Fix aarch64 ftrace JIT condition testcase
[deliverable/binutils-gdb.git] / gdb / findvar.c
index 3f3721f5bc5ed3c518aa8450ff7c5f2b4e683e7e..a39d89788e8c16dd128887913c3ac8d8d998cb95 100644 (file)
@@ -1,12 +1,12 @@
 /* Find a variable's value in memory, for GDB, the GNU debugger.
 /* Find a variable's value in memory, for GDB, the GNU debugger.
-   Copyright 1986, 87, 89, 91, 94, 95, 96, 1998
-   Free Software Foundation, Inc.
+
+   Copyright (C) 1986-2016 Free Software Foundation, Inc.
 
    This file is part of GDB.
 
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
 
    This file is part of GDB.
 
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2 of the License, or
+   the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.
 
    This program is distributed in the hope that it will be useful,
    (at your option) any later version.
 
    This program is distributed in the hope that it will be useful,
@@ -15,9 +15,7 @@
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
    GNU General Public License for more details.
 
    You should have received a copy of the GNU General Public License
-   along with this program; if not, write to the Free Software
-   Foundation, Inc., 59 Temple Place - Suite 330,
-   Boston, MA 02111-1307, USA.  */
+   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 #include "defs.h"
 #include "symtab.h"
 
 #include "defs.h"
 #include "symtab.h"
 #include "gdbcore.h"
 #include "inferior.h"
 #include "target.h"
 #include "gdbcore.h"
 #include "inferior.h"
 #include "target.h"
-#include "gdb_string.h"
 #include "floatformat.h"
 #include "symfile.h"           /* for overlay functions */
 #include "floatformat.h"
 #include "symfile.h"           /* for overlay functions */
+#include "regcache.h"
+#include "user-regs.h"
+#include "block.h"
+#include "objfiles.h"
+#include "language.h"
+#include "dwarf2loc.h"
 
 
-/* This is used to indicate that we don't know the format of the floating point
-   number.  Typically, this is useful for native ports, where the actual format
-   is irrelevant, since no conversions will be taking place.  */
-
-const struct floatformat floatformat_unknown;
-
-/* Registers we shouldn't try to store.  */
-#if !defined (CANNOT_STORE_REGISTER)
-#define CANNOT_STORE_REGISTER(regno) 0
-#endif
-
-static void write_register_gen PARAMS ((int, char *));
-
-static int read_relative_register_raw_bytes_for_frame PARAMS ((int regnum, char *myaddr, struct frame_info * frame));
-
-/* Basic byte-swapping routines.  GDB has needed these for a long time...
-   All extract a target-format integer at ADDR which is LEN bytes long.  */
+/* Basic byte-swapping routines.  All 'extract' functions return a
+   host-format integer from a target-format integer at ADDR which is
+   LEN bytes long.  */
 
 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
   /* 8 bit characters are a pretty safe assumption these days, so we
 
 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
   /* 8 bit characters are a pretty safe assumption these days, so we
@@ -58,21 +47,22 @@ you lose
 #endif
 
 LONGEST
 #endif
 
 LONGEST
-extract_signed_integer (void *addr, int len)
+extract_signed_integer (const gdb_byte *addr, int len,
+                       enum bfd_endian byte_order)
 {
   LONGEST retval;
 {
   LONGEST retval;
-  unsigned char *p;
-  unsigned char *startaddr = (unsigned char *) addr;
-  unsigned char *endaddr = startaddr + len;
+  const unsigned char *p;
+  const unsigned char *startaddr = addr;
+  const unsigned char *endaddr = startaddr + len;
 
   if (len > (int) sizeof (LONGEST))
 
   if (len > (int) sizeof (LONGEST))
-    error ("\
-That operation is not available on integers of more than %d bytes.",
-          sizeof (LONGEST));
+    error (_("\
+That operation is not available on integers of more than %d bytes."),
+          (int) sizeof (LONGEST));
 
   /* Start at the most significant end of the integer, and work towards
      the least significant.  */
 
   /* Start at the most significant end of the integer, and work towards
      the least significant.  */
-  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+  if (byte_order == BFD_ENDIAN_BIG)
     {
       p = startaddr;
       /* Do the sign extension once at the start.  */
     {
       p = startaddr;
       /* Do the sign extension once at the start.  */
@@ -92,22 +82,23 @@ That operation is not available on integers of more than %d bytes.",
 }
 
 ULONGEST
 }
 
 ULONGEST
-extract_unsigned_integer (void *addr, int len)
+extract_unsigned_integer (const gdb_byte *addr, int len,
+                         enum bfd_endian byte_order)
 {
   ULONGEST retval;
 {
   ULONGEST retval;
-  unsigned char *p;
-  unsigned char *startaddr = (unsigned char *) addr;
-  unsigned char *endaddr = startaddr + len;
+  const unsigned char *p;
+  const unsigned char *startaddr = addr;
+  const unsigned char *endaddr = startaddr + len;
 
   if (len > (int) sizeof (ULONGEST))
 
   if (len > (int) sizeof (ULONGEST))
-    error ("\
-That operation is not available on integers of more than %d bytes.",
-          sizeof (ULONGEST));
+    error (_("\
+That operation is not available on integers of more than %d bytes."),
+          (int) sizeof (ULONGEST));
 
   /* Start at the most significant end of the integer, and work towards
      the least significant.  */
   retval = 0;
 
   /* Start at the most significant end of the integer, and work towards
      the least significant.  */
   retval = 0;
-  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+  if (byte_order == BFD_ENDIAN_BIG)
     {
       for (p = startaddr; p < endaddr; ++p)
        retval = (retval << 8) | *p;
     {
       for (p = startaddr; p < endaddr; ++p)
        retval = (retval << 8) | *p;
@@ -126,16 +117,18 @@ That operation is not available on integers of more than %d bytes.",
    function returns 1 and sets *PVAL.  Otherwise it returns 0.  */
 
 int
    function returns 1 and sets *PVAL.  Otherwise it returns 0.  */
 
 int
-extract_long_unsigned_integer (void *addr, int orig_len, LONGEST *pval)
+extract_long_unsigned_integer (const gdb_byte *addr, int orig_len,
+                              enum bfd_endian byte_order, LONGEST *pval)
 {
 {
-  char *p, *first_addr;
+  const gdb_byte *p;
+  const gdb_byte *first_addr;
   int len;
 
   len = orig_len;
   int len;
 
   len = orig_len;
-  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+  if (byte_order == BFD_ENDIAN_BIG)
     {
     {
-      for (p = (char *) addr;
-          len > (int) sizeof (LONGEST) && p < (char *) addr + orig_len;
+      for (p = addr;
+          len > (int) sizeof (LONGEST) && p < addr + orig_len;
           p++)
        {
          if (*p == 0)
           p++)
        {
          if (*p == 0)
@@ -147,9 +140,9 @@ extract_long_unsigned_integer (void *addr, int orig_len, LONGEST *pval)
     }
   else
     {
     }
   else
     {
-      first_addr = (char *) addr;
-      for (p = (char *) addr + orig_len - 1;
-          len > (int) sizeof (LONGEST) && p >= (char *) addr;
+      first_addr = addr;
+      for (p = addr + orig_len - 1;
+          len > (int) sizeof (LONGEST) && p >= addr;
           p--)
        {
          if (*p == 0)
           p--)
        {
          if (*p == 0)
@@ -162,7 +155,8 @@ extract_long_unsigned_integer (void *addr, int orig_len, LONGEST *pval)
   if (len <= (int) sizeof (LONGEST))
     {
       *pval = (LONGEST) extract_unsigned_integer (first_addr,
   if (len <= (int) sizeof (LONGEST))
     {
       *pval = (LONGEST) extract_unsigned_integer (first_addr,
-                                                 sizeof (LONGEST));
+                                                 sizeof (LONGEST),
+                                                 byte_order);
       return 1;
     }
 
       return 1;
     }
 
@@ -170,52 +164,34 @@ extract_long_unsigned_integer (void *addr, int orig_len, LONGEST *pval)
 }
 
 
 }
 
 
-/* Treat the LEN bytes at ADDR as a target-format address, and return
-   that address.  ADDR is a buffer in the GDB process, not in the
-   inferior.
-
-   This function should only be used by target-specific code.  It
-   assumes that a pointer has the same representation as that thing's
-   address represented as an integer.  Some machines use word
-   addresses, or similarly munged things, for certain types of
-   pointers, so that assumption doesn't hold everywhere.
-
-   Common code should use extract_typed_address instead, or something
-   else based on POINTER_TO_ADDRESS.  */
-
-CORE_ADDR
-extract_address (void *addr, int len)
-{
-  /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
-     whether we want this to be true eventually.  */
-  return (CORE_ADDR) extract_unsigned_integer (addr, len);
-}
-
-
 /* Treat the bytes at BUF as a pointer of type TYPE, and return the
    address it represents.  */
 CORE_ADDR
 /* Treat the bytes at BUF as a pointer of type TYPE, and return the
    address it represents.  */
 CORE_ADDR
-extract_typed_address (void *buf, struct type *type)
+extract_typed_address (const gdb_byte *buf, struct type *type)
 {
   if (TYPE_CODE (type) != TYPE_CODE_PTR
       && TYPE_CODE (type) != TYPE_CODE_REF)
 {
   if (TYPE_CODE (type) != TYPE_CODE_PTR
       && TYPE_CODE (type) != TYPE_CODE_REF)
-    internal_error ("findvar.c (extract_typed_address): "
-                   "type is not a pointer or reference");
+    internal_error (__FILE__, __LINE__,
+                   _("extract_typed_address: "
+                   "type is not a pointer or reference"));
 
 
-  return POINTER_TO_ADDRESS (type, buf);
+  return gdbarch_pointer_to_address (get_type_arch (type), type, buf);
 }
 
 }
 
+/* All 'store' functions accept a host-format integer and store a
+   target-format integer at ADDR which is LEN bytes long.  */
 
 void
 
 void
-store_signed_integer (void *addr, int len, LONGEST val)
+store_signed_integer (gdb_byte *addr, int len,
+                     enum bfd_endian byte_order, LONGEST val)
 {
 {
-  unsigned char *p;
-  unsigned char *startaddr = (unsigned char *) addr;
-  unsigned char *endaddr = startaddr + len;
+  gdb_byte *p;
+  gdb_byte *startaddr = addr;
+  gdb_byte *endaddr = startaddr + len;
 
