KVM: MMU: fix release noslot pfn
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "iodev.h"
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 /*
68 * Ordering of locks:
69 *
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71 */
72
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85 struct dentry *kvm_debugfs_dir;
86
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101 static bool largepages_enabled = true;
102
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 if (pfn_valid(pfn)) {
106 int reserved;
107 struct page *tail = pfn_to_page(pfn);
108 struct page *head = compound_trans_head(tail);
109 reserved = PageReserved(head);
110 if (head != tail) {
111 /*
112 * "head" is not a dangling pointer
113 * (compound_trans_head takes care of that)
114 * but the hugepage may have been splitted
115 * from under us (and we may not hold a
116 * reference count on the head page so it can
117 * be reused before we run PageReferenced), so
118 * we've to check PageTail before returning
119 * what we just read.
120 */
121 smp_rmb();
122 if (PageTail(tail))
123 return reserved;
124 }
125 return PageReserved(tail);
126 }
127
128 return true;
129 }
130
131 /*
132 * Switches to specified vcpu, until a matching vcpu_put()
133 */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 int cpu;
137
138 if (mutex_lock_killable(&vcpu->mutex))
139 return -EINTR;
140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 /* The thread running this VCPU changed. */
142 struct pid *oldpid = vcpu->pid;
143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 rcu_assign_pointer(vcpu->pid, newpid);
145 synchronize_rcu();
146 put_pid(oldpid);
147 }
148 cpu = get_cpu();
149 preempt_notifier_register(&vcpu->preempt_notifier);
150 kvm_arch_vcpu_load(vcpu, cpu);
151 put_cpu();
152 return 0;
153 }
154
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 preempt_disable();
158 kvm_arch_vcpu_put(vcpu);
159 preempt_notifier_unregister(&vcpu->preempt_notifier);
160 preempt_enable();
161 mutex_unlock(&vcpu->mutex);
162 }
163
164 static void ack_flush(void *_completed)
165 {
166 }
167
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 int i, cpu, me;
171 cpumask_var_t cpus;
172 bool called = true;
173 struct kvm_vcpu *vcpu;
174
175 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176
177 me = get_cpu();
178 kvm_for_each_vcpu(i, vcpu, kvm) {
179 kvm_make_request(req, vcpu);
180 cpu = vcpu->cpu;
181
182 /* Set ->requests bit before we read ->mode */
183 smp_mb();
184
185 if (cpus != NULL && cpu != -1 && cpu != me &&
186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 cpumask_set_cpu(cpu, cpus);
188 }
189 if (unlikely(cpus == NULL))
190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 else if (!cpumask_empty(cpus))
192 smp_call_function_many(cpus, ack_flush, NULL, 1);
193 else
194 called = false;
195 put_cpu();
196 free_cpumask_var(cpus);
197 return called;
198 }
199
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 long dirty_count = kvm->tlbs_dirty;
203
204 smp_mb();
205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 ++kvm->stat.remote_tlb_flush;
207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214
215 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
216 {
217 struct page *page;
218 int r;
219
220 mutex_init(&vcpu->mutex);
221 vcpu->cpu = -1;
222 vcpu->kvm = kvm;
223 vcpu->vcpu_id = id;
224 vcpu->pid = NULL;
225 init_waitqueue_head(&vcpu->wq);
226 kvm_async_pf_vcpu_init(vcpu);
227
228 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
229 if (!page) {
230 r = -ENOMEM;
231 goto fail;
232 }
233 vcpu->run = page_address(page);
234
235 kvm_vcpu_set_in_spin_loop(vcpu, false);
236 kvm_vcpu_set_dy_eligible(vcpu, false);
237
238 r = kvm_arch_vcpu_init(vcpu);
239 if (r < 0)
240 goto fail_free_run;
241 return 0;
242
243 fail_free_run:
244 free_page((unsigned long)vcpu->run);
245 fail:
246 return r;
247 }
248 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
249
250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
251 {
252 put_pid(vcpu->pid);
253 kvm_arch_vcpu_uninit(vcpu);
254 free_page((unsigned long)vcpu->run);
255 }
256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
257
258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
260 {
261 return container_of(mn, struct kvm, mmu_notifier);
262 }
263
264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
265 struct mm_struct *mm,
266 unsigned long address)
267 {
268 struct kvm *kvm = mmu_notifier_to_kvm(mn);
269 int need_tlb_flush, idx;
270
271 /*
272 * When ->invalidate_page runs, the linux pte has been zapped
273 * already but the page is still allocated until
274 * ->invalidate_page returns. So if we increase the sequence
275 * here the kvm page fault will notice if the spte can't be
276 * established because the page is going to be freed. If
277 * instead the kvm page fault establishes the spte before
278 * ->invalidate_page runs, kvm_unmap_hva will release it
279 * before returning.
280 *
281 * The sequence increase only need to be seen at spin_unlock
282 * time, and not at spin_lock time.
283 *
284 * Increasing the sequence after the spin_unlock would be
285 * unsafe because the kvm page fault could then establish the
286 * pte after kvm_unmap_hva returned, without noticing the page
287 * is going to be freed.
288 */
289 idx = srcu_read_lock(&kvm->srcu);
290 spin_lock(&kvm->mmu_lock);
291
292 kvm->mmu_notifier_seq++;
293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
294 /* we've to flush the tlb before the pages can be freed */
295 if (need_tlb_flush)
296 kvm_flush_remote_tlbs(kvm);
297
298 spin_unlock(&kvm->mmu_lock);
299 srcu_read_unlock(&kvm->srcu, idx);
300 }
301
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303 struct mm_struct *mm,
304 unsigned long address,
305 pte_t pte)
306 {
307 struct kvm *kvm = mmu_notifier_to_kvm(mn);
308 int idx;
309
310 idx = srcu_read_lock(&kvm->srcu);
311 spin_lock(&kvm->mmu_lock);
312 kvm->mmu_notifier_seq++;
313 kvm_set_spte_hva(kvm, address, pte);
314 spin_unlock(&kvm->mmu_lock);
315 srcu_read_unlock(&kvm->srcu, idx);
316 }
317
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319 struct mm_struct *mm,
320 unsigned long start,
321 unsigned long end)
322 {
323 struct kvm *kvm = mmu_notifier_to_kvm(mn);
324 int need_tlb_flush = 0, idx;
325
326 idx = srcu_read_lock(&kvm->srcu);
327 spin_lock(&kvm->mmu_lock);
328 /*
329 * The count increase must become visible at unlock time as no
330 * spte can be established without taking the mmu_lock and
331 * count is also read inside the mmu_lock critical section.
332 */
333 kvm->mmu_notifier_count++;
334 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335 need_tlb_flush |= kvm->tlbs_dirty;
336 /* we've to flush the tlb before the pages can be freed */
337 if (need_tlb_flush)
338 kvm_flush_remote_tlbs(kvm);
339
340 spin_unlock(&kvm->mmu_lock);
341 srcu_read_unlock(&kvm->srcu, idx);
342 }
343
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 struct mm_struct *mm,
346 unsigned long start,
347 unsigned long end)
348 {
349 struct kvm *kvm = mmu_notifier_to_kvm(mn);
350
351 spin_lock(&kvm->mmu_lock);
352 /*
353 * This sequence increase will notify the kvm page fault that
354 * the page that is going to be mapped in the spte could have
355 * been freed.
356 */
357 kvm->mmu_notifier_seq++;
358 smp_wmb();
359 /*
360 * The above sequence increase must be visible before the
361 * below count decrease, which is ensured by the smp_wmb above
362 * in conjunction with the smp_rmb in mmu_notifier_retry().
363 */
364 kvm->mmu_notifier_count--;
365 spin_unlock(&kvm->mmu_lock);
366
367 BUG_ON(kvm->mmu_notifier_count < 0);
368 }
369
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 struct mm_struct *mm,
372 unsigned long address)
373 {
374 struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 int young, idx;
376
377 idx = srcu_read_lock(&kvm->srcu);
378 spin_lock(&kvm->mmu_lock);
379
380 young = kvm_age_hva(kvm, address);
381 if (young)
382 kvm_flush_remote_tlbs(kvm);
383
384 spin_unlock(&kvm->mmu_lock);
385 srcu_read_unlock(&kvm->srcu, idx);
386
387 return young;
388 }
389
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391 struct mm_struct *mm,
392 unsigned long address)
393 {
394 struct kvm *kvm = mmu_notifier_to_kvm(mn);
395 int young, idx;
396
397 idx = srcu_read_lock(&kvm->srcu);
398 spin_lock(&kvm->mmu_lock);
399 young = kvm_test_age_hva(kvm, address);
400 spin_unlock(&kvm->mmu_lock);
401 srcu_read_unlock(&kvm->srcu, idx);
402
403 return young;
404 }
405
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407 struct mm_struct *mm)
408 {
409 struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 int idx;
411
412 idx = srcu_read_lock(&kvm->srcu);
413 kvm_arch_flush_shadow_all(kvm);
414 srcu_read_unlock(&kvm->srcu, idx);
415 }
416
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418 .invalidate_page = kvm_mmu_notifier_invalidate_page,
419 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
420 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
421 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
422 .test_young = kvm_mmu_notifier_test_young,
423 .change_pte = kvm_mmu_notifier_change_pte,
424 .release = kvm_mmu_notifier_release,
425 };
426
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432
433 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437 return 0;
438 }
439
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441
442 static void kvm_init_memslots_id(struct kvm *kvm)
443 {
444 int i;
445 struct kvm_memslots *slots = kvm->memslots;
446
447 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
448 slots->id_to_index[i] = slots->memslots[i].id = i;
449 }
450
451 static struct kvm *kvm_create_vm(unsigned long type)
452 {
453 int r, i;
454 struct kvm *kvm = kvm_arch_alloc_vm();
455
456 if (!kvm)
457 return ERR_PTR(-ENOMEM);
458
459 r = kvm_arch_init_vm(kvm, type);
460 if (r)
461 goto out_err_nodisable;
462
463 r = hardware_enable_all();
464 if (r)
465 goto out_err_nodisable;
466
467 #ifdef CONFIG_HAVE_KVM_IRQCHIP
468 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
469 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
470 #endif
471
472 r = -ENOMEM;
473 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
474 if (!kvm->memslots)
475 goto out_err_nosrcu;
476 kvm_init_memslots_id(kvm);
477 if (init_srcu_struct(&kvm->srcu))
478 goto out_err_nosrcu;
479 for (i = 0; i < KVM_NR_BUSES; i++) {
480 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
481 GFP_KERNEL);
482 if (!kvm->buses[i])
483 goto out_err;
484 }
485
486 spin_lock_init(&kvm->mmu_lock);
487 kvm->mm = current->mm;
488 atomic_inc(&kvm->mm->mm_count);
489 kvm_eventfd_init(kvm);
490 mutex_init(&kvm->lock);
491 mutex_init(&kvm->irq_lock);
492 mutex_init(&kvm->slots_lock);
493 atomic_set(&kvm->users_count, 1);
494
495 r = kvm_init_mmu_notifier(kvm);
496 if (r)
497 goto out_err;
498
499 raw_spin_lock(&kvm_lock);
500 list_add(&kvm->vm_list, &vm_list);
501 raw_spin_unlock(&kvm_lock);
502
503 return kvm;
504
505 out_err:
506 cleanup_srcu_struct(&kvm->srcu);
507 out_err_nosrcu:
508 hardware_disable_all();
509 out_err_nodisable:
510 for (i = 0; i < KVM_NR_BUSES; i++)
511 kfree(kvm->buses[i]);
512 kfree(kvm->memslots);
513 kvm_arch_free_vm(kvm);
514 return ERR_PTR(r);
515 }
516
517 /*
518 * Avoid using vmalloc for a small buffer.
