_mem, argp,
1463 sizeof kvm_userspace_mem))
1464 goto out;
1465
1466 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1467 if (r)
1468 goto out;
1469 break;
1470 }
1471 case KVM_GET_DIRTY_LOG: {
1472 struct kvm_dirty_log log;
1473
1474 r = -EFAULT;
1475 if (copy_from_user(&log, argp, sizeof log))
1476 goto out;
1477 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1478 if (r)
1479 goto out;
1480 break;
1481 }
1482 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1483 case KVM_REGISTER_COALESCED_MMIO: {
1484 struct kvm_coalesced_mmio_zone zone;
1485 r = -EFAULT;
1486 if (copy_from_user(&zone, argp, sizeof zone))
1487 goto out;
1488 r = -ENXIO;
1489 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1490 if (r)
1491 goto out;
1492 r = 0;
1493 break;
1494 }
1495 case KVM_UNREGISTER_COALESCED_MMIO: {
1496 struct kvm_coalesced_mmio_zone zone;
1497 r = -EFAULT;
1498 if (copy_from_user(&zone, argp, sizeof zone))
1499 goto out;
1500 r = -ENXIO;
1501 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1502 if (r)
1503 goto out;
1504 r = 0;
1505 break;
1506 }
1507 #endif
1508 case KVM_IRQFD: {
1509 struct kvm_irqfd data;
1510
1511 r = -EFAULT;
1512 if (copy_from_user(&data, argp, sizeof data))
1513 goto out;
1514 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
1515 break;
1516 }
1517 case KVM_IOEVENTFD: {
1518 struct kvm_ioeventfd data;
1519
1520 r = -EFAULT;
1521 if (copy_from_user(&data, argp, sizeof data))
1522 goto out;
1523 r = kvm_ioeventfd(kvm, &data);
1524 break;
1525 }
1526 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1527 case KVM_SET_BOOT_CPU_ID:
1528 r = 0;
1529 mutex_lock(&kvm->lock);
1530 if (atomic_read(&kvm->online_vcpus) != 0)
1531 r = -EBUSY;
1532 else
1533 kvm->bsp_vcpu_id = arg;
1534 mutex_unlock(&kvm->lock);
1535 break;
1536 #endif
1537 default:
1538 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1539 if (r == -ENOTTY)
1540 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
1541 }
1542 out:
1543 return r;
1544 }
1545
1546 #ifdef CONFIG_COMPAT
1547 struct compat_kvm_dirty_log {
1548 __u32 slot;
1549 __u32 padding1;
1550 union {
1551 compat_uptr_t dirty_bitmap; /* one bit per page */
1552 __u64 padding2;
1553 };
1554 };
1555
1556 static long kvm_vm_compat_ioctl(struct file *filp,
1557 unsigned int ioctl, unsigned long arg)
1558 {
1559 struct kvm *kvm = filp->private_data;
1560 int r;
1561
1562 if (kvm->mm != current->mm)
1563 return -EIO;
1564 switch (ioctl) {
1565 case KVM_GET_DIRTY_LOG: {
1566 struct compat_kvm_dirty_log compat_log;
1567 struct kvm_dirty_log log;
1568
1569 r = -EFAULT;
1570 if (copy_from_user(&compat_log, (void __user *)arg,
1571 sizeof(compat_log)))
1572 goto out;
1573 log.slot = compat_log.slot;
1574 log.padding1 = compat_log.padding1;
1575 log.padding2 = compat_log.padding2;
1576 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
1577
1578 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1579 if (r)
1580 goto out;
1581 break;
1582 }
1583 default:
1584 r = kvm_vm_ioctl(filp, ioctl, arg);
1585 }
1586
1587 out:
1588 return r;
1589 }
1590 #endif
1591
1592 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1593 {
1594 struct page *page[1];
1595 unsigned long addr;
1596 int npages;
1597 gfn_t gfn = vmf->pgoff;
1598 struct kvm *kvm = vma->vm_file->private_data;
1599
1600 addr = gfn_to_hva(kvm, gfn);
1601 if (kvm_is_error_hva(addr))
1602 return VM_FAULT_SIGBUS;
1603
1604 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1605 NULL);
