KVM: Add assigned_device_msi_dispatch()
[deliverable/linux.git] / virt / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef CONFIG_X86
51 #include <asm/msidef.h>
52 #endif
53
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
56 #endif
57
58 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
59 #include <linux/pci.h>
60 #include <linux/interrupt.h>
61 #include "irq.h"
62 #endif
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 DEFINE_SPINLOCK(kvm_lock);
68 LIST_HEAD(vm_list);
69
70 static cpumask_t cpus_hardware_enabled;
71
72 struct kmem_cache *kvm_vcpu_cache;
73 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
74
75 static __read_mostly struct preempt_ops kvm_preempt_ops;
76
77 struct dentry *kvm_debugfs_dir;
78
79 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
80 unsigned long arg);
81
82 bool kvm_rebooting;
83
84 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
85
86 #ifdef CONFIG_X86
87 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
88 {
89 int vcpu_id;
90 struct kvm_vcpu *vcpu;
91 struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
92 int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
93 >> MSI_ADDR_DEST_ID_SHIFT;
94 int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
95 >> MSI_DATA_VECTOR_SHIFT;
96 int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
97 (unsigned long *)&dev->guest_msi.address_lo);
98 int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
99 (unsigned long *)&dev->guest_msi.data);
100 int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
101 (unsigned long *)&dev->guest_msi.data);
102 u32 deliver_bitmask;
103
104 BUG_ON(!ioapic);
105
106 deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
107 dest_id, dest_mode);
108 /* IOAPIC delivery mode value is the same as MSI here */
109 switch (delivery_mode) {
110 case IOAPIC_LOWEST_PRIORITY:
111 vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
112 deliver_bitmask);
113 if (vcpu != NULL)
114 kvm_apic_set_irq(vcpu, vector, trig_mode);
115 else
116 printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
117 break;
118 case IOAPIC_FIXED:
119 for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
120 if (!(deliver_bitmask & (1 << vcpu_id)))
121 continue;
122 deliver_bitmask &= ~(1 << vcpu_id);
123 vcpu = ioapic->kvm->vcpus[vcpu_id];
124 if (vcpu)
125 kvm_apic_set_irq(vcpu, vector, trig_mode);
126 }
127 break;
128 default:
129 printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
130 }
131 }
132 #else
133 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
134 #endif
135
136 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
137 int assigned_dev_id)
138 {
139 struct list_head *ptr;
140 struct kvm_assigned_dev_kernel *match;
141
142 list_for_each(ptr, head) {
143 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
144 if (match->assigned_dev_id == assigned_dev_id)
145 return match;
146 }
147 return NULL;
148 }
149
150 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
151 {
152 struct kvm_assigned_dev_kernel *assigned_dev;
153
154 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
155 interrupt_work);
156
157 /* This is taken to safely inject irq inside the guest. When
158 * the interrupt injection (or the ioapic code) uses a
159 * finer-grained lock, update this
160 */
161 mutex_lock(&assigned_dev->kvm->lock);
162 kvm_set_irq(assigned_dev->kvm,
163 assigned_dev->irq_source_id,
164 assigned_dev->guest_irq, 1);
165 mutex_unlock(&assigned_dev->kvm->lock);
166 kvm_put_kvm(assigned_dev->kvm);
167 }
168
169 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
170 {
171 struct kvm_assigned_dev_kernel *assigned_dev =
172 (struct kvm_assigned_dev_kernel *) dev_id;
173
174 kvm_get_kvm(assigned_dev->kvm);
175 schedule_work(&assigned_dev->interrupt_work);
176 disable_irq_nosync(irq);
177 return IRQ_HANDLED;
178 }
179
180 /* Ack the irq line for an assigned device */
181 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
182 {
183 struct kvm_assigned_dev_kernel *dev;
184
185 if (kian->gsi == -1)
186 return;
187
188 dev = container_of(kian, struct kvm_assigned_dev_kernel,
189 ack_notifier);
190 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
191 enable_irq(dev->host_irq);
192 }
193
194 static void kvm_free_assigned_device(struct kvm *kvm,
195 struct kvm_assigned_dev_kernel
196 *assigned_dev)
197 {
198 if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested_type)
199 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
200
201 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
202 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
203
204 if (cancel_work_sync(&assigned_dev->interrupt_work))
205 /* We had pending work. That means we will have to take
206 * care of kvm_put_kvm.
207 */
208 kvm_put_kvm(kvm);
209
210 pci_reset_function(assigned_dev->dev);
211
212 pci_release_regions(assigned_dev->dev);
213 pci_disable_device(assigned_dev->dev);
214 pci_dev_put(assigned_dev->dev);
215
216 list_del(&assigned_dev->list);
217 kfree(assigned_dev);
218 }
219
220 void kvm_free_all_assigned_devices(struct kvm *kvm)
221 {
222 struct list_head *ptr, *ptr2;
223 struct kvm_assigned_dev_kernel *assigned_dev;
224
225 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
226 assigned_dev = list_entry(ptr,
227 struct kvm_assigned_dev_kernel,
228 list);
229
230 kvm_free_assigned_device(kvm, assigned_dev);
231 }
232 }
233
234 static int assigned_device_update_intx(struct kvm *kvm,
235 struct kvm_assigned_dev_kernel *adev,
236 struct kvm_assigned_irq *airq)
237 {
238 adev->guest_irq = airq->guest_irq;
239 adev->ack_notifier.gsi = airq->guest_irq;
240
241 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
242 return 0;
243
244 if (irqchip_in_kernel(kvm)) {
245 if (!capable(CAP_SYS_RAWIO))
246 return -EPERM;
247
248 if (airq->host_irq)
249 adev->host_irq = airq->host_irq;
250 else
251 adev->host_irq = adev->dev->irq;
252
253 /* Even though this is PCI, we don't want to use shared
254 * interrupts. Sharing host devices with guest-assigned devices
255 * on the same interrupt line is not a happy situation: there
256 * are going to be long delays in accepting, acking, etc.