519 * Should not be used when the size is statically known.
520 */
521 void *kvm_kvzalloc(unsigned long size)
522 {
523 if (size > PAGE_SIZE)
524 return vzalloc(size);
525 else
526 return kzalloc(size, GFP_KERNEL);
527 }
528
529 void kvm_kvfree(const void *addr)
530 {
531 if (is_vmalloc_addr(addr))
532 vfree(addr);
533 else
534 kfree(addr);
535 }
536
537 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
538 {
539 if (!memslot->dirty_bitmap)
540 return;
541
542 kvm_kvfree(memslot->dirty_bitmap);
543 memslot->dirty_bitmap = NULL;
544 }
545
546 /*
547 * Free any memory in @free but not in @dont.
548 */
549 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
550 struct kvm_memory_slot *dont)
551 {
552 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
553 kvm_destroy_dirty_bitmap(free);
554
555 kvm_arch_free_memslot(free, dont);
556
557 free->npages = 0;
558 }
559
560 void kvm_free_physmem(struct kvm *kvm)
561 {
562 struct kvm_memslots *slots = kvm->memslots;
563 struct kvm_memory_slot *memslot;
564
565 kvm_for_each_memslot(memslot, slots)
566 kvm_free_physmem_slot(memslot, NULL);
567
568 kfree(kvm->memslots);
569 }
570
571 static void kvm_destroy_vm(struct kvm *kvm)
572 {
573 int i;
574 struct mm_struct *mm = kvm->mm;
575
576 kvm_arch_sync_events(kvm);
577 raw_spin_lock(&kvm_lock);
578 list_del(&kvm->vm_list);
579 raw_spin_unlock(&kvm_lock);
580 kvm_free_irq_routing(kvm);
581 for (i = 0; i < KVM_NR_BUSES; i++)
582 kvm_io_bus_destroy(kvm->buses[i]);
583 kvm_coalesced_mmio_free(kvm);
584 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
585 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
586 #else
587 kvm_arch_flush_shadow_all(kvm);
588 #endif
589 kvm_arch_destroy_vm(kvm);
590 kvm_free_physmem(kvm);
591 cleanup_srcu_struct(&kvm->srcu);
592 kvm_arch_free_vm(kvm);
593 hardware_disable_all();
594 mmdrop(mm);
595 }
596
597 void kvm_get_kvm(struct kvm *kvm)
598 {
599 atomic_inc(&kvm->users_count);
600 }
601 EXPORT_SYMBOL_GPL(kvm_get_kvm);
602
603 void kvm_put_kvm(struct kvm *kvm)
604 {
605 if (atomic_dec_and_test(&kvm->users_count))
606 kvm_destroy_vm(kvm);
607 }
608 EXPORT_SYMBOL_GPL(kvm_put_kvm);
609
610
611 static int kvm_vm_release(struct inode *inode, struct file *filp)
612 {
613 struct kvm *kvm = filp->private_data;
614
615 kvm_irqfd_release(kvm);
616
617 kvm_put_kvm(kvm);
618 return 0;
619 }
620
621 /*
622 * Allocation size is twice as large as the actual dirty bitmap size.
623 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
624 */
625 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
626 {
627 #ifndef CONFIG_S390
628 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
629
630 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
631 if (!memslot->dirty_bitmap)
632 return -ENOMEM;
633
634 #endif /* !CONFIG_S390 */
635 return 0;
636 }
637
638 static int cmp_memslot(const void *slot1, const void *slot2)
639 {
640 struct kvm_memory_slot *s1, *s2;
641
642 s1 = (struct kvm_memory_slot *)slot1;
643 s2 = (struct kvm_memory_slot *)slot2;
644
645 if (s1->npages < s2->npages)
646 return 1;
647 if (s1->npages > s2->npages)
648 return -1;
649
650 return 0;
651 }
652
653 /*
654 * Sort the memslots base on its size, so the larger slots
655 * will get better fit.
656 */
657 static void sort_memslots(struct kvm_memslots *slots)
658 {
659 int i;
660
661 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
662 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
663
664 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
665 slots->id_to_index[slots->memslots[i].id] = i;
666 }
667
668 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
669 {
670 if (new) {
671 int id = new->id;
672 struct kvm_memory_slot *old = id_to_memslot(slots, id);
673 unsigned long npages = old->npages;
674
675 *old = *new;
676 if (new->npages != npages)
677 sort_memslots(slots);
678 }
679
680 slots->generation++;
681 }
682
683 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
684 {
685 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
686
687 #ifdef KVM_CAP_READONLY_MEM
688 valid_flags |= KVM_MEM_READONLY;
689 #endif
690
691 if (mem->flags & ~valid_flags)
692 return -EINVAL;
693
694 return 0;
695 }
696
697 /*
698 * Allocate some memory and give it an address in the guest physical address
699 * space.
700 *
701 * Discontiguous memory is allowed, mostly for framebuffers.
702 *
703 * Must be called holding mmap_sem for write.
704 */
705 int __kvm_set_memory_region(struct kvm *kvm,
706 struct kvm_userspace_memory_region *mem,
707 int user_alloc)
708 {
709 int r;
710 gfn_t base_gfn;
711 unsigned long npages;
712 unsigned long i;
713 struct kvm_memory_slot *memslot;
714 struct kvm_memory_slot old, new;
715 struct kvm_memslots *slots, *old_memslots;
716
717 r = check_memory_region_flags(mem);
718 if (r)
719 goto out;
720
721 r = -EINVAL;
722 /* General sanity checks */
723 if (mem->memory_size & (PAGE_SIZE - 1))
724 goto out;
725 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
726 goto out;
727 /* We can read the guest memory with __xxx_user() later on. */
728 if (user_alloc &&
729 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
730 !access_ok(VERIFY_WRITE,
731 (void __user *)(unsigned long)mem->userspace_addr,
732 mem->memory_size)))
733 goto out;
734 if (mem->slot >= KVM_MEM_SLOTS_NUM)
735 goto out;
736 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
737 goto out;
738
739 memslot = id_to_memslot(kvm->memslots, mem->slot);
740 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
741 npages = mem->memory_size >> PAGE_SHIFT;
742
743 r = -EINVAL;
744 if (npages > KVM_MEM_MAX_NR_PAGES)
745 goto out;
746
747 if (!npages)
748 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
749
750 new = old = *memslot;
751
752 new.id = mem->slot;
753 new.base_gfn = base_gfn;
754 new.npages = npages;
755 new.flags = mem->flags;
756
757 /* Disallow changing a memory slot's size. */
758 r = -EINVAL;
759 if (npages && old.npages && npages != old.npages)
760 goto out_free;
761
762 /* Check for overlaps */
763 r = -EEXIST;
764 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
765 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
766
767 if (s == memslot || !s->npages)
768 continue;
769 if (!((base_gfn + npages <= s->base_gfn) ||
770 (base_gfn >= s->base_gfn + s->npages)))
771 goto out_free;
772 }
773
774 /* Free page dirty bitmap if unneeded */
775 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
776 new.dirty_bitmap = NULL;
777
778 r = -ENOMEM;
779
780 /* Allocate if a slot is being created */
781 if (npages && !old.npages) {
782 new.user_alloc = user_alloc;
783 new.userspace_addr = mem->userspace_addr;
784
785 if (kvm_arch_create_memslot(&new, npages))
786 goto out_free;
787 }
788
789 /* Allocate page dirty bitmap if needed */
790 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
791 if (kvm_create_dirty_bitmap(&new) < 0)
792 goto out_free;
793 /* destroy any largepage mappings for dirty tracking */
794 }
795
796 if (!npages || base_gfn != old.base_gfn) {
797 struct kvm_memory_slot *slot;
798
799 r = -ENOMEM;
800 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
801 GFP_KERNEL);
802 if (!slots)
803 goto out_free;
804 slot = id_to_memslot(slots, mem->slot);
805 slot->flags |= KVM_MEMSLOT_INVALID;
806
807 update_memslots(slots, NULL);
808
809 old_memslots = kvm->memslots;
810 rcu_assign_pointer(kvm->memslots, slots);
811 synchronize_srcu_expedited(&kvm->srcu);
812 /* From this point no new shadow pages pointing to a deleted,
813 * or moved, memslot will be created.
