2001-05-10 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gnu-regex.c
index 601e3b5fbb269a70bd61475170790f140b456eb3..6acdcf27a5a1cbc677e12124520012accf758d1d 100644 (file)
-/* Extended regular expression matching and search library.
-   Copyright (C) 1985, 1989 Free Software Foundation, Inc.
+/* *INDENT-OFF* */ /* keep in sync with glibc */
+/* Extended regular expression matching and search library,
+   version 0.12.
+   (Implements POSIX draft P1003.2/D11.2, except for some of the
+   internationalization features.)
+   Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000
+   Free Software Foundation, Inc.
+
+   NOTE: The canonical source of this file is maintained with the 
+   GNU C Library.  Bugs can be reported to bug-glibc@gnu.org.
+
+   This program is free software; you can redistribute it and/or modify it
+   under the terms of the GNU General Public License as published by the
+   Free Software Foundation; either version 2, or (at your option) any
+   later version.
+
+   This program is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with this program; if not, write to the Free Software Foundation, 
+   Inc., 59 Temple Place - Suite 330,
+   Boston, MA 02111-1307, USA.  */
+
+/* AIX requires this to be the first thing in the file. */
+#if defined _AIX && !defined REGEX_MALLOC
+  #pragma alloca
+#endif
 
-This program is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 2 of the License, or
-(at your option) any later version.
+#undef _GNU_SOURCE
+#define _GNU_SOURCE
 
-This program is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-GNU General Public License for more details.
+#ifdef HAVE_CONFIG_H
+# include <config.h>
+#endif
 
-You should have received a copy of the GNU General Public License
-along with this program; if not, write to the Free Software
-Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
+#ifndef PARAMS
+# if defined __GNUC__ || (defined __STDC__ && __STDC__)
+#  define PARAMS(args) args
+# else
+#  define PARAMS(args) ()
+# endif  /* GCC.  */
+#endif  /* Not PARAMS.  */
 
-/* To test, compile with -Dtest.
- This Dtestable feature turns this into a self-contained program
- which reads a pattern, describes how it compiles,
- then reads a string and searches for it.  */
+#if defined STDC_HEADERS && !defined emacs
+# include <stddef.h>
+#else
+/* We need this for `gnu-regex.h', and perhaps for the Emacs include files.  */
+# include <sys/types.h>
+#endif
 
-#ifdef emacs
+/* For platform which support the ISO C amendement 1 functionality we
+   support user defined character classes.  */
+#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
+ /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
+# include <wchar.h>
+# include <wctype.h>
+#endif
 
-/* The `emacs' switch turns on certain special matching commands
- that make sense only in emacs. */
+/* This is for other GNU distributions with internationalized messages.  */
+/* CYGNUS LOCAL: ../intl will handle this for us */
+#ifdef ENABLE_NLS
+# include <libintl.h>
+#else
+# define gettext(msgid) (msgid)
+#endif
 
-#include "config.h"
-#include "lisp.h"
-#include "buffer.h"
-#include "syntax.h"
+#ifndef gettext_noop
+/* This define is so xgettext can find the internationalizable
+   strings.  */
+# define gettext_noop(String) String
+#endif
 
-#else  /* not emacs */
+/* The `emacs' switch turns on certain matching commands
+   that make sense only in Emacs. */
+#ifdef emacs
 
-#include "defs.h"
-#include "gdb_string.h"
-#undef malloc
-#define malloc xmalloc
+# include "lisp.h"
+# include "buffer.h"
+# include "syntax.h"
 
-/*
- * Define the syntax stuff, so we can do the \<...\> things.
- */
+#else  /* not emacs */
 
-#ifndef Sword /* must be non-zero in some of the tests below... */
-#define Sword 1
+/* If we are not linking with Emacs proper,
+   we can't use the relocating allocator
+   even if config.h says that we can.  */
+# undef REL_ALLOC
+
+# if defined STDC_HEADERS || defined _LIBC
+#  include <stdlib.h>
+# else
+char *malloc ();
+char *realloc ();
+# endif
+
+/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
+   If nothing else has been done, use the method below.  */
+# ifdef INHIBIT_STRING_HEADER
+#  if !(defined HAVE_BZERO && defined HAVE_BCOPY)
+#   if !defined bzero && !defined bcopy
+#    undef INHIBIT_STRING_HEADER
+#   endif
+#  endif
+# endif
+
+/* This is the normal way of making sure we have a bcopy and a bzero.
+   This is used in most programs--a few other programs avoid this
+   by defining INHIBIT_STRING_HEADER.  */
+# ifndef INHIBIT_STRING_HEADER
+#  if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
+#   include <string.h>
+#   ifndef bzero
+#    ifndef _LIBC
+#     define bzero(s, n)       (memset (s, '\0', n), (s))
+#    else
+#     define bzero(s, n)       __bzero (s, n)
+#    endif
+#   endif
+#  else
+#   include <strings.h>
+#   ifndef memcmp
+#    define memcmp(s1, s2, n)  bcmp (s1, s2, n)
+#   endif
+#   ifndef memcpy
+#    define memcpy(d, s, n)    (bcopy (s, d, n), (d))
+#   endif
+#  endif
+# endif
+
+/* Define the syntax stuff for \<, \>, etc.  */
+
+/* This must be nonzero for the wordchar and notwordchar pattern
+   commands in re_match_2.  */
+# ifndef Sword
+#  define Sword 1
+# endif
+
+# ifdef SWITCH_ENUM_BUG
+#  define SWITCH_ENUM_CAST(x) ((int)(x))
+# else
+#  define SWITCH_ENUM_CAST(x) (x)
+# endif
+
+/* How many characters in the character set.  */
+# define CHAR_SET_SIZE 256
+
+/* GDB LOCAL: define _REGEX_RE_COMP to get BSD style re_comp and re_exec */
+#ifndef _REGEX_RE_COMP
+#define _REGEX_RE_COMP
 #endif
 
-#define SYNTAX(c) re_syntax_table[c]
+# ifdef SYNTAX_TABLE
 
-#ifdef SYNTAX_TABLE
+extern char *re_syntax_table;
 
-char *re_syntax_table;
+# else /* not SYNTAX_TABLE */
 
-#else
-
-static char re_syntax_table[256];
+static char re_syntax_table[CHAR_SET_SIZE];
 
 static void
 init_syntax_once ()
@@ -64,7 +168,7 @@ init_syntax_once ()
    if (done)
      return;
 
-   memset (re_syntax_table, '\0', sizeof re_syntax_table);
+   bzero (re_syntax_table, sizeof re_syntax_table);
 
    for (c = 'a'; c <= 'z'; c++)
      re_syntax_table[c] = Sword;
@@ -75,25 +179,69 @@ init_syntax_once ()
    for (c = '0'; c <= '9'; c++)
      re_syntax_table[c] = Sword;
 
+   re_syntax_table['_'] = Sword;
+
    done = 1;
 }
 
-#endif /* SYNTAX_TABLE */
-#endif /* not emacs */
+# endif /* not SYNTAX_TABLE */
 
+# define SYNTAX(c) re_syntax_table[c]
+
+#endif /* not emacs */
+\f
+/* Get the interface, including the syntax bits.  */
+/* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
 #include "gnu-regex.h"
 
-/* Number of failure points to allocate space for initially,
- when matching.  If this number is exceeded, more space is allocated,
- so it is not a hard limit.  */
+/* isalpha etc. are used for the character classes.  */
+#include <ctype.h>
+
+/* Jim Meyering writes:
 
-#ifndef NFAILURES
-#define NFAILURES 80
-#endif /* NFAILURES */
+   "... Some ctype macros are valid only for character codes that
+   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
+   using /bin/cc or gcc but without giving an ansi option).  So, all
+   ctype uses should be through macros like ISPRINT...  If
+   STDC_HEADERS is defined, then autoconf has verified that the ctype
+   macros don't need to be guarded with references to isascii. ...
+   Defining isascii to 1 should let any compiler worth its salt
+   eliminate the && through constant folding."
+   Solaris defines some of these symbols so we must undefine them first.  */
 
-/* width of a byte in bits */
+#undef ISASCII
+#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
+# define ISASCII(c) 1
+#else
+# define ISASCII(c) isascii(c)
+#endif
+
+#ifdef isblank
+# define ISBLANK(c) (ISASCII (c) && isblank (c))
+#else
+# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
+#endif
+#ifdef isgraph
+# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
+#else
+# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
+#endif
 
-#define BYTEWIDTH 8
+#undef ISPRINT
+#define ISPRINT(c) (ISASCII (c) && isprint (c))
+#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
+#define ISALNUM(c) (ISASCII (c) && isalnum (c))
+#define ISALPHA(c) (ISASCII (c) && isalpha (c))
+#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
+#define ISLOWER(c) (ISASCII (c) && islower (c))
+#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
+#define ISSPACE(c) (ISASCII (c) && isspace (c))
+#define ISUPPER(c) (ISASCII (c) && isupper (c))
+#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
+
+#ifndef NULL
+# define NULL (void *)0
+#endif
 
 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
    since ours (we hope) works properly with all combinations of
@@ -101,847 +249,3277 @@ init_syntax_once ()
    (Per Bothner suggested the basic approach.)  */
 #undef SIGN_EXTEND_CHAR
 #if __STDC__
-#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
+# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
 #else  /* not __STDC__ */
 /* As in Harbison and Steele.  */
-#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
+# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
 #endif
 \f
-static int obscure_syntax = 0;
+/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
+   use `alloca' instead of `malloc'.  This is because using malloc in
+   re_search* or re_match* could cause memory leaks when C-g is used in
+   Emacs; also, malloc is slower and causes storage fragmentation.  On
+   the other hand, malloc is more portable, and easier to debug.
 