257 */
258 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
259 0, "kvm_assigned_intx_device", (void *)adev))
260 return -EIO;
261 }
262
263 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
264 KVM_ASSIGNED_DEV_HOST_INTX;
265 return 0;
266 }
267
268 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
269 struct kvm_assigned_irq
270 *assigned_irq)
271 {
272 int r = 0;
273 struct kvm_assigned_dev_kernel *match;
274
275 mutex_lock(&kvm->lock);
276
277 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
278 assigned_irq->assigned_dev_id);
279 if (!match) {
280 mutex_unlock(&kvm->lock);
281 return -EINVAL;
282 }
283
284 if (!match->irq_requested_type) {
285 INIT_WORK(&match->interrupt_work,
286 kvm_assigned_dev_interrupt_work_handler);
287 if (irqchip_in_kernel(kvm)) {
288 /* Register ack nofitier */
289 match->ack_notifier.gsi = -1;
290 match->ack_notifier.irq_acked =
291 kvm_assigned_dev_ack_irq;
292 kvm_register_irq_ack_notifier(kvm,
293 &match->ack_notifier);
294
295 /* Request IRQ source ID */
296 r = kvm_request_irq_source_id(kvm);
297 if (r < 0)
298 goto out_release;
299 else
300 match->irq_source_id = r;
301 }
302 }
303
304 r = assigned_device_update_intx(kvm, match, assigned_irq);
305 if (r)
306 goto out_release;
307
308 mutex_unlock(&kvm->lock);
309 return r;
310 out_release:
311 mutex_unlock(&kvm->lock);
312 kvm_free_assigned_device(kvm, match);
313 return r;
314 }
315
316 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
317 struct kvm_assigned_pci_dev *assigned_dev)
318 {
319 int r = 0;
320 struct kvm_assigned_dev_kernel *match;
321 struct pci_dev *dev;
322
323 mutex_lock(&kvm->lock);
324
325 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
326 assigned_dev->assigned_dev_id);
327 if (match) {
328 /* device already assigned */
329 r = -EINVAL;
330 goto out;
331 }
332
333 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
334 if (match == NULL) {
335 printk(KERN_INFO "%s: Couldn't allocate memory\n",
336 __func__);
337 r = -ENOMEM;
338 goto out;
339 }
340 dev = pci_get_bus_and_slot(assigned_dev->busnr,
341 assigned_dev->devfn);
342 if (!dev) {
343 printk(KERN_INFO "%s: host device not found\n", __func__);
344 r = -EINVAL;
345 goto out_free;
346 }
347 if (pci_enable_device(dev)) {
348 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
349 r = -EBUSY;
350 goto out_put;
351 }
352 r = pci_request_regions(dev, "kvm_assigned_device");
353 if (r) {
354 printk(KERN_INFO "%s: Could not get access to device regions\n",
355 __func__);
356 goto out_disable;
357 }
358
359 pci_reset_function(dev);
360
361 match->assigned_dev_id = assigned_dev->assigned_dev_id;
362 match->host_busnr = assigned_dev->busnr;
363 match->host_devfn = assigned_dev->devfn;
364 match->dev = dev;
365
366 match->kvm = kvm;
367
368 list_add(&match->list, &kvm->arch.assigned_dev_head);
369
370 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
371 r = kvm_iommu_map_guest(kvm, match);
372 if (r)
373 goto out_list_del;
374 }
375
376 out:
377 mutex_unlock(&kvm->lock);
378 return r;
379 out_list_del:
380 list_del(&match->list);
381 pci_release_regions(dev);
382 out_disable:
383 pci_disable_device(dev);
384 out_put:
385 pci_dev_put(dev);
386 out_free:
387 kfree(match);
388 mutex_unlock(&kvm->lock);
389 return r;
390 }
391 #endif
392
393 static inline int valid_vcpu(int n)
394 {
395 return likely(n >= 0 && n < KVM_MAX_VCPUS);
396 }
397
398 inline int kvm_is_mmio_pfn(pfn_t pfn)
399 {
400 if (pfn_valid(pfn))
401 return PageReserved(pfn_to_page(pfn));
402
403 return true;
404 }
405
406 /*
407 * Switches to specified vcpu, until a matching vcpu_put()
408 */
409 void vcpu_load(struct kvm_vcpu *vcpu)
410 {
411 int cpu;
412
413 mutex_lock(&vcpu->mutex);
414 cpu = get_cpu();
415 preempt_notifier_register(&vcpu->preempt_notifier);
416 kvm_arch_vcpu_load(vcpu, cpu);
417 put_cpu();
418 }
419
420 void vcpu_put(struct kvm_vcpu *vcpu)
421 {
422 preempt_disable();
423 kvm_arch_vcpu_put(vcpu);
424 preempt_notifier_unregister(&vcpu->preempt_notifier);
425 preempt_enable();
426 mutex_unlock(&vcpu->mutex);
427 }
428
429 static void ack_flush(void *_completed)
430 {
431 }
432
433 void kvm_flush_remote_tlbs(struct kvm *kvm)
434 {
435 int i, cpu, me;
436 cpumask_t cpus;
437 struct kvm_vcpu *vcpu;
438
439 me = get_cpu();
440 cpus_clear(cpus);
441 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
442 vcpu = kvm->vcpus[i];
443 if (!vcpu)
444 continue;
445 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
446 continue;
447 cpu = vcpu->cpu;
448 if (cpu != -1 && cpu != me)
449 cpu_set(cpu, cpus);
450 }
451 if (cpus_empty(cpus))
452 goto out;
453 ++kvm->stat.remote_tlb_flush;
454 smp_call_function_mask(cpus, ack_flush, NULL, 1);
455 out:
456 put_cpu();
457 }
458
459 void kvm_reload_remote_mmus(struct kvm *kvm)
460 {
461 int i, cpu, me;
462 cpumask_t cpus;
463 struct kvm_vcpu *vcpu;
464
465 me = get_cpu();
466 cpus_clear(cpus);
467 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
468 vcpu = kvm->vcpus[i];
469 if (!vcpu)
470 continue;
471 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
472 continue;
473 cpu = vcpu->cpu;
474 if (cpu != -1 && cpu != me)
475 cpu_set(cpu, cpus);
476 }
477 if (cpus_empty(cpus))
478 goto out;
479 smp_call_function_mask(cpus, ack_flush, NULL, 1);
480 out:
481 put_cpu();
482 }
483
484
485 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
486 {
487 struct page *page;
488 int r;
489
490 mutex_init(&vcpu->mutex);
491 vcpu->cpu = -1;
492 vcpu->kvm = kvm;
493 vcpu->vcpu_id = id;
494 init_waitqueue_head(&vcpu->wq);
495
496 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
497 if (!page) {
498 r = -ENOMEM;
499 goto fail;
500 }
501 vcpu->run = page_address(page);
502
503 r = kvm_arch_vcpu_init(vcpu);
504 if (r < 0)
505 goto fail_free_run;
506 return 0;
507
508 fail_free_run:
509 free_page((unsigned long)vcpu->run);
510 fail:
511 return r;
512 }
513 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
514
515 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
516 {
517 kvm_arch_vcpu_uninit(vcpu);
518 free_page((unsigned long)vcpu->run);
519 }
520 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
521
522 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
523 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
524 {
525 return container_of(mn, struct kvm, mmu_notifier);
526 }
527
528 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
529 struct mm_struct *mm,
530 unsigned long address)
531 {
532 struct kvm *kvm = mmu_notifier_to_kvm(mn);
533 int need_tlb_flush;
534
535 /*
536 * When ->invalidate_page runs, the linux pte has been zapped
537 * already but the page is still allocated until
538 * ->invalidate_page returns. So if we increase the sequence
539 * here the kvm page fault will notice if the spte can't be
540 * established because the page is going to be freed. If
541 * instead the kvm page fault establishes the spte before
542 * ->invalidate_page runs, kvm_unmap_hva will release it
543 * before returning.
544 *
545 * The sequence increase only need to be seen at spin_unlock
546 * time, and not at spin_lock time.
547 *
548 * Increasing the sequence after the spin_unlock would be
549 * unsafe because the kvm page fault could then establish the
550 * pte after kvm_unmap_hva returned, without noticing the page
551 * is going to be freed.
552 */
553 spin_lock(&kvm->mmu_lock);
554 kvm->mmu_notifier_seq++;
555 need_tlb_flush = kvm_unmap_hva(kvm, address);
556 spin_unlock(&kvm->mmu_lock);
557
558 /* we've to flush the tlb before the pages can be freed */
559 if (need_tlb_flush)
560 kvm_flush_remote_tlbs(kvm);
561
562 }
563
564 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
565 struct mm_struct *mm,
566 unsigned long start,
567 unsigned long end)
568 {
569 struct kvm *kvm = mmu_notifier_to_kvm(mn);
570 int need_tlb_flush = 0;
571
572 spin_lock(&kvm->mmu_lock);
573 /*
574 * The count increase must become visible at unlock time as no
575 * spte can be established without taking the mmu_lock and
576 * count is also read inside the mmu_lock critical section.
