* hppa-tdep.h (hppa_in_solib_call_trampoline)
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
index 652273021466eff3f1b5c80b51f6e64c0529d7b7..b8c0d258ca1804447acb8ede61586df1795221be 100644 (file)
@@ -1,5 +1,7 @@
 /* GNU/Linux on ARM target support.
-   Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
+
+   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
+   Free Software Foundation, Inc.
 
    This file is part of GDB.
 
@@ -15,8 +17,8 @@
 
    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
-   Foundation, Inc., 59 Temple Place - Suite 330,
-   Boston, MA 02111-1307, USA.  */
+   Foundation, Inc., 51 Franklin Street, Fifth Floor,
+   Boston, MA 02110-1301, USA.  */
 
 #include "defs.h"
 #include "target.h"
 #include "frame.h"
 #include "regcache.h"
 #include "doublest.h"
+#include "solib-svr4.h"
+#include "osabi.h"
+#include "trad-frame.h"
+#include "tramp-frame.h"
 
-/* For arm_linux_skip_solib_resolver.  */
-#include "symtab.h"
-#include "symfile.h"
-#include "objfiles.h"
-
-#ifdef GET_LONGJMP_TARGET
-
-/* Figure out where the longjmp will land.  We expect that we have
-   just entered longjmp and haven't yet altered r0, r1, so the
-   arguments are still in the registers.  (A1_REGNUM) points at the
-   jmp_buf structure from which we extract the pc (JB_PC) that we will
-   land at.  The pc is copied into ADDR.  This routine returns true on
-   success. */
-
-#define LONGJMP_TARGET_SIZE    sizeof(int)
-#define JB_ELEMENT_SIZE                sizeof(int)
-#define JB_SL                  18
-#define JB_FP                  19
-#define JB_SP                  20
-#define JB_PC                  21
-
-int
-arm_get_longjmp_target (CORE_ADDR * pc)
-{
-  CORE_ADDR jb_addr;
-  char buf[LONGJMP_TARGET_SIZE];
+#include "arm-tdep.h"
+#include "glibc-tdep.h"
 
-  jb_addr = read_register (A1_REGNUM);
+#include "gdb_string.h"
 
-  if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
-                         LONGJMP_TARGET_SIZE))
-    return 0;
+/* Under ARM GNU/Linux the traditional way of performing a breakpoint
+   is to execute a particular software interrupt, rather than use a
+   particular undefined instruction to provoke a trap.  Upon exection
+   of the software interrupt the kernel stops the inferior with a
+   SIGTRAP, and wakes the debugger.  */
 
-  *pc = extract_address (buf, LONGJMP_TARGET_SIZE);
-  return 1;
-}
+static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
+
+static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
+
+/* However, the EABI syscall interface (new in Nov. 2005) does not look at
+   the operand of the swi if old-ABI compatibility is disabled.  Therefore,
+   use an undefined instruction instead.  This is supported as of kernel
+   version 2.5.70 (May 2003), so should be a safe assumption for EABI
+   binaries.  */
+
+static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
+
+static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
+
+/* All the kernels which support Thumb support using a specific undefined
+   instruction for the Thumb breakpoint.  */
+
+static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
 
-#endif /* GET_LONGJMP_TARGET */
+static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
+
+/* Description of the longjmp buffer.  */
+#define ARM_LINUX_JB_ELEMENT_SIZE      INT_REGISTER_SIZE
+#define ARM_LINUX_JB_PC                        21
 
 /* Extract from an array REGBUF containing the (raw) register state
    a function return value of type TYPE, and copy that, in virtual format,
    into VALBUF.  */
-
-void
+/* FIXME rearnsha/2002-02-23: This function shouldn't be necessary.
+   The ARM generic one should be able to handle the model used by
+   linux and the low-level formatting of the registers should be
+   hidden behind the regcache abstraction.  */
+static void
 arm_linux_extract_return_value (struct type *type,
-                               char regbuf[REGISTER_BYTES],
+                               char regbuf[],
                                char *valbuf)
 {
   /* ScottB: This needs to be looked at to handle the different
-     floating point emulators on ARM Linux.  Right now the code
+     floating point emulators on ARM GNU/Linux.  Right now the code
      assumes that fetch inferior registers does the right thing for
      GDB.  I suspect this won't handle NWFPE registers correctly, nor
      will the default ARM version (arm_extract_return_value()).  */
 