-/* Specify the precise syntax of regexp for compilation.
-   This provides for compatibility for various utilities
-   which historically have different, incompatible syntaxes.
+   Because we sometimes use alloca, some routines have to be macros,
+   not functions -- `alloca'-allocated space disappears at the end of the
+   function it is called in.  */
 
-   The argument SYNTAX is a bit-mask containing the two bits
-   RE_NO_BK_PARENS and RE_NO_BK_VBAR.  */
+#ifdef REGEX_MALLOC
 
-int
-re_set_syntax (syntax)
-     int syntax;
-{
-  int ret;
+# define REGEX_ALLOCATE malloc
+# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
+# define REGEX_FREE free
 
-  ret = obscure_syntax;
-  obscure_syntax = syntax;
-  return ret;
-}
-\f
-/* re_compile_pattern takes a regular-expression string
-   and converts it into a buffer full of byte commands for matching.
+#else /* not REGEX_MALLOC  */
 
-  PATTERN   is the address of the pattern string
-  SIZE      is the length of it.
-  BUFP     is a  struct re_pattern_buffer *  which points to the info
-           on where to store the byte commands.
-           This structure contains a  char *  which points to the
-           actual space, which should have been obtained with malloc.
-           re_compile_pattern may use  realloc  to grow the buffer space.
+/* Emacs already defines alloca, sometimes.  */
+# ifndef alloca
 
-  The number of bytes of commands can be found out by looking in
-  the  struct re_pattern_buffer  that bufp pointed to,
-  after re_compile_pattern returns.
-*/
+/* Make alloca work the best possible way.  */
+#  ifdef __GNUC__
+#   define alloca __builtin_alloca
+#  else /* not __GNUC__ */
+#   if HAVE_ALLOCA_H
+#    include <alloca.h>
+#   endif /* HAVE_ALLOCA_H */
+#  endif /* not __GNUC__ */
 
-#define PATPUSH(ch) (*b++ = (char) (ch))
+# endif /* not alloca */
 
-#define PATFETCH(c) \
- {if (p == pend) goto end_of_pattern; \
-  c = * (unsigned char *) p++; \
-  if (translate) c = translate[c]; }
+# define REGEX_ALLOCATE alloca
 
-#define PATFETCH_RAW(c) \
- {if (p == pend) goto end_of_pattern; \
-  c = * (unsigned char *) p++; }
+/* Assumes a `char *destination' variable.  */
+# define REGEX_REALLOCATE(source, osize, nsize)                                \
+  (destination = (char *) alloca (nsize),                              \
+   memcpy (destination, source, osize))
 
-#define PATUNFETCH p--
+/* No need to do anything to free, after alloca.  */
+# define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
 
-/* This is not an arbitrary limit: the arguments which represent offsets
-   into the pattern are two bytes long.  So if 2^16 bytes turns out to
-   be too small, many things would have to change.  */
-#define MAX_BUF_SIZE (1 << 16)
+#endif /* not REGEX_MALLOC */
 
+/* Define how to allocate the failure stack.  */
 
-/* Extend the buffer by twice its current size via realloc and
-   reset the pointers that pointed into the old block to point to the
-   correct places in the new one.  If extending the buffer results in it
-   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
-#define EXTEND_BUFFER                                                 \
-  do {                                                                  \
-    char *old_buffer = bufp->buffer;                           \
-    if (bufp->allocated == MAX_BUF_SIZE)                                \
-      goto too_big;                                                 \
-    bufp->allocated <<= 1;                                              \
-    if (bufp->allocated > MAX_BUF_SIZE)                                 \
-      bufp->allocated = MAX_BUF_SIZE;                                   \
-    bufp->buffer = (char *) realloc (bufp->buffer, bufp->allocated);\
-    if (bufp->buffer == NULL)                                           \
-      goto memory_exhausted;                                                \
-    /* If the buffer moved, move all the pointers into it.  */          \
-    if (old_buffer != bufp->buffer)                                     \
-      {                                                                 \
-        b = (b - old_buffer) + bufp->buffer;                            \
-        begalt = (begalt - old_buffer) + bufp->buffer;                  \
-        if (fixup_jump)                                             \
-          fixup_jump = (fixup_jump - old_buffer) + bufp->buffer;\
-        if (laststart)                                                  \
-          laststart = (laststart - old_buffer) + bufp->buffer;          \
-        if (pending_exact)                                              \
-          pending_exact = (pending_exact - old_buffer) + bufp->buffer;  \
-      }                                                                 \
-  } while (0)
+#if defined REL_ALLOC && defined REGEX_MALLOC
 
-static void store_jump (), insert_jump ();
+# define REGEX_ALLOCATE_STACK(size)                            \
+  r_alloc (&failure_stack_ptr, (size))
+# define REGEX_REALLOCATE_STACK(source, osize, nsize)          \
+  r_re_alloc (&failure_stack_ptr, (nsize))
+# define REGEX_FREE_STACK(ptr)                                 \
+  r_alloc_free (&failure_stack_ptr)
 
-char *
-re_compile_pattern (pattern, size, bufp)
-     char *pattern;
-     int size;
-     struct re_pattern_buffer *bufp;
+#else /* not using relocating allocator */
+
+# ifdef REGEX_MALLOC
+
+#  define REGEX_ALLOCATE_STACK malloc
+#  define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
+#  define REGEX_FREE_STACK free
+
+# else /* not REGEX_MALLOC */
+
+#  define REGEX_ALLOCATE_STACK alloca
+
+#  define REGEX_REALLOCATE_STACK(source, osize, nsize)                 \
+   REGEX_REALLOCATE (source, osize, nsize)
+/* No need to explicitly free anything.  */
+#  define REGEX_FREE_STACK(arg)
+
+# endif /* not REGEX_MALLOC */
+#endif /* not using relocating allocator */
+
+
+/* True if `size1' is non-NULL and PTR is pointing anywhere inside
+   `string1' or just past its end.  This works if PTR is NULL, which is
+   a good thing.  */
+#define FIRST_STRING_P(ptr)                                    \
+  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
+
+/* (Re)Allocate N items of type T using malloc, or fail.  */
+#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
+#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
+#define RETALLOC_IF(addr, n, t) \
+  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
+#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
+
+#define BYTEWIDTH 8 /* In bits.  */
+
+#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
+
+#undef MAX
+#undef MIN
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+
+typedef char boolean;
+#define false 0
+#define true 1
+
+static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
+                                       const char *string1, int size1,
+                                       const char *string2, int size2,
+                                       int pos,
+                                       struct re_registers *regs,
+                                       int stop));
+\f
+/* These are the command codes that appear in compiled regular
+   expressions.  Some opcodes are followed by argument bytes.  A
+   command code can specify any interpretation whatsoever for its
+   arguments.  Zero bytes may appear in the compiled regular expression.  */
+
+typedef enum
 {
-  register char *b = bufp->buffer;
-  register char *p = pattern;
-  char *pend = pattern + size;
-  register unsigned c, c1;
-  char *p1;
-  unsigned char *translate = (unsigned char *) bufp->translate;
+  no_op = 0,
+
+  /* Succeed right away--no more backtracking.  */
+  succeed,
+
+        /* Followed by one byte giving n, then by n literal bytes.  */
+  exactn,
+
+        /* Matches any (more or less) character.  */
+  anychar,
+
+        /* Matches any one char belonging to specified set.  First
+           following byte is number of bitmap bytes.  Then come bytes
+           for a bitmap saying which chars are in.  Bits in each byte
+           are ordered low-bit-first.  A character is in the set if its
+           bit is 1.  A character too large to have a bit in the map is
+           automatically not in the set.  */
+  charset,
+
+        /* Same parameters as charset, but match any character that is
+           not one of those specified.  */
+  charset_not,
+
+        /* Start remembering the text that is matched, for storing in a
+           register.  Followed by one byte with the register number, in
+           the range 0 to one less than the pattern buffer's re_nsub
+           field.  Then followed by one byte with the number of groups
+           inner to this one.  (This last has to be part of the
+           start_memory only because we need it in the on_failure_jump
+           of re_match_2.)  */
+  start_memory,
+
+        /* Stop remembering the text that is matched and store it in a
+           memory register.  Followed by one byte with the register
+           number, in the range 0 to one less than `re_nsub' in the
+           pattern buffer, and one byte with the number of inner groups,
+           just like `start_memory'.  (We need the number of inner
+           groups here because we don't have any easy way of finding the
+           corresponding start_memory when we're at a stop_memory.)  */
+  stop_memory,
+
+        /* Match a duplicate of something remembered. Followed by one
+           byte containing the register number.  */
+  duplicate,
+
+        /* Fail unless at beginning of line.  */
+  begline,
+
+        /* Fail unless at end of line.  */
+  endline,
+
+        /* Succeeds if at beginning of buffer (if emacs) or at beginning
+           of string to be matched (if not).  */
+  begbuf,
+
+        /* Analogously, for end of buffer/string.  */
+  endbuf,
+
+        /* Followed by two byte relative address to which to jump.  */
+  jump,
+
+       /* Same as jump, but marks the end of an alternative.  */
+  jump_past_alt,
+
+        /* Followed by two-byte relative address of place to resume at
+           in case of failure.  */
+  on_failure_jump,
+
+        /* Like on_failure_jump, but pushes a placeholder instead of the
+           current string position when executed.  */
+  on_failure_keep_string_jump,
+
+        /* Throw away latest failure point and then jump to following
+           two-byte relative address.  */
+  pop_failure_jump,
+
+        /* Change to pop_failure_jump if know won't have to backtrack to
+           match; otherwise change to jump.  This is used to jump
+           back to the beginning of a repeat.  If what follows this jump
+           clearly won't match what the repeat does, such that we can be
+           sure that there is no use backtracking out of repetitions
+           already matched, then we change it to a pop_failure_jump.
+           Followed by two-byte address.  */
+  maybe_pop_jump,
+
+        /* Jump to following two-byte address, and push a dummy failure
+           point. This failure point will be thrown away if an attempt
+           is made to use it for a failure.  A `+' construct makes this
+           before the first repeat.  Also used as an intermediary kind
+           of jump when compiling an alternative.  */
+  dummy_failure_jump,
+
+       /* Push a dummy failure point and continue.  Used at the end of
+          alternatives.  */
+  push_dummy_failure,
+
+        /* Followed by two-byte relative address and two-byte number n.
+           After matching N times, jump to the address upon failure.  */
+  succeed_n,
+
+        /* Followed by two-byte relative address, and two-byte number n.
+           Jump to the address N times, then fail.  */
+  jump_n,
+
+        /* Set the following two-byte relative address to the
+           subsequent two-byte number.  The address *includes* the two
+           bytes of number.  */
+  set_number_at,
+
+  wordchar,    /* Matches any word-constituent character.  */
+  notwordchar, /* Matches any char that is not a word-constituent.  */
+
+  wordbeg,     /* Succeeds if at word beginning.  */
+  wordend,     /* Succeeds if at word end.  */
+
+  wordbound,   /* Succeeds if at a word boundary.  */
+  notwordbound /* Succeeds if not at a word boundary.  */
+
+#ifdef emacs
+  ,before_dot, /* Succeeds if before point.  */
+  at_dot,      /* Succeeds if at point.  */
+  after_dot,   /* Succeeds if after point.  */
 
-  /* address of the count-byte of the most recently inserted "exactn" command.
-    This makes it possible to tell whether a new exact-match character
-    can be added to that command or requires a new "exactn" command. */
-     
-  char *pending_exact = 0;
+       /* Matches any character whose syntax is specified.  Followed by
+           a byte which contains a syntax code, e.g., Sword.  */
+  syntaxspec,
 