577 */
578 kvm->mmu_notifier_count++;
579 for (; start < end; start += PAGE_SIZE)
580 need_tlb_flush |= kvm_unmap_hva(kvm, start);
581 spin_unlock(&kvm->mmu_lock);
582
583 /* we've to flush the tlb before the pages can be freed */
584 if (need_tlb_flush)
585 kvm_flush_remote_tlbs(kvm);
586 }
587
588 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
589 struct mm_struct *mm,
590 unsigned long start,
591 unsigned long end)
592 {
593 struct kvm *kvm = mmu_notifier_to_kvm(mn);
594
595 spin_lock(&kvm->mmu_lock);
596 /*
597 * This sequence increase will notify the kvm page fault that
598 * the page that is going to be mapped in the spte could have
599 * been freed.
600 */
601 kvm->mmu_notifier_seq++;
602 /*
603 * The above sequence increase must be visible before the
604 * below count decrease but both values are read by the kvm
605 * page fault under mmu_lock spinlock so we don't need to add
606 * a smb_wmb() here in between the two.
607 */
608 kvm->mmu_notifier_count--;
609 spin_unlock(&kvm->mmu_lock);
610
611 BUG_ON(kvm->mmu_notifier_count < 0);
612 }
613
614 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
615 struct mm_struct *mm,
616 unsigned long address)
617 {
618 struct kvm *kvm = mmu_notifier_to_kvm(mn);
619 int young;
620
621 spin_lock(&kvm->mmu_lock);
622 young = kvm_age_hva(kvm, address);
623 spin_unlock(&kvm->mmu_lock);
624
625 if (young)
626 kvm_flush_remote_tlbs(kvm);
627
628 return young;
629 }
630
631 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
632 .invalidate_page = kvm_mmu_notifier_invalidate_page,
633 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
634 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
635 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
636 };
637 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
638
639 static struct kvm *kvm_create_vm(void)
640 {
641 struct kvm *kvm = kvm_arch_create_vm();
642 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
643 struct page *page;
644 #endif
645
646 if (IS_ERR(kvm))
647 goto out;
648
649 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
650 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
651 if (!page) {
652 kfree(kvm);
653 return ERR_PTR(-ENOMEM);
654 }
655 kvm->coalesced_mmio_ring =
656 (struct kvm_coalesced_mmio_ring *)page_address(page);
657 #endif
658
659 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
660 {
661 int err;
662 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
663 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
664 if (err) {
665 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
666 put_page(page);
667 #endif
668 kfree(kvm);
669 return ERR_PTR(err);
670 }
671 }
672 #endif
673
674 kvm->mm = current->mm;
675 atomic_inc(&kvm->mm->mm_count);
676 spin_lock_init(&kvm->mmu_lock);
677 kvm_io_bus_init(&kvm->pio_bus);
678 mutex_init(&kvm->lock);
679 kvm_io_bus_init(&kvm->mmio_bus);
680 init_rwsem(&kvm->slots_lock);
681 atomic_set(&kvm->users_count, 1);
682 spin_lock(&kvm_lock);
683 list_add(&kvm->vm_list, &vm_list);
684 spin_unlock(&kvm_lock);
685 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
686 kvm_coalesced_mmio_init(kvm);
687 #endif
688 out:
689 return kvm;
690 }
691
692 /*
693 * Free any memory in @free but not in @dont.
694 */
695 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
696 struct kvm_memory_slot *dont)
697 {
698 if (!dont || free->rmap != dont->rmap)
699 vfree(free->rmap);
700
701 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
702 vfree(free->dirty_bitmap);
703
704 if (!dont || free->lpage_info != dont->lpage_info)
705 vfree(free->lpage_info);
706
707 free->npages = 0;
708 free->dirty_bitmap = NULL;
709 free->rmap = NULL;
710 free->lpage_info = NULL;
711 }
712
713 void kvm_free_physmem(struct kvm *kvm)
714 {
715 int i;
716
717 for (i = 0; i < kvm->nmemslots; ++i)
718 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
719 }
720
721 static void kvm_destroy_vm(struct kvm *kvm)
722 {
723 struct mm_struct *mm = kvm->mm;
724
725 spin_lock(&kvm_lock);
726 list_del(&kvm->vm_list);
727 spin_unlock(&kvm_lock);
728 kvm_io_bus_destroy(&kvm->pio_bus);
729 kvm_io_bus_destroy(&kvm->mmio_bus);
730 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
731 if (kvm->coalesced_mmio_ring != NULL)
732 free_page((unsigned long)kvm->coalesced_mmio_ring);
733 #endif
734 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
735 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
736 #endif
737 kvm_arch_destroy_vm(kvm);
738 mmdrop(mm);
739 }
740
741 void kvm_get_kvm(struct kvm *kvm)
742 {
743 atomic_inc(&kvm->users_count);
744 }
745 EXPORT_SYMBOL_GPL(kvm_get_kvm);
746
747 void kvm_put_kvm(struct kvm *kvm)
748 {
749 if (atomic_dec_and_test(&kvm->users_count))
750 kvm_destroy_vm(kvm);
751 }
752 EXPORT_SYMBOL_GPL(kvm_put_kvm);
753
754
755 static int kvm_vm_release(struct inode *inode, struct file *filp)
756 {
757 struct kvm *kvm = filp->private_data;
758
759 kvm_put_kvm(kvm);
760 return 0;
761 }
762
763 /*
764 * Allocate some memory and give it an address in the guest physical address
765 * space.
766 *
767 * Discontiguous memory is allowed, mostly for framebuffers.
768 *
769 * Must be called holding mmap_sem for write.
770 */
771 int __kvm_set_memory_region(struct kvm *kvm,
772 struct kvm_userspace_memory_region *mem,
773 int user_alloc)
774 {
775 int r;
776 gfn_t base_gfn;
777 unsigned long npages;
778 unsigned long i;
779 struct kvm_memory_slot *memslot;
780 struct kvm_memory_slot old, new;
781
782 r = -EINVAL;
783 /* General sanity checks */
784 if (mem->memory_size & (PAGE_SIZE - 1))
785 goto out;
786 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
787 goto out;
788 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
789 goto out;
790 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
791 goto out;
792 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
793 goto out;
794
795 memslot = &kvm->memslots[mem->slot];
796 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
797 npages = mem->memory_size >> PAGE_SHIFT;
798
799 if (!npages)
800 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
801
802 new = old = *memslot;
803
804 new.base_gfn = base_gfn;
805 new.npages = npages;
806 new.flags = mem->flags;
807
808 /* Disallow changing a memory slot's size. */
809 r = -EINVAL;
810 if (npages && old.npages && npages != old.npages)
811 goto out_free;
812
813 /* Check for overlaps */
814 r = -EEXIST;
815 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
816 struct kvm_memory_slot *s = &kvm->memslots[i];
817
818 if (s == memslot)
819 continue;
820 if (!((base_gfn + npages <= s->base_gfn) ||
821 (base_gfn >= s->base_gfn + s->npages)))
822 goto out_free;
823 }
824
825 /* Free page dirty bitmap if unneeded */
826 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
827 new.dirty_bitmap = NULL;
828
829 r = -ENOMEM;
830
831 /* Allocate if a slot is being created */
832 #ifndef CONFIG_S390
833 if (npages && !new.rmap) {
834 new.rmap = vmalloc(npages * sizeof(struct page *));
835
836 if (!new.rmap)
837 goto out_free;
838
839 memset(new.rmap, 0, npages * sizeof(*new.rmap));
840
841 new.user_alloc = user_alloc;
842 /*
843 * hva_to_rmmap() serialzies with the mmu_lock and to be
844 * safe it has to ignore memslots with !user_alloc &&
845 * !userspace_addr.