814 *
815 * validation of sp->gfn happens in:
816 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
817 * - kvm_is_visible_gfn (mmu_check_roots)
818 */
819 kvm_arch_flush_shadow_memslot(kvm, slot);
820 kfree(old_memslots);
821 }
822
823 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
824 if (r)
825 goto out_free;
826
827 /* map/unmap the pages in iommu page table */
828 if (npages) {
829 r = kvm_iommu_map_pages(kvm, &new);
830 if (r)
831 goto out_free;
832 } else
833 kvm_iommu_unmap_pages(kvm, &old);
834
835 r = -ENOMEM;
836 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837 GFP_KERNEL);
838 if (!slots)
839 goto out_free;
840
841 /* actual memory is freed via old in kvm_free_physmem_slot below */
842 if (!npages) {
843 new.dirty_bitmap = NULL;
844 memset(&new.arch, 0, sizeof(new.arch));
845 }
846
847 update_memslots(slots, &new);
848 old_memslots = kvm->memslots;
849 rcu_assign_pointer(kvm->memslots, slots);
850 synchronize_srcu_expedited(&kvm->srcu);
851
852 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
853
854 kvm_free_physmem_slot(&old, &new);
855 kfree(old_memslots);
856
857 return 0;
858
859 out_free:
860 kvm_free_physmem_slot(&new, &old);
861 out:
862 return r;
863
864 }
865 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
866
867 int kvm_set_memory_region(struct kvm *kvm,
868 struct kvm_userspace_memory_region *mem,
869 int user_alloc)
870 {
871 int r;
872
873 mutex_lock(&kvm->slots_lock);
874 r = __kvm_set_memory_region(kvm, mem, user_alloc);
875 mutex_unlock(&kvm->slots_lock);
876 return r;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
879
880 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
881 struct
882 kvm_userspace_memory_region *mem,
883 int user_alloc)
884 {
885 if (mem->slot >= KVM_MEMORY_SLOTS)
886 return -EINVAL;
887 return kvm_set_memory_region(kvm, mem, user_alloc);
888 }
889
890 int kvm_get_dirty_log(struct kvm *kvm,
891 struct kvm_dirty_log *log, int *is_dirty)
892 {
893 struct kvm_memory_slot *memslot;
894 int r, i;
895 unsigned long n;
896 unsigned long any = 0;
897
898 r = -EINVAL;
899 if (log->slot >= KVM_MEMORY_SLOTS)
900 goto out;
901
902 memslot = id_to_memslot(kvm->memslots, log->slot);
903 r = -ENOENT;
904 if (!memslot->dirty_bitmap)
905 goto out;
906
907 n = kvm_dirty_bitmap_bytes(memslot);
908
909 for (i = 0; !any && i < n/sizeof(long); ++i)
910 any = memslot->dirty_bitmap[i];
911
912 r = -EFAULT;
913 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
914 goto out;
915
916 if (any)
917 *is_dirty = 1;
918
919 r = 0;
920 out:
921 return r;
922 }
923
924 bool kvm_largepages_enabled(void)
925 {
926 return largepages_enabled;
927 }
928
929 void kvm_disable_largepages(void)
930 {
931 largepages_enabled = false;
932 }
933 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
934
935 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
936 {
937 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
938 }
939 EXPORT_SYMBOL_GPL(gfn_to_memslot);
940
941 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
942 {
943 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
944
945 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
946 memslot->flags & KVM_MEMSLOT_INVALID)
947 return 0;
948
949 return 1;
950 }
951 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
952
953 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
954 {
955 struct vm_area_struct *vma;
956 unsigned long addr, size;
957
958 size = PAGE_SIZE;
959
960 addr = gfn_to_hva(kvm, gfn);
961 if (kvm_is_error_hva(addr))
962 return PAGE_SIZE;
963
964 down_read(&current->mm->mmap_sem);
965 vma = find_vma(current->mm, addr);
966 if (!vma)
967 goto out;
968
969 size = vma_kernel_pagesize(vma);
970
971 out:
972 up_read(&current->mm->mmap_sem);
973
974 return size;
975 }
976
977 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
978 {
979 return slot->flags & KVM_MEM_READONLY;
980 }
981
982 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
983 gfn_t *nr_pages, bool write)
984 {
985 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
986 return KVM_HVA_ERR_BAD;
987
988 if (memslot_is_readonly(slot) && write)
989 return KVM_HVA_ERR_RO_BAD;
990
991 if (nr_pages)
992 *nr_pages = slot->npages - (gfn - slot->base_gfn);
993
994 return __gfn_to_hva_memslot(slot, gfn);
995 }
996
997 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
998 gfn_t *nr_pages)
999 {
1000 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1001 }
1002
1003 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1004 gfn_t gfn)
1005 {
1006 return gfn_to_hva_many(slot, gfn, NULL);
1007 }
1008 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1009
1010 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1011 {
1012 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1013 }
1014 EXPORT_SYMBOL_GPL(gfn_to_hva);
1015
1016 /*
1017 * The hva returned by this function is only allowed to be read.
1018 * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1019 */
1020 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1021 {
1022 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1023 }
1024
1025 static int kvm_read_hva(void *data, void __user *hva, int len)
1026 {
1027 return __copy_from_user(data, hva, len);
1028 }
1029
1030 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1031 {
1032 return __copy_from_user_inatomic(data, hva, len);
1033 }
1034
1035 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1036 unsigned long start, int write, struct page **page)
1037 {
1038 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1039
1040 if (write)
1041 flags |= FOLL_WRITE;
1042
1043 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1044 }
1045
1046 static inline int check_user_page_hwpoison(unsigned long addr)
1047 {
1048 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1049
1050 rc = __get_user_pages(current, current->mm, addr, 1,
1051 flags, NULL, NULL, NULL);
1052 return rc == -EHWPOISON;
1053 }
1054
1055 /*
1056 * The atomic path to get the writable pfn which will be stored in @pfn,
1057 * true indicates success, otherwise false is returned.
1058 */
1059 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1060 bool write_fault, bool *writable, pfn_t *pfn)
1061 {
1062 struct page *page[1];
1063 int npages;
1064
1065 if (!(async || atomic))
1066 return false;
1067
1068 /*
1069 * Fast pin a writable pfn only if it is a write fault request
1070 * or the caller allows to map a writable pfn for a read fault
1071 * request.
1072 */
1073 if (!(write_fault || writable))
1074 return false;
1075
1076 npages = __get_user_pages_fast(addr, 1, 1, page);
1077 if (npages == 1) {
1078 *pfn = page_to_pfn(page[0]);
1079
1080 if (writable)
1081 *writable = true;
1082 return true;
1083 }
1084
1085 return false;
1086 }
1087
1088 /*
1089 * The slow path to get the pfn of the specified host virtual address,
1090 * 1 indicates success, -errno is returned if error is detected.
1091 */
1092 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1093 bool *writable, pfn_t *pfn)
1094 {
1095 struct page *page[1];
1096 int npages = 0;
1097
1098 might_sleep();
1099
1100 if (writable)
1101 *writable = write_fault;
1102
1103 if (async) {
1104 down_read(&current->mm->mmap_sem);
1105 npages = get_user_page_nowait(current, current->mm,
1106 addr, write_fault, page);
1107 up_read(&current->mm->mmap_sem);
1108 } else
1109 npages = get_user_pages_fast(addr, 1, write_fault,
1110 page);
1111 if (npages != 1)
1112 return npages;
1113
1114 /* map read fault as writable if possible */
1115 if (unlikely(!write_fault) && writable) {
1116 struct page *wpage[1];
1117
1118 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1119 if (npages == 1) {
1120 *writable = true;
1121 put_page(page[0]);
1122 page[0] = wpage[0];
1123 }
1124
1125 npages = 1;
1126 }
1127 *pfn = page_to_pfn(page[0]);
1128 return npages;
1129 }
1130
1131 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1132 {
1133 if (unlikely(!(vma->vm_flags & VM_READ)))
1134 return false;
1135
1136 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1137 return false;
1138
1139 return true;
1140 }
1141
1142 /*
1143 * Pin guest page in memory and return its pfn.
1144 * @addr: host virtual address which maps memory to the guest
1145 * @atomic: whether this function can sleep
1146 * @async: whether this function need to wait IO complete if the
1147 * host page is not in the memory
1148 * @write_fault: whether we should get a writable host page
1149 * @writable: whether it allows to map a writable host page for !@write_fault
1150 *
1151 * The function will map a writable host page for these two cases:
1152 * 1): @write_fault = true
1153 * 2): @write_fault = false && @writable, @writable will tell the caller
1154 * whether the mapping is writable.