-  /* address of the place where a forward-jump should go
-    to the end of the containing expression.
-    Each alternative of an "or", except the last, ends with a forward-jump
-    of this sort. */
+       /* Matches any character whose syntax is not that specified.  */
+  notsyntaxspec
+#endif /* emacs */
+} re_opcode_t;
+\f
+/* Common operations on the compiled pattern.  */
 
-  char *fixup_jump = 0;
+/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
 
-  /* address of start of the most recently finished expression.
-    This tells postfix * where to find the start of its operand. */
+#define STORE_NUMBER(destination, number)                              \
+  do {                                                                 \
+    (destination)[0] = (number) & 0377;                                        \
+    (destination)[1] = (number) >> 8;                                  \
+  } while (0)
 
-  char *laststart = 0;
+/* Same as STORE_NUMBER, except increment DESTINATION to
+   the byte after where the number is stored.  Therefore, DESTINATION
+   must be an lvalue.  */
 
-  /* In processing a repeat, 1 means zero matches is allowed */
+#define STORE_NUMBER_AND_INCR(destination, number)                     \
+  do {                                                                 \
+    STORE_NUMBER (destination, number);                                        \
+    (destination) += 2;                                                        \
+  } while (0)
 
-  char zero_times_ok;
+/* Put into DESTINATION a number stored in two contiguous bytes starting
+   at SOURCE.  */
 
-  /* In processing a repeat, 1 means many matches is allowed */
+#define EXTRACT_NUMBER(destination, source)                            \
+  do {                                                                 \
+    (destination) = *(source) & 0377;                                  \
+    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;          \
+  } while (0)
 
-  char many_times_ok;
+#ifdef DEBUG
+static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
+static void
+extract_number (dest, source)
+    int *dest;
+    unsigned char *source;
+{
+  int temp = SIGN_EXTEND_CHAR (*(source + 1));
+  *dest = *source & 0377;
+  *dest += temp << 8;
+}
 
-  /* address of beginning of regexp, or inside of last \( */
+# ifndef EXTRACT_MACROS /* To debug the macros.  */
+#  undef EXTRACT_NUMBER
+#  define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
+# endif /* not EXTRACT_MACROS */
 
-  char *begalt = b;
+#endif /* DEBUG */
 
-  /* Stack of information saved by \( and restored by \).
-     Four stack elements are pushed by each \(:
-       First, the value of b.
-       Second, the value of fixup_jump.
-       Third, the value of regnum.
-       Fourth, the value of begalt.  */
+/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
+   SOURCE must be an lvalue.  */
 
-  int stackb[40];
-  int *stackp = stackb;
-  int *stacke = stackb + 40;
-  int *stackt;
+#define EXTRACT_NUMBER_AND_INCR(destination, source)                   \
+  do {                                                                 \
+    EXTRACT_NUMBER (destination, source);                              \
+    (source) += 2;                                                     \
+  } while (0)
 
-  /* Counts \('s as they are encountered.  Remembered for the matching \),
-     where it becomes the "register number" to put in the stop_memory command */
+#ifdef DEBUG
+static void extract_number_and_incr _RE_ARGS ((int *destination,
+                                              unsigned char **source));
+static void
+extract_number_and_incr (destination, source)
+    int *destination;
+    unsigned char **source;
+{
+  extract_number (destination, *source);
+  *source += 2;
+}
 
-  int regnum = 1;
+# ifndef EXTRACT_MACROS
+#  undef EXTRACT_NUMBER_AND_INCR
+#  define EXTRACT_NUMBER_AND_INCR(dest, src) \
+  extract_number_and_incr (&dest, &src)
+# endif /* not EXTRACT_MACROS */
 
-  bufp->fastmap_accurate = 0;
+#endif /* DEBUG */
+\f
+/* If DEBUG is defined, Regex prints many voluminous messages about what
+   it is doing (if the variable `debug' is nonzero).  If linked with the
+   main program in `iregex.c', you can enter patterns and strings
+   interactively.  And if linked with the main program in `main.c' and
+   the other test files, you can run the already-written tests.  */
 
-#ifndef emacs
-#ifndef SYNTAX_TABLE
-  /*
-   * Initialize the syntax table.
-   */
-   init_syntax_once();
-#endif
-#endif
+#ifdef DEBUG
 
-  if (bufp->allocated == 0)
+/* We use standard I/O for debugging.  */
+# include <stdio.h>
+
+/* It is useful to test things that ``must'' be true when debugging.  */
+# include <assert.h>
+
+static int debug = 0;
+
+# define DEBUG_STATEMENT(e) e
+# define DEBUG_PRINT1(x) if (debug) printf (x)
+# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
+# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
+# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
+# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)                                 \
+  if (debug) print_partial_compiled_pattern (s, e)
+# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)                        \
+  if (debug) print_double_string (w, s1, sz1, s2, sz2)
+
+
+/* Print the fastmap in human-readable form.  */
+
+void
+print_fastmap (fastmap)
+    char *fastmap;
+{
+  unsigned was_a_range = 0;
+  unsigned i = 0;
+
+  while (i < (1 << BYTEWIDTH))
     {
-      bufp->allocated = 28;
-      if (bufp->buffer)
-       /* EXTEND_BUFFER loses when bufp->allocated is 0 */
-       bufp->buffer = (char *) realloc (bufp->buffer, 28);
-      else
-       /* Caller did not allocate a buffer.  Do it for him */
-       bufp->buffer = (char *) malloc (28);
-      if (!bufp->buffer) goto memory_exhausted;
-      begalt = b = bufp->buffer;
+      if (fastmap[i++])
+       {
+         was_a_range = 0;
+          putchar (i - 1);
+          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
+            {
+              was_a_range = 1;
+              i++;
+            }
+         if (was_a_range)
+            {
+              printf ("-");
+              putchar (i - 1);
+            }
+        }
     }
+  putchar ('\n');
+}
 
-  while (p != pend)
+
+/* Print a compiled pattern string in human-readable form, starting at
+   the START pointer into it and ending just before the pointer END.  */
+
+void
+print_partial_compiled_pattern (start, end)
+    unsigned char *start;
+    unsigned char *end;
+{
+  int mcnt, mcnt2;
+  unsigned char *p1;
+  unsigned char *p = start;
+  unsigned char *pend = end;
+
+  if (start == NULL)
     {
-      if (b - bufp->buffer > bufp->allocated - 10)
-       /* Note that EXTEND_BUFFER clobbers c */
-       EXTEND_BUFFER;
+      printf ("(null)\n");
+      return;
+    }
 
-      PATFETCH (c);
+  /* Loop over pattern commands.  */
+  while (p < pend)
+    {
+      printf ("%d:\t", p - start);
 
-      switch (c)
+      switch ((re_opcode_t) *p++)
        {
-       case '$':
-         if (obscure_syntax & RE_TIGHT_VBAR)
-           {
-             if (! (obscure_syntax & RE_CONTEXT_INDEP_OPS) && p != pend)
-               goto normal_char;
-             /* Make operand of last vbar end before this `$'.  */
-             if (fixup_jump)
-               store_jump (fixup_jump, jump, b);
-             fixup_jump = 0;
-             PATPUSH (endline);
-             break;
-           }
+        case no_op:
+          printf ("/no_op");
+          break;
 
-         /* $ means succeed if at end of line, but only in special contexts.
-           If randomly in the middle of a pattern, it is a normal character. */
-         if (p == pend || *p == '\n'
-             || (obscure_syntax & RE_CONTEXT_INDEP_OPS)
-             || (obscure_syntax & RE_NO_BK_PARENS
-                 ? *p == ')'
-                 : *p == '\\' && p[1] == ')')
-             || (obscure_syntax & RE_NO_BK_VBAR
-                 ? *p == '|'
-                 : *p == '\\' && p[1] == '|'))
+       case exactn:
+         mcnt = *p++;
+          printf ("/exactn/%d", mcnt);
+          do
            {
-             PATPUSH (endline);
-             break;
-           }
-         goto normal_char;
+              putchar ('/');
+             putchar (*p++);
+            }
+          while (--mcnt);
+          break;
+
+       case start_memory:
+          mcnt = *p++;
+          printf ("/start_memory/%d/%d", mcnt, *p++);
+          break;
 
-       case '^':
-         /* ^ means succeed if at beg of line, but only if no preceding pattern. */
+       case stop_memory:
+          mcnt = *p++;
+         printf ("/stop_memory/%d/%d", mcnt, *p++);
+          break;
 
-         if (laststart && p[-2] != '\n'
-             && ! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
-           goto normal_char;
-         if (obscure_syntax & RE_TIGHT_VBAR)
-           {
-             if (p != pattern + 1
-                 && ! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
-               goto normal_char;
-             PATPUSH (begline);
-             begalt = b;
-           }
-         else
-           PATPUSH (begline);
+       case duplicate:
+         printf ("/duplicate/%d", *p++);
          break;
 
-       case '+':
-       case '?':
-         if (obscure_syntax & RE_BK_PLUS_QM)
-           goto normal_char;
-       handle_plus:
-       case '*':
-         /* If there is no previous pattern, char not special. */
-         if (!laststart && ! (obscure_syntax & RE_CONTEXT_INDEP_OPS))
-           goto normal_char;
-         /* If there is a sequence of repetition chars,
-            collapse it down to equivalent to just one.  */
-         zero_times_ok = 0;
-         many_times_ok = 0;
-         while (1)
-           {
-             zero_times_ok |= c != '+';
-             many_times_ok |= c != '?';
-             if (p == pend)
-               break;
-             PATFETCH (c);
-             if (c == '*')
-               ;
-             else if (!(obscure_syntax & RE_BK_PLUS_QM)
-                      && (c == '+' || c == '?'))
-               ;
-             else if ((obscure_syntax & RE_BK_PLUS_QM)
-                      && c == '\\')
+       case anychar:
+         printf ("/anychar");
+         break;
+
+       case charset:
+        case charset_not:
+          {
+            register int c, last = -100;
+           register int in_range = 0;
+
+           printf ("/charset [%s",
+                   (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
+
+            assert (p + *p < pend);
+
+            for (c = 0; c < 256; c++)
+             if (c / 8 < *p
+                 && (p[1 + (c/8)] & (1 << (c % 8))))
                {
-                 int c1;
-                 PATFETCH (c1);
-                 if (!(c1 == '+' || c1 == '?'))
+                 /* Are we starting a range?  */
+                 if (last + 1 == c && ! in_range)
                    {
-                     PATUNFETCH;
-                     PATUNFETCH;
-                     break;
+                     putchar ('-');
+                     in_range = 1;
+                   }
+                 /* Have we broken a range?  */
+                 else if (last + 1 != c && in_range)
+              {
+                     putchar (last);
+                     in_range = 0;
                    }
-                 c = c1;
-               }
-             else
-               {
-                 PATUNFETCH;
-                 break;
-               }
-           }
 