846 */
847 if (user_alloc)
848 new.userspace_addr = mem->userspace_addr;
849 else
850 new.userspace_addr = 0;
851 }
852 if (npages && !new.lpage_info) {
853 int largepages = npages / KVM_PAGES_PER_HPAGE;
854 if (npages % KVM_PAGES_PER_HPAGE)
855 largepages++;
856 if (base_gfn % KVM_PAGES_PER_HPAGE)
857 largepages++;
858
859 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
860
861 if (!new.lpage_info)
862 goto out_free;
863
864 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
865
866 if (base_gfn % KVM_PAGES_PER_HPAGE)
867 new.lpage_info[0].write_count = 1;
868 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
869 new.lpage_info[largepages-1].write_count = 1;
870 }
871
872 /* Allocate page dirty bitmap if needed */
873 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
874 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
875
876 new.dirty_bitmap = vmalloc(dirty_bytes);
877 if (!new.dirty_bitmap)
878 goto out_free;
879 memset(new.dirty_bitmap, 0, dirty_bytes);
880 }
881 #endif /* not defined CONFIG_S390 */
882
883 if (!npages)
884 kvm_arch_flush_shadow(kvm);
885
886 spin_lock(&kvm->mmu_lock);
887 if (mem->slot >= kvm->nmemslots)
888 kvm->nmemslots = mem->slot + 1;
889
890 *memslot = new;
891 spin_unlock(&kvm->mmu_lock);
892
893 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
894 if (r) {
895 spin_lock(&kvm->mmu_lock);
896 *memslot = old;
897 spin_unlock(&kvm->mmu_lock);
898 goto out_free;
899 }
900
901 kvm_free_physmem_slot(&old, &new);
902 #ifdef CONFIG_DMAR
903 /* map the pages in iommu page table */
904 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
905 if (r)
906 goto out;
907 #endif
908 return 0;
909
910 out_free:
911 kvm_free_physmem_slot(&new, &old);
912 out:
913 return r;
914
915 }
916 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
917
918 int kvm_set_memory_region(struct kvm *kvm,
919 struct kvm_userspace_memory_region *mem,
920 int user_alloc)
921 {
922 int r;
923
924 down_write(&kvm->slots_lock);
925 r = __kvm_set_memory_region(kvm, mem, user_alloc);
926 up_write(&kvm->slots_lock);
927 return r;
928 }
929 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
930
931 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
932 struct
933 kvm_userspace_memory_region *mem,
934 int user_alloc)
935 {
936 if (mem->slot >= KVM_MEMORY_SLOTS)
937 return -EINVAL;
938 return kvm_set_memory_region(kvm, mem, user_alloc);
939 }
940
941 int kvm_get_dirty_log(struct kvm *kvm,
942 struct kvm_dirty_log *log, int *is_dirty)
943 {
944 struct kvm_memory_slot *memslot;
945 int r, i;
946 int n;
947 unsigned long any = 0;
948
949 r = -EINVAL;
950 if (log->slot >= KVM_MEMORY_SLOTS)
951 goto out;
952
953 memslot = &kvm->memslots[log->slot];
954 r = -ENOENT;
955 if (!memslot->dirty_bitmap)
956 goto out;
957
958 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
959
960 for (i = 0; !any && i < n/sizeof(long); ++i)
961 any = memslot->dirty_bitmap[i];
962
963 r = -EFAULT;
964 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
965 goto out;
966
967 if (any)
968 *is_dirty = 1;
969
970 r = 0;
971 out:
972 return r;
973 }
974
975 int is_error_page(struct page *page)
976 {
977 return page == bad_page;
978 }
979 EXPORT_SYMBOL_GPL(is_error_page);
980
981 int is_error_pfn(pfn_t pfn)
982 {
983 return pfn == bad_pfn;
984 }
985 EXPORT_SYMBOL_GPL(is_error_pfn);
986
987 static inline unsigned long bad_hva(void)
988 {
989 return PAGE_OFFSET;
990 }
991
992 int kvm_is_error_hva(unsigned long addr)
993 {
994 return addr == bad_hva();
995 }
996 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
997
998 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
999 {
1000 int i;
1001
1002 for (i = 0; i < kvm->nmemslots; ++i) {
1003 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1004
1005 if (gfn >= memslot->base_gfn
1006 && gfn < memslot->base_gfn + memslot->npages)
1007 return memslot;
1008 }
1009 return NULL;
1010 }
1011 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1012
1013 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1014 {
1015 gfn = unalias_gfn(kvm, gfn);
1016 return gfn_to_memslot_unaliased(kvm, gfn);
1017 }
1018
1019 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1020 {
1021 int i;
1022
1023 gfn = unalias_gfn(kvm, gfn);
1024 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1025 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1026
1027 if (gfn >= memslot->base_gfn
1028 && gfn < memslot->base_gfn + memslot->npages)
1029 return 1;
1030 }
1031 return 0;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1034
1035 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1036 {
1037 struct kvm_memory_slot *slot;
1038
1039 gfn = unalias_gfn(kvm, gfn);
1040 slot = gfn_to_memslot_unaliased(kvm, gfn);
1041 if (!slot)
1042 return bad_hva();
1043 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1044 }
1045 EXPORT_SYMBOL_GPL(gfn_to_hva);
1046
1047 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1048 {
1049 struct page *page[1];
1050 unsigned long addr;
1051 int npages;
1052 pfn_t pfn;
1053
1054 might_sleep();
1055
1056 addr = gfn_to_hva(kvm, gfn);
1057 if (kvm_is_error_hva(addr)) {
1058 get_page(bad_page);
1059 return page_to_pfn(bad_page);
1060 }
1061
1062 npages = get_user_pages_fast(addr, 1, 1, page);
1063
1064 if (unlikely(npages != 1)) {
1065 struct vm_area_struct *vma;
1066
1067 down_read(&current->mm->mmap_sem);
1068 vma = find_vma(current->mm, addr);
1069
1070 if (vma == NULL || addr < vma->vm_start ||
1071 !(vma->vm_flags & VM_PFNMAP)) {
1072 up_read(&current->mm->mmap_sem);
1073 get_page(bad_page);
1074 return page_to_pfn(bad_page);
1075 }
1076
1077 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1078 up_read(&current->mm->mmap_sem);
1079 BUG_ON(!kvm_is_mmio_pfn(pfn));
1080 } else
1081 pfn = page_to_pfn(page[0]);
1082
1083 return pfn;
1084 }
1085
1086 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1087
1088 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1089 {
1090 pfn_t pfn;
1091
1092 pfn = gfn_to_pfn(kvm, gfn);
1093 if (!kvm_is_mmio_pfn(pfn))
1094 return pfn_to_page(pfn);
1095
1096 WARN_ON(kvm_is_mmio_pfn(pfn));
1097
1098 get_page(bad_page);
1099 return bad_page;
1100 }
1101
1102 EXPORT_SYMBOL_GPL(gfn_to_page);
1103
1104 void kvm_release_page_clean(struct page *page)
1105 {
1106 kvm_release_pfn_clean(page_to_pfn(page));
1107 }
1108 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1109
1110 void kvm_release_pfn_clean(pfn_t pfn)
1111 {
1112 if (!kvm_is_mmio_pfn(pfn))
1113 put_page(pfn_to_page(pfn));
1114 }
1115 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1116
1117 void kvm_release_page_dirty(struct page *page)
1118 {
1119 kvm_release_pfn_dirty(page_to_pfn(page));
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1122
1123 void kvm_release_pfn_dirty(pfn_t pfn)
1124 {