1155 */
1156 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1157 bool write_fault, bool *writable)
1158 {
1159 struct vm_area_struct *vma;
1160 pfn_t pfn = 0;
1161 int npages;
1162
1163 /* we can do it either atomically or asynchronously, not both */
1164 BUG_ON(atomic && async);
1165
1166 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1167 return pfn;
1168
1169 if (atomic)
1170 return KVM_PFN_ERR_FAULT;
1171
1172 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1173 if (npages == 1)
1174 return pfn;
1175
1176 down_read(&current->mm->mmap_sem);
1177 if (npages == -EHWPOISON ||
1178 (!async && check_user_page_hwpoison(addr))) {
1179 pfn = KVM_PFN_ERR_HWPOISON;
1180 goto exit;
1181 }
1182
1183 vma = find_vma_intersection(current->mm, addr, addr + 1);
1184
1185 if (vma == NULL)
1186 pfn = KVM_PFN_ERR_FAULT;
1187 else if ((vma->vm_flags & VM_PFNMAP)) {
1188 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1189 vma->vm_pgoff;
1190 BUG_ON(!kvm_is_mmio_pfn(pfn));
1191 } else {
1192 if (async && vma_is_valid(vma, write_fault))
1193 *async = true;
1194 pfn = KVM_PFN_ERR_FAULT;
1195 }
1196 exit:
1197 up_read(&current->mm->mmap_sem);
1198 return pfn;
1199 }
1200
1201 static pfn_t
1202 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1203 bool *async, bool write_fault, bool *writable)
1204 {
1205 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1206
1207 if (addr == KVM_HVA_ERR_RO_BAD)
1208 return KVM_PFN_ERR_RO_FAULT;
1209
1210 if (kvm_is_error_hva(addr))
1211 return KVM_PFN_ERR_BAD;
1212
1213 /* Do not map writable pfn in the readonly memslot. */
1214 if (writable && memslot_is_readonly(slot)) {
1215 *writable = false;
1216 writable = NULL;
1217 }
1218
1219 return hva_to_pfn(addr, atomic, async, write_fault,
1220 writable);
1221 }
1222
1223 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1224 bool write_fault, bool *writable)
1225 {
1226 struct kvm_memory_slot *slot;
1227
1228 if (async)
1229 *async = false;
1230
1231 slot = gfn_to_memslot(kvm, gfn);
1232
1233 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1234 writable);
1235 }
1236
1237 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1238 {
1239 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1240 }
1241 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1242
1243 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1244 bool write_fault, bool *writable)
1245 {
1246 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1247 }
1248 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1249
1250 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1251 {
1252 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1253 }
1254 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1255
1256 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1257 bool *writable)
1258 {
1259 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1260 }
1261 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1262
1263 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1264 {
1265 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1266 }
1267
1268 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1269 {
1270 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1271 }
1272 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1273
1274 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1275 int nr_pages)
1276 {
1277 unsigned long addr;
1278 gfn_t entry;
1279
1280 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1281 if (kvm_is_error_hva(addr))
1282 return -1;
1283
1284 if (entry < nr_pages)
1285 return 0;
1286
1287 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1288 }
1289 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1290
1291 static struct page *kvm_pfn_to_page(pfn_t pfn)
1292 {
1293 if (is_error_pfn(pfn))
1294 return KVM_ERR_PTR_BAD_PAGE;
1295
1296 if (kvm_is_mmio_pfn(pfn)) {
1297 WARN_ON(1);
1298 return KVM_ERR_PTR_BAD_PAGE;
1299 }
1300
1301 return pfn_to_page(pfn);
1302 }
1303
1304 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1305 {
1306 pfn_t pfn;
1307
1308 pfn = gfn_to_pfn(kvm, gfn);
1309
1310 return kvm_pfn_to_page(pfn);
1311 }
1312
1313 EXPORT_SYMBOL_GPL(gfn_to_page);
1314
1315 void kvm_release_page_clean(struct page *page)
1316 {
1317 WARN_ON(is_error_page(page));
1318
1319 kvm_release_pfn_clean(page_to_pfn(page));
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1322
1323 void kvm_release_pfn_clean(pfn_t pfn)
1324 {
1325 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1326 put_page(pfn_to_page(pfn));
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1329
1330 void kvm_release_page_dirty(struct page *page)
1331 {
1332 WARN_ON(is_error_page(page));
1333
1334 kvm_release_pfn_dirty(page_to_pfn(page));
1335 }
1336 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1337
1338 void kvm_release_pfn_dirty(pfn_t pfn)
1339 {
1340 kvm_set_pfn_dirty(pfn);
1341 kvm_release_pfn_clean(pfn);
1342 }
1343 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1344
1345 void kvm_set_page_dirty(struct page *page)
1346 {
1347 kvm_set_pfn_dirty(page_to_pfn(page));
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1350
1351 void kvm_set_pfn_dirty(pfn_t pfn)
1352 {
1353 if (!kvm_is_mmio_pfn(pfn)) {
1354 struct page *page = pfn_to_page(pfn);
1355 if (!PageReserved(page))
1356 SetPageDirty(page);
1357 }
1358 }
1359 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1360
1361 void kvm_set_pfn_accessed(pfn_t pfn)
1362 {
1363 if (!kvm_is_mmio_pfn(pfn))
1364 mark_page_accessed(pfn_to_page(pfn));
1365 }
1366 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1367
1368 void kvm_get_pfn(pfn_t pfn)
1369 {
1370 if (!kvm_is_mmio_pfn(pfn))
1371 get_page(pfn_to_page(pfn));
1372 }
1373 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1374
1375 static int next_segment(unsigned long len, int offset)
1376 {
1377 if (len > PAGE_SIZE - offset)
1378 return PAGE_SIZE - offset;
1379 else
1380 return len;
1381 }
1382
1383 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1384 int len)
1385 {
1386 int r;
1387 unsigned long addr;
1388
1389 addr = gfn_to_hva_read(kvm, gfn);
1390 if (kvm_is_error_hva(addr))
1391 return -EFAULT;
1392 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1393 if (r)
1394 return -EFAULT;
1395 return 0;
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1398
1399 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1400 {
1401 gfn_t gfn = gpa >> PAGE_SHIFT;
1402 int seg;
1403 int offset = offset_in_page(gpa);
1404 int ret;
1405
1406 while ((seg = next_segment(len, offset)) != 0) {
1407 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1408 if (ret < 0)
1409 return ret;
1410 offset = 0;
1411 len -= seg;
1412 data += seg;
1413 ++gfn;
1414 }
1415 return 0;
1416 }
1417 EXPORT_SYMBOL_GPL(kvm_read_guest);
1418
1419 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1420 unsigned long len)
1421 {
1422 int r;
1423 unsigned long addr;
1424 gfn_t gfn = gpa >> PAGE_SHIFT;
1425 int offset = offset_in_page(gpa);
1426
1427 addr = gfn_to_hva_read(kvm, gfn);
1428 if (kvm_is_error_hva(addr))
1429 return -EFAULT;
1430 pagefault_disable();
1431 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1432 pagefault_enable();
1433 if (r)
1434 return -EFAULT;
1435 return 0;
1436 }
1437 EXPORT_SYMBOL(kvm_read_guest_atomic);
1438
1439 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1440 int offset, int len)
1441 {
1442 int r;
1443 unsigned long addr;
1444
1445 addr = gfn_to_hva(kvm, gfn);
1446 if (kvm_is_error_hva(addr))
1447 return -EFAULT;
1448 r = __copy_to_user((void __user *)addr + offset, data, len);
1449 if (r)
1450 return -EFAULT;
1451 mark_page_dirty(kvm, gfn);
1452 return 0;
1453 }
1454 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1455
1456 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1457 unsigned long len)
1458 {
1459 gfn_t gfn = gpa >> PAGE_SHIFT;
1460 int seg;
1461 int offset = offset_in_page(gpa);
1462 int ret;
1463
1464 while ((seg = next_segment(len, offset)) != 0) {
1465 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1466 if (ret < 0)
1467 return ret;
1468 offset = 0;
1469 len -= seg;
1470 data += seg;
1471 ++gfn;
1472 }
1473 return 0;
1474 }
1475
1476 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1477 gpa_t gpa)
1478 {
1479 struct kvm_memslots *slots = kvm_memslots(kvm);
1480 int offset = offset_in_page(gpa);
1481 gfn_t gfn = gpa >> PAGE_SHIFT;
1482
1483 ghc->gpa = gpa;
1484 ghc->generation = slots->generation;
1485 ghc->memslot = gfn_to_memslot(kvm, gfn);
1486 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1487 if (!kvm_is_error_hva(ghc->hva))
1488 ghc->hva += offset;
1489 else
1490 return -EFAULT;
1491
1492 return 0;
1493 }
1494 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1495
1496 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1497 void *data, unsigned long len)
1498 {
1499 struct kvm_memslots *slots = kvm_memslots(kvm);
1500 int r;
1501
1502 if (slots->generation != ghc->generation)
1503 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1504
1505 if (kvm_is_error_hva(ghc->hva))
1506 return -EFAULT;
1507
1508 r = __copy_to_user((void __user *)ghc->hva, data, len);
1509 if (r)
1510 return -EFAULT;
1511 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1512
1513 return 0;
1514 }
1515 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1516
1517 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1518 void *data, unsigned long len)
1519 {
1520 struct kvm_memslots *slots = kvm_memslots(kvm);
1521 int r;
1522
1523 if (slots->generation != ghc->generation)
1524 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1525
1526 if (kvm_is_error_hva(ghc->hva))
1527 return -EFAULT;
1528
1529 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1530 if (r)
1531 return -EFAULT;
1532
1533 return 0;
1534 }
1535 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1536
1537 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1538 {
1539 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1540 offset, len);
1541 }
1542 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1543
1544 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1545 {
1546 gfn_t gfn = gpa >> PAGE_SHIFT;
1547 int seg;
1548 int offset = offset_in_page(gpa);
1549 int ret;
1550
1551 while ((seg = next_segment(len, offset)) != 0) {
1552 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1553 if (ret < 0)
1554 return ret;
1555 offset = 0;
1556 len -= seg;
1557 ++gfn;
1558 }
1559 return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1562
1563 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1564 gfn_t gfn)
1565 {
1566 if (memslot && memslot->dirty_bitmap) {
1567 unsigned long rel_gfn = gfn - memslot->base_gfn;
1568
1569 /* TODO: introduce set_bit_le() and use it */
1570 test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
1571 }
1572 }
1573
1574 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1575 {
1576 struct kvm_memory_slot *memslot;
1577
1578 memslot = gfn_to_memslot(kvm, gfn);
1579 mark_page_dirty_in_slot(kvm, memslot, gfn);
1580 }
1581
1582 /*
1583 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1584 */
1585 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1586 {
1587 DEFINE_WAIT(wait);
1588
1589 for (;;) {
1590 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1591
1592 if (kvm_arch_vcpu_runnable(vcpu)) {
1593 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1594 break;
1595 }
1596 if (kvm_cpu_has_pending_timer(vcpu))
1597 break;
1598 if (signal_pending(current))
1599 break;
1600
1601 schedule();
1602 }
1603
1604 finish_wait(&vcpu->wq, &wait);
1605 }
1606
1607 #ifndef CONFIG_S390
1608 /*
1609 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1610 */
1611 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1612 {
1613 int me;
1614 int cpu = vcpu->cpu;
1615 wait_queue_head_t *wqp;
1616
1617 wqp = kvm_arch_vcpu_wq(vcpu);
1618 if (waitqueue_active(wqp)) {
1619 wake_up_interruptible(wqp);
1620 ++vcpu->stat.halt_wakeup;
1621 }
1622
1623 me = get_cpu();
1624 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1625 if (kvm_arch_vcpu_should_kick(vcpu))
1626 smp_send_reschedule(cpu);
1627 put_cpu();
1628 }
1629 #endif /* !CONFIG_S390 */
1630
1631 void kvm_resched(struct kvm_vcpu *vcpu)
1632 {
1633 if (!need_resched())
1634 return;
1635 cond_resched();
1636 }
1637 EXPORT_SYMBOL_GPL(kvm_resched);
1638
1639 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1640 {
1641 struct pid *pid;
1642 struct task_struct *task = NULL;
1643
1644 rcu_read_lock();
1645 pid = rcu_dereference(target->pid);
1646 if (pid)
1647 task = get_pid_task(target->pid, PIDTYPE_PID);
1648 rcu_read_unlock();
1649 if (!task)
1650 return false;
1651 if (task->flags & PF_VCPU) {
1652 put_task_struct(task);
1653 return false;
1654 }
1655 if (yield_to(task, 1)) {
1656 put_task_struct(task);
1657 return true;
1658 }
1659 put_task_struct(task);
1660 return false;
1661 }
1662 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1663
1664 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1665 /*
1666 * Helper that checks whether a VCPU is eligible for directed yield.