1606 if (unlikely(npages != 1))
1607 return VM_FAULT_SIGBUS;
1608
1609 vmf->page = page[0];
1610 return 0;
1611 }
1612
1613 static const struct vm_operations_struct kvm_vm_vm_ops = {
1614 .fault = kvm_vm_fault,
1615 };
1616
1617 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1618 {
1619 vma->vm_ops = &kvm_vm_vm_ops;
1620 return 0;
1621 }
1622
1623 static struct file_operations kvm_vm_fops = {
1624 .release = kvm_vm_release,
1625 .unlocked_ioctl = kvm_vm_ioctl,
1626 #ifdef CONFIG_COMPAT
1627 .compat_ioctl = kvm_vm_compat_ioctl,
1628 #endif
1629 .mmap = kvm_vm_mmap,
1630 };
1631
1632 static int kvm_dev_ioctl_create_vm(void)
1633 {
1634 int fd;
1635 struct kvm *kvm;
1636
1637 kvm = kvm_create_vm();
1638 if (IS_ERR(kvm))
1639 return PTR_ERR(kvm);
1640 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1641 if (fd < 0)
1642 kvm_put_kvm(kvm);
1643
1644 return fd;
1645 }
1646
1647 static long kvm_dev_ioctl_check_extension_generic(long arg)
1648 {
1649 switch (arg) {
1650 case KVM_CAP_USER_MEMORY:
1651 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1652 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
1653 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1654 case KVM_CAP_SET_BOOT_CPU_ID:
1655 #endif
1656 case KVM_CAP_INTERNAL_ERROR_DATA:
1657 return 1;
1658 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1659 case KVM_CAP_IRQ_ROUTING:
1660 return KVM_MAX_IRQ_ROUTES;
1661 #endif
1662 default:
1663 break;
1664 }
1665 return kvm_dev_ioctl_check_extension(arg);
1666 }
1667
1668 static long kvm_dev_ioctl(struct file *filp,
1669 unsigned int ioctl, unsigned long arg)
1670 {
1671 long r = -EINVAL;
1672
1673 switch (ioctl) {
1674 case KVM_GET_API_VERSION:
1675 r = -EINVAL;
1676 if (arg)
1677 goto out;
1678 r = KVM_API_VERSION;
1679 break;
1680 case KVM_CREATE_VM:
1681 r = -EINVAL;
1682 if (arg)
1683 goto out;
1684 r = kvm_dev_ioctl_create_vm();
1685 break;
1686 case KVM_CHECK_EXTENSION:
1687 r = kvm_dev_ioctl_check_extension_generic(arg);
1688 break;
1689 case KVM_GET_VCPU_MMAP_SIZE:
1690 r = -EINVAL;
1691 if (arg)
1692 goto out;
1693 r = PAGE_SIZE; /* struct kvm_run */
1694 #ifdef CONFIG_X86
1695 r += PAGE_SIZE; /* pio data page */
1696 #endif
1697 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1698 r += PAGE_SIZE; /* coalesced mmio ring page */
1699 #endif
1700 break;
1701 case KVM_TRACE_ENABLE:
1702 case KVM_TRACE_PAUSE:
1703 case KVM_TRACE_DISABLE:
1704 r = -EOPNOTSUPP;
1705 break;
1706 default:
1707 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1708 }
1709 out:
1710 return r;
1711 }
1712
1713 static struct file_operations kvm_chardev_ops = {
1714 .unlocked_ioctl = kvm_dev_ioctl,
1715 .compat_ioctl = kvm_dev_ioctl,
1716 };
1717
1718 static struct miscdevice kvm_dev = {
1719 KVM_MINOR,
1720 "kvm",
1721 &kvm_chardev_ops,
1722 };
1723
1724 static void hardware_enable(void *junk)
1725 {
1726 int cpu = raw_smp_processor_id();
1727 int r;
1728
1729 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
1730 return;
1731
1732 cpumask_set_cpu(cpu, cpus_hardware_enabled);
1733
1734 r = kvm_arch_hardware_enable(NULL);
1735
1736 if (r) {
1737 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1738 atomic_inc(&hardware_enable_failed);
1739 printk(KERN_INFO "kvm: enabling virtualization on "
1740 "CPU%d failed\n", cpu);
1741 }
1742 }
1743
1744 static void hardware_disable(void *junk)
1745 {
1746 int cpu = raw_smp_processor_id();
1747