-  int regnum = (TYPE_CODE_FLT == TYPE_CODE (type)) ? F0_REGNUM : A1_REGNUM;
-  memcpy (valbuf, &regbuf[REGISTER_BYTE (regnum)], TYPE_LENGTH (type));
+  int regnum = ((TYPE_CODE_FLT == TYPE_CODE (type))
+               ? ARM_F0_REGNUM : ARM_A1_REGNUM);
+  memcpy (valbuf, &regbuf[DEPRECATED_REGISTER_BYTE (regnum)], TYPE_LENGTH (type));
 }
-
-/* Note: ScottB
-
-   This function does not support passing parameters using the FPA
-   variant of the APCS.  It passes any floating point arguments in the
-   general registers and/or on the stack.
-   
-   FIXME:  This and arm_push_arguments should be merged.  However this 
-          function breaks on a little endian host, big endian target
-          using the COFF file format.  ELF is ok.  
-          
-          ScottB.  */
-          
-/* Addresses for calling Thumb functions have the bit 0 set.
-   Here are some macros to test, set, or clear bit 0 of addresses.  */
-#define IS_THUMB_ADDR(addr)    ((addr) & 1)
-#define MAKE_THUMB_ADDR(addr)  ((addr) | 1)
-#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
          
-CORE_ADDR
-arm_linux_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
-                         int struct_return, CORE_ADDR struct_addr)
-{
-  char *fp;
-  int argnum, argreg, nstack_size;
-
-  /* Walk through the list of args and determine how large a temporary
-     stack is required.  Need to take care here as structs may be
-     passed on the stack, and we have to to push them.  */
-  nstack_size = -4 * REGISTER_SIZE;    /* Some arguments go into A1-A4.  */
-
-  if (struct_return)                   /* The struct address goes in A1.  */
-    nstack_size += REGISTER_SIZE;
-
-  /* Walk through the arguments and add their size to nstack_size.  */
-  for (argnum = 0; argnum < nargs; argnum++)
-    {
-      int len;
-      struct type *arg_type;
-
-      arg_type = check_typedef (VALUE_TYPE (args[argnum]));
-      len = TYPE_LENGTH (arg_type);
-
-      /* ANSI C code passes float arguments as integers, K&R code
-         passes float arguments as doubles.  Correct for this here.  */
-      if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && REGISTER_SIZE == len)
-       nstack_size += FP_REGISTER_VIRTUAL_SIZE;
-      else
-       nstack_size += len;
-    }
-
-  /* Allocate room on the stack, and initialize our stack frame
-     pointer.  */
-  fp = NULL;
-  if (nstack_size > 0)
-    {
-      sp -= nstack_size;
-      fp = (char *) sp;
-    }
-
-  /* Initialize the integer argument register pointer.  */
-  argreg = A1_REGNUM;
-
-  /* The struct_return pointer occupies the first parameter passing
-     register.  */
-  if (struct_return)
-    write_register (argreg++, struct_addr);
-
-  /* Process arguments from left to right.  Store as many as allowed
-     in the parameter passing registers (A1-A4), and save the rest on
-     the temporary stack.  */
-  for (argnum = 0; argnum < nargs; argnum++)
-    {
-      int len;
-      char *val;
-      CORE_ADDR regval;
-      enum type_code typecode;
-      struct type *arg_type, *target_type;
-
-      arg_type = check_typedef (VALUE_TYPE (args[argnum]));
-      target_type = TYPE_TARGET_TYPE (arg_type);
-      len = TYPE_LENGTH (arg_type);
-      typecode = TYPE_CODE (arg_type);
-      val = (char *) VALUE_CONTENTS (args[argnum]);
-
-      /* ANSI C code passes float arguments as integers, K&R code
-         passes float arguments as doubles.  The .stabs record for 
-         for ANSI prototype floating point arguments records the
-         type as FP_INTEGER, while a K&R style (no prototype)
-         .stabs records the type as FP_FLOAT.  In this latter case
-         the compiler converts the float arguments to double before
-         calling the function.  */
-      if (TYPE_CODE_FLT == typecode && REGISTER_SIZE == len)
-       {
-         DOUBLEST dblval;
-         dblval = extract_floating (val, len);
-         len = TARGET_DOUBLE_BIT / TARGET_CHAR_BIT;
-         val = alloca (len);
-         store_floating (val, len, dblval);
-       }
-
-      /* If the argument is a pointer to a function, and it is a Thumb
-         function, set the low bit of the pointer.  */
-      if (TYPE_CODE_PTR == typecode
-         && NULL != target_type
-         && TYPE_CODE_FUNC == TYPE_CODE (target_type))
-       {
-         CORE_ADDR regval = extract_address (val, len);
-         if (arm_pc_is_thumb (regval))
-           store_address (val, len, MAKE_THUMB_ADDR (regval));
-       }
-
-      /* Copy the argument to general registers or the stack in
-         register-sized pieces.  Large arguments are split between
-         registers and stack.  */
-      while (len > 0)
-       {
-         int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
-
-         if (argreg <= ARM_LAST_ARG_REGNUM)
-           {
-             /* It's an argument being passed in a general register.  */
-             regval = extract_address (val, partial_len);
-             write_register (argreg++, regval);
-           }
-         else
-           {
-             /* Push the arguments onto the stack.  */
-             write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE);
-             fp += REGISTER_SIZE;
-           }
-
-         len -= partial_len;
-         val += partial_len;
-       }
-    }
-
-  /* Return adjusted stack pointer.  */
-  return sp;
-}
-
 /*
-   Dynamic Linking on ARM Linux
-   ----------------------------
+   Dynamic Linking on ARM GNU/Linux
+   --------------------------------
 