1125 kvm_set_pfn_dirty(pfn);
1126 kvm_release_pfn_clean(pfn);
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1129
1130 void kvm_set_page_dirty(struct page *page)
1131 {
1132 kvm_set_pfn_dirty(page_to_pfn(page));
1133 }
1134 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1135
1136 void kvm_set_pfn_dirty(pfn_t pfn)
1137 {
1138 if (!kvm_is_mmio_pfn(pfn)) {
1139 struct page *page = pfn_to_page(pfn);
1140 if (!PageReserved(page))
1141 SetPageDirty(page);
1142 }
1143 }
1144 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1145
1146 void kvm_set_pfn_accessed(pfn_t pfn)
1147 {
1148 if (!kvm_is_mmio_pfn(pfn))
1149 mark_page_accessed(pfn_to_page(pfn));
1150 }
1151 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1152
1153 void kvm_get_pfn(pfn_t pfn)
1154 {
1155 if (!kvm_is_mmio_pfn(pfn))
1156 get_page(pfn_to_page(pfn));
1157 }
1158 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1159
1160 static int next_segment(unsigned long len, int offset)
1161 {
1162 if (len > PAGE_SIZE - offset)
1163 return PAGE_SIZE - offset;
1164 else
1165 return len;
1166 }
1167
1168 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1169 int len)
1170 {
1171 int r;
1172 unsigned long addr;
1173
1174 addr = gfn_to_hva(kvm, gfn);
1175 if (kvm_is_error_hva(addr))
1176 return -EFAULT;
1177 r = copy_from_user(data, (void __user *)addr + offset, len);
1178 if (r)
1179 return -EFAULT;
1180 return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1183
1184 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1185 {
1186 gfn_t gfn = gpa >> PAGE_SHIFT;
1187 int seg;
1188 int offset = offset_in_page(gpa);
1189 int ret;
1190
1191 while ((seg = next_segment(len, offset)) != 0) {
1192 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1193 if (ret < 0)
1194 return ret;
1195 offset = 0;
1196 len -= seg;
1197 data += seg;
1198 ++gfn;
1199 }
1200 return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_read_guest);
1203
1204 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1205 unsigned long len)
1206 {
1207 int r;
1208 unsigned long addr;
1209 gfn_t gfn = gpa >> PAGE_SHIFT;
1210 int offset = offset_in_page(gpa);
1211
1212 addr = gfn_to_hva(kvm, gfn);
1213 if (kvm_is_error_hva(addr))
1214 return -EFAULT;
1215 pagefault_disable();
1216 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1217 pagefault_enable();
1218 if (r)
1219 return -EFAULT;
1220 return 0;
1221 }
1222 EXPORT_SYMBOL(kvm_read_guest_atomic);
1223
1224 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1225 int offset, int len)
1226 {
1227 int r;
1228 unsigned long addr;
1229
1230 addr = gfn_to_hva(kvm, gfn);
1231 if (kvm_is_error_hva(addr))
1232 return -EFAULT;
1233 r = copy_to_user((void __user *)addr + offset, data, len);
1234 if (r)
1235 return -EFAULT;
1236 mark_page_dirty(kvm, gfn);
1237 return 0;
1238 }
1239 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1240
1241 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1242 unsigned long len)
1243 {
1244 gfn_t gfn = gpa >> PAGE_SHIFT;
1245 int seg;
1246 int offset = offset_in_page(gpa);
1247 int ret;
1248
1249 while ((seg = next_segment(len, offset)) != 0) {
1250 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1251 if (ret < 0)
1252 return ret;
1253 offset = 0;
1254 len -= seg;
1255 data += seg;
1256 ++gfn;
1257 }
1258 return 0;
1259 }
1260
1261 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1262 {
1263 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1264 }
1265 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1266
1267 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1268 {
1269 gfn_t gfn = gpa >> PAGE_SHIFT;
1270 int seg;
1271 int offset = offset_in_page(gpa);
1272 int ret;
1273
1274 while ((seg = next_segment(len, offset)) != 0) {
1275 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1276 if (ret < 0)
1277 return ret;
1278 offset = 0;
1279 len -= seg;
1280 ++gfn;
1281 }
1282 return 0;
1283 }
1284 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1285
1286 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1287 {
1288 struct kvm_memory_slot *memslot;
1289
1290 gfn = unalias_gfn(kvm, gfn);
1291 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1292 if (memslot && memslot->dirty_bitmap) {
1293 unsigned long rel_gfn = gfn - memslot->base_gfn;
1294
1295 /* avoid RMW */
1296 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1297 set_bit(rel_gfn, memslot->dirty_bitmap);
1298 }
1299 }
1300
1301 /*
1302 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1303 */
1304 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1305 {
1306 DEFINE_WAIT(wait);
1307
1308 for (;;) {
1309 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1310
1311 if (kvm_cpu_has_interrupt(vcpu) ||
1312 kvm_cpu_has_pending_timer(vcpu) ||
1313 kvm_arch_vcpu_runnable(vcpu)) {
1314 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1315 break;
1316 }
1317 if (signal_pending(current))
1318 break;
1319
1320 vcpu_put(vcpu);
1321 schedule();
1322 vcpu_load(vcpu);
1323 }
1324
1325 finish_wait(&vcpu->wq, &wait);
1326 }
1327
1328 void kvm_resched(struct kvm_vcpu *vcpu)
1329 {
1330 if (!need_resched())
1331 return;
1332 cond_resched();
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_resched);
1335
1336 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1337 {
1338 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1339 struct page *page;
1340
1341 if (vmf->pgoff == 0)
1342 page = virt_to_page(vcpu->run);
1343 #ifdef CONFIG_X86
1344 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1345 page = virt_to_page(vcpu->arch.pio_data);
1346 #endif
1347 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1348 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1349 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1350 #endif
1351 else
1352 return VM_FAULT_SIGBUS;
1353 get_page(page);
1354 vmf->page = page;
1355 return 0;
1356 }
1357
1358 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1359 .fault = kvm_vcpu_fault,
1360 };
1361
1362 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1363 {
1364 vma->vm_ops = &kvm_vcpu_vm_ops;
1365 return 0;
1366 }
1367
1368 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1369 {
1370 struct kvm_vcpu *vcpu = filp->private_data;
1371
1372 kvm_put_kvm(vcpu->kvm);
1373 return 0;
1374 }
1375
1376 static const struct file_operations kvm_vcpu_fops = {
1377 .release = kvm_vcpu_release,
1378 .unlocked_ioctl = kvm_vcpu_ioctl,
1379 .compat_ioctl = kvm_vcpu_ioctl,
1380 .mmap = kvm_vcpu_mmap,
1381 };
1382
1383 /*
1384 * Allocates an inode for the vcpu.
1385 */
1386 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1387 {
1388 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1389 if (fd < 0)
1390 kvm_put_kvm(vcpu->kvm);
1391 return fd;
1392 }
1393
1394 /*
1395 * Creates some virtual cpus. Good luck creating more than one.