   /* Start at the least significant end of the integer, and work towards
      the most significant.  */
 
   /* Start at the least significant end of the integer, and work towards
      the most significant.  */
-  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+  if (byte_order == BFD_ENDIAN_BIG)
     {
       for (p = endaddr - 1; p >= startaddr; --p)
        {
     {
       for (p = endaddr - 1; p >= startaddr; --p)
        {
@@ -234,7 +210,8 @@ store_signed_integer (void *addr, int len, LONGEST val)
 }
 
 void
 }
 
 void
-store_unsigned_integer (void *addr, int len, ULONGEST val)
+store_unsigned_integer (gdb_byte *addr, int len,
+                       enum bfd_endian byte_order, ULONGEST val)
 {
   unsigned char *p;
   unsigned char *startaddr = (unsigned char *) addr;
 {
   unsigned char *p;
   unsigned char *startaddr = (unsigned char *) addr;
@@ -242,7 +219,7 @@ store_unsigned_integer (void *addr, int len, ULONGEST val)
 
   /* Start at the least significant end of the integer, and work towards
      the most significant.  */
 
   /* Start at the least significant end of the integer, and work towards
      the most significant.  */
-  if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+  if (byte_order == BFD_ENDIAN_BIG)
     {
       for (p = endaddr - 1; p >= startaddr; --p)
        {
     {
       for (p = endaddr - 1; p >= startaddr; --p)
        {
@@ -260,1168 +237,463 @@ store_unsigned_integer (void *addr, int len, ULONGEST val)
     }
 }
 
     }
 }
 
-/* Store the address VAL as a LEN-byte value in target byte order at
-   ADDR.  ADDR is a buffer in the GDB process, not in the inferior.
-
-   This function should only be used by target-specific code.  It
-   assumes that a pointer has the same representation as that thing's
-   address represented as an integer.  Some machines use word
-   addresses, or similarly munged things, for certain types of
-   pointers, so that assumption doesn't hold everywhere.
-
-   Common code should use store_typed_address instead, or something else
-   based on ADDRESS_TO_POINTER.  */
-void
-store_address (void *addr, int len, LONGEST val)
-{
-  store_unsigned_integer (addr, len, val);
-}
-
-
 /* Store the address ADDR as a pointer of type TYPE at BUF, in target
    form.  */
 void
 /* Store the address ADDR as a pointer of type TYPE at BUF, in target
    form.  */
 void
-store_typed_address (void *buf, struct type *type, CORE_ADDR addr)
+store_typed_address (gdb_byte *buf, struct type *type, CORE_ADDR addr)
 {
   if (TYPE_CODE (type) != TYPE_CODE_PTR
       && TYPE_CODE (type) != TYPE_CODE_REF)
 {
   if (TYPE_CODE (type) != TYPE_CODE_PTR
       && TYPE_CODE (type) != TYPE_CODE_REF)
-    internal_error ("findvar.c (store_typed_address): "
-                   "type is not a pointer or reference");
+    internal_error (__FILE__, __LINE__,
+                   _("store_typed_address: "
+                   "type is not a pointer or reference"));
 
 
-  ADDRESS_TO_POINTER (type, buf, addr);
+  gdbarch_address_to_pointer (get_type_arch (type), type, buf, addr);
 }
 
 
 
 }
 
 
 
-\f
-/* Extract a floating-point number from a target-order byte-stream at ADDR.
-   Returns the value as type DOUBLEST.
-
-   If the host and target formats agree, we just copy the raw data into the
-   appropriate type of variable and return, letting the host increase precision
-   as necessary.  Otherwise, we call the conversion routine and let it do the
-   dirty work.  */
+/* Return a `value' with the contents of (virtual or cooked) register
+   REGNUM as found in the specified FRAME.  The register's type is
+   determined by register_type().  */
 
 
-DOUBLEST
-extract_floating (void *addr, int len)
+struct value *
+value_of_register (int regnum, struct frame_info *frame)
 {
 {
-  DOUBLEST dretval;
-
-  if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
-    {
-      if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
-       {
-         float retval;
-
-         memcpy (&retval, addr, sizeof (retval));
-         return retval;
-       }
-      else
-       floatformat_to_doublest (TARGET_FLOAT_FORMAT, addr, &dretval);
-    }
-  else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
-    {
-      if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
-       {
-         double retval;
-
-         memcpy (&retval, addr, sizeof (retval));
-         return retval;
-       }
-      else
-       floatformat_to_doublest (TARGET_DOUBLE_FORMAT, addr, &dretval);
-    }
-  else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
-    {
-      if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
-       {
-         DOUBLEST retval;
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct value *reg_val;
 
 
-         memcpy (&retval, addr, sizeof (retval));
-         return retval;
-       }
-      else
-       floatformat_to_doublest (TARGET_LONG_DOUBLE_FORMAT, addr, &dretval);
-    }
-  else
-    {
-      error ("Can't deal with a floating point number of %d bytes.", len);
-    }
+  /* User registers lie completely outside of the range of normal
+     registers.  Catch them early so that the target never sees them.  */
+  if (regnum >= gdbarch_num_regs (gdbarch)
+               + gdbarch_num_pseudo_regs (gdbarch))
+    return value_of_user_reg (regnum, frame);
 
 
-  return dretval;
+  reg_val = value_of_register_lazy (frame, regnum);
+  value_fetch_lazy (reg_val);
+  return reg_val;
 }
 
 }
 
-void
-store_floating (void *addr, int len, DOUBLEST val)
+/* Return a `value' with the contents of (virtual or cooked) register
+   REGNUM as found in the specified FRAME.  The register's type is
+   determined by register_type().  The value is not fetched.  */
+
+struct value *
+value_of_register_lazy (struct frame_info *frame, int regnum)
 {
 {
-  if (len * TARGET_CHAR_BIT == TARGET_FLOAT_BIT)
-    {
-      if (HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT)
-       {
-         float floatval = val;
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct value *reg_val;
 
 
-         memcpy (addr, &floatval, sizeof (floatval));
-       }
-      else
-       floatformat_from_doublest (TARGET_FLOAT_FORMAT, &val, addr);
-    }
-  else if (len * TARGET_CHAR_BIT == TARGET_DOUBLE_BIT)
-    {
-      if (HOST_DOUBLE_FORMAT == TARGET_DOUBLE_FORMAT)
-       {
-         double doubleval = val;
+  gdb_assert (regnum < (gdbarch_num_regs (gdbarch)
+                       + gdbarch_num_pseudo_regs (gdbarch)));
 
 
-         memcpy (addr, &doubleval, sizeof (doubleval));
-       }
-      else
-       floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &val, addr);
-    }
-  else if (len * TARGET_CHAR_BIT == TARGET_LONG_DOUBLE_BIT)
-    {
-      if (HOST_LONG_DOUBLE_FORMAT == TARGET_LONG_DOUBLE_FORMAT)
-       memcpy (addr, &val, sizeof (val));
-      else
-       floatformat_from_doublest (TARGET_LONG_DOUBLE_FORMAT, &val, addr);
-    }
-  else
-    {
-      error ("Can't deal with a floating point number of %d bytes.", len);
-    }
-}
-\f
+  /* We should have a valid (i.e. non-sentinel) frame.  */
+  gdb_assert (frame_id_p (get_frame_id (frame)));
 
 
-/* Return the address in which frame FRAME's value of register REGNUM
-   has been saved in memory.  Or return zero if it has not been saved.
-   If REGNUM specifies the SP, the value we return is actually
-   the SP value, not an address where it was saved.  */
+  reg_val = allocate_value_lazy (register_type (gdbarch, regnum));
+  VALUE_LVAL (reg_val) = lval_register;
+  VALUE_REGNUM (reg_val) = regnum;
+  VALUE_FRAME_ID (reg_val) = get_frame_id (frame);
+  return reg_val;
+}
 
 
+/* Given a pointer of type TYPE in target form in BUF, return the
+   address it represents.  */
 CORE_ADDR
 CORE_ADDR
-find_saved_register (frame, regnum)
-     struct frame_info *frame;
-     int regnum;
+unsigned_pointer_to_address (struct gdbarch *gdbarch,
+                            struct type *type, const gdb_byte *buf)
 {
 {
-  register struct frame_info *frame1 = NULL;
-  register CORE_ADDR addr = 0;
-
-  if (frame == NULL)           /* No regs saved if want current frame */
-    return 0;
-
-#ifdef HAVE_REGISTER_WINDOWS
-  /* We assume that a register in a register window will only be saved
-     in one place (since the name changes and/or disappears as you go
-     towards inner frames), so we only call get_frame_saved_regs on
-     the current frame.  This is directly in contradiction to the
-     usage below, which assumes that registers used in a frame must be
-     saved in a lower (more interior) frame.  This change is a result
-     of working on a register window machine; get_frame_saved_regs
-     always returns the registers saved within a frame, within the
-     context (register namespace) of that frame. */
-
-  /* However, note that we don't want this to return anything if
-     nothing is saved (if there's a frame inside of this one).  Also,
-     callers to this routine asking for the stack pointer want the
-     stack pointer saved for *this* frame; this is returned from the
-     next frame.  */
-
-  if (REGISTER_IN_WINDOW_P (regnum))
-    {
-      frame1 = get_next_frame (frame);
-      if (!frame1)
-       return 0;               /* Registers of this frame are active.  */
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
 
 
-      /* Get the SP from the next frame in; it will be this
-         current frame.  */
-      if (regnum != SP_REGNUM)
-       frame1 = frame;
-
-      FRAME_INIT_SAVED_REGS (frame1);
-      return frame1->saved_regs[regnum];       /* ... which might be zero */
-    }
-#endif /* HAVE_REGISTER_WINDOWS */
-
-  /* Note that this next routine assumes that registers used in
-     frame x will be saved only in the frame that x calls and
-     frames interior to it.  This is not true on the sparc, but the
-     above macro takes care of it, so we should be all right. */
-  while (1)
-    {
-      QUIT;
-      frame1 = get_prev_frame (frame1);
-      if (frame1 == 0 || frame1 == frame)
-       break;
-      FRAME_INIT_SAVED_REGS (frame1);
-      if (frame1->saved_regs[regnum])
-       addr = frame1->saved_regs[regnum];
-    }
-
-  return addr;
+  return extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
 }
 