-         /* Star, etc. applied to an empty pattern is equivalent
-            to an empty pattern.  */
-         if (!laststart)
-           break;
+                 if (! in_range)
+                   putchar (c);
 
-         /* Now we know whether 0 matches is allowed,
-            and whether 2 or more matches is allowed.  */
-         if (many_times_ok)
-           {
-             /* If more than one repetition is allowed,
-                put in a backward jump at the end.  */
-             store_jump (b, maybe_finalize_jump, laststart - 3);
-             b += 3;
-           }
-         insert_jump (on_failure_jump, laststart, b + 3, b);
-         pending_exact = 0;
-         b += 3;
-         if (!zero_times_ok)
-           {
-             /* At least one repetition required: insert before the loop
-                a skip over the initial on-failure-jump instruction */
-             insert_jump (dummy_failure_jump, laststart, laststart + 6, b);
-             b += 3;
-           }
+                 last = c;
+              }
+
+           if (in_range)
+             putchar (last);
+
+           putchar (']');
+
+           p += 1 + *p;
+         }
          break;
 
-       case '.':
-         laststart = b;
-         PATPUSH (anychar);
+       case begline:
+         printf ("/begline");
+          break;
+
+       case endline:
+          printf ("/endline");
+          break;
+
+       case on_failure_jump:
+          extract_number_and_incr (&mcnt, &p);
+         printf ("/on_failure_jump to %d", p + mcnt - start);
+          break;
+
+       case on_failure_keep_string_jump:
+          extract_number_and_incr (&mcnt, &p);
+         printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
+          break;
+
+       case dummy_failure_jump:
+          extract_number_and_incr (&mcnt, &p);
+         printf ("/dummy_failure_jump to %d", p + mcnt - start);
+          break;
+
+       case push_dummy_failure:
+          printf ("/push_dummy_failure");
+          break;
+
+        case maybe_pop_jump:
+          extract_number_and_incr (&mcnt, &p);
+         printf ("/maybe_pop_jump to %d", p + mcnt - start);
          break;
 
-       case '[':
-         while (b - bufp->buffer
-                > bufp->allocated - 3 - (1 << BYTEWIDTH) / BYTEWIDTH)
-           /* Note that EXTEND_BUFFER clobbers c */
-           EXTEND_BUFFER;
+        case pop_failure_jump:
+         extract_number_and_incr (&mcnt, &p);
+         printf ("/pop_failure_jump to %d", p + mcnt - start);
+         break;
 
-         laststart = b;
-         if (*p == '^')
-           PATPUSH (charset_not), p++;
-         else
-           PATPUSH (charset);
-         p1 = p;
-
-         PATPUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
-         /* Clear the whole map */
-         memset (b, '\0', (1 << BYTEWIDTH) / BYTEWIDTH);
-         /* Read in characters and ranges, setting map bits */
-         while (1)
-           {
-             PATFETCH (c);
-             if (c == ']' && p != p1 + 1) break;
-             if (*p == '-' && p[1] != ']')
-               {
-                 PATFETCH (c1);
-                 PATFETCH (c1);
-                 while (c <= c1)
-                   b[c / BYTEWIDTH] |= 1 << (c % BYTEWIDTH), c++;
-               }
-             else
-               {
-                 b[c / BYTEWIDTH] |= 1 << (c % BYTEWIDTH);
-               }
-           }
-         /* Discard any bitmap bytes that are all 0 at the end of the map.
-            Decrement the map-length byte too. */
-         while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
-           b[-1]--;
-         b += b[-1];
+        case jump_past_alt:
+         extract_number_and_incr (&mcnt, &p);
+         printf ("/jump_past_alt to %d", p + mcnt - start);
          break;
 
-       case '(':
-         if (! (obscure_syntax & RE_NO_BK_PARENS))
-           goto normal_char;
-         else
-           goto handle_open;
+        case jump:
+         extract_number_and_incr (&mcnt, &p);
+         printf ("/jump to %d", p + mcnt - start);
+         break;
 
-       case ')':
-         if (! (obscure_syntax & RE_NO_BK_PARENS))
-           goto normal_char;
-         else
-           goto handle_close;
+        case succeed_n:
+          extract_number_and_incr (&mcnt, &p);
+         p1 = p + mcnt;
+          extract_number_and_incr (&mcnt2, &p);
+         printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
+          break;
+
+        case jump_n:
+          extract_number_and_incr (&mcnt, &p);
+         p1 = p + mcnt;
+          extract_number_and_incr (&mcnt2, &p);
+         printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
+          break;
+
+        case set_number_at:
+          extract_number_and_incr (&mcnt, &p);
+         p1 = p + mcnt;
+          extract_number_and_incr (&mcnt2, &p);
+         printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
+          break;
+
+        case wordbound:
+         printf ("/wordbound");
+         break;
 
-       case '\n':
-         if (! (obscure_syntax & RE_NEWLINE_OR))
-           goto normal_char;
-         else
-           goto handle_bar;
+       case notwordbound:
+         printf ("/notwordbound");
+          break;
 
-       case '|':
-         if (! (obscure_syntax & RE_NO_BK_VBAR))
-           goto normal_char;
-         else
-           goto handle_bar;
+       case wordbeg:
+         printf ("/wordbeg");
+         break;
 
-        case '\\':
-         if (p == pend) goto invalid_pattern;
-         PATFETCH_RAW (c);
-         switch (c)
-           {
-           case '(':
-             if (obscure_syntax & RE_NO_BK_PARENS)
-               goto normal_backsl;
-           handle_open:
-             if (stackp == stacke) goto nesting_too_deep;
-             if (regnum < RE_NREGS)
-               {
-                 PATPUSH (start_memory);
-                 PATPUSH (regnum);
-               }
-             *stackp++ = b - bufp->buffer;
-             *stackp++ = fixup_jump ? fixup_jump - bufp->buffer + 1 : 0;
-             *stackp++ = regnum++;
-             *stackp++ = begalt - bufp->buffer;
-             fixup_jump = 0;
-             laststart = 0;
-             begalt = b;
-             break;
-
-           case ')':
-             if (obscure_syntax & RE_NO_BK_PARENS)
-               goto normal_backsl;
-           handle_close:
-             if (stackp == stackb) goto unmatched_close;
-             begalt = *--stackp + bufp->buffer;
-             if (fixup_jump)
-               store_jump (fixup_jump, jump, b);
-             if (stackp[-1] < RE_NREGS)
-               {
-                 PATPUSH (stop_memory);
-                 PATPUSH (stackp[-1]);
-               }
-             stackp -= 2;
-             fixup_jump = 0;
-             if (*stackp)
-               fixup_jump = *stackp + bufp->buffer - 1;
-             laststart = *--stackp + bufp->buffer;
-             break;
-
-           case '|':
-             if (obscure_syntax & RE_NO_BK_VBAR)
-               goto normal_backsl;
-           handle_bar:
-             insert_jump (on_failure_jump, begalt, b + 6, b);
-             pending_exact = 0;
-             b += 3;
-             if (fixup_jump)
-               store_jump (fixup_jump, jump, b);
-             fixup_jump = b;
-             b += 3;
-             laststart = 0;
-             begalt = b;
-             break;
+       case wordend:
+         printf ("/wordend");
 
-#ifdef emacs
-           case '=':
-             PATPUSH (at_dot);
-             break;
-
-           case 's':   
-             laststart = b;
-             PATPUSH (syntaxspec);
-             PATFETCH (c);
-             PATPUSH (syntax_spec_code[c]);
-             break;
-
-           case 'S':
-             laststart = b;
-             PATPUSH (notsyntaxspec);
-             PATFETCH (c);
-             PATPUSH (syntax_spec_code[c]);
-             break;
-#endif /* emacs */
+# ifdef emacs
+       case before_dot:
+         printf ("/before_dot");
+          break;
 
-           case 'w':
-             laststart = b;
-             PATPUSH (wordchar);
-             break;
-
-           case 'W':
-             laststart = b;
-             PATPUSH (notwordchar);
-             break;
-
-           case '<':
-             PATPUSH (wordbeg);
-             break;
-
-           case '>':
-             PATPUSH (wordend);
-             break;
-
-           case 'b':
-             PATPUSH (wordbound);
-             break;
-
-           case 'B':
-             PATPUSH (notwordbound);
-             break;
-
-           case '`':
-             PATPUSH (begbuf);
-             break;
-
-           case '\'':
-             PATPUSH (endbuf);
-             break;
-
-           case '1':
-           case '2':
-           case '3':
-           case '4':
-           case '5':
-           case '6':
-           case '7':
-           case '8':
-           case '9':
-             c1 = c - '0';
-             if (c1 >= regnum)
-               goto normal_char;
-             for (stackt = stackp - 2;  stackt > stackb;  stackt -= 4)
-               if (*stackt == c1)
-                 goto normal_char;
-             laststart = b;
-             PATPUSH (duplicate);
-             PATPUSH (c1);
-             break;
-
-           case '+':
-           case '?':
-             if (obscure_syntax & RE_BK_PLUS_QM)
-               goto handle_plus;
-
-           default:
-           normal_backsl:
-             /* You might think it would be useful for \ to mean
-                not to translate; but if we don't translate it
-                it will never match anything.  */
-             if (translate) c = translate[c];
-             goto normal_char;
-           }
+       case at_dot:
+         printf ("/at_dot");
+          break;
+
+       case after_dot:
+         printf ("/after_dot");
+          break;
+
+       case syntaxspec:
+          printf ("/syntaxspec");
+         mcnt = *p++;
+         printf ("/%d", mcnt);
+          break;
+
+       case notsyntaxspec:
+          printf ("/notsyntaxspec");
+         mcnt = *p++;
+         printf ("/%d", mcnt);
          break;
+# endif /* emacs */
 
-       default:
-       normal_char:
-         if (!pending_exact || pending_exact + *pending_exact + 1 != b
-             || *pending_exact == 0177 || *p == '*' || *p == '^'
-             || ((obscure_syntax & RE_BK_PLUS_QM)
-                 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
-                 : (*p == '+' || *p == '?')))
-           {
-             laststart = b;
-             PATPUSH (exactn);
-             pending_exact = b;
-             PATPUSH (0);
-           }
-         PATPUSH (c);
-         (*pending_exact)++;
+       case wordchar:
+         printf ("/wordchar");
+          break;
+
+       case notwordchar:
+         printf ("/notwordchar");
+          break;
+
+       case begbuf:
+         printf ("/begbuf");
+          break;
+
+       case endbuf:
+         printf ("/endbuf");
+          break;
+
+        default:
+          printf ("?%d", *(p-1));
        }
+
+      putchar ('\n');
     }
 