    Note: PLT = procedure linkage table
    GOT = global offset table
@@ -255,11 +122,11 @@ arm_linux_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
    When the executable or library is first loaded, each GOT entry is
    initialized to point to the code which implements dynamic name
    resolution and code finding.  This is normally a function in the
-   program interpreter (on ARM Linux this is usually ld-linux.so.2,
-   but it does not have to be).  On the first invocation, the function
-   is located and the GOT entry is replaced with the real function
-   address.  Subsequent calls go through steps 1, 2 and 3 and end up
-   calling the real code.
+   program interpreter (on ARM GNU/Linux this is usually
+   ld-linux.so.2, but it does not have to be).  On the first
+   invocation, the function is located and the GOT entry is replaced
+   with the real function address.  Subsequent calls go through steps
+   1, 2 and 3 and end up calling the real code.
 
    1) In the code: 
 
@@ -345,93 +212,6 @@ arm_linux_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
    with.  Before the fixup/resolver code returns, it actually calls
    the requested function and repairs &GOT[n+3].  */
 
-/* Find the minimal symbol named NAME, and return both the minsym
-   struct and its objfile.  This probably ought to be in minsym.c, but
-   everything there is trying to deal with things like C++ and
-   SOFUN_ADDRESS_MAYBE_TURQUOISE, ...  Since this is so simple, it may
-   be considered too special-purpose for general consumption.  */
-
-static struct minimal_symbol *
-find_minsym_and_objfile (char *name, struct objfile **objfile_p)
-{
-  struct objfile *objfile;
-
-  ALL_OBJFILES (objfile)
-    {
-      struct minimal_symbol *msym;
-
-      ALL_OBJFILE_MSYMBOLS (objfile, msym)
-       {
-         if (SYMBOL_NAME (msym)
-             && STREQ (SYMBOL_NAME (msym), name))
-           {
-             *objfile_p = objfile;
-             return msym;
-           }
-       }
-    }
-
-  return 0;
-}
-
-
-static CORE_ADDR
-skip_hurd_resolver (CORE_ADDR pc)
-{
-  /* The HURD dynamic linker is part of the GNU C library, so many
-     GNU/Linux distributions use it.  (All ELF versions, as far as I
-     know.)  An unresolved PLT entry points to "_dl_runtime_resolve",
-     which calls "fixup" to patch the PLT, and then passes control to
-     the function.
-
-     We look for the symbol `_dl_runtime_resolve', and find `fixup' in
-     the same objfile.  If we are at the entry point of `fixup', then
-     we set a breakpoint at the return address (at the top of the
-     stack), and continue.
-  
-     It's kind of gross to do all these checks every time we're
-     called, since they don't change once the executable has gotten
-     started.  But this is only a temporary hack --- upcoming versions
-     of Linux will provide a portable, efficient interface for
-     debugging programs that use shared libraries.  */
-
-  struct objfile *objfile;
-  struct minimal_symbol *resolver 
-    = find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);
-
-  if (resolver)
-    {
-      struct minimal_symbol *fixup
-       = lookup_minimal_symbol ("fixup", NULL, objfile);
-
-      if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
-       return (SAVED_PC_AFTER_CALL (get_current_frame ()));
-    }
-
-  return 0;
-}      
-
-/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
-   This function:
-   1) decides whether a PLT has sent us into the linker to resolve
-      a function reference, and 
-   2) if so, tells us where to set a temporary breakpoint that will
-      trigger when the dynamic linker is done.  */
-
-CORE_ADDR
-arm_linux_skip_solib_resolver (CORE_ADDR pc)
-{
-  CORE_ADDR result;
-
-  /* Plug in functions for other kinds of resolvers here.  */
-  result = skip_hurd_resolver (pc);
-
-  if (result)
-    return result;
-  
-  return 0;
-}
-
 /* The constants below were determined by examining the following files
    in the linux kernel sources:
 