 }
 
-/* Find register number REGNUM relative to FRAME and put its (raw,
-   target format) contents in *RAW_BUFFER.  Set *OPTIMIZED if the
-   variable was optimized out (and thus can't be fetched).  Set *LVAL
-   to lval_memory, lval_register, or not_lval, depending on whether
-   the value was fetched from memory, from a register, or in a strange
-   and non-modifiable way (e.g. a frame pointer which was calculated
-   rather than fetched).  Set *ADDRP to the address, either in memory
-   on as a REGISTER_BYTE offset into the registers array.
-
-   Note that this implementation never sets *LVAL to not_lval.  But
-   it can be replaced by defining GET_SAVED_REGISTER and supplying
-   your own.
+CORE_ADDR
+signed_pointer_to_address (struct gdbarch *gdbarch,
+                          struct type *type, const gdb_byte *buf)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
 
 
-   The argument RAW_BUFFER must point to aligned memory.  */
+  return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
+}
 
 
+/* Given an address, store it as a pointer of type TYPE in target
+   format in BUF.  */
 void
 void
-default_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
-     char *raw_buffer;
-     int *optimized;
-     CORE_ADDR *addrp;
-     struct frame_info *frame;
-     int regnum;
-     enum lval_type *lval;
+unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type,
+                            gdb_byte *buf, CORE_ADDR addr)
 {
 {
-  CORE_ADDR addr;
-
-  if (!target_has_registers)
-    error ("No registers.");
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
 
 
-  /* Normal systems don't optimize out things with register numbers.  */
-  if (optimized != NULL)
-    *optimized = 0;
-  addr = find_saved_register (frame, regnum);
-  if (addr != 0)
-    {
-      if (lval != NULL)
-       *lval = lval_memory;
-      if (regnum == SP_REGNUM)
-       {
-         if (raw_buffer != NULL)
-           {
-             /* Put it back in target format.  */
-             store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
-                            (LONGEST) addr);
-           }
-         if (addrp != NULL)
-           *addrp = 0;
-         return;
-       }
-      if (raw_buffer != NULL)
-       read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
-    }
-  else
-    {
-      if (lval != NULL)
-       *lval = lval_register;
-      addr = REGISTER_BYTE (regnum);
-      if (raw_buffer != NULL)
-       read_register_gen (regnum, raw_buffer);
-    }
-  if (addrp != NULL)
-    *addrp = addr;
+  store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
 }
 
 }
 
-#if !defined (GET_SAVED_REGISTER)
-#define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \
-  default_get_saved_register(raw_buffer, optimized, addrp, frame, regnum, lval)
-#endif
 void
 void
-get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
-     char *raw_buffer;
-     int *optimized;
-     CORE_ADDR *addrp;
-     struct frame_info *frame;
-     int regnum;
-     enum lval_type *lval;
+address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type,
+                          gdb_byte *buf, CORE_ADDR addr)
 {
 {
-  GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval);
-}
-
-/* Copy the bytes of register REGNUM, relative to the input stack frame,
-   into our memory at MYADDR, in target byte order.
-   The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
 
 
-   Returns 1 if could not be read, 0 if could.  */
-
-static int
-read_relative_register_raw_bytes_for_frame (regnum, myaddr, frame)
-     int regnum;
-     char *myaddr;
-     struct frame_info *frame;
+  store_signed_integer (buf, TYPE_LENGTH (type), byte_order, addr);
+}
+\f
+/* Will calling read_var_value or locate_var_value on SYM end
+   up caring what frame it is being evaluated relative to?  SYM must
+   be non-NULL.  */
+int
+symbol_read_needs_frame (struct symbol *sym)
 {
 {
-  int optim;
-  if (regnum == FP_REGNUM && frame)
+  if (SYMBOL_COMPUTED_OPS (sym) != NULL)
+    return SYMBOL_COMPUTED_OPS (sym)->read_needs_frame (sym);
+
+  switch (SYMBOL_CLASS (sym))
     {
     {
-      /* Put it back in target format. */
-      store_address (myaddr, REGISTER_RAW_SIZE (FP_REGNUM),
-                    (LONGEST) FRAME_FP (frame));
+      /* All cases listed explicitly so that gcc -Wall will detect it if
+         we failed to consider one.  */
+    case LOC_COMPUTED:
+      gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
 
 
-      return 0;
-    }
+    case LOC_REGISTER:
+    case LOC_ARG:
+    case LOC_REF_ARG:
+    case LOC_REGPARM_ADDR:
+    case LOC_LOCAL:
+      return 1;
 
 
-  get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame,
-                     regnum, (enum lval_type *) NULL);
+    case LOC_UNDEF:
+    case LOC_CONST:
+    case LOC_STATIC:
+    case LOC_TYPEDEF:
 
 
-  if (register_valid[regnum] < 0)
-    return 1;                  /* register value not available */
+    case LOC_LABEL:
+      /* Getting the address of a label can be done independently of the block,
+         even if some *uses* of that address wouldn't work so well without
+         the right frame.  */
 
 
-  return optim;
+    case LOC_BLOCK:
+    case LOC_CONST_BYTES:
+    case LOC_UNRESOLVED:
+    case LOC_OPTIMIZED_OUT:
+      return 0;
+    }
+  return 1;
 }
 
 }
 
-/* Copy the bytes of register REGNUM, relative to the current stack frame,
-   into our memory at MYADDR, in target byte order.
-   The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
-
-   Returns 1 if could not be read, 0 if could.  */
+/* Private data to be used with minsym_lookup_iterator_cb.  */
 
 
-int
-read_relative_register_raw_bytes (regnum, myaddr)
-     int regnum;
-     char *myaddr;
+struct minsym_lookup_data
 {
 {
-  return read_relative_register_raw_bytes_for_frame (regnum, myaddr,
-                                                    selected_frame);
-}
+  /* The name of the minimal symbol we are searching for.  */
+  const char *name;
 
 
-/* Return a `value' with the contents of register REGNUM
-   in its virtual format, with the type specified by
-   REGISTER_VIRTUAL_TYPE.  
+  /* The field where the callback should store the minimal symbol
+     if found.  It should be initialized to NULL before the search
+     is started.  */
+  struct bound_minimal_symbol result;
+};
 
 
-   NOTE: returns NULL if register value is not available.
-   Caller will check return value or die!  */
+/* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
+   It searches by name for a minimal symbol within the given OBJFILE.
+   The arguments are passed via CB_DATA, which in reality is a pointer
+   to struct minsym_lookup_data.  */
 
 
-value_ptr
-value_of_register (regnum)
-     int regnum;
+static int
+minsym_lookup_iterator_cb (struct objfile *objfile, void *cb_data)
 {
 {
-  CORE_ADDR addr;
-  int optim;
-  register value_ptr reg_val;
-  char raw_buffer[MAX_REGISTER_RAW_SIZE];
-  enum lval_type lval;
+  struct minsym_lookup_data *data = (struct minsym_lookup_data *) cb_data;
 
 
-  get_saved_register (raw_buffer, &optim, &addr,
-                     selected_frame, regnum, &lval);
+  gdb_assert (data->result.minsym == NULL);
 
 
-  if (register_valid[regnum] < 0)
-    return NULL;               /* register value not available */
+  data->result = lookup_minimal_symbol (data->name, NULL, objfile);
 
 
-  reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
-
-  /* Convert raw data to virtual format if necessary.  */
-
-  if (REGISTER_CONVERTIBLE (regnum))
-    {
-      REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
-                                  raw_buffer, VALUE_CONTENTS_RAW (reg_val));
-    }
-  else if (REGISTER_RAW_SIZE (regnum) == REGISTER_VIRTUAL_SIZE (regnum))
-    memcpy (VALUE_CONTENTS_RAW (reg_val), raw_buffer,
-           REGISTER_RAW_SIZE (regnum));
-  else
-    internal_error ("Register \"%s\" (%d) has conflicting raw (%d) and virtual (%d) size",
-                   REGISTER_NAME (regnum),
-                   regnum,
-                   REGISTER_RAW_SIZE (regnum),
-                   REGISTER_VIRTUAL_SIZE (regnum));
-  VALUE_LVAL (reg_val) = lval;
-  VALUE_ADDRESS (reg_val) = addr;
-  VALUE_REGNO (reg_val) = regnum;
-  VALUE_OPTIMIZED_OUT (reg_val) = optim;
-  return reg_val;
+  /* The iterator should stop iff a match was found.  */
+  return (data->result.minsym != NULL);
 }
 }
-\f
-/* Low level examining and depositing of registers.
-
-   The caller is responsible for making
-   sure that the inferior is stopped before calling the fetching routines,
-   or it will get garbage.  (a change from GDB version 3, in which
-   the caller got the value from the last stop).  */
 
 
-/* Contents and state of the registers (in target byte order). */
+/* Given static link expression and the frame it lives in, look for the frame
+   the static links points to and return it.  Return NULL if we could not find
+   such a frame.   */
 
 
-char *registers;
-
-/* VALID_REGISTER is non-zero if it has been fetched, -1 if the
-   register value was not available. */
+static struct frame_info *
+follow_static_link (struct frame_info *frame,
+                   const struct dynamic_prop *static_link)
+{
+  CORE_ADDR upper_frame_base;
 
 
-signed char *register_valid;
+  if (!dwarf2_evaluate_property (static_link, frame, NULL, &upper_frame_base))
+    return NULL;
 
 
-/* The thread/process associated with the current set of registers.  For now,
-   -1 is special, and means `no current process'.  */
-int registers_pid = -1;
+  /* Now climb up the stack frame until we reach the frame we are interested
+     in.  */
+  for (; frame != NULL; frame = get_prev_frame (frame))
+    {
+      struct symbol *framefunc = get_frame_function (frame);
 
 
-/* Indicate that registers may have changed, so invalidate the cache.  */
+      /* Stacks can be quite deep: give the user a chance to stop this.  */
+      QUIT;
 
 
-void
-registers_changed ()
-{
-  int i;
-  int numregs = ARCH_NUM_REGS;
+      /* If we don't know how to compute FRAME's base address, don't give up:
+        maybe the frame we are looking for is upper in the stace frame.  */
+      if (framefunc != NULL
+         && SYMBOL_BLOCK_OPS (framefunc)->get_frame_base != NULL
+         && (SYMBOL_BLOCK_OPS (framefunc)->get_frame_base (framefunc, frame)
+             == upper_frame_base))
+       break;
+    }
 
 
-  registers_pid = -1;
+  return frame;
+}
 
 
-  /* Force cleanup of any alloca areas if using C alloca instead of
-     a builtin alloca.  This particular call is used to clean up
-     areas allocated by low level target code which may build up
-     during lengthy interactions between gdb and the target before
-     gdb gives control to the user (ie watchpoints).  */
-  alloca (0);
+/* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical
+   rules, look for the frame that is actually hosting VAR and return it.  If,
+   for some reason, we found no such frame, return NULL.
 