1667 * Most eligible candidate to yield is decided by following heuristics:
1668 *
1669 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1670 * (preempted lock holder), indicated by @in_spin_loop.
1671 * Set at the beiginning and cleared at the end of interception/PLE handler.
1672 *
1673 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1674 * chance last time (mostly it has become eligible now since we have probably
1675 * yielded to lockholder in last iteration. This is done by toggling
1676 * @dy_eligible each time a VCPU checked for eligibility.)
1677 *
1678 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1679 * to preempted lock-holder could result in wrong VCPU selection and CPU
1680 * burning. Giving priority for a potential lock-holder increases lock
1681 * progress.
1682 *
1683 * Since algorithm is based on heuristics, accessing another VCPU data without
1684 * locking does not harm. It may result in trying to yield to same VCPU, fail
1685 * and continue with next VCPU and so on.
1686 */
1687 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1688 {
1689 bool eligible;
1690
1691 eligible = !vcpu->spin_loop.in_spin_loop ||
1692 (vcpu->spin_loop.in_spin_loop &&
1693 vcpu->spin_loop.dy_eligible);
1694
1695 if (vcpu->spin_loop.in_spin_loop)
1696 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1697
1698 return eligible;
1699 }
1700 #endif
1701 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1702 {
1703 struct kvm *kvm = me->kvm;
1704 struct kvm_vcpu *vcpu;
1705 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1706 int yielded = 0;
1707 int pass;
1708 int i;
1709
1710 kvm_vcpu_set_in_spin_loop(me, true);
1711 /*
1712 * We boost the priority of a VCPU that is runnable but not
1713 * currently running, because it got preempted by something
1714 * else and called schedule in __vcpu_run. Hopefully that
1715 * VCPU is holding the lock that we need and will release it.
1716 * We approximate round-robin by starting at the last boosted VCPU.
1717 */
1718 for (pass = 0; pass < 2 && !yielded; pass++) {
1719 kvm_for_each_vcpu(i, vcpu, kvm) {
1720 if (!pass && i <= last_boosted_vcpu) {
1721 i = last_boosted_vcpu;
1722 continue;
1723 } else if (pass && i > last_boosted_vcpu)
1724 break;
1725 if (vcpu == me)
1726 continue;
1727 if (waitqueue_active(&vcpu->wq))
1728 continue;
1729 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1730 continue;
1731 if (kvm_vcpu_yield_to(vcpu)) {
1732 kvm->last_boosted_vcpu = i;
1733 yielded = 1;
1734 break;
1735 }
1736 }
1737 }
1738 kvm_vcpu_set_in_spin_loop(me, false);
1739
1740 /* Ensure vcpu is not eligible during next spinloop */
1741 kvm_vcpu_set_dy_eligible(me, false);
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1744
1745 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1746 {
1747 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1748 struct page *page;
1749
1750 if (vmf->pgoff == 0)
1751 page = virt_to_page(vcpu->run);
1752 #ifdef CONFIG_X86
1753 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1754 page = virt_to_page(vcpu->arch.pio_data);
1755 #endif
1756 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1757 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1758 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1759 #endif
1760 else
1761 return kvm_arch_vcpu_fault(vcpu, vmf);
1762 get_page(page);
1763 vmf->page = page;
1764 return 0;
1765 }
1766
1767 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1768 .fault = kvm_vcpu_fault,
1769 };
1770
1771 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1772 {
1773 vma->vm_ops = &kvm_vcpu_vm_ops;
1774 return 0;
1775 }
1776
1777 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1778 {
1779 struct kvm_vcpu *vcpu = filp->private_data;
1780
1781 kvm_put_kvm(vcpu->kvm);
1782 return 0;
1783 }
1784
1785 static struct file_operations kvm_vcpu_fops = {
1786 .release = kvm_vcpu_release,
1787 .unlocked_ioctl = kvm_vcpu_ioctl,
1788 #ifdef CONFIG_COMPAT
1789 .compat_ioctl = kvm_vcpu_compat_ioctl,
1790 #endif
1791 .mmap = kvm_vcpu_mmap,
1792 .llseek = noop_llseek,
1793 };
1794
1795 /*
1796 * Allocates an inode for the vcpu.
1797 */
1798 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1799 {
1800 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1801 }
1802
1803 /*
1804 * Creates some virtual cpus. Good luck creating more than one.
1805 */
1806 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1807 {
1808 int r;
1809 struct kvm_vcpu *vcpu, *v;
1810
1811 vcpu = kvm_arch_vcpu_create(kvm, id);
1812 if (IS_ERR(vcpu))
1813 return PTR_ERR(vcpu);
1814
1815 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1816
1817 r = kvm_arch_vcpu_setup(vcpu);
1818 if (r)
1819 goto vcpu_destroy;
1820
1821 mutex_lock(&kvm->lock);
1822 if (!kvm_vcpu_compatible(vcpu)) {
1823 r = -EINVAL;
1824 goto unlock_vcpu_destroy;
1825 }
1826 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1827 r = -EINVAL;
1828 goto unlock_vcpu_destroy;
1829 }
1830
1831 kvm_for_each_vcpu(r, v, kvm)
1832 if (v->vcpu_id == id) {
1833 r = -EEXIST;
1834 goto unlock_vcpu_destroy;
1835 }
1836
1837 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1838
1839 /* Now it's all set up, let userspace reach it */
1840 kvm_get_kvm(kvm);
1841 r = create_vcpu_fd(vcpu);
1842 if (r < 0) {
1843 kvm_put_kvm(kvm);
1844 goto unlock_vcpu_destroy;
1845 }
1846
1847 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1848 smp_wmb();
1849 atomic_inc(&kvm->online_vcpus);
1850
1851 mutex_unlock(&kvm->lock);
1852 return r;
1853
1854 unlock_vcpu_destroy:
1855 mutex_unlock(&kvm->lock);
1856 vcpu_destroy:
1857 kvm_arch_vcpu_destroy(vcpu);
1858 return r;
1859 }
1860
1861 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1862 {
1863 if (sigset) {
1864 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1865 vcpu->sigset_active = 1;
1866 vcpu->sigset = *sigset;
1867 } else
1868 vcpu->sigset_active = 0;
1869 return 0;
1870 }
1871
1872 static long kvm_vcpu_ioctl(struct file *filp,
1873 unsigned int ioctl, unsigned long arg)
1874 {
1875 struct kvm_vcpu *vcpu = filp->private_data;
1876 void __user *argp = (void __user *)arg;
1877 int r;
1878 struct kvm_fpu *fpu = NULL;
1879 struct kvm_sregs *kvm_sregs = NULL;
1880
1881 if (vcpu->kvm->mm != current->mm)
1882 return -EIO;
1883
1884 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1885 /*
1886 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1887 * so vcpu_load() would break it.