-  if (fixup_jump)
-    store_jump (fixup_jump, jump, b);
+  printf ("%d:\tend of pattern.\n", p - start);
+}
 
-  if (stackp != stackb) goto unmatched_open;
 
-  bufp->used = b - bufp->buffer;
-  return 0;
+void
+print_compiled_pattern (bufp)
+    struct re_pattern_buffer *bufp;
+{
+  unsigned char *buffer = bufp->buffer;
 
- invalid_pattern:
-  return "Invalid regular expression";
+  print_partial_compiled_pattern (buffer, buffer + bufp->used);
+  printf ("%ld bytes used/%ld bytes allocated.\n",
+         bufp->used, bufp->allocated);
 
- unmatched_open:
-  return "Unmatched \\(";
+  if (bufp->fastmap_accurate && bufp->fastmap)
+    {
+      printf ("fastmap: ");
+      print_fastmap (bufp->fastmap);
+    }
 
- unmatched_close:
-  return "Unmatched \\)";
+  printf ("re_nsub: %d\t", bufp->re_nsub);
+  printf ("regs_alloc: %d\t", bufp->regs_allocated);
+  printf ("can_be_null: %d\t", bufp->can_be_null);
+  printf ("newline_anchor: %d\n", bufp->newline_anchor);
+  printf ("no_sub: %d\t", bufp->no_sub);
+  printf ("not_bol: %d\t", bufp->not_bol);
+  printf ("not_eol: %d\t", bufp->not_eol);
+  printf ("syntax: %lx\n", bufp->syntax);
+  /* Perhaps we should print the translate table?  */
+}
 
- end_of_pattern:
-  return "Premature end of regular expression";
 
- nesting_too_deep:
-  return "Nesting too deep";
+void
+print_double_string (where, string1, size1, string2, size2)
+    const char *where;
+    const char *string1;
+    const char *string2;
+    int size1;
+    int size2;
+{
+  int this_char;
 
- too_big:
-  return "Regular expression too big";
+  if (where == NULL)
+    printf ("(null)");
+  else
+    {
+      if (FIRST_STRING_P (where))
+        {
+          for (this_char = where - string1; this_char < size1; this_char++)
+            putchar (string1[this_char]);
 
- memory_exhausted:
-  return "Memory exhausted";
-}
+          where = string2;
+        }
 
-/* Store where `from' points a jump operation to jump to where `to' points.
-  `opcode' is the opcode to store. */
+      for (this_char = where - string2; this_char < size2; this_char++)
+        putchar (string2[this_char]);
+    }
+}
 
-static void
-store_jump (from, opcode, to)
-     char *from, *to;
-     char opcode;
+void
+printchar (c)
+     int c;
 {
-  from[0] = opcode;
-  from[1] = (to - (from + 3)) & 0377;
-  from[2] = (to - (from + 3)) >> 8;
+  putc (c, stderr);
 }
 
-/* Open up space at char FROM, and insert there a jump to TO.
-   CURRENT_END gives te end of the storage no in use,
-   so we know how much data to copy up.
-   OP is the opcode of the jump to insert.
+#else /* not DEBUG */
 
-   If you call this function, you must zero out pending_exact.  */
+# undef assert
+# define assert(e)
 
-static void
-insert_jump (op, from, to, current_end)
-     char op;
-     char *from, *to, *current_end;
+# define DEBUG_STATEMENT(e)
+# define DEBUG_PRINT1(x)
+# define DEBUG_PRINT2(x1, x2)
+# define DEBUG_PRINT3(x1, x2, x3)
+# define DEBUG_PRINT4(x1, x2, x3, x4)
+# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
+# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
+
+#endif /* not DEBUG */
+\f
+/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
+   also be assigned to arbitrarily: each pattern buffer stores its own
+   syntax, so it can be changed between regex compilations.  */
+/* This has no initializer because initialized variables in Emacs
+   become read-only after dumping.  */
+reg_syntax_t re_syntax_options;
+
+
+/* Specify the precise syntax of regexps for compilation.  This provides
+   for compatibility for various utilities which historically have
+   different, incompatible syntaxes.
+
+   The argument SYNTAX is a bit mask comprised of the various bits
+   defined in gnu-regex.h.  We return the old syntax.  */
+
+reg_syntax_t
+re_set_syntax (syntax)
+    reg_syntax_t syntax;
 {
-  register char *pto = current_end + 3;
-  register char *pfrom = current_end;
-  while (pfrom != from)
-    *--pto = *--pfrom;
-  store_jump (from, op, to);
+  reg_syntax_t ret = re_syntax_options;
+
+  re_syntax_options = syntax;
+#ifdef DEBUG
+  if (syntax & RE_DEBUG)
+    debug = 1;
+  else if (debug) /* was on but now is not */
+    debug = 0;
+#endif /* DEBUG */
+  return ret;
 }
+#ifdef _LIBC
+weak_alias (__re_set_syntax, re_set_syntax)
+#endif
+\f
+/* This table gives an error message for each of the error codes listed
+   in gnu-regex.h.  Obviously the order here has to be same as there.
+   POSIX doesn't require that we do anything for REG_NOERROR,
+   but why not be nice?  */
+
+static const char *re_error_msgid[] =
+  {
+    gettext_noop ("Success"),  /* REG_NOERROR */
+    gettext_noop ("No match"), /* REG_NOMATCH */
+    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
+    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
+    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
+    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
+    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
+    gettext_noop ("Unmatched [ or [^"),        /* REG_EBRACK */
+    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
+    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
+    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
+    gettext_noop ("Invalid range end"),        /* REG_ERANGE */
+    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
+    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
+    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
+    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
+    gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
+  };
 \f
-/* Given a pattern, compute a fastmap from it.
- The fastmap records which of the (1 << BYTEWIDTH) possible characters
- can start a string that matches the pattern.
- This fastmap is used by re_search to skip quickly over totally implausible text.
+/* Avoiding alloca during matching, to placate r_alloc.  */
+
+/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
+   searching and matching functions should not call alloca.  On some
+   systems, alloca is implemented in terms of malloc, and if we're
+   using the relocating allocator routines, then malloc could cause a
+   relocation, which might (if the strings being searched are in the
+   ralloc heap) shift the data out from underneath the regexp
+   routines.
+
+   Here's another reason to avoid allocation: Emacs
+   processes input from X in a signal handler; processing X input may
+   call malloc; if input arrives while a matching routine is calling
+   malloc, then we're scrod.  But Emacs can't just block input while
+   calling matching routines; then we don't notice interrupts when
+   they come in.  So, Emacs blocks input around all regexp calls
+   except the matching calls, which it leaves unprotected, in the
+   faith that they will not malloc.  */
+
+/* Normally, this is fine.  */
+#define MATCH_MAY_ALLOCATE
+
+/* When using GNU C, we are not REALLY using the C alloca, no matter
+   what config.h may say.  So don't take precautions for it.  */
+#ifdef __GNUC__
+# undef C_ALLOCA
+#endif
 
- The caller must supply the address of a (1 << BYTEWIDTH)-byte data area
- as bufp->fastmap.
- The other components of bufp describe the pattern to be used.  */
+/* The match routines may not allocate if (1) they would do it with malloc
+   and (2) it's not safe for them to use malloc.
+   Note that if REL_ALLOC is defined, matching would not use malloc for the
+   failure stack, but we would still use it for the register vectors;
+   so REL_ALLOC should not affect this.  */
+#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
+# undef MATCH_MAY_ALLOCATE
+#endif
 
-void
-re_compile_fastmap (bufp)
-     struct re_pattern_buffer *bufp;
+\f
+/* Failure stack declarations and macros; both re_compile_fastmap and
+   re_match_2 use a failure stack.  These have to be macros because of
+   REGEX_ALLOCATE_STACK.  */
+
+
+/* Number of failure points for which to initially allocate space
+   when matching.  If this number is exceeded, we allocate more
+   space, so it is not a hard limit.  */
+#ifndef INIT_FAILURE_ALLOC
+# define INIT_FAILURE_ALLOC 5
+#endif
+
+/* Roughly the maximum number of failure points on the stack.  Would be
+   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
+   This is a variable only so users of regex can assign to it; we never
+   change it ourselves.  */
+
+#ifdef INT_IS_16BIT
+
+# if defined MATCH_MAY_ALLOCATE
+/* 4400 was enough to cause a crash on Alpha OSF/1,
+   whose default stack limit is 2mb.  */
+long int re_max_failures = 4000;
+# else
+long int re_max_failures = 2000;
+# endif
+
+union fail_stack_elt
 {
-  unsigned char *pattern = (unsigned char *) bufp->buffer;
-  int size = bufp->used;
-  register char *fastmap = bufp->fastmap;
-  register unsigned char *p = pattern;
-  register unsigned char *pend = pattern + size;
-  register int j;
-  unsigned char *translate = (unsigned char *) bufp->translate;
+  unsigned char *pointer;
+  long int integer;
+};
 
-  unsigned char *stackb[NFAILURES];
-  unsigned char **stackp = stackb;
+typedef union fail_stack_elt fail_stack_elt_t;
 