 
-  for (i = 0; i < numregs; i++)
-    register_valid[i] = 0;
+   This kind of computation is necessary to correctly handle lexically nested
+   functions.
 
 
-  if (registers_changed_hook)
-    registers_changed_hook ();
-}
+   Note that in some cases, we know what scope VAR comes from but we cannot
+   reach the specific frame that hosts the instance of VAR we are looking for.
+   For backward compatibility purposes (with old compilers), we then look for
+   the first frame that can host it.  */
 
 
-/* Indicate that all registers have been fetched, so mark them all valid.  */
-void
-registers_fetched ()
+static struct frame_info *
+get_hosting_frame (struct symbol *var, const struct block *var_block,
+                  struct frame_info *frame)
 {
 {
-  int i;
-  int numregs = ARCH_NUM_REGS;
-  for (i = 0; i < numregs; i++)
-    register_valid[i] = 1;
-}
+  const struct block *frame_block = NULL;
 
 
-/* read_register_bytes and write_register_bytes are generally a *BAD*
-   idea.  They are inefficient because they need to check for partial
-   updates, which can only be done by scanning through all of the
-   registers and seeing if the bytes that are being read/written fall
-   inside of an invalid register.  [The main reason this is necessary
-   is that register sizes can vary, so a simple index won't suffice.]
-   It is far better to call read_register_gen and write_register_gen
-   if you want to get at the raw register contents, as it only takes a
-   regno as an argument, and therefore can't do a partial register
-   update.
-
-   Prior to the recent fixes to check for partial updates, both read
-   and write_register_bytes always checked to see if any registers
-   were stale, and then called target_fetch_registers (-1) to update
-   the whole set.  This caused really slowed things down for remote
-   targets.  */
-
-/* Copy INLEN bytes of consecutive data from registers
-   starting with the INREGBYTE'th byte of register data
-   into memory at MYADDR.  */
+  if (!symbol_read_needs_frame (var))
+    return NULL;
 
 
-void
-read_register_bytes (inregbyte, myaddr, inlen)
-     int inregbyte;
-     char *myaddr;
-     int inlen;
-{
-  int inregend = inregbyte + inlen;
-  int regno;
+  /* Some symbols for local variables have no block: this happens when they are
+     not produced by a debug information reader, for instance when GDB creates
+     synthetic symbols.  Without block information, we must assume they are
+     local to FRAME. In this case, there is nothing to do.  */
+  else if (var_block == NULL)
+    return frame;
 
 
-  if (registers_pid != inferior_pid)
-    {
-      registers_changed ();
-      registers_pid = inferior_pid;
-    }
+  /* We currently assume that all symbols with a location list need a frame.
+     This is true in practice because selecting the location description
+     requires to compute the CFA, hence requires a frame.  However we have
+     tests that embed global/static symbols with null location lists.
+     We want to get <optimized out> instead of <frame required> when evaluating
+     them so return a frame instead of raising an error.  */
+  else if (var_block == block_global_block (var_block)
+          || var_block == block_static_block (var_block))
+    return frame;
 
 
-  /* See if we are trying to read bytes from out-of-date registers.  If so,
-     update just those registers.  */
+  /* We have to handle the "my_func::my_local_var" notation.  This requires us
+     to look for upper frames when we find no block for the current frame: here
+     and below, handle when frame_block == NULL.  */
+  if (frame != NULL)
+    frame_block = get_frame_block (frame, NULL);
 
 
-  for (regno = 0; regno < NUM_REGS; regno++)
+  /* Climb up the call stack until reaching the frame we are looking for.  */
+  while (frame != NULL && frame_block != var_block)
     {
     {
-      int regstart, regend;
-
-      if (register_valid[regno])
-       continue;
+      /* Stacks can be quite deep: give the user a chance to stop this.  */
+      QUIT;
 
 
-      if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0')
-       continue;
+      if (frame_block == NULL)
+       {
+         frame = get_prev_frame (frame);
+         if (frame == NULL)
+           break;
+         frame_block = get_frame_block (frame, NULL);
+       }
 
 
-      regstart = REGISTER_BYTE (regno);
-      regend = regstart + REGISTER_RAW_SIZE (regno);
+      /* If we failed to find the proper frame, fallback to the heuristic
+        method below.  */
+      else if (frame_block == block_global_block (frame_block))
+       {
+         frame = NULL;
+         break;
+       }
 
 
-      if (regend <= inregbyte || inregend <= regstart)
-       /* The range the user wants to read doesn't overlap with regno.  */
-       continue;
+      /* Assuming we have a block for this frame: if we are at the function
+        level, the immediate upper lexical block is in an outer function:
+        follow the static link.  */
+      else if (BLOCK_FUNCTION (frame_block))
+       {
+         const struct dynamic_prop *static_link
+           = block_static_link (frame_block);
+         int could_climb_up = 0;
 
 
-      /* We've found an invalid register where at least one byte will be read.
-         Update it from the target.  */
-      target_fetch_registers (regno);
+         if (static_link != NULL)
+           {
+             frame = follow_static_link (frame, static_link);
+             if (frame != NULL)
+               {
+                 frame_block = get_frame_block (frame, NULL);
+                 could_climb_up = frame_block != NULL;
+               }
+           }
+         if (!could_climb_up)
+           {
+             frame = NULL;
+             break;
+           }
+       }
 
 
-      if (!register_valid[regno])
-       error ("read_register_bytes:  Couldn't update register %d.", regno);
+      else
+       /* We must be in some function nested lexical block.  Just get the
+          outer block: both must share the same frame.  */
+       frame_block = BLOCK_SUPERBLOCK (frame_block);
     }
 
     }
 
-  if (myaddr != NULL)
-    memcpy (myaddr, &registers[inregbyte], inlen);
-}
-
-/* Read register REGNO into memory at MYADDR, which must be large enough
-   for REGISTER_RAW_BYTES (REGNO).  Target byte-order.
-   If the register is known to be the size of a CORE_ADDR or smaller,
-   read_register can be used instead.  */
-void
-read_register_gen (regno, myaddr)
-     int regno;
-     char *myaddr;
-{
-  if (registers_pid != inferior_pid)
+  /* Old compilers may not provide a static link, or they may provide an
+     invalid one.  For such cases, fallback on the old way to evaluate
+     non-local references: just climb up the call stack and pick the first
+     frame that contains the variable we are looking for.  */
+  if (frame == NULL)
     {
     {
-      registers_changed ();
-      registers_pid = inferior_pid;
+      frame = block_innermost_frame (var_block);
+      if (frame == NULL)
+       {
+         if (BLOCK_FUNCTION (var_block)
+             && !block_inlined_p (var_block)
+             && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block)))
+           error (_("No frame is currently executing in block %s."),
+                  SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block)));
+         else
+           error (_("No frame is currently executing in specified"
+                    " block"));
+       }
     }
 
     }
 
-  if (!register_valid[regno])
-    target_fetch_registers (regno);
-  memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
-         REGISTER_RAW_SIZE (regno));
+  return frame;
 }
 
 }
 
-/* Write register REGNO at MYADDR to the target.  MYADDR points at
-   REGISTER_RAW_BYTES(REGNO), which must be in target byte-order.  */
+/* A default implementation for the "la_read_var_value" hook in
+   the language vector which should work in most situations.  */
 
 
-static void
-write_register_gen (regno, myaddr)
-     int regno;
-     char *myaddr;
+struct value *
+default_read_var_value (struct symbol *var, const struct block *var_block,
+                       struct frame_info *frame)
 {
 {
-  int size;
-
-  /* On the sparc, writing %g0 is a no-op, so we don't even want to change
-     the registers array if something writes to this register.  */
-  if (CANNOT_STORE_REGISTER (regno))
-    return;
-
-  if (registers_pid != inferior_pid)
-    {
-      registers_changed ();
-      registers_pid = inferior_pid;
-    }
-
-  size = REGISTER_RAW_SIZE (regno);
-
-  /* If we have a valid copy of the register, and new value == old value,
-     then don't bother doing the actual store. */
+  struct value *v;
+  struct type *type = SYMBOL_TYPE (var);
+  CORE_ADDR addr;
 
 
-  if (register_valid[regno]
-      && memcmp (&registers[REGISTER_BYTE (regno)], myaddr, size) == 0)
-    return;
+  /* Call check_typedef on our type to make sure that, if TYPE is
+     a TYPE_CODE_TYPEDEF, its length is set to the length of the target type
+     instead of zero.  However, we do not replace the typedef type by the
+     target type, because we want to keep the typedef in order to be able to
+     set the returned value type description correctly.  */
+  check_typedef (type);
 
 
-  target_prepare_to_store ();
+  if (symbol_read_needs_frame (var))
+    gdb_assert (frame != NULL);
 
 
-  memcpy (&registers[REGISTER_BYTE (regno)], myaddr, size);
+  if (frame != NULL)
+    frame = get_hosting_frame (var, var_block, frame);
 
 
-  register_valid[regno] = 1;
+  if (SYMBOL_COMPUTED_OPS (var) != NULL)
+    return SYMBOL_COMPUTED_OPS (var)->read_variable (var, frame);
 
 
-  target_store_registers (regno);
-}
+  switch (SYMBOL_CLASS (var))
+    {
+    case LOC_CONST:
+      if (is_dynamic_type (type))
+       {
+         /* Value is a constant byte-sequence and needs no memory access.  */
+         type = resolve_dynamic_type (type, NULL, /* Unused address.  */ 0);
+       }
+      /* Put the constant back in target format. */
+      v = allocate_value (type);
+      store_signed_integer (value_contents_raw (v), TYPE_LENGTH (type),
+                           gdbarch_byte_order (get_type_arch (type)),
+                           (LONGEST) SYMBOL_VALUE (var));
+      VALUE_LVAL (v) = not_lval;
+      return v;
 