1396 */
1397 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1398 {
1399 int r;
1400 struct kvm_vcpu *vcpu;
1401
1402 if (!valid_vcpu(n))
1403 return -EINVAL;
1404
1405 vcpu = kvm_arch_vcpu_create(kvm, n);
1406 if (IS_ERR(vcpu))
1407 return PTR_ERR(vcpu);
1408
1409 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1410
1411 r = kvm_arch_vcpu_setup(vcpu);
1412 if (r)
1413 return r;
1414
1415 mutex_lock(&kvm->lock);
1416 if (kvm->vcpus[n]) {
1417 r = -EEXIST;
1418 goto vcpu_destroy;
1419 }
1420 kvm->vcpus[n] = vcpu;
1421 mutex_unlock(&kvm->lock);
1422
1423 /* Now it's all set up, let userspace reach it */
1424 kvm_get_kvm(kvm);
1425 r = create_vcpu_fd(vcpu);
1426 if (r < 0)
1427 goto unlink;
1428 return r;
1429
1430 unlink:
1431 mutex_lock(&kvm->lock);
1432 kvm->vcpus[n] = NULL;
1433 vcpu_destroy:
1434 mutex_unlock(&kvm->lock);
1435 kvm_arch_vcpu_destroy(vcpu);
1436 return r;
1437 }
1438
1439 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1440 {
1441 if (sigset) {
1442 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1443 vcpu->sigset_active = 1;
1444 vcpu->sigset = *sigset;
1445 } else
1446 vcpu->sigset_active = 0;
1447 return 0;
1448 }
1449
1450 static long kvm_vcpu_ioctl(struct file *filp,
1451 unsigned int ioctl, unsigned long arg)
1452 {
1453 struct kvm_vcpu *vcpu = filp->private_data;
1454 void __user *argp = (void __user *)arg;
1455 int r;
1456 struct kvm_fpu *fpu = NULL;
1457 struct kvm_sregs *kvm_sregs = NULL;
1458
1459 if (vcpu->kvm->mm != current->mm)
1460 return -EIO;
1461 switch (ioctl) {
1462 case KVM_RUN:
1463 r = -EINVAL;
1464 if (arg)
1465 goto out;
1466 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1467 break;
1468 case KVM_GET_REGS: {
1469 struct kvm_regs *kvm_regs;
1470
1471 r = -ENOMEM;
1472 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1473 if (!kvm_regs)
1474 goto out;
1475 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1476 if (r)
1477 goto out_free1;
1478 r = -EFAULT;
1479 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1480 goto out_free1;
1481 r = 0;
1482 out_free1:
1483 kfree(kvm_regs);
1484 break;
1485 }
1486 case KVM_SET_REGS: {
1487 struct kvm_regs *kvm_regs;
1488
1489 r = -ENOMEM;
1490 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1491 if (!kvm_regs)
1492 goto out;
1493 r = -EFAULT;
1494 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1495 goto out_free2;
1496 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1497 if (r)
1498 goto out_free2;
1499 r = 0;
1500 out_free2:
1501 kfree(kvm_regs);
1502 break;
1503 }
1504 case KVM_GET_SREGS: {
1505 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1506 r = -ENOMEM;
1507 if (!kvm_sregs)
1508 goto out;
1509 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1510 if (r)
1511 goto out;
1512 r = -EFAULT;
1513 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1514 goto out;
1515 r = 0;
1516 break;
1517 }
1518 case KVM_SET_SREGS: {
1519 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1520 r = -ENOMEM;
1521 if (!kvm_sregs)
1522 goto out;
1523 r = -EFAULT;
1524 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1525 goto out;
1526 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1527 if (r)
1528 goto out;
1529 r = 0;
1530 break;
1531 }
1532 case KVM_GET_MP_STATE: {
1533 struct kvm_mp_state mp_state;
1534
1535 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1536 if (r)
1537 goto out;
1538 r = -EFAULT;
1539 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1540 goto out;
1541 r = 0;
1542 break;
1543 }
1544 case KVM_SET_MP_STATE: {
1545 struct kvm_mp_state mp_state;
1546
1547 r = -EFAULT;
1548 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1549 goto out;
1550 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1551 if (r)
1552 goto out;
1553 r = 0;
1554 break;
1555 }
1556 case KVM_TRANSLATE: {
1557 struct kvm_translation tr;
1558
1559 r = -EFAULT;
1560 if (copy_from_user(&tr, argp, sizeof tr))
1561 goto out;
1562 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1563 if (r)
1564 goto out;
1565 r = -EFAULT;
1566 if (copy_to_user(argp, &tr, sizeof tr))
1567 goto out;
1568 r = 0;
1569 break;
1570 }
1571 case KVM_DEBUG_GUEST: {
1572 struct kvm_debug_guest dbg;
1573
1574 r = -EFAULT;
1575 if (copy_from_user(&dbg, argp, sizeof dbg))
1576 goto out;
1577 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1578 if (r)
1579 goto out;
1580 r = 0;
1581 break;
1582 }
1583 case KVM_SET_SIGNAL_MASK: {
1584 struct kvm_signal_mask __user *sigmask_arg = argp;
1585 struct kvm_signal_mask kvm_sigmask;
1586 sigset_t sigset, *p;
1587
1588 p = NULL;
1589 if (argp) {
1590 r = -EFAULT;
1591 if (copy_from_user(&kvm_sigmask, argp,
1592 sizeof kvm_sigmask))
1593 goto out;
1594 r = -EINVAL;
1595 if (kvm_sigmask.len != sizeof sigset)
1596 goto out;
1597 r = -EFAULT;
1598 if (copy_from_user(&sigset, sigmask_arg->sigset,
1599 sizeof sigset))
1600 goto out;
1601 p = &sigset;
1602 }
1603 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1604 break;
1605 }
1606 case KVM_GET_FPU: {
1607 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1608 r = -ENOMEM;
1609 if (!fpu)
1610 goto out;
1611 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1612 if (r)
1613 goto out;
1614 r = -EFAULT;
1615 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1616 goto out;
1617 r = 0;
1618 break;
1619 }
1620 case KVM_SET_FPU: {
1621 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1622 r = -ENOMEM;
1623 if (!fpu)
1624 goto out;
1625 r = -EFAULT;
1626 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1627 goto out;
1628 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1629 if (r)
1630 goto out;
1631 r = 0;
1632 break;
1633 }
1634 default:
1635 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1636 }
1637 out:
1638 kfree(fpu);
1639 kfree(kvm_sregs);
1640 return r;
1641 }
1642
1643 static long kvm_vm_ioctl(struct file *filp,
1644 unsigned int ioctl, unsigned long arg)
1645 {
1646 struct kvm *kvm = filp->private_data;
1647 void __user *argp = (void __user *)arg;
1648 int r;
1649
1650 if (kvm->mm != current->mm)
1651 return -EIO;
1652 switch (ioctl) {
1653 case KVM_CREATE_VCPU:
1654 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1655 if (r < 0)
1656 goto out;