-  memset (fastmap, '\0', (1 << BYTEWIDTH));
-  bufp->fastmap_accurate = 1;
-  bufp->can_be_null = 0;
-      
-  while (p)
+typedef struct
+{
+  fail_stack_elt_t *stack;
+  unsigned long int size;
+  unsigned long int avail;             /* Offset of next open position.  */
+} fail_stack_type;
+
+#else /* not INT_IS_16BIT */
+
+# if defined MATCH_MAY_ALLOCATE
+/* 4400 was enough to cause a crash on Alpha OSF/1,
+   whose default stack limit is 2mb.  */
+int re_max_failures = 20000;
+# else
+int re_max_failures = 2000;
+# endif
+
+union fail_stack_elt
+{
+  unsigned char *pointer;
+  int integer;
+};
+
+typedef union fail_stack_elt fail_stack_elt_t;
+
+typedef struct
+{
+  fail_stack_elt_t *stack;
+  unsigned size;
+  unsigned avail;                      /* Offset of next open position.  */
+} fail_stack_type;
+
+#endif /* INT_IS_16BIT */
+
+#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
+#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
+#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
+
+
+/* Define macros to initialize and free the failure stack.
+   Do `return -2' if the alloc fails.  */
+
+#ifdef MATCH_MAY_ALLOCATE
+# define INIT_FAIL_STACK()                                             \
+  do {                                                                 \
+    fail_stack.stack = (fail_stack_elt_t *)                            \
+      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
+                                                                       \
+    if (fail_stack.stack == NULL)                                      \
+      return -2;                                                       \
+                                                                       \
+    fail_stack.size = INIT_FAILURE_ALLOC;                              \
+    fail_stack.avail = 0;                                              \
+  } while (0)
+
+# define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
+#else
+# define INIT_FAIL_STACK()                                             \
+  do {                                                                 \
+    fail_stack.avail = 0;                                              \
+  } while (0)
+
+# define RESET_FAIL_STACK()
+#endif
+
+
+/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
+
+   Return 1 if succeeds, and 0 if either ran out of memory
+   allocating space for it or it was already too large.
+
+   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
+
+#define DOUBLE_FAIL_STACK(fail_stack)                                  \
+  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)        \
+   ? 0                                                                 \
+   : ((fail_stack).stack = (fail_stack_elt_t *)                                \
+        REGEX_REALLOCATE_STACK ((fail_stack).stack,                    \
+          (fail_stack).size * sizeof (fail_stack_elt_t),               \
+          ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),       \
+                                                                       \
+      (fail_stack).stack == NULL                                       \
+      ? 0                                                              \
+      : ((fail_stack).size <<= 1,                                      \
+         1)))
+
+
+/* Push pointer POINTER on FAIL_STACK.
+   Return 1 if was able to do so and 0 if ran out of memory allocating
+   space to do so.  */
+#define PUSH_PATTERN_OP(POINTER, FAIL_STACK)                           \
+  ((FAIL_STACK_FULL ()                                                 \
+    && !DOUBLE_FAIL_STACK (FAIL_STACK))                                        \
+   ? 0                                                                 \
+   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,      \
+      1))
+
+/* Push a pointer value onto the failure stack.
+   Assumes the variable `fail_stack'.  Probably should only
+   be called from within `PUSH_FAILURE_POINT'.  */
+#define PUSH_FAILURE_POINTER(item)                                     \
+  fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
+
+/* This pushes an integer-valued item onto the failure stack.
+   Assumes the variable `fail_stack'.  Probably should only
+   be called from within `PUSH_FAILURE_POINT'.  */
+#define PUSH_FAILURE_INT(item)                                 \
+  fail_stack.stack[fail_stack.avail++].integer = (item)
+
+/* Push a fail_stack_elt_t value onto the failure stack.
+   Assumes the variable `fail_stack'.  Probably should only
+   be called from within `PUSH_FAILURE_POINT'.  */
+#define PUSH_FAILURE_ELT(item)                                 \
+  fail_stack.stack[fail_stack.avail++] =  (item)
+
+/* These three POP... operations complement the three PUSH... operations.
+   All assume that `fail_stack' is nonempty.  */
+#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
+#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
+#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
+
+/* Used to omit pushing failure point id's when we're not debugging.  */
+#ifdef DEBUG
+# define DEBUG_PUSH PUSH_FAILURE_INT
+# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
+#else
+# define DEBUG_PUSH(item)
+# define DEBUG_POP(item_addr)
+#endif
+
+
+/* Push the information about the state we will need
+   if we ever fail back to it.
+
+   Requires variables fail_stack, regstart, regend, reg_info, and
+   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
+   be declared.
+
+   Does `return FAILURE_CODE' if runs out of memory.  */
+
+#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)  \
+  do {                                                                 \
+    char *destination;                                                 \
+    /* Must be int, so when we don't save any registers, the arithmetic        \
+       of 0 + -1 isn't done as unsigned.  */                           \
+    /* Can't be int, since there is not a shred of a guarantee that int        \
+       is wide enough to hold a value of something to which pointer can        \
+       be assigned */                                                  \
+    active_reg_t this_reg;                                             \
+                                                                       \
+    DEBUG_STATEMENT (failure_id++);                                    \
+    DEBUG_STATEMENT (nfailure_points_pushed++);                                \
+    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);          \
+    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
+    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
+                                                                       \
+    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);         \
+    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);      \
+                                                                       \
+    /* Ensure we have enough space allocated for what we will push.  */        \
+    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)                  \
+      {                                                                        \
+        if (!DOUBLE_FAIL_STACK (fail_stack))                           \
+          return failure_code;                                         \
+                                                                       \
+        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",             \
+                      (fail_stack).size);                              \
+        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
+      }                                                                        \
+                                                                       \
+    /* Push the info, starting with the registers.  */                 \
+    DEBUG_PRINT1 ("\n");                                               \
+                                                                       \
+    if (1)                                                             \
+      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
+          this_reg++)                                                  \
+       {                                                               \
+         DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);              \
+         DEBUG_STATEMENT (num_regs_pushed++);                          \
+                                                                       \
+         DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);         \
+         PUSH_FAILURE_POINTER (regstart[this_reg]);                    \
+                                                                       \
+         DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);             \
+         PUSH_FAILURE_POINTER (regend[this_reg]);                      \
+                                                                       \
+         DEBUG_PRINT2 ("    info: %p\n      ",                         \
+                       reg_info[this_reg].word.pointer);               \
+         DEBUG_PRINT2 (" match_null=%d",                               \
+                       REG_MATCH_NULL_STRING_P (reg_info[this_reg]));  \
+         DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));  \
+         DEBUG_PRINT2 (" matched_something=%d",                        \
+                       MATCHED_SOMETHING (reg_info[this_reg]));        \
+         DEBUG_PRINT2 (" ever_matched=%d",                             \
+                       EVER_MATCHED_SOMETHING (reg_info[this_reg]));   \
+         DEBUG_PRINT1 ("\n");                                          \
+         PUSH_FAILURE_ELT (reg_info[this_reg].word);                   \
+       }                                                               \
+                                                                       \
+    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
+    PUSH_FAILURE_INT (lowest_active_reg);                              \
+                                                                       \
+    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
+    PUSH_FAILURE_INT (highest_active_reg);                             \
+                                                                       \
+    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);           \
+    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);          \
+    PUSH_FAILURE_POINTER (pattern_place);                              \
+                                                                       \
+    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);             \
+    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
+                                size2);                                \
+    DEBUG_PRINT1 ("'\n");                                              \
+    PUSH_FAILURE_POINTER (string_place);                               \
+                                                                       \
+    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);           \
+    DEBUG_PUSH (failure_id);                                           \
+  } while (0)
+
+/* This is the number of items that are pushed and popped on the stack
+   for each register.  */
+#define NUM_REG_ITEMS  3
+
+/* Individual items aside from the registers.  */
+#ifdef DEBUG
+# define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
+#else
+# define NUM_NONREG_ITEMS 4
+#endif
+
+/* We push at most this many items on the stack.  */
+/* We used to use (num_regs - 1), which is the number of registers
+   this regexp will save; but that was changed to 5
+   to avoid stack overflow for a regexp with lots of parens.  */
+#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
+
+/* We actually push this many items.  */
+#define NUM_FAILURE_ITEMS                              \
+  (((0                                                 \
+     ? 0 : highest_active_reg - lowest_active_reg + 1) \
+    * NUM_REG_ITEMS)                                   \
+   + NUM_NONREG_ITEMS)
+
+/* How many items can still be added to the stack without overflowing it.  */
+#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
+
+
+/* Pops what PUSH_FAIL_STACK pushes.
+
+   We restore into the parameters, all of which should be lvalues:
+     STR -- the saved data position.
+     PAT -- the saved pattern position.
+     LOW_REG, HIGH_REG -- the highest and lowest active registers.
+     REGSTART, REGEND -- arrays of string positions.
+     REG_INFO -- array of information about each subexpression.
+
+   Also assumes the variables `fail_stack' and (if debugging), `bufp',
+   `pend', `string1', `size1', `string2', and `size2'.  */
+
+#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
+{                                                                      \
+  DEBUG_STATEMENT (unsigned failure_id;)                               \
+  active_reg_t this_reg;                                               \
+  const unsigned char *string_temp;                                    \
+                                                                       \
+  assert (!FAIL_STACK_EMPTY ());                                       \
+                                                                       \
+  /* Remove failure points and point to how many regs pushed.  */      \
+  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");                               \
+  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);   \
+  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);    \
+                                                                       \
+  assert (fail_stack.avail >= NUM_NONREG_ITEMS);                       \
+                                                                       \
+  DEBUG_POP (&failure_id);                                             \
+  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);             \
+                                                                       \
+  /* If the saved string location is NULL, it came from an             \
+     on_failure_keep_string_jump opcode, and we want to throw away the \
+     saved NULL, thus retaining our current position in the string.  */        \
+  string_temp = POP_FAILURE_POINTER ();                                        \
+  if (string_temp != NULL)                                             \
+    str = (const char *) string_temp;                                  \
+                                                                       \
+  DEBUG_PRINT2 ("  Popping string %p: `", str);                                \
+  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);     \
+  DEBUG_PRINT1 ("'\n");                                                        \
+                                                                       \
+  pat = (unsigned char *) POP_FAILURE_POINTER ();                      \