 
-/* Copy INLEN bytes of consecutive data from memory at MYADDR
-   into registers starting with the MYREGSTART'th byte of register data.  */
+    case LOC_LABEL:
+      /* Put the constant back in target format.  */
+      v = allocate_value (type);
+      if (overlay_debugging)
+       {
+         CORE_ADDR addr
+           = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
+                                       SYMBOL_OBJ_SECTION (symbol_objfile (var),
+                                                           var));
 
 
-void
-write_register_bytes (myregstart, myaddr, inlen)
-     int myregstart;
-     char *myaddr;
-     int inlen;
-{
-  int myregend = myregstart + inlen;
-  int regno;
+         store_typed_address (value_contents_raw (v), type, addr);
+       }
+      else
+       store_typed_address (value_contents_raw (v), type,
+                             SYMBOL_VALUE_ADDRESS (var));
+      VALUE_LVAL (v) = not_lval;
+      return v;
 
 
-  target_prepare_to_store ();
+    case LOC_CONST_BYTES:
+      if (is_dynamic_type (type))
+       {
+         /* Value is a constant byte-sequence and needs no memory access.  */
+         type = resolve_dynamic_type (type, NULL, /* Unused address.  */ 0);
+       }
+      v = allocate_value (type);
+      memcpy (value_contents_raw (v), SYMBOL_VALUE_BYTES (var),
+             TYPE_LENGTH (type));
+      VALUE_LVAL (v) = not_lval;
+      return v;
 
 
-  /* Scan through the registers updating any that are covered by the range
-     myregstart<=>myregend using write_register_gen, which does nice things
-     like handling threads, and avoiding updates when the new and old contents
-     are the same.  */
+    case LOC_STATIC:
+      if (overlay_debugging)
+       addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
+                                        SYMBOL_OBJ_SECTION (symbol_objfile (var),
+                                                            var));
+      else
+       addr = SYMBOL_VALUE_ADDRESS (var);
+      break;
 
 
-  for (regno = 0; regno < NUM_REGS; regno++)
-    {
-      int regstart, regend;
+    case LOC_ARG:
+      addr = get_frame_args_address (frame);
+      if (!addr)
+       error (_("Unknown argument list address for `%s'."),
+              SYMBOL_PRINT_NAME (var));
+      addr += SYMBOL_VALUE (var);
+      break;
 
 
-      regstart = REGISTER_BYTE (regno);
-      regend = regstart + REGISTER_RAW_SIZE (regno);
+    case LOC_REF_ARG:
+      {
+       struct value *ref;
+       CORE_ADDR argref;
+
+       argref = get_frame_args_address (frame);
+       if (!argref)
+         error (_("Unknown argument list address for `%s'."),
+                SYMBOL_PRINT_NAME (var));
+       argref += SYMBOL_VALUE (var);
+       ref = value_at (lookup_pointer_type (type), argref);
+       addr = value_as_address (ref);
+       break;
+      }
 
 
-      /* Is this register completely outside the range the user is writing?  */
-      if (myregend <= regstart || regend <= myregstart)
-       /* do nothing */ ;              
+    case LOC_LOCAL:
+      addr = get_frame_locals_address (frame);
+      addr += SYMBOL_VALUE (var);
+      break;
 
 
-      /* Is this register completely within the range the user is writing?  */
-      else if (myregstart <= regstart && regend <= myregend)
-       write_register_gen (regno, myaddr + (regstart - myregstart));
+    case LOC_TYPEDEF:
+      error (_("Cannot look up value of a typedef `%s'."),
+            SYMBOL_PRINT_NAME (var));
+      break;
 