1888 */
1889 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1890 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1891 #endif
1892
1893
1894 r = vcpu_load(vcpu);
1895 if (r)
1896 return r;
1897 switch (ioctl) {
1898 case KVM_RUN:
1899 r = -EINVAL;
1900 if (arg)
1901 goto out;
1902 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1903 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1904 break;
1905 case KVM_GET_REGS: {
1906 struct kvm_regs *kvm_regs;
1907
1908 r = -ENOMEM;
1909 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1910 if (!kvm_regs)
1911 goto out;
1912 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1913 if (r)
1914 goto out_free1;
1915 r = -EFAULT;
1916 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1917 goto out_free1;
1918 r = 0;
1919 out_free1:
1920 kfree(kvm_regs);
1921 break;
1922 }
1923 case KVM_SET_REGS: {
1924 struct kvm_regs *kvm_regs;
1925
1926 r = -ENOMEM;
1927 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1928 if (IS_ERR(kvm_regs)) {
1929 r = PTR_ERR(kvm_regs);
1930 goto out;
1931 }
1932 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1933 if (r)
1934 goto out_free2;
1935 r = 0;
1936 out_free2:
1937 kfree(kvm_regs);
1938 break;
1939 }
1940 case KVM_GET_SREGS: {
1941 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1942 r = -ENOMEM;
1943 if (!kvm_sregs)
1944 goto out;
1945 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1946 if (r)
1947 goto out;
1948 r = -EFAULT;
1949 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1950 goto out;
1951 r = 0;
1952 break;
1953 }
1954 case KVM_SET_SREGS: {
1955 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1956 if (IS_ERR(kvm_sregs)) {
1957 r = PTR_ERR(kvm_sregs);
1958 goto out;
1959 }
1960 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1961 if (r)
1962 goto out;
1963 r = 0;
1964 break;
1965 }
1966 case KVM_GET_MP_STATE: {
1967 struct kvm_mp_state mp_state;
1968
1969 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1970 if (r)
1971 goto out;
1972 r = -EFAULT;
1973 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1974 goto out;
1975 r = 0;
1976 break;
1977 }
1978 case KVM_SET_MP_STATE: {
1979 struct kvm_mp_state mp_state;
1980
1981 r = -EFAULT;
1982 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1983 goto out;
1984 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1985 if (r)
1986 goto out;
1987 r = 0;
1988 break;
1989 }
1990 case KVM_TRANSLATE: {
1991 struct kvm_translation tr;
1992
1993 r = -EFAULT;
1994 if (copy_from_user(&tr, argp, sizeof tr))
1995 goto out;
1996 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1997 if (r)
1998 goto out;
1999 r = -EFAULT;
2000 if (copy_to_user(argp, &tr, sizeof tr))
2001 goto out;
2002 r = 0;
2003 break;
2004 }
2005 case KVM_SET_GUEST_DEBUG: {
2006 struct kvm_guest_debug dbg;
2007
2008 r = -EFAULT;
2009 if (copy_from_user(&dbg, argp, sizeof dbg))
2010 goto out;
2011 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2012 if (r)
2013 goto out;
2014 r = 0;
2015 break;
2016 }
2017 case KVM_SET_SIGNAL_MASK: {
2018 struct kvm_signal_mask __user *sigmask_arg = argp;
2019 struct kvm_signal_mask kvm_sigmask;
2020 sigset_t sigset, *p;
2021
2022 p = NULL;
2023 if (argp) {
2024 r = -EFAULT;
2025 if (copy_from_user(&kvm_sigmask, argp,
2026 sizeof kvm_sigmask))
2027 goto out;
2028 r = -EINVAL;
2029 if (kvm_sigmask.len != sizeof sigset)
2030 goto out;
2031 r = -EFAULT;
2032 if (copy_from_user(&sigset, sigmask_arg->sigset,
2033 sizeof sigset))
2034 goto out;
2035 p = &sigset;
2036 }
2037 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2038 break;
2039 }
2040 case KVM_GET_FPU: {
2041 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2042 r = -ENOMEM;
2043 if (!fpu)
2044 goto out;
2045 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2046 if (r)
2047 goto out;
2048 r = -EFAULT;
2049 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2050 goto out;
2051 r = 0;
2052 break;
2053 }
2054 case KVM_SET_FPU: {
2055 fpu = memdup_user(argp, sizeof(*fpu));
2056 if (IS_ERR(fpu)) {
2057 r = PTR_ERR(fpu);
2058 goto out;
2059 }
2060 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2061 if (r)
2062 goto out;
2063 r = 0;
2064 break;
2065 }
2066 default:
2067 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2068 }
2069 out:
2070 vcpu_put(vcpu);
2071 kfree(fpu);
2072 kfree(kvm_sregs);
2073 return r;
2074 }
2075
2076 #ifdef CONFIG_COMPAT
2077 static long kvm_vcpu_compat_ioctl(struct file *filp,
2078 unsigned int ioctl, unsigned long arg)
2079 {
2080 struct kvm_vcpu *vcpu = filp->private_data;
2081 void __user *argp = compat_ptr(arg);
2082 int r;
2083
2084 if (vcpu->kvm->mm != current->mm)
2085 return -EIO;
2086
2087 switch (ioctl) {
2088 case KVM_SET_SIGNAL_MASK: {
2089 struct kvm_signal_mask __user *sigmask_arg = argp;
2090 struct kvm_signal_mask kvm_sigmask;
2091 compat_sigset_t csigset;
2092 sigset_t sigset;
2093
2094 if (argp) {
2095 r = -EFAULT;
2096 if (copy_from_user(&kvm_sigmask, argp,
2097 sizeof kvm_sigmask))
2098 goto out;
2099 r = -EINVAL;
2100 if (kvm_sigmask.len != sizeof csigset)
2101 goto out;
2102 r = -EFAULT;
2103 if (copy_from_user(&csigset, sigmask_arg->sigset,
2104 sizeof csigset))
2105 goto out;
2106 sigset_from_compat(&sigset, &csigset);
2107 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2108 } else
2109 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2110 break;
2111 }
2112 default:
2113 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2114 }
2115
2116 out:
2117 return r;
2118 }
2119 #endif
2120
2121 static long kvm_vm_ioctl(struct file *filp,
2122 unsigned int ioctl, unsigned long arg)
2123 {
2124 struct kvm *kvm = filp->private_data;
2125 void __user *argp = (void __user *)arg;
2126 int r;
2127
2128 if (kvm->mm != current->mm)
2129 return -EIO;
2130 switch (ioctl) {
2131 case KVM_CREATE_VCPU:
2132 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2133 if (r < 0)
2134 goto out;
2135 break;
2136 case KVM_SET_USER_MEMORY_REGION: {
2137 struct kvm_userspace_memory_region kvm_userspace_mem;
2138
2139 r = -EFAULT;
2140 if (copy_from_user(&kvm_userspace_mem, argp,
2141 sizeof kvm_userspace_mem))
2142 goto out;
2143
2144 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2145 if (r)
2146 goto out;
2147 break;
2148 }
2149 case KVM_GET_DIRTY_LOG: {
2150 struct kvm_dirty_log log;
2151
2152 r = -EFAULT;
2153 if (copy_from_user(&log, argp, sizeof log))
2154 goto out;
2155 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2156 if (r)
2157 goto out;
2158 break;
2159 }
2160 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2161 case KVM_REGISTER_COALESCED_MMIO: {
2162 struct kvm_coalesced_mmio_zone zone;
2163 r = -EFAULT;
2164 if (copy_from_user(&zone, argp, sizeof zone))
2165 goto out;
2166 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2167 if (r)
2168 goto out;
2169 r = 0;
2170 break;
2171 }
2172 case KVM_UNREGISTER_COALESCED_MMIO: {
2173 struct kvm_coalesced_mmio_zone zone;
2174 r = -EFAULT;
2175 if (copy_from_user(&zone, argp, sizeof zone))
2176 goto out;
2177 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2178 if (r)
2179 goto out;
2180 r = 0;
2181 break;
2182 }
2183 #endif
2184 case KVM_IRQFD: {
2185 struct kvm_irqfd data;
2186
2187 r = -EFAULT;
2188 if (copy_from_user(&data, argp, sizeof data))
2189 goto out;
2190 r = kvm_irqfd(kvm, &data);
2191 break;
2192 }
2193 case KVM_IOEVENTFD: {
2194 struct kvm_ioeventfd data;
2195
2196 r = -EFAULT;
2197 if (copy_from_user(&data, argp, sizeof data))
2198 goto out;
2199 r = kvm_ioeventfd(kvm, &data);
2200 break;
2201 }
2202 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2203 case KVM_SET_BOOT_CPU_ID:
2204 r = 0;
2205 mutex_lock(&kvm->lock);
2206 if (atomic_read(&kvm->online_vcpus) != 0)
2207 r = -EBUSY;
2208 else
2209 kvm->bsp_vcpu_id = arg;
2210 mutex_unlock(&kvm->lock);
2211 break;
2212 #endif
2213 #ifdef CONFIG_HAVE_KVM_MSI
2214 case KVM_SIGNAL_MSI: {
2215 struct kvm_msi msi;
2216
2217 r = -EFAULT;
2218 if (copy_from_user(&msi, argp, sizeof msi))
2219 goto out;
2220 r = kvm_send_userspace_msi(kvm, &msi);
2221 break;
2222 }
2223 #endif
2224 #ifdef __KVM_HAVE_IRQ_LINE