1748 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
1749 return;
1750 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
1751 kvm_arch_hardware_disable(NULL);
1752 }
1753
1754 static void hardware_disable_all_nolock(void)
1755 {
1756 BUG_ON(!kvm_usage_count);
1757
1758 kvm_usage_count--;
1759 if (!kvm_usage_count)
1760 on_each_cpu(hardware_disable, NULL, 1);
1761 }
1762
1763 static void hardware_disable_all(void)
1764 {
1765 spin_lock(&kvm_lock);
1766 hardware_disable_all_nolock();
1767 spin_unlock(&kvm_lock);
1768 }
1769
1770 static int hardware_enable_all(void)
1771 {
1772 int r = 0;
1773
1774 spin_lock(&kvm_lock);
1775
1776 kvm_usage_count++;
1777 if (kvm_usage_count == 1) {
1778 atomic_set(&hardware_enable_failed, 0);
1779 on_each_cpu(hardware_enable, NULL, 1);
1780
1781 if (atomic_read(&hardware_enable_failed)) {
1782 hardware_disable_all_nolock();
1783 r = -EBUSY;
1784 }
1785 }
1786
1787 spin_unlock(&kvm_lock);
1788
1789 return r;
1790 }
1791
1792 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1793 void *v)
1794 {
1795 int cpu = (long)v;
1796
1797 if (!kvm_usage_count)
1798 return NOTIFY_OK;
1799
1800 val &= ~CPU_TASKS_FROZEN;
1801 switch (val) {
1802 case CPU_DYING:
1803 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1804 cpu);
1805 hardware_disable(NULL);
1806 break;
1807 case CPU_UP_CANCELED:
1808 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1809 cpu);
1810 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1811 break;
1812 case CPU_ONLINE:
1813 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1814 cpu);
1815 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1816 break;
1817 }
1818 return NOTIFY_OK;
1819 }
1820
1821
1822 asmlinkage void kvm_handle_fault_on_reboot(void)
1823 {
1824 if (kvm_rebooting)
1825 /* spin while reset goes on */
1826 while (true)
1827 ;
1828 /* Fault while not rebooting. We want the trace. */
1829 BUG();
1830 }
1831 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1832
1833 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1834 void *v)
1835 {
1836 /*
1837 * Some (well, at least mine) BIOSes hang on reboot if
1838 * in vmx root mode.
1839 *
1840 * And Intel TXT required VMX off for all cpu when system shutdown.
1841 */
1842 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1843 kvm_rebooting = true;
1844 on_each_cpu(hardware_disable, NULL, 1);
1845 return NOTIFY_OK;
1846 }
1847
1848 static struct notifier_block kvm_reboot_notifier = {
1849 .notifier_call = kvm_reboot,
1850 .priority = 0,
1851 };
1852
1853 void kvm_io_bus_init(struct kvm_io_bus *bus)
1854 {
1855 memset(bus, 0, sizeof(*bus));
1856 }
1857
1858 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1859 {
1860 int i;
1861
1862 for (i = 0; i < bus->dev_count; i++) {
1863 struct kvm_io_device *pos = bus->devs[i];
1864
1865 kvm_iodevice_destructor(pos);
1866 }
1867 }
1868
1869 /* kvm_io_bus_write - called under kvm->slots_lock */
1870 int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
1871 int len, const void *val)
1872 {
1873 int i;
1874 for (i = 0; i < bus->dev_count; i++)
1875 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
1876 return 0;
1877 return -EOPNOTSUPP;
1878 }
1879
1880 /* kvm_io_bus_read - called under kvm->slots_lock */
1881 int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
1882 {
1883 int i;
1884 for (i = 0; i < bus->dev_count; i++)
1885 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
1886 return 0;
1887 return -EOPNOTSUPP;
1888 }
1889