@@ -443,77 +223,157 @@ arm_linux_skip_solib_resolver (CORE_ADDR pc)
 #define ARM_LINUX_SIGRETURN_INSTR      0xef900077
 #define ARM_LINUX_RT_SIGRETURN_INSTR   0xef9000ad
 
-/* arm_linux_in_sigtramp determines if PC points at one of the
-   instructions which cause control to return to the Linux kernel upon
-   return from a signal handler.  FUNC_NAME is unused.  */
-
-int
-arm_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
+/* For ARM EABI, recognize the pattern that glibc uses...  alternatively,
+   we could arrange to do this by function name, but they are not always
+   exported.  */
+#define ARM_SET_R7_SIGRETURN           0xe3a07077
+#define ARM_SET_R7_RT_SIGRETURN                0xe3a070ad
+#define ARM_EABI_SYSCALL               0xef000000
+
+static void
+arm_linux_sigtramp_cache (struct frame_info *next_frame,
+                         struct trad_frame_cache *this_cache,
+                         CORE_ADDR func, int regs_offset)
 {
-  unsigned long inst;
+  CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
+  CORE_ADDR base = sp + regs_offset;
+  int i;
+
+  for (i = 0; i < 16; i++)
+    trad_frame_set_reg_addr (this_cache, i, base + i * 4);
 
-  inst = read_memory_integer (pc, 4);
+  trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
 
-  return (inst == ARM_LINUX_SIGRETURN_INSTR
-         || inst == ARM_LINUX_RT_SIGRETURN_INSTR);
+  /* The VFP or iWMMXt registers may be saved on the stack, but there's
+     no reliable way to restore them (yet).  */
 
+  /* Save a frame ID.  */
+  trad_frame_set_id (this_cache, frame_id_build (sp, func));
 }
 
-/* arm_linux_sigcontext_register_address returns the address in the
-   sigcontext of register REGNO given a stack pointer value SP and
-   program counter value PC.  The value 0 is returned if PC is not
-   pointing at one of the signal return instructions or if REGNO is
-   not saved in the sigcontext struct.  */
+static void
+arm_linux_sigreturn_init (const struct tramp_frame *self,
+                         struct frame_info *next_frame,
+                         struct trad_frame_cache *this_cache,
+                         CORE_ADDR func)
+{
+  arm_linux_sigtramp_cache (next_frame, this_cache, func,
+                           0x0c /* Offset to registers.  */);
+}
 
-CORE_ADDR
-arm_linux_sigcontext_register_address (CORE_ADDR sp, CORE_ADDR pc, int regno)
+static void
+arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
+                         struct frame_info *next_frame,
+                         struct trad_frame_cache *this_cache,
+                         CORE_ADDR func)
 {
-  unsigned long inst;
-  CORE_ADDR reg_addr = 0;
+  arm_linux_sigtramp_cache (next_frame, this_cache, func,
+                           0x88 /* Offset to ucontext_t.  */
+                           + 0x14 /* Offset to sigcontext.  */
+                           + 0x0c /* Offset to registers.  */);
+}
 