 
-      /* The register partially overlaps the range being written.  */
+    case LOC_BLOCK:
+      if (overlay_debugging)
+       addr = symbol_overlayed_address
+         (BLOCK_START (SYMBOL_BLOCK_VALUE (var)),
+          SYMBOL_OBJ_SECTION (symbol_objfile (var), var));
       else
       else
-       {
-         char regbuf[MAX_REGISTER_RAW_SIZE];
-         /* What's the overlap between this register's bytes and
-             those the caller wants to write?  */
-         int overlapstart = max (regstart, myregstart);
-         int overlapend   = min (regend,   myregend);
-
-         /* We may be doing a partial update of an invalid register.
-            Update it from the target before scribbling on it.  */
-         read_register_gen (regno, regbuf);
-
-         memcpy (registers + overlapstart,
-                 myaddr + (overlapstart - myregstart),
-                 overlapend - overlapstart);
-
-         target_store_registers (regno);
-       }
-    }
-}
-
-
-/* Return the raw contents of register REGNO, regarding it as an integer.  */
-/* This probably should be returning LONGEST rather than CORE_ADDR.  */
-
-CORE_ADDR
-read_register (regno)
-     int regno;
-{
-  if (registers_pid != inferior_pid)
-    {
-      registers_changed ();
-      registers_pid = inferior_pid;
-    }
-
-  if (!register_valid[regno])
-    target_fetch_registers (regno);
-
-  return ((CORE_ADDR)
-         extract_unsigned_integer (&registers[REGISTER_BYTE (regno)],
-                                   REGISTER_RAW_SIZE (regno)));
-}
-
-CORE_ADDR
-read_register_pid (regno, pid)
-     int regno, pid;
-{
-  int save_pid;
-  CORE_ADDR retval;
-
-  if (pid == inferior_pid)
-    return read_register (regno);
-
-  save_pid = inferior_pid;
-
-  inferior_pid = pid;
-
-  retval = read_register (regno);
-
-  inferior_pid = save_pid;
-
-  return retval;
-}
-
-/* Store VALUE, into the raw contents of register number REGNO.
-   This should probably write a LONGEST rather than a CORE_ADDR */
-
-void
-write_register (regno, val)
-     int regno;
-     LONGEST val;
-{
-  PTR buf;
-  int size;
-
-  /* On the sparc, writing %g0 is a no-op, so we don't even want to change
-     the registers array if something writes to this register.  */
-  if (CANNOT_STORE_REGISTER (regno))
-    return;
-
-  if (registers_pid != inferior_pid)
-    {
-      registers_changed ();
-      registers_pid = inferior_pid;
-    }
-
-  size = REGISTER_RAW_SIZE (regno);
-  buf = alloca (size);
-  store_signed_integer (buf, size, (LONGEST) val);
-
-  /* If we have a valid copy of the register, and new value == old value,
-     then don't bother doing the actual store. */
-
-  if (register_valid[regno]
-      && memcmp (&registers[REGISTER_BYTE (regno)], buf, size) == 0)
-    return;
-
-  target_prepare_to_store ();
-
-  memcpy (&registers[REGISTER_BYTE (regno)], buf, size);
-
-  register_valid[regno] = 1;
-
-  target_store_registers (regno);
-}
-
-void
-write_register_pid (regno, val, pid)
-     int regno;
-     CORE_ADDR val;
-     int pid;
-{
-  int save_pid;
-
-  if (pid == inferior_pid)
-    {
-      write_register (regno, val);
-      return;
-    }
-
-  save_pid = inferior_pid;
-
-  inferior_pid = pid;
-
-  write_register (regno, val);
-
-  inferior_pid = save_pid;
-}
-
-/* Record that register REGNO contains VAL.
-   This is used when the value is obtained from the inferior or core dump,
-   so there is no need to store the value there.
-
-   If VAL is a NULL pointer, then it's probably an unsupported register.  We
-   just set it's value to all zeros.  We might want to record this fact, and
-   report it to the users of read_register and friends.
- */
-
-void
-supply_register (regno, val)
-     int regno;
-     char *val;
-{
-#if 1
-  if (registers_pid != inferior_pid)
-    {
-      registers_changed ();
-      registers_pid = inferior_pid;
-    }
-#endif
-
-  register_valid[regno] = 1;
-  if (val)
-    memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
-  else
-    memset (&registers[REGISTER_BYTE (regno)], '\000', REGISTER_RAW_SIZE (regno));
-
-  /* On some architectures, e.g. HPPA, there are a few stray bits in some
-     registers, that the rest of the code would like to ignore.  */
-#ifdef CLEAN_UP_REGISTER_VALUE
-  CLEAN_UP_REGISTER_VALUE (regno, &registers[REGISTER_BYTE (regno)]);
-#endif
-}
-
-
-/* This routine is getting awfully cluttered with #if's.  It's probably
-   time to turn this into READ_PC and define it in the tm.h file.
-   Ditto for write_pc.
-
-   1999-06-08: The following were re-written so that it assumes the
-   existance of a TARGET_READ_PC et.al. macro.  A default generic
-   version of that macro is made available where needed.
-
-   Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
-   by the multi-arch framework, it will eventually be possible to
-   eliminate the intermediate read_pc_pid().  The client would call
-   TARGET_READ_PC directly. (cagney). */
-
-#ifndef TARGET_READ_PC
-#define TARGET_READ_PC generic_target_read_pc
-#endif
-
-CORE_ADDR
-generic_target_read_pc (int pid)
-{
-#ifdef PC_REGNUM
-  if (PC_REGNUM >= 0)
-    {
-      CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
-      return pc_val;
-    }
-#endif
-  internal_error ("generic_target_read_pc");
-  return 0;
-}
-
-CORE_ADDR
-read_pc_pid (pid)
-     int pid;
-{
-  int saved_inferior_pid;
-  CORE_ADDR pc_val;
-
-  /* In case pid != inferior_pid. */
-  saved_inferior_pid = inferior_pid;
-  inferior_pid = pid;
-
-  pc_val = TARGET_READ_PC (pid);
-
-  inferior_pid = saved_inferior_pid;
-  return pc_val;
-}
-
-CORE_ADDR
-read_pc ()
-{
-  return read_pc_pid (inferior_pid);
-}
-
-#ifndef TARGET_WRITE_PC
-#define TARGET_WRITE_PC generic_target_write_pc
-#endif
-
-void
-generic_target_write_pc (pc, pid)
-     CORE_ADDR pc;
-     int pid;
-{
-#ifdef PC_REGNUM
-  if (PC_REGNUM >= 0)
-    write_register_pid (PC_REGNUM, pc, pid);
-#ifdef NPC_REGNUM
-  if (NPC_REGNUM >= 0)
-    write_register_pid (NPC_REGNUM, pc + 4, pid);
-#ifdef NNPC_REGNUM
-  if (NNPC_REGNUM >= 0)
-    write_register_pid (NNPC_REGNUM, pc + 8, pid);
-#endif
-#endif
-#else
-  internal_error ("generic_target_write_pc");
-#endif
-}
-
-void
-write_pc_pid (pc, pid)
-     CORE_ADDR pc;
-     int pid;
-{
-  int saved_inferior_pid;
-
-  /* In case pid != inferior_pid. */
-  saved_inferior_pid = inferior_pid;
-  inferior_pid = pid;
-
-  TARGET_WRITE_PC (pc, pid);
-
-  inferior_pid = saved_inferior_pid;
-}
-
-void
-write_pc (pc)
-     CORE_ADDR pc;
-{
-  write_pc_pid (pc, inferior_pid);
-}
-
-/* Cope with strage ways of getting to the stack and frame pointers */
-
-#ifndef TARGET_READ_SP
-#define TARGET_READ_SP generic_target_read_sp
-#endif
-
-CORE_ADDR
-generic_target_read_sp ()
-{
-#ifdef SP_REGNUM
-  if (SP_REGNUM >= 0)
-    return read_register (SP_REGNUM);
-#endif
-  internal_error ("generic_target_read_sp");
-}
-
-CORE_ADDR
-read_sp ()
-{
-  return TARGET_READ_SP ();
-}
-
-#ifndef TARGET_WRITE_SP
-#define TARGET_WRITE_SP generic_target_write_sp
-#endif
-
-void
-generic_target_write_sp (val)
-     CORE_ADDR val;
-{
-#ifdef SP_REGNUM
-  if (SP_REGNUM >= 0)
-    {
-      write_register (SP_REGNUM, val);
-      return;
-    }
-#endif
-  internal_error ("generic_target_write_sp");
-}
-
-void
-write_sp (val)
-     CORE_ADDR val;
-{
-  TARGET_WRITE_SP (val);
-}
-
-#ifndef TARGET_READ_FP
-#define TARGET_READ_FP generic_target_read_fp
-#endif
-
-CORE_ADDR
-generic_target_read_fp ()
-{
-#ifdef FP_REGNUM
-  if (FP_REGNUM >= 0)
-    return read_register (FP_REGNUM);
-#endif
-  internal_error ("generic_target_read_fp");
-}
-
-CORE_ADDR
-read_fp ()
-{
-  return TARGET_READ_FP ();
-}
-
-#ifndef TARGET_WRITE_FP
-#define TARGET_WRITE_FP generic_target_write_fp
-#endif
-
-void
-generic_target_write_fp (val)
-     CORE_ADDR val;
-{
-#ifdef FP_REGNUM
-  if (FP_REGNUM >= 0)
-    {
-      write_register (FP_REGNUM, val);
-      return;
-    }
-#endif
-  internal_error ("generic_target_write_fp");
-}
-
-void
-write_fp (val)
-     CORE_ADDR val;
-{
-  TARGET_WRITE_FP (val);
-}
-
-
-/* Given a pointer of type TYPE in target form in BUF, return the
-   address it represents.  */
-CORE_ADDR
-generic_pointer_to_address (struct type *type, char *buf)
-{
-  return extract_address (buf, TYPE_LENGTH (type));
-}
-
-
-/* Given an address, store it as a pointer of type TYPE in target
-   format in BUF.  */
-void
-generic_address_to_pointer (struct type *type, char *buf, CORE_ADDR addr)
-{
-  store_address (buf, TYPE_LENGTH (type), addr);
-}
-
-\f
-/* Will calling read_var_value or locate_var_value on SYM end
-   up caring what frame it is being evaluated relative to?  SYM must
-   be non-NULL.  */
-int
-symbol_read_needs_frame (sym)
-     struct symbol *sym;
-{
-  switch (SYMBOL_CLASS (sym))
-    {
-      /* All cases listed explicitly so that gcc -Wall will detect it if
-         we failed to consider one.  */
-    case LOC_REGISTER:
-    case LOC_ARG:
-    case LOC_REF_ARG:
-    case LOC_REGPARM:
-    case LOC_REGPARM_ADDR:
-    case LOC_LOCAL:
-    case LOC_LOCAL_ARG:
-    case LOC_BASEREG:
-    case LOC_BASEREG_ARG:
-    case LOC_THREAD_LOCAL_STATIC:
-      return 1;
-
-    case LOC_UNDEF:
-    case LOC_CONST:
-    case LOC_STATIC:
-    case LOC_INDIRECT:
-    case LOC_TYPEDEF:
-
-    case LOC_LABEL:
-      /* Getting the address of a label can be done independently of the block,
-         even if some *uses* of that address wouldn't work so well without
-         the right frame.  */
-
-    case LOC_BLOCK:
-    case LOC_CONST_BYTES:
-    case LOC_UNRESOLVED:
-    case LOC_OPTIMIZED_OUT:
-      return 0;
-    }
-  return 1;
-}
-
-/* Given a struct symbol for a variable,
-   and a stack frame id, read the value of the variable
-   and return a (pointer to a) struct value containing the value. 
-   If the variable cannot be found, return a zero pointer.
-   If FRAME is NULL, use the selected_frame.  */
-
-value_ptr
-read_var_value (var, frame)
-     register struct symbol *var;
-     struct frame_info *frame;
-{
-  register value_ptr v;
-  struct type *type = SYMBOL_TYPE (var);
-  CORE_ADDR addr;
-  register int len;
-
-  v = allocate_value (type);
-  VALUE_LVAL (v) = lval_memory;        /* The most likely possibility.  */
-  VALUE_BFD_SECTION (v) = SYMBOL_BFD_SECTION (var);
-
-  len = TYPE_LENGTH (type);
-
-  if (frame == NULL)
-    frame = selected_frame;
-
-  switch (SYMBOL_CLASS (var))
-    {
-    case LOC_CONST:
-      /* Put the constant back in target format.  */
-      store_signed_integer (VALUE_CONTENTS_RAW (v), len,
-                           (LONGEST) SYMBOL_VALUE (var));
-      VALUE_LVAL (v) = not_lval;
-      return v;
-
-    case LOC_LABEL:
-      /* Put the constant back in target format.  */
-      if (overlay_debugging)
-       {
-         CORE_ADDR addr
-           = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
-                                       SYMBOL_BFD_SECTION (var));
-         store_typed_address (VALUE_CONTENTS_RAW (v), type, addr);
-       }
-      else
-       store_typed_address (VALUE_CONTENTS_RAW (v), type,
-                             SYMBOL_VALUE_ADDRESS (var));
-      VALUE_LVAL (v) = not_lval;
-      return v;
-
-    case LOC_CONST_BYTES:
-      {
-       char *bytes_addr;
-       bytes_addr = SYMBOL_VALUE_BYTES (var);
-       memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
-       VALUE_LVAL (v) = not_lval;
-       return v;
-      }
-
-    case LOC_STATIC:
-      if (overlay_debugging)
-       addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
-                                        SYMBOL_BFD_SECTION (var));
-      else
-       addr = SYMBOL_VALUE_ADDRESS (var);
-      break;
-
-    case LOC_INDIRECT:
-      /* The import slot does not have a real address in it from the
-         dynamic loader (dld.sl on HP-UX), if the target hasn't begun
-         execution yet, so check for that. */
-      if (!target_has_execution)
-       error ("\
-Attempt to access variable defined in different shared object or load module when\n\
-addresses have not been bound by the dynamic loader. Try again when executable is running.");
-
-      addr = SYMBOL_VALUE_ADDRESS (var);
-      addr = read_memory_unsigned_integer
-       (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
-      break;
-
-    case LOC_ARG:
-      if (frame == NULL)
-       return 0;
-      addr = FRAME_ARGS_ADDRESS (frame);
-      if (!addr)
-       return 0;
-      addr += SYMBOL_VALUE (var);
-      break;
-
-    case LOC_REF_ARG:
-      if (frame == NULL)
-       return 0;
-      addr = FRAME_ARGS_ADDRESS (frame);
-      if (!addr)
-       return 0;
-      addr += SYMBOL_VALUE (var);
-      addr = read_memory_unsigned_integer
-       (addr, TARGET_PTR_BIT / TARGET_CHAR_BIT);
-      break;
-
-    case LOC_LOCAL:
-    case LOC_LOCAL_ARG:
-      if (frame == NULL)
-       return 0;
-      addr = FRAME_LOCALS_ADDRESS (frame);
-      addr += SYMBOL_VALUE (var);
-      break;
-
-    case LOC_BASEREG:
-    case LOC_BASEREG_ARG:
-      {
-       char buf[MAX_REGISTER_RAW_SIZE];
-       get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
-                           NULL);
-       addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
-       addr += SYMBOL_VALUE (var);
-       break;
-      }
-
-    case LOC_THREAD_LOCAL_STATIC:
-      {
-       char buf[MAX_REGISTER_RAW_SIZE];
-
-       get_saved_register (buf, NULL, NULL, frame, SYMBOL_BASEREG (var),
-                           NULL);
-       addr = extract_address (buf, REGISTER_RAW_SIZE (SYMBOL_BASEREG (var)));
-       addr += SYMBOL_VALUE (var);
-       break;
-      }
-
-    case LOC_TYPEDEF:
-      error ("Cannot look up value of a typedef");
-      break;
-
-    case LOC_BLOCK:
-      if (overlay_debugging)
-       VALUE_ADDRESS (v) = symbol_overlayed_address
-         (BLOCK_START (SYMBOL_BLOCK_VALUE (var)), SYMBOL_BFD_SECTION (var));
-      else
-       VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
-      return v;
+       addr = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
+      break;
 
     case LOC_REGISTER:
 
     case LOC_REGISTER:
-    case LOC_REGPARM:
     case LOC_REGPARM_ADDR:
       {
     case LOC_REGPARM_ADDR:
       {
-       struct block *b;
-       int regno = SYMBOL_VALUE (var);
-       value_ptr regval;
-
-       if (frame == NULL)
-         return 0;
-       b = get_frame_block (frame);
+       int regno = SYMBOL_REGISTER_OPS (var)
+                     ->register_number (var, get_frame_arch (frame));
+       struct value *regval;
 
        if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
          {
 
        if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
          {
@@ -1430,376 +702,282 @@ addresses have not been bound by the dynamic loader. Try again when executable i
                                          frame);
 
            if (regval == NULL)
                                          frame);
 
            if (regval == NULL)
-             error ("Value of register variable not available.");
+             error (_("Value of register variable not available for `%s'."),
+                    SYMBOL_PRINT_NAME (var));
 