1890 int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
1891 struct kvm_io_device *dev)
1892 {
1893 int ret;
1894
1895 down_write(&kvm->slots_lock);
1896 ret = __kvm_io_bus_register_dev(bus, dev);
1897 up_write(&kvm->slots_lock);
1898
1899 return ret;
1900 }
1901
1902 /* An unlocked version. Caller must have write lock on slots_lock. */
1903 int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
1904 struct kvm_io_device *dev)
1905 {
1906 if (bus->dev_count > NR_IOBUS_DEVS-1)
1907 return -ENOSPC;
1908
1909 bus->devs[bus->dev_count++] = dev;
1910
1911 return 0;
1912 }
1913
1914 void kvm_io_bus_unregister_dev(struct kvm *kvm,
1915 struct kvm_io_bus *bus,
1916 struct kvm_io_device *dev)
1917 {
1918 down_write(&kvm->slots_lock);
1919 __kvm_io_bus_unregister_dev(bus, dev);
1920 up_write(&kvm->slots_lock);
1921 }
1922
1923 /* An unlocked version. Caller must have write lock on slots_lock. */
1924 void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
1925 struct kvm_io_device *dev)
1926 {
1927 int i;
1928
1929 for (i = 0; i < bus->dev_count; i++)
1930 if (bus->devs[i] == dev) {
1931 bus->devs[i] = bus->devs[--bus->dev_count];
1932 break;
1933 }
1934 }
1935
1936 static struct notifier_block kvm_cpu_notifier = {
1937 .notifier_call = kvm_cpu_hotplug,
1938 .priority = 20, /* must be > scheduler priority */
1939 };
1940
1941 static int vm_stat_get(void *_offset, u64 *val)
1942 {
1943 unsigned offset = (long)_offset;
1944 struct kvm *kvm;
1945
1946 *val = 0;
1947 spin_lock(&kvm_lock);
1948 list_for_each_entry(kvm, &vm_list, vm_list)
1949 *val += *(u32 *)((void *)kvm + offset);
1950 spin_unlock(&kvm_lock);
1951 return 0;
1952 }
1953
1954 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1955
1956 static int vcpu_stat_get(void *_offset, u64 *val)
1957 {
1958 unsigned offset = (long)_offset;
1959 struct kvm *kvm;
1960 struct kvm_vcpu *vcpu;
1961 int i;
1962
1963 *val = 0;
1964 spin_lock(&kvm_lock);
1965 list_for_each_entry(kvm, &vm_list, vm_list)
1966 kvm_for_each_vcpu(i, vcpu, kvm)
1967 *val += *(u32 *)((void *)vcpu + offset);
1968
1969 spin_unlock(&kvm_lock);
1970 return 0;
1971 }
1972
1973 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1974
1975 static const struct file_operations *stat_fops[] = {
1976 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1977 [KVM_STAT_VM] = &vm_stat_fops,
1978 };
1979
1980 static void kvm_init_debug(void)
1981 {
1982 struct kvm_stats_debugfs_item *p;
1983
1984 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1985 for (p = debugfs_entries; p->name; ++p)
1986 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1987 (void *)(long)p->offset,
1988 stat_fops[p->kind]);
1989 }
1990
1991 static void kvm_exit_debug(void)
1992 {
1993 struct kvm_stats_debugfs_item *p;
1994
1995 for (p = debugfs_entries; p->name; ++p)
1996 debugfs_remove(p->dentry);
1997 debugfs_remove(kvm_debugfs_dir);
1998 }
1999
2000 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2001 {
2002 if (kvm_usage_count)
2003 hardware_disable(NULL);
2004 return 0;
2005 }
2006
2007 static int kvm_resume(struct sys_device *dev)
2008 {
2009 if (kvm_usage_count)
2010 hardware_enable(NULL);
2011 return 0;
2012 }
2013
2014 static struct sysdev_class kvm_sysdev_class = {
2015 .name = "kvm",
2016 .suspend = kvm_suspend,
2017 .resume = kvm_resume,
2018 };
2019
2020 static struct sys_device kvm_sysdev = {
2021 .id = 0,
2022 .cls = &kvm_sysdev_class,
2023 };
2024
2025 struct page *bad_page;
2026 pfn_t bad_pfn;