-  inst = read_memory_integer (pc, 4);
+static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
+  SIGTRAMP_FRAME,
+  4,
+  {
+    { ARM_LINUX_SIGRETURN_INSTR, -1 },
+    { TRAMP_SENTINEL_INSN }
+  },
+  arm_linux_sigreturn_init
+};
+
+static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
+  SIGTRAMP_FRAME,
+  4,
+  {
+    { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
+    { TRAMP_SENTINEL_INSN }
+  },
+  arm_linux_rt_sigreturn_init
+};
+
+static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
+  SIGTRAMP_FRAME,
+  4,
+  {
+    { ARM_SET_R7_SIGRETURN, -1 },
+    { ARM_EABI_SYSCALL, -1 },
+    { TRAMP_SENTINEL_INSN }
+  },
+  arm_linux_sigreturn_init
+};
+
+static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
+  SIGTRAMP_FRAME,
+  4,
+  {
+    { ARM_SET_R7_RT_SIGRETURN, -1 },
+    { ARM_EABI_SYSCALL, -1 },
+    { TRAMP_SENTINEL_INSN }
+  },
+  arm_linux_rt_sigreturn_init
+};
+
+static void
+arm_linux_init_abi (struct gdbarch_info info,
+                   struct gdbarch *gdbarch)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
-  if (inst == ARM_LINUX_SIGRETURN_INSTR || inst == ARM_LINUX_RT_SIGRETURN_INSTR)
+  tdep->lowest_pc = 0x8000;
+  if (info.byte_order == BFD_ENDIAN_BIG)
     {
-      CORE_ADDR sigcontext_addr;
-
-      /* The sigcontext structure is at different places for the two
-         signal return instructions.  For ARM_LINUX_SIGRETURN_INSTR,
-        it starts at the SP value.  For ARM_LINUX_RT_SIGRETURN_INSTR,
-        it is at SP+8.  For the latter instruction, it may also be
-        the case that the address of this structure may be determined
-        by reading the 4 bytes at SP, but I'm not convinced this is
-        reliable.
-
-        In any event, these magic constants (0 and 8) may be
-        determined by examining struct sigframe and struct
-        rt_sigframe in arch/arm/kernel/signal.c in the Linux kernel
-        sources.  */
-
-      if (inst == ARM_LINUX_RT_SIGRETURN_INSTR)
-       sigcontext_addr = sp + 8;
-      else /* inst == ARM_LINUX_SIGRETURN_INSTR */
-        sigcontext_addr = sp + 0;
-
-      /* The layout of the sigcontext structure for ARM GNU/Linux is
-         in include/asm-arm/sigcontext.h in the Linux kernel sources.
-
-        There are three 4-byte fields which precede the saved r0
-        field.  (This accounts for the 12 in the code below.)  The
-        sixteen registers (4 bytes per field) follow in order.  The
-        PSR value follows the sixteen registers which accounts for
-        the constant 19 below. */
-
-      if (0 <= regno && regno <= PC_REGNUM)
-       reg_addr = sigcontext_addr + 12 + (4 * regno);
-      else if (regno == PS_REGNUM)
-       reg_addr = sigcontext_addr + 19 * 4;
+      if (tdep->arm_abi == ARM_ABI_AAPCS)
+       tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
+      else
+       tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
+      tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
     }
+  else
+    {
+      if (tdep->arm_abi == ARM_ABI_AAPCS)
+       tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
+      else
+       tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
+      tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
+    }
+  tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
+  tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
+
+  if (tdep->fp_model == ARM_FLOAT_AUTO)
+    tdep->fp_model = ARM_FLOAT_FPA;
+
+  tdep->jb_pc = ARM_LINUX_JB_PC;
+  tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
+
+  set_solib_svr4_fetch_link_map_offsets
+    (gdbarch, svr4_ilp32_fetch_link_map_offsets);
+
+  /* The following override shouldn't be needed.  */
+  set_gdbarch_deprecated_extract_return_value (gdbarch, arm_linux_extract_return_value);
+
+  /* Shared library handling.  */
+  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
+  set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
+
+  /* Enable TLS support.  */
+  set_gdbarch_fetch_tls_load_module_address (gdbarch,
+                                             svr4_fetch_objfile_link_map);
 
-  return reg_addr;
+  tramp_frame_prepend_unwinder (gdbarch,
+                               &arm_linux_sigreturn_tramp_frame);
+  tramp_frame_prepend_unwinder (gdbarch,
+                               &arm_linux_rt_sigreturn_tramp_frame);
+  tramp_frame_prepend_unwinder (gdbarch,
+                               &arm_eabi_linux_sigreturn_tramp_frame);
+  tramp_frame_prepend_unwinder (gdbarch,
+                               &arm_eabi_linux_rt_sigreturn_tramp_frame);
 }
 
 void
 _initialize_arm_linux_tdep (void)
 {
+  gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
+                         arm_linux_init_abi);
 }
This page took 0.030169 seconds and 4 git commands to generate.