1657 break;
1658 case KVM_SET_USER_MEMORY_REGION: {
1659 struct kvm_userspace_memory_region kvm_userspace_mem;
1660
1661 r = -EFAULT;
1662 if (copy_from_user(&kvm_userspace_mem, argp,
1663 sizeof kvm_userspace_mem))
1664 goto out;
1665
1666 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1667 if (r)
1668 goto out;
1669 break;
1670 }
1671 case KVM_GET_DIRTY_LOG: {
1672 struct kvm_dirty_log log;
1673
1674 r = -EFAULT;
1675 if (copy_from_user(&log, argp, sizeof log))
1676 goto out;
1677 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1678 if (r)
1679 goto out;
1680 break;
1681 }
1682 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1683 case KVM_REGISTER_COALESCED_MMIO: {
1684 struct kvm_coalesced_mmio_zone zone;
1685 r = -EFAULT;
1686 if (copy_from_user(&zone, argp, sizeof zone))
1687 goto out;
1688 r = -ENXIO;
1689 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1690 if (r)
1691 goto out;
1692 r = 0;
1693 break;
1694 }
1695 case KVM_UNREGISTER_COALESCED_MMIO: {
1696 struct kvm_coalesced_mmio_zone zone;
1697 r = -EFAULT;
1698 if (copy_from_user(&zone, argp, sizeof zone))
1699 goto out;
1700 r = -ENXIO;
1701 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1702 if (r)
1703 goto out;
1704 r = 0;
1705 break;
1706 }
1707 #endif
1708 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1709 case KVM_ASSIGN_PCI_DEVICE: {
1710 struct kvm_assigned_pci_dev assigned_dev;
1711
1712 r = -EFAULT;
1713 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1714 goto out;
1715 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1716 if (r)
1717 goto out;
1718 break;
1719 }
1720 case KVM_ASSIGN_IRQ: {
1721 struct kvm_assigned_irq assigned_irq;
1722
1723 r = -EFAULT;
1724 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1725 goto out;
1726 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1727 if (r)
1728 goto out;
1729 break;
1730 }
1731 #endif
1732 default:
1733 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1734 }
1735 out:
1736 return r;
1737 }
1738
1739 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1740 {
1741 struct page *page[1];
1742 unsigned long addr;
1743 int npages;
1744 gfn_t gfn = vmf->pgoff;
1745 struct kvm *kvm = vma->vm_file->private_data;
1746
1747 addr = gfn_to_hva(kvm, gfn);
1748 if (kvm_is_error_hva(addr))
1749 return VM_FAULT_SIGBUS;
1750
1751 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1752 NULL);
1753 if (unlikely(npages != 1))
1754 return VM_FAULT_SIGBUS;
1755
1756 vmf->page = page[0];
1757 return 0;
1758 }
1759
1760 static struct vm_operations_struct kvm_vm_vm_ops = {
1761 .fault = kvm_vm_fault,
1762 };
1763
1764 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1765 {
1766 vma->vm_ops = &kvm_vm_vm_ops;
1767 return 0;
1768 }
1769
1770 static const struct file_operations kvm_vm_fops = {
1771 .release = kvm_vm_release,
1772 .unlocked_ioctl = kvm_vm_ioctl,
1773 .compat_ioctl = kvm_vm_ioctl,
1774 .mmap = kvm_vm_mmap,
1775 };
1776
1777 static int kvm_dev_ioctl_create_vm(void)
1778 {
1779 int fd;
1780 struct kvm *kvm;
1781
1782 kvm = kvm_create_vm();
1783 if (IS_ERR(kvm))
1784 return PTR_ERR(kvm);
1785 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1786 if (fd < 0)
1787 kvm_put_kvm(kvm);
1788
1789 return fd;
1790 }
1791
1792 static long kvm_dev_ioctl(struct file *filp,
1793 unsigned int ioctl, unsigned long arg)
1794 {
1795 long r = -EINVAL;
1796
1797 switch (ioctl) {
1798 case KVM_GET_API_VERSION:
1799 r = -EINVAL;
1800 if (arg)
1801 goto out;
1802 r = KVM_API_VERSION;
1803 break;
1804 case KVM_CREATE_VM:
1805 r = -EINVAL;
1806 if (arg)
1807 goto out;
1808 r = kvm_dev_ioctl_create_vm();
1809 break;
1810 case KVM_CHECK_EXTENSION:
1811 r = kvm_dev_ioctl_check_extension(arg);
1812 break;
1813 case KVM_GET_VCPU_MMAP_SIZE:
1814 r = -EINVAL;
1815 if (arg)
1816 goto out;
1817 r = PAGE_SIZE; /* struct kvm_run */
1818 #ifdef CONFIG_X86
1819 r += PAGE_SIZE; /* pio data page */
1820 #endif
1821 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1822 r += PAGE_SIZE; /* coalesced mmio ring page */
1823 #endif
1824 break;
1825 case KVM_TRACE_ENABLE:
1826 case KVM_TRACE_PAUSE:
1827 case KVM_TRACE_DISABLE:
1828 r = kvm_trace_ioctl(ioctl, arg);
1829 break;
1830 default:
1831 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1832 }
1833 out:
1834 return r;
1835 }
1836
1837 static struct file_operations kvm_chardev_ops = {
1838 .unlocked_ioctl = kvm_dev_ioctl,
1839 .compat_ioctl = kvm_dev_ioctl,
1840 };
1841
1842 static struct miscdevice kvm_dev = {
1843 KVM_MINOR,
1844 "kvm",
1845 &kvm_chardev_ops,
1846 };
1847
1848 static void hardware_enable(void *junk)
1849 {
1850 int cpu = raw_smp_processor_id();
1851
1852 if (cpu_isset(cpu, cpus_hardware_enabled))
1853 return;
1854 cpu_set(cpu, cpus_hardware_enabled);
1855 kvm_arch_hardware_enable(NULL);
1856 }
1857
1858 static void hardware_disable(void *junk)
1859 {
1860 int cpu = raw_smp_processor_id();
1861
1862 if (!cpu_isset(cpu, cpus_hardware_enabled))
1863 return;
1864 cpu_clear(cpu, cpus_hardware_enabled);
1865 kvm_arch_hardware_disable(NULL);
1866 }
1867
1868 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1869 void *v)
1870 {
1871 int cpu = (long)v;
1872
1873 val &= ~CPU_TASKS_FROZEN;
1874 switch (val) {
1875 case CPU_DYING:
1876 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1877 cpu);
1878 hardware_disable(NULL);
1879 break;
1880 case CPU_UP_CANCELED:
1881 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1882 cpu);
1883 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1884 break;
1885 case CPU_ONLINE:
1886 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1887 cpu);
1888 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1889 break;
1890 }
1891 return NOTIFY_OK;
1892 }
1893
1894
1895 asmlinkage void kvm_handle_fault_on_reboot(void)
1896 {
1897 if (kvm_rebooting)
1898 /* spin while reset goes on */
1899 while (true)
1900 ;
1901 /* Fault while not rebooting. We want the trace. */
1902 BUG();
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1905
1906 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1907 void *v)
1908 {
1909 if (val == SYS_RESTART) {
1910 /*
1911 * Some (well, at least mine) BIOSes hang on reboot if
1912 * in vmx root mode.