2027
2028 static inline
2029 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2030 {
2031 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2032 }
2033
2034 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2035 {
2036 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2037
2038 kvm_arch_vcpu_load(vcpu, cpu);
2039 }
2040
2041 static void kvm_sched_out(struct preempt_notifier *pn,
2042 struct task_struct *next)
2043 {
2044 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2045
2046 kvm_arch_vcpu_put(vcpu);
2047 }
2048
2049 int kvm_init(void *opaque, unsigned int vcpu_size,
2050 struct module *module)
2051 {
2052 int r;
2053 int cpu;
2054
2055 r = kvm_arch_init(opaque);
2056 if (r)
2057 goto out_fail;
2058
2059 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2060
2061 if (bad_page == NULL) {
2062 r = -ENOMEM;
2063 goto out;
2064 }
2065
2066 bad_pfn = page_to_pfn(bad_page);
2067
2068 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2069 r = -ENOMEM;
2070 goto out_free_0;
2071 }
2072
2073 r = kvm_arch_hardware_setup();
2074 if (r < 0)
2075 goto out_free_0a;
2076
2077 for_each_online_cpu(cpu) {
2078 smp_call_function_single(cpu,
2079 kvm_arch_check_processor_compat,
2080 &r, 1);
2081 if (r < 0)
2082 goto out_free_1;
2083 }
2084
2085 r = register_cpu_notifier(&kvm_cpu_notifier);
2086 if (r)
2087 goto out_free_2;
2088 register_reboot_notifier(&kvm_reboot_notifier);
2089
2090 r = sysdev_class_register(&kvm_sysdev_class);
2091 if (r)
2092 goto out_free_3;
2093
2094 r = sysdev_register(&kvm_sysdev);
2095 if (r)
2096 goto out_free_4;
2097
2098 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2099 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2100 __alignof__(struct kvm_vcpu),
2101 0, NULL);
2102 if (!kvm_vcpu_cache) {
2103 r = -ENOMEM;
2104 goto out_free_5;
2105 }
2106
2107 kvm_chardev_ops.owner = module;
2108 kvm_vm_fops.owner = module;
2109 kvm_vcpu_fops.owner = module;
2110
2111 r = misc_register(&kvm_dev);
2112 if (r) {
2113 printk(KERN_ERR "kvm: misc device register failed\n");
2114 goto out_free;
2115 }
2116
2117 kvm_preempt_ops.sched_in = kvm_sched_in;
2118 kvm_preempt_ops.sched_out = kvm_sched_out;
2119
2120 kvm_init_debug();
2121
2122 return 0;
2123
2124 out_free:
2125 kmem_cache_destroy(kvm_vcpu_cache);
2126 out_free_5:
2127 sysdev_unregister(&kvm_sysdev);
2128 out_free_4:
2129 sysdev_class_unregister(&kvm_sysdev_class);
2130 out_free_3:
2131 unregister_reboot_notifier(&kvm_reboot_notifier);
2132 unregister_cpu_notifier(&kvm_cpu_notifier);
2133 out_free_2:
2134 out_free_1:
2135 kvm_arch_hardware_unsetup();
2136 out_free_0a:
2137 free_cpumask_var(cpus_hardware_enabled);
2138 out_free_0:
2139 __free_page(bad_page);
2140 out:
2141 kvm_arch_exit();
2142 out_fail:
2143 return r;
2144 }
2145 EXPORT_SYMBOL_GPL(kvm_init);
2146
2147 void kvm_exit(void)
2148 {
2149 tracepoint_synchronize_unregister();
2150 kvm_exit_debug();
2151 misc_deregister(&kvm_dev);
2152 kmem_cache_destroy(kvm_vcpu_cache);
2153 sysdev_unregister(&kvm_sysdev);
2154 sysdev_class_unregister(&kvm_sysdev_class);
2155 unregister_reboot_notifier(&kvm_reboot_notifier);
2156 unregister_cpu_notifier(&kvm_cpu_notifier);
2157 on_each_cpu(hardware_disable, NULL, 1);
2158 kvm_arch_hardware_unsetup();
2159 kvm_arch_exit();
2160 free_cpumask_var(cpus_hardware_enabled);
2161 __free_page(bad_page);
2162 }
2163 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.072942 seconds and 6 git commands to generate.