+  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);                       \
+  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);                      \
+                                                                       \
+  /* Restore register info.  */                                                \
+  high_reg = (active_reg_t) POP_FAILURE_INT ();                                \
+  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);         \
+                                                                       \
+  low_reg = (active_reg_t) POP_FAILURE_INT ();                         \
+  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);          \
+                                                                       \
+  if (1)                                                               \
+    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)         \
+      {                                                                        \
+       DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);              \
+                                                                       \
+       reg_info[this_reg].word = POP_FAILURE_ELT ();                   \
+       DEBUG_PRINT2 ("      info: %p\n",                               \
+                     reg_info[this_reg].word.pointer);                 \
+                                                                       \
+       regend[this_reg] = (const char *) POP_FAILURE_POINTER ();       \
+       DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);             \
+                                                                       \
+       regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();     \
+       DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);         \
+      }                                                                        \
+  else                                                                 \
+    {                                                                  \
+      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
+       {                                                               \
+         reg_info[this_reg].word.integer = 0;                          \
+         regend[this_reg] = 0;                                         \
+         regstart[this_reg] = 0;                                       \
+       }                                                               \
+      highest_active_reg = high_reg;                                   \
+    }                                                                  \
+                                                                       \
+  set_regs_matched_done = 0;                                           \
+  DEBUG_STATEMENT (nfailure_points_popped++);                          \
+} /* POP_FAILURE_POINT */
+
+
+\f
+/* Structure for per-register (a.k.a. per-group) information.
+   Other register information, such as the
+   starting and ending positions (which are addresses), and the list of
+   inner groups (which is a bits list) are maintained in separate
+   variables.
+
+   We are making a (strictly speaking) nonportable assumption here: that
+   the compiler will pack our bit fields into something that fits into
+   the type of `word', i.e., is something that fits into one item on the
+   failure stack.  */
+
+
+/* Declarations and macros for re_match_2.  */
+
+typedef union
+{
+  fail_stack_elt_t word;
+  struct
+  {
+      /* This field is one if this group can match the empty string,
+         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
+#define MATCH_NULL_UNSET_VALUE 3
+    unsigned match_null_string_p : 2;
+    unsigned is_active : 1;
+    unsigned matched_something : 1;
+    unsigned ever_matched_something : 1;
+  } bits;
+} register_info_type;
+
+#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
+#define IS_ACTIVE(R)  ((R).bits.is_active)
+#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
+#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
+
+
+/* Call this when have matched a real character; it sets `matched' flags
+   for the subexpressions which we are currently inside.  Also records
+   that those subexprs have matched.  */
+#define SET_REGS_MATCHED()                                             \
+  do                                                                   \
+    {                                                                  \
+      if (!set_regs_matched_done)                                      \
+       {                                                               \
+         active_reg_t r;                                               \
+         set_regs_matched_done = 1;                                    \
+         for (r = lowest_active_reg; r <= highest_active_reg; r++)     \
+           {                                                           \
+             MATCHED_SOMETHING (reg_info[r])                           \
+               = EVER_MATCHED_SOMETHING (reg_info[r])                  \
+               = 1;                                                    \
+           }                                                           \
+       }                                                               \
+    }                                                                  \
+  while (0)
+
+/* Registers are set to a sentinel when they haven't yet matched.  */
+static char reg_unset_dummy;
+#define REG_UNSET_VALUE (&reg_unset_dummy)
+#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
+\f
+/* Subroutine declarations and macros for regex_compile.  */
+
+static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
+                                             reg_syntax_t syntax,
+                                             struct re_pattern_buffer *bufp));
+static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
+static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
+                                int arg1, int arg2));
+static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
+                                 int arg, unsigned char *end));
+static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
+                                 int arg1, int arg2, unsigned char *end));
+static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
+                                          reg_syntax_t syntax));
+static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
+                                          reg_syntax_t syntax));
+static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
+                                             const char *pend,
+                                             char *translate,
+                                             reg_syntax_t syntax,
+                                             unsigned char *b));
+
+/* Fetch the next character in the uncompiled pattern---translating it
+   if necessary.  Also cast from a signed character in the constant
+   string passed to us by the user to an unsigned char that we can use
+   as an array index (in, e.g., `translate').  */
+#ifndef PATFETCH
+# define PATFETCH(c)                                                   \
+  do {if (p == pend) return REG_EEND;                                  \
+    c = (unsigned char) *p++;                                          \
+    if (translate) c = (unsigned char) translate[c];                   \
+  } while (0)
+#endif
+
+/* Fetch the next character in the uncompiled pattern, with no
+   translation.  */
+#define PATFETCH_RAW(c)                                                        \
+  do {if (p == pend) return REG_EEND;                                  \
+    c = (unsigned char) *p++;                                          \
+  } while (0)
+
+/* Go backwards one character in the pattern.  */
+#define PATUNFETCH p--
+
+
+/* If `translate' is non-null, return translate[D], else just D.  We
+   cast the subscript to translate because some data is declared as
+   `char *', to avoid warnings when a string constant is passed.  But
+   when we use a character as a subscript we must make it unsigned.  */
+#ifndef TRANSLATE
+# define TRANSLATE(d) \
+  (translate ? (char) translate[(unsigned char) (d)] : (d))
+#endif
+
+
+/* Macros for outputting the compiled pattern into `buffer'.  */
+
+/* If the buffer isn't allocated when it comes in, use this.  */
+#define INIT_BUF_SIZE  32
+
+/* Make sure we have at least N more bytes of space in buffer.  */
+#define GET_BUFFER_SPACE(n)                                            \
+    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
+      EXTEND_BUFFER ()
+
+/* Make sure we have one more byte of buffer space and then add C to it.  */
+#define BUF_PUSH(c)                                                    \
+  do {                                                                 \
+    GET_BUFFER_SPACE (1);                                              \
+    *b++ = (unsigned char) (c);                                                \
+  } while (0)
+
+
+/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
+#define BUF_PUSH_2(c1, c2)                                             \
+  do {                                                                 \
+    GET_BUFFER_SPACE (2);                                              \
+    *b++ = (unsigned char) (c1);                                       \
+    *b++ = (unsigned char) (c2);                                       \
+  } while (0)
+
+
+/* As with BUF_PUSH_2, except for three bytes.  */
+#define BUF_PUSH_3(c1, c2, c3)                                         \
+  do {                                                                 \
+    GET_BUFFER_SPACE (3);                                              \
+    *b++ = (unsigned char) (c1);                                       \
+    *b++ = (unsigned char) (c2);                                       \
+    *b++ = (unsigned char) (c3);                                       \
+  } while (0)
+
+
+/* Store a jump with opcode OP at LOC to location TO.  We store a
+   relative address offset by the three bytes the jump itself occupies.  */
+#define STORE_JUMP(op, loc, to) \
+  store_op1 (op, loc, (int) ((to) - (loc) - 3))
+
+/* Likewise, for a two-argument jump.  */
+#define STORE_JUMP2(op, loc, to, arg) \
+  store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
+
+/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
+#define INSERT_JUMP(op, loc, to) \
+  insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
+
+/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
+#define INSERT_JUMP2(op, loc, to, arg) \
+  insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
+
+
+/* This is not an arbitrary limit: the arguments which represent offsets
+   into the pattern are two bytes long.  So if 2^16 bytes turns out to
+   be too small, many things would have to change.  */
+/* Any other compiler which, like MSC, has allocation limit below 2^16
+   bytes will have to use approach similar to what was done below for
+   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
+   reallocating to 0 bytes.  Such thing is not going to work too well.
+   You have been warned!!  */
+#if defined _MSC_VER  && !defined WIN32
+/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
+   The REALLOC define eliminates a flurry of conversion warnings,
+   but is not required. */
+# define MAX_BUF_SIZE  65500L
+# define REALLOC(p,s) realloc ((p), (size_t) (s))
+#else
+# define MAX_BUF_SIZE (1L << 16)
+# define REALLOC(p,s) realloc ((p), (s))
+#endif
+
+/* Extend the buffer by twice its current size via realloc and
+   reset the pointers that pointed into the old block to point to the
+   correct places in the new one.  If extending the buffer results in it
+   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
+#define EXTEND_BUFFER()                                                        \
+  do {                                                                         \
+    unsigned char *old_buffer = bufp->buffer;                          \
+    if (bufp->allocated == MAX_BUF_SIZE)                               \
+      return REG_ESIZE;                                                        \
+    bufp->allocated <<= 1;                                             \
+    if (bufp->allocated > MAX_BUF_SIZE)                                        \
+      bufp->allocated = MAX_BUF_SIZE;                                  \
+    bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
+    if (bufp->buffer == NULL)                                          \
+      return REG_ESPACE;                                               \
+    /* If the buffer moved, move all the pointers into it.  */         \
+    if (old_buffer != bufp->buffer)                                    \
+      {                                                                        \
+        b = (b - old_buffer) + bufp->buffer;                           \
+        begalt = (begalt - old_buffer) + bufp->buffer;                 \
+        if (fixup_alt_jump)                                            \
+          fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
+        if (laststart)                                                 \
+          laststart = (laststart - old_buffer) + bufp->buffer;         \
+        if (pending_exact)                                             \
+          pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
+      }                                                                        \
+  } while (0)
+
+
+/* Since we have one byte reserved for the register number argument to
+   {start,stop}_memory, the maximum number of groups we can report
+   things about is what fits in that byte.  */
+#define MAX_REGNUM 255
+
+/* But patterns can have more than `MAX_REGNUM' registers.  We just
+   ignore the excess.  */
+typedef unsigned regnum_t;
+
+
+/* Macros for the compile stack.  */
+
+/* Since offsets can go either forwards or backwards, this type needs to
+   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
+/* int may be not enough when sizeof(int) == 2.  */
+typedef long pattern_offset_t;
+
+typedef struct
+{
+  pattern_offset_t begalt_offset;
+  pattern_offset_t fixup_alt_jump;
+  pattern_offset_t inner_group_offset;
+  pattern_offset_t laststart_offset;
+  regnum_t regnum;
+} compile_stack_elt_t;
+
+
+typedef struct
+{
+  compile_stack_elt_t *stack;
+  unsigned size;
+  unsigned avail;                      /* Offset of next open position.  */
+} compile_stack_type;
+
+
+#define INIT_COMPILE_STACK_SIZE 32
+
+#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
+#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
+
+/* The next available element.  */
+#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
+
+
+/* Set the bit for character C in a list.  */
+#define SET_LIST_BIT(c)                               \