1913 */
1914 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1915 kvm_rebooting = true;
1916 on_each_cpu(hardware_disable, NULL, 1);
1917 }
1918 return NOTIFY_OK;
1919 }
1920
1921 static struct notifier_block kvm_reboot_notifier = {
1922 .notifier_call = kvm_reboot,
1923 .priority = 0,
1924 };
1925
1926 void kvm_io_bus_init(struct kvm_io_bus *bus)
1927 {
1928 memset(bus, 0, sizeof(*bus));
1929 }
1930
1931 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1932 {
1933 int i;
1934
1935 for (i = 0; i < bus->dev_count; i++) {
1936 struct kvm_io_device *pos = bus->devs[i];
1937
1938 kvm_iodevice_destructor(pos);
1939 }
1940 }
1941
1942 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
1943 gpa_t addr, int len, int is_write)
1944 {
1945 int i;
1946
1947 for (i = 0; i < bus->dev_count; i++) {
1948 struct kvm_io_device *pos = bus->devs[i];
1949
1950 if (pos->in_range(pos, addr, len, is_write))
1951 return pos;
1952 }
1953
1954 return NULL;
1955 }
1956
1957 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1958 {
1959 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1960
1961 bus->devs[bus->dev_count++] = dev;
1962 }
1963
1964 static struct notifier_block kvm_cpu_notifier = {
1965 .notifier_call = kvm_cpu_hotplug,
1966 .priority = 20, /* must be > scheduler priority */
1967 };
1968
1969 static int vm_stat_get(void *_offset, u64 *val)
1970 {
1971 unsigned offset = (long)_offset;
1972 struct kvm *kvm;
1973
1974 *val = 0;
1975 spin_lock(&kvm_lock);
1976 list_for_each_entry(kvm, &vm_list, vm_list)
1977 *val += *(u32 *)((void *)kvm + offset);
1978 spin_unlock(&kvm_lock);
1979 return 0;
1980 }
1981
1982 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1983
1984 static int vcpu_stat_get(void *_offset, u64 *val)
1985 {
1986 unsigned offset = (long)_offset;
1987 struct kvm *kvm;
1988 struct kvm_vcpu *vcpu;
1989 int i;
1990
1991 *val = 0;
1992 spin_lock(&kvm_lock);
1993 list_for_each_entry(kvm, &vm_list, vm_list)
1994 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1995 vcpu = kvm->vcpus[i];
1996 if (vcpu)
1997 *val += *(u32 *)((void *)vcpu + offset);
1998 }
1999 spin_unlock(&kvm_lock);
2000 return 0;
2001 }
2002
2003 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2004
2005 static struct file_operations *stat_fops[] = {
2006 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2007 [KVM_STAT_VM] = &vm_stat_fops,
2008 };
2009
2010 static void kvm_init_debug(void)
2011 {
2012 struct kvm_stats_debugfs_item *p;
2013
2014 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2015 for (p = debugfs_entries; p->name; ++p)
2016 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2017 (void *)(long)p->offset,
2018 stat_fops[p->kind]);
2019 }
2020
2021 static void kvm_exit_debug(void)
2022 {
2023 struct kvm_stats_debugfs_item *p;
2024
2025 for (p = debugfs_entries; p->name; ++p)
2026 debugfs_remove(p->dentry);
2027 debugfs_remove(kvm_debugfs_dir);
2028 }
2029
2030 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2031 {
2032 hardware_disable(NULL);
2033 return 0;
2034 }
2035
2036 static int kvm_resume(struct sys_device *dev)
2037 {
2038 hardware_enable(NULL);
2039 return 0;
2040 }
2041
2042 static struct sysdev_class kvm_sysdev_class = {
2043 .name = "kvm",
2044 .suspend = kvm_suspend,
2045 .resume = kvm_resume,
2046 };
2047
2048 static struct sys_device kvm_sysdev = {
2049 .id = 0,
2050 .cls = &kvm_sysdev_class,
2051 };
2052
2053 struct page *bad_page;
2054 pfn_t bad_pfn;
2055
2056 static inline
2057 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2058 {
2059 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2060 }
2061
2062 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2063 {
2064 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2065
2066 kvm_arch_vcpu_load(vcpu, cpu);
2067 }
2068
2069 static void kvm_sched_out(struct preempt_notifier *pn,
2070 struct task_struct *next)
2071 {
2072 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2073
2074 kvm_arch_vcpu_put(vcpu);
2075 }
2076
2077 int kvm_init(void *opaque, unsigned int vcpu_size,
2078 struct module *module)
2079 {
2080 int r;
2081 int cpu;
2082
2083 kvm_init_debug();
2084
2085 r = kvm_arch_init(opaque);
2086 if (r)
2087 goto out_fail;
2088
2089 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2090
2091 if (bad_page == NULL) {
2092 r = -ENOMEM;
2093 goto out;
2094 }
2095
2096 bad_pfn = page_to_pfn(bad_page);
2097
2098 r = kvm_arch_hardware_setup();
2099 if (r < 0)
2100 goto out_free_0;
2101
2102 for_each_online_cpu(cpu) {
2103 smp_call_function_single(cpu,
2104 kvm_arch_check_processor_compat,
2105 &r, 1);
2106 if (r < 0)
2107 goto out_free_1;
2108 }
2109
2110 on_each_cpu(hardware_enable, NULL, 1);
2111 r = register_cpu_notifier(&kvm_cpu_notifier);
2112 if (r)
2113 goto out_free_2;
2114 register_reboot_notifier(&kvm_reboot_notifier);
2115
2116 r = sysdev_class_register(&kvm_sysdev_class);
2117 if (r)
2118 goto out_free_3;
2119
2120 r = sysdev_register(&kvm_sysdev);
2121 if (r)
2122 goto out_free_4;
2123
2124 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2125 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2126 __alignof__(struct kvm_vcpu),
2127 0, NULL);
2128 if (!kvm_vcpu_cache) {
2129 r = -ENOMEM;
2130 goto out_free_5;
2131 }
2132
2133 kvm_chardev_ops.owner = module;
2134
2135 r = misc_register(&kvm_dev);
2136 if (r) {
2137 printk(KERN_ERR "kvm: misc device register failed\n");
2138 goto out_free;
2139 }
2140
2141 kvm_preempt_ops.sched_in = kvm_sched_in;
2142 kvm_preempt_ops.sched_out = kvm_sched_out;
2143
2144 return 0;
2145
2146 out_free:
2147 kmem_cache_destroy(kvm_vcpu_cache);
2148 out_free_5:
2149 sysdev_unregister(&kvm_sysdev);
2150 out_free_4:
2151 sysdev_class_unregister(&kvm_sysdev_class);
2152 out_free_3:
2153 unregister_reboot_notifier(&kvm_reboot_notifier);
2154 unregister_cpu_notifier(&kvm_cpu_notifier);
2155 out_free_2:
2156 on_each_cpu(hardware_disable, NULL, 1);
2157 out_free_1:
2158 kvm_arch_hardware_unsetup();
2159 out_free_0:
2160 __free_page(bad_page);
2161 out:
2162 kvm_arch_exit();
2163 kvm_exit_debug();
2164 out_fail:
2165 return r;
2166 }
2167 EXPORT_SYMBOL_GPL(kvm_init);
2168
2169 void kvm_exit(void)
2170 {
2171 kvm_trace_cleanup();
2172 misc_deregister(&kvm_dev);
2173 kmem_cache_destroy(kvm_vcpu_cache);
2174 sysdev_unregister(&kvm_sysdev);
2175 sysdev_class_unregister(&kvm_sysdev_class);
2176 unregister_reboot_notifier(&kvm_reboot_notifier);
2177 unregister_cpu_notifier(&kvm_cpu_notifier);
2178 on_each_cpu(hardware_disable, NULL, 1);
2179 kvm_arch_hardware_unsetup();
2180 kvm_arch_exit();
2181 kvm_exit_debug();
2182 __free_page(bad_page);
2183 }
2184 EXPORT_SYMBOL_GPL(kvm_exit);
This page took 0.074125 seconds and 6 git commands to generate.