 
-           addr = value_as_pointer (regval);
-           VALUE_LVAL (v) = lval_memory;
+           addr = value_as_address (regval);
          }
        else
          {
            regval = value_from_register (type, regno, frame);
 
            if (regval == NULL)
          }
        else
          {
            regval = value_from_register (type, regno, frame);
 
            if (regval == NULL)
-             error ("Value of register variable not available.");
+             error (_("Value of register variable not available for `%s'."),
+                    SYMBOL_PRINT_NAME (var));
            return regval;
          }
       }
       break;
 
            return regval;
          }
       }
       break;
 
+    case LOC_COMPUTED:
+      gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
+
     case LOC_UNRESOLVED:
       {
     case LOC_UNRESOLVED:
       {
+       struct minsym_lookup_data lookup_data;
        struct minimal_symbol *msym;
        struct minimal_symbol *msym;
+       struct obj_section *obj_section;
 
 
-       msym = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
+       memset (&lookup_data, 0, sizeof (lookup_data));
+       lookup_data.name = SYMBOL_LINKAGE_NAME (var);
+
+       gdbarch_iterate_over_objfiles_in_search_order
+         (symbol_arch (var),
+          minsym_lookup_iterator_cb, &lookup_data,
+          symbol_objfile (var));
+       msym = lookup_data.result.minsym;
+
+       /* If we can't find the minsym there's a problem in the symbol info.
+          The symbol exists in the debug info, but it's missing in the minsym
+          table.  */
        if (msym == NULL)
        if (msym == NULL)
-         return 0;
-       if (overlay_debugging)
-         addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (msym),
-                                          SYMBOL_BFD_SECTION (msym));
+         {
+           const char *flavour_name
+             = objfile_flavour_name (symbol_objfile (var));
+
+           /* We can't get here unless we've opened the file, so flavour_name
+              can't be NULL.  */
+           gdb_assert (flavour_name != NULL);
+           error (_("Missing %s symbol \"%s\"."),
+                  flavour_name, SYMBOL_LINKAGE_NAME (var));
+         }
+       obj_section = MSYMBOL_OBJ_SECTION (lookup_data.result.objfile, msym);
+       /* Relocate address, unless there is no section or the variable is
+          a TLS variable. */
+       if (obj_section == NULL
+           || (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
+          addr = MSYMBOL_VALUE_RAW_ADDRESS (msym);
        else
        else
-         addr = SYMBOL_VALUE_ADDRESS (msym);
+          addr = BMSYMBOL_VALUE_ADDRESS (lookup_data.result);
+       if (overlay_debugging)
+         addr = symbol_overlayed_address (addr, obj_section);
+       /* Determine address of TLS variable. */
+       if (obj_section
+           && (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
+         addr = target_translate_tls_address (obj_section->objfile, addr);
       }
       break;
 
     case LOC_OPTIMIZED_OUT:
       }
       break;
 
     case LOC_OPTIMIZED_OUT:
-      VALUE_LVAL (v) = not_lval;
-      VALUE_OPTIMIZED_OUT (v) = 1;
-      return v;
+      return allocate_optimized_out_value (type);
 
     default:
 
     default:
-      error ("Cannot look up value of a botched symbol.");
+      error (_("Cannot look up value of a botched symbol `%s'."),
+            SYMBOL_PRINT_NAME (var));
       break;
     }
 
       break;
     }
 
-  VALUE_ADDRESS (v) = addr;
-  VALUE_LAZY (v) = 1;
+  v = value_at_lazy (type, addr);
   return v;
 }
 
   return v;
 }
 
-/* Return a value of type TYPE, stored in register REGNUM, in frame
-   FRAME. 
-
-   NOTE: returns NULL if register value is not available.
-   Caller will check return value or die!  */
+/* Calls VAR's language la_read_var_value hook with the given arguments.  */
 
 
-value_ptr
-value_from_register (type, regnum, frame)
-     struct type *type;
-     int regnum;
-     struct frame_info *frame;
+struct value *
+read_var_value (struct symbol *var, const struct block *var_block,
+               struct frame_info *frame)
 {
 {
-  char raw_buffer[MAX_REGISTER_RAW_SIZE];
-  CORE_ADDR addr;
-  int optim;
-  value_ptr v = allocate_value (type);
-  char *value_bytes = 0;
-  int value_bytes_copied = 0;
-  int num_storage_locs;
-  enum lval_type lval;
-  int len;
-
-  CHECK_TYPEDEF (type);
-  len = TYPE_LENGTH (type);
+  const struct language_defn *lang = language_def (SYMBOL_LANGUAGE (var));
 
 
-  /* Pointers on D10V are really only 16 bits, but we lie to gdb elsewhere... */
-  if (GDB_TARGET_IS_D10V && TYPE_CODE (type) == TYPE_CODE_PTR)
-    len = 2;
+  gdb_assert (lang != NULL);
+  gdb_assert (lang->la_read_var_value != NULL);
 
 
-  VALUE_REGNO (v) = regnum;
-
-  num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
-                     ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
-                     1);
-
-  if (num_storage_locs > 1
-#ifdef GDB_TARGET_IS_H8500
-      || TYPE_CODE (type) == TYPE_CODE_PTR
-#endif
-    )
-    {
-      /* Value spread across multiple storage locations.  */
+  return lang->la_read_var_value (var, var_block, frame);
+}
 
 
-      int local_regnum;
-      int mem_stor = 0, reg_stor = 0;
-      int mem_tracking = 1;
-      CORE_ADDR last_addr = 0;
-      CORE_ADDR first_addr = 0;
+/* Install default attributes for register values.  */
 
 
-      value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
+struct value *
+default_value_from_register (struct gdbarch *gdbarch, struct type *type,
+                             int regnum, struct frame_id frame_id)
+{
+  int len = TYPE_LENGTH (type);
+  struct value *value = allocate_value (type);
 
 
-      /* Copy all of the data out, whereever it may be.  */
+  VALUE_LVAL (value) = lval_register;
+  VALUE_FRAME_ID (value) = frame_id;
+  VALUE_REGNUM (value) = regnum;
 
 
-#ifdef GDB_TARGET_IS_H8500
-/* This piece of hideosity is required because the H8500 treats registers
-   differently depending upon whether they are used as pointers or not.  As a
-   pointer, a register needs to have a page register tacked onto the front.
-   An alternate way to do this would be to have gcc output different register
-   numbers for the pointer & non-pointer form of the register.  But, it
-   doesn't, so we're stuck with this.  */
+  /* Any structure stored in more than one register will always be
+     an integral number of registers.  Otherwise, you need to do
+     some fiddling with the last register copied here for little
+     endian machines.  */
+  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
+      && len < register_size (gdbarch, regnum))
+    /* Big-endian, and we want less than full size.  */
+    set_value_offset (value, register_size (gdbarch, regnum) - len);
+  else
+    set_value_offset (value, 0);
 
 
-      if (TYPE_CODE (type) == TYPE_CODE_PTR
-         && len > 2)
-       {
-         int page_regnum;
+  return value;
+}
 
 
-         switch (regnum)
-           {
-           case R0_REGNUM:
-           case R1_REGNUM:
-           case R2_REGNUM:
-           case R3_REGNUM:
-             page_regnum = SEG_D_REGNUM;
-             break;
-           case R4_REGNUM:
-           case R5_REGNUM:
-             page_regnum = SEG_E_REGNUM;
-             break;
-           case R6_REGNUM:
-           case R7_REGNUM:
-             page_regnum = SEG_T_REGNUM;
-             break;
-           }
+/* VALUE must be an lval_register value.  If regnum is the value's
+   associated register number, and len the length of the values type,
+   read one or more registers in FRAME, starting with register REGNUM,
+   until we've read LEN bytes.
 
 
-         value_bytes[0] = 0;
-         get_saved_register (value_bytes + 1,
-                             &optim,
-                             &addr,
-                             frame,
-                             page_regnum,
-                             &lval);
+   If any of the registers we try to read are optimized out, then mark the
+   complete resulting value as optimized out.  */
 
 
-         if (register_valid[page_regnum] == -1)
-           return NULL;        /* register value not available */
+void
+read_frame_register_value (struct value *value, struct frame_info *frame)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  int offset = 0;
+  int reg_offset = value_offset (value);
+  int regnum = VALUE_REGNUM (value);
+  int len = type_length_units (check_typedef (value_type (value)));
 
 
-         if (lval == lval_register)
-           reg_stor++;
-         else
-           mem_stor++;
-         first_addr = addr;
-         last_addr = addr;
-
-         get_saved_register (value_bytes + 2,
-                             &optim,
-                             &addr,
-                             frame,
-                             regnum,
-                             &lval);
-
-         if (register_valid[regnum] == -1)
-           return NULL;        /* register value not available */
-
-         if (lval == lval_register)
-           reg_stor++;
-         else
-           {
-             mem_stor++;
-             mem_tracking = mem_tracking && (addr == last_addr);
-           }
-         last_addr = addr;
-       }
-      else
-#endif /* GDB_TARGET_IS_H8500 */
-       for (local_regnum = regnum;
-            value_bytes_copied < len;
-            (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
-             ++local_regnum))
-         {
-           get_saved_register (value_bytes + value_bytes_copied,
-                               &optim,
-                               &addr,
-                               frame,
-                               local_regnum,
-                               &lval);
-
-           if (register_valid[local_regnum] == -1)
-             return NULL;      /* register value not available */
-
-           if (regnum == local_regnum)
-             first_addr = addr;
-           if (lval == lval_register)
-             reg_stor++;
-           else
-             {
-               mem_stor++;
-
-               mem_tracking =
-                 (mem_tracking
-                  && (regnum == local_regnum
-                      || addr == last_addr));
-             }
-           last_addr = addr;
-         }
+  gdb_assert (VALUE_LVAL (value) == lval_register);
 