2225 case KVM_IRQ_LINE_STATUS:
2226 case KVM_IRQ_LINE: {
2227 struct kvm_irq_level irq_event;
2228
2229 r = -EFAULT;
2230 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2231 goto out;
2232
2233 r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2234 if (r)
2235 goto out;
2236
2237 r = -EFAULT;
2238 if (ioctl == KVM_IRQ_LINE_STATUS) {
2239 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2240 goto out;
2241 }
2242
2243 r = 0;
2244 break;
2245 }
2246 #endif
2247 default:
2248 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2249 if (r == -ENOTTY)
2250 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2251 }
2252 out:
2253 return r;
2254 }
2255
2256 #ifdef CONFIG_COMPAT
2257 struct compat_kvm_dirty_log {
2258 __u32 slot;
2259 __u32 padding1;
2260 union {
2261 compat_uptr_t dirty_bitmap; /* one bit per page */
2262 __u64 padding2;
2263 };
2264 };
2265
2266 static long kvm_vm_compat_ioctl(struct file *filp,
2267 unsigned int ioctl, unsigned long arg)
2268 {
2269 struct kvm *kvm = filp->private_data;
2270 int r;
2271
2272 if (kvm->mm != current->mm)
2273 return -EIO;
2274 switch (ioctl) {
2275 case KVM_GET_DIRTY_LOG: {
2276 struct compat_kvm_dirty_log compat_log;
2277 struct kvm_dirty_log log;
2278
2279 r = -EFAULT;
2280 if (copy_from_user(&compat_log, (void __user *)arg,
2281 sizeof(compat_log)))
2282 goto out;
2283 log.slot = compat_log.slot;
2284 log.padding1 = compat_log.padding1;
2285 log.padding2 = compat_log.padding2;
2286 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2287
2288 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2289 if (r)
2290 goto out;
2291 break;
2292 }
2293 default:
2294 r = kvm_vm_ioctl(filp, ioctl, arg);
2295 }
2296
2297 out:
2298 return r;
2299 }
2300 #endif
2301
2302 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2303 {
2304 struct page *page[1];
2305 unsigned long addr;
2306 int npages;
2307 gfn_t gfn = vmf->pgoff;
2308 struct kvm *kvm = vma->vm_file->private_data;
2309
2310 addr = gfn_to_hva(kvm, gfn);
2311 if (kvm_is_error_hva(addr))
2312 return VM_FAULT_SIGBUS;
2313
2314 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2315 NULL);
2316 if (unlikely(npages != 1))
2317 return VM_FAULT_SIGBUS;
2318
2319 vmf->page = page[0];
2320 return 0;
2321 }
2322
2323 static const struct vm_operations_struct kvm_vm_vm_ops = {
2324 .fault = kvm_vm_fault,
2325 };
2326
2327 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2328 {
2329 vma->vm_ops = &kvm_vm_vm_ops;
2330 return 0;
2331 }
2332
2333 static struct file_operations kvm_vm_fops = {
2334 .release = kvm_vm_release,
2335 .unlocked_ioctl = kvm_vm_ioctl,
2336 #ifdef CONFIG_COMPAT
2337 .compat_ioctl = kvm_vm_compat_ioctl,
2338 #endif
2339 .mmap = kvm_vm_mmap,
2340 .llseek = noop_llseek,
2341 };
2342
2343 static int kvm_dev_ioctl_create_vm(unsigned long type)
2344 {
2345 int r;
2346 struct kvm *kvm;
2347
2348 kvm = kvm_create_vm(type);
2349 if (IS_ERR(kvm))
2350 return PTR_ERR(kvm);
2351 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2352 r = kvm_coalesced_mmio_init(kvm);
2353 if (r < 0) {
2354 kvm_put_kvm(kvm);
2355 return r;
2356 }
2357 #endif
2358 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2359 if (r < 0)
2360 kvm_put_kvm(kvm);
2361
2362 return r;
2363 }
2364
2365 static long kvm_dev_ioctl_check_extension_generic(long arg)
2366 {
2367 switch (arg) {
2368 case KVM_CAP_USER_MEMORY:
2369 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2370 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2371 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2372 case KVM_CAP_SET_BOOT_CPU_ID:
2373 #endif
2374 case KVM_CAP_INTERNAL_ERROR_DATA:
2375 #ifdef CONFIG_HAVE_KVM_MSI
2376 case KVM_CAP_SIGNAL_MSI:
2377 #endif
2378 return 1;
2379 #ifdef KVM_CAP_IRQ_ROUTING
2380 case KVM_CAP_IRQ_ROUTING:
2381 return KVM_MAX_IRQ_ROUTES;
2382 #endif
2383 default:
2384 break;
2385 }
2386 return kvm_dev_ioctl_check_extension(arg);
2387 }
2388
2389 static long kvm_dev_ioctl(struct file *filp,
2390 unsigned int ioctl, unsigned long arg)
2391 {
2392 long r = -EINVAL;
2393
2394 switch (ioctl) {
2395 case KVM_GET_API_VERSION:
2396 r = -EINVAL;
2397 if (arg)
2398 goto out;
2399 r = KVM_API_VERSION;
2400 break;
2401 case KVM_CREATE_VM:
2402 r = kvm_dev_ioctl_create_vm(arg);
2403 break;
2404 case KVM_CHECK_EXTENSION:
2405 r = kvm_dev_ioctl_check_extension_generic(arg);
2406 break;
2407 case KVM_GET_VCPU_MMAP_SIZE:
2408 r = -EINVAL;
2409 if (arg)
2410 goto out;
2411 r = PAGE_SIZE; /* struct kvm_run */
2412 #ifdef CONFIG_X86
2413 r += PAGE_SIZE; /* pio data page */
2414 #endif
2415 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2416 r += PAGE_SIZE; /* coalesced mmio ring page */
2417 #endif
2418 break;
2419 case KVM_TRACE_ENABLE:
2420 case KVM_TRACE_PAUSE:
2421 case KVM_TRACE_DISABLE:
2422 r = -EOPNOTSUPP;
2423 break;
2424 default:
2425 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2426 }
2427 out:
2428 return r;
2429 }
2430
2431 static struct file_operations kvm_chardev_ops = {
2432 .unlocked_ioctl = kvm_dev_ioctl,
2433 .compat_ioctl = kvm_dev_ioctl,
2434 .llseek = noop_llseek,
2435 };
2436
2437 static struct miscdevice kvm_dev = {
2438 KVM_MINOR,
2439 "kvm",
2440 &kvm_chardev_ops,
2441 };
2442
2443 static void hardware_enable_nolock(void *junk)
2444 {
2445 int cpu = raw_smp_processor_id();
2446 int r;
2447
2448 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2449 return;
2450
2451 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2452
2453 r = kvm_arch_hardware_enable(NULL);
2454
2455 if (r) {
2456 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2457 atomic_inc(&hardware_enable_failed);
2458 printk(KERN_INFO "kvm: enabling virtualization on "
2459 "CPU%d failed\n", cpu);
2460 }
2461 }
2462
2463 static void hardware_enable(void *junk)
2464 {
2465 raw_spin_lock(&kvm_lock);
2466 hardware_enable_nolock(junk);
2467 raw_spin_unlock(&kvm_lock);
2468 }
2469
2470 static void hardware_disable_nolock(void *junk)
2471 {
2472 int cpu = raw_smp_processor_id();
2473
2474 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2475 return;
2476 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2477 kvm_arch_hardware_disable(NULL);
2478 }
2479
2480 static void hardware_disable(void *junk)
2481 {
2482 raw_spin_lock(&kvm_lock);
2483 hardware_disable_nolock(junk);
2484 raw_spin_unlock(&kvm_lock);
2485 }
2486
2487 static void hardware_disable_all_nolock(void)
2488 {
2489 BUG_ON(!kvm_usage_count);
2490
2491 kvm_usage_count--;
2492 if (!kvm_usage_count)
2493 on_each_cpu(hardware_disable_nolock, NULL, 1);
2494 }
2495
2496 static void hardware_disable_all(void)
2497 {
2498 raw_spin_lock(&kvm_lock);
2499 hardware_disable_all_nolock();
2500 raw_spin_unlock(&kvm_lock);
2501 }
2502
2503 static int hardware_enable_all(void)
2504 {
2505 int r = 0;
2506
2507 raw_spin_lock(&kvm_lock);
2508
2509 kvm_usage_count++;
2510 if (kvm_usage_count == 1) {
2511 atomic_set(&hardware_enable_failed, 0);
2512 on_each_cpu(hardware_enable_nolock, NULL, 1);
2513
2514 if (atomic_read(&hardware_enable_failed)) {
2515 hardware_disable_all_nolock();
2516 r = -EBUSY;
2517 }
2518 }
2519
2520 raw_spin_unlock(&kvm_lock);
2521
2522 return r;
2523 }
2524
2525 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2526 void *v)
2527 {
2528 int cpu = (long)v;
2529
2530 if (!kvm_usage_count)
2531 return NOTIFY_OK;
2532
2533 val &= ~CPU_TASKS_FROZEN;
2534 switch (val) {
2535 case CPU_DYING:
2536 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2537 cpu);
2538 hardware_disable(NULL);
2539 break;
2540 case CPU_STARTING:
2541 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2542 cpu);
2543 hardware_enable(NULL);
2544 break;
2545 }
2546 return NOTIFY_OK;
2547 }
2548
2549
2550 asmlinkage void kvm_spurious_fault(void)
2551 {
2552 /* Fault while not rebooting. We want the trace. */
2553 BUG();
2554 }
2555 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2556
2557 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2558 void *v)
2559 {
2560 /*
2561 * Some (well, at least mine) BIOSes hang on reboot if
2562 * in vmx root mode.
2563 *
2564 * And Intel TXT required VMX off for all cpu when system shutdown.
2565 */
2566 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2567 kvm_rebooting = true;
2568 on_each_cpu(hardware_disable_nolock, NULL, 1);
2569 return NOTIFY_OK;
2570 }
2571
2572 static struct notifier_block kvm_reboot_notifier = {
2573 .notifier_call = kvm_reboot,
2574 .priority = 0,
2575 };
2576
2577 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2578 {
2579 int i;
2580
2581 for (i = 0; i < bus->dev_count; i++) {
2582 struct kvm_io_device *pos = bus->range[i].dev;
2583
2584 kvm_iodevice_destructor(pos);
2585 }
2586 kfree(bus);
2587 }
2588
2589 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2590 {
2591 const struct kvm_io_range *r1 = p1;
2592 const struct kvm_io_range *r2 = p2;
2593
2594 if (r1->addr < r2->addr)
2595 return -1;
2596 if (r1->addr + r1->len > r2->addr + r2->len)
2597 return 1;
2598 return 0;
2599 }
2600
2601 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2602 gpa_t addr, int len)
2603 {
2604 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2605 .addr = addr,
2606 .len = len,
2607 .dev = dev,
2608 };
2609
2610 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2611 kvm_io_bus_sort_cmp, NULL);
2612
2613 return 0;
2614 }
2615
2616 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2617 gpa_t addr, int len)
2618 {
2619 struct kvm_io_range *range, key;
2620 int off;
2621
2622 key = (struct kvm_io_range) {
2623 .addr = addr,
2624 .len = len,
2625 };
2626
2627 range = bsearch(&key, bus->range, bus->dev_count,
2628 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2629 if (range == NULL)
2630 return -ENOENT;
2631
2632 off = range - bus->range;
2633
2634 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2635 off--;
2636
2637 return off;
2638 }
2639
2640 /* kvm_io_bus_write - called under kvm->slots_lock */
2641 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2642 int len, const void *val)
2643 {
2644 int idx;
2645 struct kvm_io_bus *bus;
2646 struct kvm_io_range range;
2647
2648 range = (struct kvm_io_range) {
2649 .addr = addr,
2650 .len = len,
2651 };
2652
2653 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2654 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2655 if (idx < 0)
2656 return -EOPNOTSUPP;
2657
2658 while (idx < bus->dev_count &&
2659 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2660 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2661 return 0;
2662 idx++;
2663 }
2664
2665 return -EOPNOTSUPP;
2666 }
2667
2668 /* kvm_io_bus_read - called under kvm->slots_lock */
2669 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2670 int len, void *val)
2671 {
2672 int idx;
2673 struct kvm_io_bus *bus;
2674 struct kvm_io_range range;
2675
2676 range = (struct kvm_io_range) {
2677 .addr = addr,
2678 .len = len,
2679 };
2680
2681 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2682 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2683 if (idx < 0)
2684 return -EOPNOTSUPP;
2685
2686 while (idx < bus->dev_count &&
2687 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2688 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2689 return 0;
2690 idx++;
2691 }
2692
2693 return -EOPNOTSUPP;
2694 }
2695
2696 /* Caller must hold slots_lock. */
2697 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2698 int len, struct kvm_io_device *dev)
2699 {
2700 struct kvm_io_bus *new_bus, *bus;
2701
2702 bus = kvm->buses[bus_idx];
2703 if (bus->dev_count > NR_IOBUS_DEVS - 1)
2704 return -ENOSPC;
2705
2706 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2707 sizeof(struct kvm_io_range)), GFP_KERNEL);
2708 if (!new_bus)
2709 return -ENOMEM;
2710 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2711 sizeof(struct kvm_io_range)));
2712 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2713 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2714 synchronize_srcu_expedited(&kvm->srcu);
2715 kfree(bus);
2716
2717 return 0;
2718 }
2719
2720 /* Caller must hold slots_lock. */
2721 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2722 struct kvm_io_device *dev)
2723 {
2724 int i, r;
2725 struct kvm_io_bus *new_bus, *bus;
2726
2727 bus = kvm->buses[bus_idx];
2728 r = -ENOENT;
2729 for (i = 0; i < bus->dev_count; i++)
2730 if (bus->range[i].dev == dev) {
2731 r = 0;
2732 break;
2733 }
2734
2735 if (r)
2736 return r;
2737
2738 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2739 sizeof(struct kvm_io_range)), GFP_KERNEL);
2740 if (!new_bus)
2741 return -ENOMEM;
2742
2743 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2744 new_bus->dev_count--;
2745 memcpy(new_bus->range + i, bus->range + i + 1,
2746 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2747
2748 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2749 synchronize_srcu_expedited(&kvm->srcu);
2750 kfree(bus);
2751 return r;
2752 }
2753
2754 static struct notifier_block kvm_cpu_notifier = {
2755 .notifier_call = kvm_cpu_hotplug,
2756 };
2757
2758 static int vm_stat_get(void *_offset, u64 *val)
2759 {
2760 unsigned offset = (long)_offset;
2761 struct kvm *kvm;
2762
2763 *val = 0;
2764 raw_spin_lock(&kvm_lock);
2765 list_for_each_entry(kvm, &vm_list, vm_list)
2766 *val += *(u32 *)((void *)kvm + offset);
2767 raw_spin_unlock(&kvm_lock);
2768 return 0;
2769 }
2770
2771 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2772
2773 static int vcpu_stat_get(void *_offset, u64 *val)
2774 {
2775 unsigned offset = (long)_offset;
2776 struct kvm *kvm;
2777 struct kvm_vcpu *vcpu;
2778 int i;
2779
2780 *val = 0;
2781 raw_spin_lock(&kvm_lock);
2782 list_for_each_entry(kvm, &vm_list, vm_list)
2783 kvm_for_each_vcpu(i, vcpu, kvm)
2784 *val += *(u32 *)((void *)vcpu + offset);
2785
2786 raw_spin_unlock(&kvm_lock);
2787 return 0;
2788 }
2789
2790 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2791
2792 static const struct file_operations *stat_fops[] = {
2793 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2794 [KVM_STAT_VM] = &vm_stat_fops,
2795 };
2796
2797 static int kvm_init_debug(void)
2798 {
2799 int r = -EFAULT;
2800 struct kvm_stats_debugfs_item *p;
2801
2802 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2803 if (kvm_debugfs_dir == NULL)
2804 goto out;
2805
2806 for (p = debugfs_entries; p->name; ++p) {
2807 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2808 (void *)(long)p->offset,
2809 stat_fops[p->kind]);
2810 if (p->dentry == NULL)
2811 goto out_dir;
2812 }
2813
2814 return 0;
2815
2816 out_dir:
2817 debugfs_remove_recursive(kvm_debugfs_dir);
2818 out:
2819 return r;
2820 }
2821
2822 static void kvm_exit_debug(void)
2823 {
2824 struct kvm_stats_debugfs_item *p;
2825
2826 for (p = debugfs_entries; p->name; ++p)
2827 debugfs_remove(p->dentry);
2828 debugfs_remove(kvm_debugfs_dir);
2829 }
2830
2831 static int kvm_suspend(void)
2832 {
2833 if (kvm_usage_count)
2834 hardware_disable_nolock(NULL);
2835 return 0;
2836 }
2837
2838 static void kvm_resume(void)
2839 {
2840 if (kvm_usage_count) {
2841 WARN_ON(raw_spin_is_locked(&kvm_lock));
2842 hardware_enable_nolock(NULL);
2843 }
2844 }
2845
2846 static struct syscore_ops kvm_syscore_ops = {
2847 .suspend = kvm_suspend,
2848 .resume = kvm_resume,
2849 };
2850
2851 static inline
2852 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2853 {
2854 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2855 }
2856
2857 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2858 {
2859 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2860
2861 kvm_arch_vcpu_load(vcpu, cpu);
2862 }
2863
2864 static void kvm_sched_out(struct preempt_notifier *pn,
2865 struct task_struct *next)
2866 {
2867 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2868
2869 kvm_arch_vcpu_put(vcpu);
2870 }
2871
2872 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2873 struct module *module)
2874 {
2875 int r;
2876 int cpu;
2877
2878 r = kvm_arch_init(opaque);
2879 if (r)
2880 goto out_fail;
2881
2882 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2883 r = -ENOMEM;
2884 goto out_free_0;
2885 }
2886
2887 r = kvm_arch_hardware_setup();
2888 if (r < 0)
2889 goto out_free_0a;
2890
2891 for_each_online_cpu(cpu) {
2892 smp_call_function_single(cpu,
2893 kvm_arch_check_processor_compat,
2894 &r, 1);
2895 if (r < 0)
2896 goto out_free_1;
2897 }
2898
2899 r = register_cpu_notifier(&kvm_cpu_notifier);
2900 if (r)
2901 goto out_free_2;
2902 register_reboot_notifier(&kvm_reboot_notifier);
2903
2904 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2905 if (!vcpu_align)
2906 vcpu_align = __alignof__(struct kvm_vcpu);
2907 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2908 0, NULL);
2909 if (!kvm_vcpu_cache) {
2910 r = -ENOMEM;
2911 goto out_free_3;
2912 }
2913
2914 r = kvm_async_pf_init();
2915 if (r)
2916 goto out_free;
2917
2918 kvm_chardev_ops.owner = module;
2919 kvm_vm_fops.owner = module;
2920 kvm_vcpu_fops.owner = module;
2921
2922 r = misc_register(&kvm_dev);
2923 if (r) {
2924 printk(KERN_ERR "kvm: misc device register failed\n");
2925 goto out_unreg;
2926 }
2927
2928 register_syscore_ops(&kvm_syscore_ops);
2929
2930 kvm_preempt_ops.sched_in = kvm_sched_in;
2931 kvm_preempt_ops.sched_out = kvm_sched_out;
2932
2933 r = kvm_init_debug();
2934 if (r) {
2935 printk(KERN_ERR "kvm: create debugfs files failed\n");
2936 goto out_undebugfs;
2937 }
2938
2939 return 0;
2940
2941 out_undebugfs:
2942 unregister_syscore_ops(&kvm_syscore_ops);
2943 out_unreg:
2944 kvm_async_pf_deinit();
2945 out_free:
2946 kmem_cache_destroy(kvm_vcpu_cache);
2947 out_free_3:
2948 unregister_reboot_notifier(&kvm_reboot_notifier);
2949 unregister_cpu_notifier(&kvm_cpu_notifier);
2950 out_free_2:
2951 out_free_1:
2952 kvm_arch_hardware_unsetup();
2953 out_free_0a:
2954 free_cpumask_var(cpus_hardware_enabled);
2955 out_free_0:
2956 kvm_arch_exit();
2957 out_fail:
2958 return r;
2959 }
2960 EXPORT_SYMBOL_GPL(kvm_init);
2961
2962 void kvm_exit(void)
2963 {
2964 kvm_exit_debug();
2965 misc_deregister(&kvm_dev);
2966 kmem_cache_destroy(kvm_vcpu_cache);
2967 kvm_async_pf_deinit();
2968 unregister_syscore_ops(&kvm_syscore_ops);
2969 unregister_reboot_notifier(&kvm_reboot_notifier);
2970 unregister_cpu_notifier(&kvm_cpu_notifier);
2971 on_each_cpu(hardware_disable_nolock, NULL, 1);
2972 kvm_arch_hardware_unsetup();
2973 kvm_arch_exit();
2974 free_cpumask_var(cpus_hardware_enabled);
2975 }
2976 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.087306 seconds and 6 git commands to generate.