 
-      if ((reg_stor && mem_stor)
-         || (mem_stor && !mem_tracking))
-       /* Mixed storage; all of the hassle we just went through was
-          for some good purpose.  */
-       {
-         VALUE_LVAL (v) = lval_reg_frame_relative;
-         VALUE_FRAME (v) = FRAME_FP (frame);
-         VALUE_FRAME_REGNUM (v) = regnum;
-       }
-      else if (mem_stor)
-       {
-         VALUE_LVAL (v) = lval_memory;
-         VALUE_ADDRESS (v) = first_addr;
-       }
-      else if (reg_stor)
-       {
-         VALUE_LVAL (v) = lval_register;
-         VALUE_ADDRESS (v) = first_addr;
-       }
-      else
-       internal_error ("value_from_register: Value not stored anywhere!");
+  /* Skip registers wholly inside of REG_OFFSET.  */
+  while (reg_offset >= register_size (gdbarch, regnum))
+    {
+      reg_offset -= register_size (gdbarch, regnum);
+      regnum++;
+    }
 
 
-      VALUE_OPTIMIZED_OUT (v) = optim;
+  /* Copy the data.  */
+  while (len > 0)
+    {
+      struct value *regval = get_frame_register_value (frame, regnum);
+      int reg_len = type_length_units (value_type (regval)) - reg_offset;
 
 
-      /* Any structure stored in more than one register will always be
-         an integral number of registers.  Otherwise, you'd need to do
-         some fiddling with the last register copied here for little
-         endian machines.  */
+      /* If the register length is larger than the number of bytes
+         remaining to copy, then only copy the appropriate bytes.  */
+      if (reg_len > len)
+       reg_len = len;
 
 
-      /* Copy into the contents section of the value.  */
-      memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
+      value_contents_copy (value, offset, regval, reg_offset, reg_len);
 
 
-      /* Finally do any conversion necessary when extracting this
-         type from more than one register.  */
-#ifdef REGISTER_CONVERT_TO_TYPE
-      REGISTER_CONVERT_TO_TYPE (regnum, type, VALUE_CONTENTS_RAW (v));
-#endif
-      return v;
+      offset += reg_len;
+      len -= reg_len;
+      reg_offset = 0;
+      regnum++;
     }
     }
+}
 
 
-  /* Data is completely contained within a single register.  Locate the
-     register's contents in a real register or in core;
-     read the data in raw format.  */
-
-  get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
-
-  if (register_valid[regnum] == -1)
-    return NULL;               /* register value not available */
-
-  VALUE_OPTIMIZED_OUT (v) = optim;
-  VALUE_LVAL (v) = lval;
-  VALUE_ADDRESS (v) = addr;
+/* Return a value of type TYPE, stored in register REGNUM, in frame FRAME.  */
 
 
-  /* Convert raw data to virtual format if necessary.  */
+struct value *
+value_from_register (struct type *type, int regnum, struct frame_info *frame)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct type *type1 = check_typedef (type);
+  struct value *v;
 
 
-  if (REGISTER_CONVERTIBLE (regnum))
-    {
-      REGISTER_CONVERT_TO_VIRTUAL (regnum, type,
-                                  raw_buffer, VALUE_CONTENTS_RAW (v));
-    }
-  else
+  if (gdbarch_convert_register_p (gdbarch, regnum, type1))
     {
     {
-      /* Raw and virtual formats are the same for this register.  */
+      int optim, unavail, ok;
 
 
-      if (TARGET_BYTE_ORDER == BIG_ENDIAN && len < REGISTER_RAW_SIZE (regnum))
+      /* The ISA/ABI need to something weird when obtaining the
+         specified value from this register.  It might need to
+         re-order non-adjacent, starting with REGNUM (see MIPS and
+         i386).  It might need to convert the [float] register into
+         the corresponding [integer] type (see Alpha).  The assumption
+         is that gdbarch_register_to_value populates the entire value
+         including the location.  */
+      v = allocate_value (type);
+      VALUE_LVAL (v) = lval_register;
+      VALUE_FRAME_ID (v) = get_frame_id (frame);
+      VALUE_REGNUM (v) = regnum;
+      ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1,
+                                     value_contents_raw (v), &optim,
+                                     &unavail);
+
+      if (!ok)
        {
        {
-         /* Big-endian, and we want less than full size.  */
-         VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
+         if (optim)
+           mark_value_bytes_optimized_out (v, 0, TYPE_LENGTH (type));
+         if (unavail)
+           mark_value_bytes_unavailable (v, 0, TYPE_LENGTH (type));
        }
        }
-
-      memcpy (VALUE_CONTENTS_RAW (v), raw_buffer + VALUE_OFFSET (v), len);
-    }
-
-  if (GDB_TARGET_IS_D10V
-      && TYPE_CODE (type) == TYPE_CODE_PTR
-      && TYPE_TARGET_TYPE (type)
-      && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
-    {
-      /* pointer to function */
-      unsigned long num;
-      unsigned short snum;
-      snum = (unsigned short) extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2);
-      num = D10V_MAKE_IADDR (snum);
-      store_address (VALUE_CONTENTS_RAW (v), 4, num);
     }
     }
-  else if (GDB_TARGET_IS_D10V
-          && TYPE_CODE (type) == TYPE_CODE_PTR)
+  else
     {
     {
-      /* pointer to data */
-      unsigned long num;
-      unsigned short snum;
-      snum = (unsigned short) extract_unsigned_integer (VALUE_CONTENTS_RAW (v), 2);
-      num = D10V_MAKE_DADDR (snum);
-      store_address (VALUE_CONTENTS_RAW (v), 4, num);
+      /* Construct the value.  */
+      v = gdbarch_value_from_register (gdbarch, type,
+                                      regnum, get_frame_id (frame));
+
+      /* Get the data.  */
+      read_frame_register_value (v, frame);
     }
 
   return v;
 }
     }
 
   return v;
 }
-\f
-/* Given a struct symbol for a variable or function,
-   and a stack frame id, 
-   return a (pointer to a) struct value containing the properly typed
-   address.  */
-
-value_ptr
-locate_var_value (var, frame)
-     register struct symbol *var;
-     struct frame_info *frame;
-{
-  CORE_ADDR addr = 0;
-  struct type *type = SYMBOL_TYPE (var);
-  value_ptr lazy_value;
-
-  /* Evaluate it first; if the result is a memory address, we're fine.
-     Lazy evaluation pays off here. */
 
 
-  lazy_value = read_var_value (var, frame);
-  if (lazy_value == 0)
-    error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
+/* Return contents of register REGNUM in frame FRAME as address.
+   Will abort if register value is not available.  */
 
 
-  if (VALUE_LAZY (lazy_value)
-      || TYPE_CODE (type) == TYPE_CODE_FUNC)
-    {
-      value_ptr val;
+CORE_ADDR
+address_from_register (int regnum, struct frame_info *frame)
+{
+  struct gdbarch *gdbarch = get_frame_arch (frame);
+  struct type *type = builtin_type (gdbarch)->builtin_data_ptr;
+  struct value *value;
+  CORE_ADDR result;
+  int regnum_max_excl = (gdbarch_num_regs (gdbarch)
+                        + gdbarch_num_pseudo_regs (gdbarch));
+
+  if (regnum < 0 || regnum >= regnum_max_excl)
+    error (_("Invalid register #%d, expecting 0 <= # < %d"), regnum,
+          regnum_max_excl);
+
+  /* This routine may be called during early unwinding, at a time
+     where the ID of FRAME is not yet known.  Calling value_from_register
+     would therefore abort in get_frame_id.  However, since we only need
+     a temporary value that is never used as lvalue, we actually do not
+     really need to set its VALUE_FRAME_ID.  Therefore, we re-implement
+     the core of value_from_register, but use the null_frame_id.  */
+
+  /* Some targets require a special conversion routine even for plain
+     pointer types.  Avoid constructing a value object in those cases.  */
+  if (gdbarch_convert_register_p (gdbarch, regnum, type))
+    {
+      gdb_byte *buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
+      int optim, unavail, ok;
+
+      ok = gdbarch_register_to_value (gdbarch, frame, regnum, type,
+                                     buf, &optim, &unavail);
+      if (!ok)
+       {
+         /* This function is used while computing a location expression.
+            Complain about the value being optimized out, rather than
+            letting value_as_address complain about some random register
+            the expression depends on not being saved.  */
+         error_value_optimized_out ();
+       }
 
 
-      addr = VALUE_ADDRESS (lazy_value);
-      val = value_from_pointer (lookup_pointer_type (type), addr);
-      VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (lazy_value);
-      return val;
+      return unpack_long (type, buf);
     }
 
     }
 
-  /* Not a memory address; check what the problem was.  */
-  switch (VALUE_LVAL (lazy_value))
-    {
-    case lval_register:
-    case lval_reg_frame_relative:
-      error ("Address requested for identifier \"%s\" which is in a register.",
-            SYMBOL_SOURCE_NAME (var));
-      break;
+  value = gdbarch_value_from_register (gdbarch, type, regnum, null_frame_id);
+  read_frame_register_value (value, frame);
 
 
-    default:
-      error ("Can't take address of \"%s\" which isn't an lvalue.",
-            SYMBOL_SOURCE_NAME (var));
-      break;
+  if (value_optimized_out (value))
+    {
+      /* This function is used while computing a location expression.
+        Complain about the value being optimized out, rather than
+        letting value_as_address complain about some random register
+        the expression depends on not being saved.  */
+      error_value_optimized_out ();
     }
     }
-  return 0;                    /* For lint -- never reached */
-}
-\f
 
 
-static void build_findvar PARAMS ((void));
-static void
-build_findvar ()
-{
-  /* We allocate some extra slop since we do a lot of memcpy's around
-     `registers', and failing-soft is better than failing hard.  */
-  int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
-  int sizeof_register_valid = NUM_REGS * sizeof (*register_valid);
-  registers = xmalloc (sizeof_registers);
-  memset (registers, 0, sizeof_registers);
-  register_valid = xmalloc (sizeof_register_valid);
-  memset (register_valid, 0, sizeof_register_valid);
-}
+  result = value_as_address (value);
+  release_value (value);
+  value_free (value);
 
 
-void _initialize_findvar PARAMS ((void));
-void
-_initialize_findvar ()
-{
-  build_findvar ();
-
-  register_gdbarch_swap (&registers, sizeof (registers), NULL);
-  register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
-  register_gdbarch_swap (NULL, 0, build_findvar);
+  return result;
 }
 }
+
This page took 0.046092 seconds and 4 git commands to generate.