+  (b[((unsigned char) (c)) / BYTEWIDTH]               \
+   |= 1 << (((unsigned char) c) % BYTEWIDTH))
+
+
+/* Get the next unsigned number in the uncompiled pattern.  */
+#define GET_UNSIGNED_NUMBER(num)                                       \
+  { if (p != pend)                                                     \
+     {                                                                 \
+       PATFETCH (c);                                                   \
+       while (ISDIGIT (c))                                             \
+         {                                                             \
+           if (num < 0)                                                        \
+              num = 0;                                                 \
+           num = num * 10 + c - '0';                                   \
+           if (p == pend)                                              \
+              break;                                                   \
+           PATFETCH (c);                                               \
+         }                                                             \
+       }                                                               \
+    }
+
+/* Use this only if they have btowc(), since wctype() is used below
+   together with btowc().  btowc() is defined in the 1994 Amendment 1
+   to ISO C and may not be present on systems where we have wchar.h
+   and wctype.h.  */
+#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
+/* The GNU C library provides support for user-defined character classes
+   and the functions from ISO C amendement 1.  */
+# ifdef CHARCLASS_NAME_MAX
+#  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
+# else
+/* This shouldn't happen but some implementation might still have this
+   problem.  Use a reasonable default value.  */
+#  define CHAR_CLASS_MAX_LENGTH 256
+# endif
+
+# ifdef _LIBC
+#  define IS_CHAR_CLASS(string) __wctype (string)
+# else
+#  define IS_CHAR_CLASS(string) wctype (string)
+# endif
+#else
+# define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
+
+# define IS_CHAR_CLASS(string)                                         \
+   (STREQ (string, "alpha") || STREQ (string, "upper")                 \
+    || STREQ (string, "lower") || STREQ (string, "digit")              \
+    || STREQ (string, "alnum") || STREQ (string, "xdigit")             \
+    || STREQ (string, "space") || STREQ (string, "print")              \
+    || STREQ (string, "punct") || STREQ (string, "graph")              \
+    || STREQ (string, "cntrl") || STREQ (string, "blank"))
+#endif
+\f
+#ifndef MATCH_MAY_ALLOCATE
+
+/* If we cannot allocate large objects within re_match_2_internal,
+   we make the fail stack and register vectors global.
+   The fail stack, we grow to the maximum size when a regexp
+   is compiled.
+   The register vectors, we adjust in size each time we
+   compile a regexp, according to the number of registers it needs.  */
+
+static fail_stack_type fail_stack;
+
+/* Size with which the following vectors are currently allocated.
+   That is so we can make them bigger as needed,
+   but never make them smaller.  */
+static int regs_allocated_size;
+
+static const char **     regstart, **     regend;
+static const char ** old_regstart, ** old_regend;
+static const char **best_regstart, **best_regend;
+static register_info_type *reg_info;
+static const char **reg_dummy;
+static register_info_type *reg_info_dummy;
+
+/* Make the register vectors big enough for NUM_REGS registers,
+   but don't make them smaller.  */
+
+static
+regex_grow_registers (num_regs)
+     int num_regs;
+{
+  if (num_regs > regs_allocated_size)
     {
-      if (p == pend)
-       {
-         bufp->can_be_null = 1;
+      RETALLOC_IF (regstart,    num_regs, const char *);
+      RETALLOC_IF (regend,      num_regs, const char *);
+      RETALLOC_IF (old_regstart, num_regs, const char *);
+      RETALLOC_IF (old_regend,  num_regs, const char *);
+      RETALLOC_IF (best_regstart, num_regs, const char *);
+      RETALLOC_IF (best_regend,         num_regs, const char *);
+      RETALLOC_IF (reg_info,    num_regs, register_info_type);
+      RETALLOC_IF (reg_dummy,   num_regs, const char *);
+      RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
+
+      regs_allocated_size = num_regs;
+    }
+}
+
+#endif /* not MATCH_MAY_ALLOCATE */
+\f
+static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
+                                                compile_stack,
+                                                regnum_t regnum));
+
+/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
+   Returns one of error codes defined in `gnu-regex.h', or zero for success.
+
+   Assumes the `allocated' (and perhaps `buffer') and `translate'
+   fields are set in BUFP on entry.
+
+   If it succeeds, results are put in BUFP (if it returns an error, the
+   contents of BUFP are undefined):
+     `buffer' is the compiled pattern;
+     `syntax' is set to SYNTAX;
+     `used' is set to the length of the compiled pattern;
+     `fastmap_accurate' is zero;
+     `re_nsub' is the number of subexpressions in PATTERN;
+     `not_bol' and `not_eol' are zero;
+
+   The `fastmap' and `newline_anchor' fields are neither
+   examined nor set.  */
+
+/* Return, freeing storage we allocated.  */
+#define FREE_STACK_RETURN(value)               \
+  return (free (compile_stack.stack), value)
+
+static reg_errcode_t
+regex_compile (pattern, size, syntax, bufp)
+     const char *pattern;
+     size_t size;
+     reg_syntax_t syntax;
+     struct re_pattern_buffer *bufp;
+{
+  /* We fetch characters from PATTERN here.  Even though PATTERN is
+     `char *' (i.e., signed), we declare these variables as unsigned, so
+     they can be reliably used as array indices.  */
+  register unsigned char c, c1;
+
+  /* A random temporary spot in PATTERN.  */
+  const char *p1;
+
+  /* Points to the end of the buffer, where we should append.  */
+  register unsigned char *b;
+
+  /* Keeps track of unclosed groups.  */
+  compile_stack_type compile_stack;
+
+  /* Points to the current (ending) position in the pattern.  */
+  const char *p = pattern;
+  const char *pend = pattern + size;
+
+  /* How to translate the characters in the pattern.  */
+  RE_TRANSLATE_TYPE translate = bufp->translate;
+
+  /* Address of the count-byte of the most recently inserted `exactn'
+     command.  This makes it possible to tell if a new exact-match
+     character can be added to that command or if the character requires
+     a new `exactn' command.  */
+  unsigned char *pending_exact = 0;
+
+  /* Address of start of the most recently finished expression.
+     This tells, e.g., postfix * where to find the start of its
+     operand.  Reset at the beginning of groups and alternatives.  */
+  unsigned char *laststart = 0;
+
+  /* Address of beginning of regexp, or inside of last group.  */
+  unsigned char *begalt;
+
+  /* Place in the uncompiled pattern (i.e., the {) to
+     which to go back if the interval is invalid.  */
+  const char *beg_interval;
+
+  /* Address of the place where a forward jump should go to the end of
+     the containing expression.  Each alternative of an `or' -- except the
+     last -- ends with a forward jump of this sort.  */
+  unsigned char *fixup_alt_jump = 0;
+
+  /* Counts open-groups as they are encountered.  Remembered for the
+     matching close-group on the compile stack, so the same register
+     number is put in the stop_memory as the start_memory.  */
+  regnum_t regnum = 0;
+
+#ifdef DEBUG
+  DEBUG_PRINT1 ("\nCompiling pattern: ");
+  if (debug)
+    {
+      unsigned debug_count;
+
+      for (debug_count = 0; debug_count < size; debug_count++)
+        putchar (pattern[debug_count]);
+      putchar ('\n');
+    }
+#endif /* DEBUG */
+
+  /* Initialize the compile stack.  */
+  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
+  if (compile_stack.stack == NULL)
+    return REG_ESPACE;
+
+  compile_stack.size = INIT_COMPILE_STACK_SIZE;
+  compile_stack.avail = 0;
+
+  /* Initialize the pattern buffer.  */
+  bufp->syntax = syntax;
+  bufp->fastmap_accurate = 0;
+  bufp->not_bol = bufp->not_eol = 0;
+
+  /* Set `used' to zero, so that if we return an error, the pattern
+     printer (for debugging) will think there's no pattern.  We reset it
+     at the end.  */
+  bufp->used = 0;
+
+  /* Always count groups, whether or not bufp->no_sub is set.  */
+  bufp->re_nsub = 0;
+
+#if !defined emacs && !defined SYNTAX_TABLE
+  /* Initialize the syntax table.  */
+   init_syntax_once ();
+#endif
+
+  if (bufp->allocated == 0)
+    {
+      if (bufp->buffer)
+       { /* If zero allocated, but buffer is non-null, try to realloc
+             enough space.  This loses if buffer's address is bogus, but
+             that is the user's responsibility.  */
+          RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
+        }
+      else
+        { /* Caller did not allocate a buffer.  Do it for them.  */
+          bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
+        }
+      if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
+
+      bufp->allocated = INIT_BUF_SIZE;
+    }
+
+  begalt = b = bufp->buffer;
+
+  /* Loop through the uncompiled pattern until we're at the end.  */
+  while (p != pend)
+    {
+      PATFETCH (c);
+
+      switch (c)
+        {
+        case '^':
+          {
+            if (   /* If at start of pattern, it's an operator.  */
+                   p == pattern + 1
+                   /* If context independent, it's an operator.  */
+                || syntax & RE_CONTEXT_INDEP_ANCHORS
+                   /* Otherwise, depends on what's come before.  */
+                || at_begline_loc_p (pattern, p, syntax))
+              BUF_PUSH (begline);
+            else
+              goto normal_char;
+          }
+          break;
+
+
+        case '$':
+          {
+            if (   /* If at end of pattern, it's an operator.  */
+                   p == pend
+                   /* If context independent, it's an operator.  */
+                || syntax & RE_CONTEXT_INDEP_ANCHORS
+                   /* Otherwise, depends on what's next.  */
+                || at_endline_loc_p (p, pend, syntax))
+               BUF_PUSH (endline);
+             else
+               goto normal_char;
+           }
+           break;
+
+
+       case '+':
+        case '?':
+          if ((syntax & RE_BK_PLUS_QM)
+              || (syntax & RE_LIMITED_OPS))
+            goto normal_char;
+        handle_plus:
+        case '*':
+          /* If there is no previous pattern... */
+          if (!laststart)
+            {
+              if (syntax & RE_CONTEXT_INVALID_OPS)
+                FREE_STACK_RETURN (REG_BADRPT);
+              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
+                goto normal_char;
+            }
+
+          {
+            /* Are we optimizing this jump?  */
+            boolean keep_string_p = false;
+
+            /* 1 means zero (many) matches is allowed.  */
+            char zero_times_ok = 0, many_times_ok = 0;
+
+            /* If there is a sequence of repetition chars, collapse it
+               down to just one (the right one).  We can't combine
+               interval operators with these because of, e.g., `a{2}*',
+               which should only match an even number of `a's.  */
+
+            for (;;)
+              {
+                zero_times_ok |= c != '+';
+                many_times_ok |= c != '?';
+
+                if (p == pend)
+                  break;
+
+                PATFETCH (c);
+
+                if (c == '*'
+                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
+                  ;
+
+                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
+                  {
+                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+
+                    PATFETCH (c1);
+                    if (!(c1 == '+' || c1 == '?'))
+                      {
+                        PATUNFETCH;
+                        PATUNFETCH;
+                        break;
+                      }
+
+                    c = c1;
+                  }
+                else
+                  {
+                    PATUNFETCH;
+                    break;
+                  }
+
+                /* If we get here, we found another repeat character.  */
+               }
+
+            /* Star, etc. applied to an empty pattern is equivalent
+               to an empty pattern.  */
+            if (!laststart)
+              break;
+
+            /* Now we know whether or not zero matches is allowed
+               and also whether or not two or more matches is allowed.  */
+            if (many_times_ok)
+              { /* More than one repetition is allowed, so put in at the
+                   end a backward relative jump from `b' to before the next
+                   jump we're going to put in below (which jumps from
+                   laststart to after this jump).
+
+                   But if we are at the `*' in the exact sequence `.*\n',
+                   insert an unconditional jump backwards to the .,
+                   instead of the beginning of the loop.  This way we only
+                   push a failure point once, instead of every time
+                   through the loop.  */
+                assert (p - 1 > pattern);
+
+                /* Allocate the space for the jump.  */
+                GET_BUFFER_SPACE (3);
+
+                /* We know we are not at the first character of the pattern,
+                   because laststart was nonzero.  And we've already
+                   incremented `p', by the way, to be the character after
+                   the `*'.  Do we have to do something analogous here
+                   for null bytes, because of RE_DOT_NOT_NULL?  */
+                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
+                   && zero_times_ok
+                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
+                    && !(syntax & RE_DOT_NEWLINE))
+                  { /* We have .*\n.  */
+                    STORE_JUMP (jump, b, laststart);
+                    keep_string_p = true;
+                  }
+                else
+                  /* Anything else.  */
+                  STORE_JUMP (maybe_pop_jump, b, laststart - 3);
+
+                /* We've added more stuff to the buffer.  */
+                b += 3;
+              }
+
+            /* On failure, jump from laststart to b + 3, which will be the
+               end of the buffer after this jump is inserted.  */
+            GET_BUFFER_SPACE (3);
+            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
+                                       : on_failure_jump,
+                         laststart, b + 3);
+            pending_exact = 0;
+            b += 3;
+
+            if (!zero_times_ok)
+              {
+                /* At least one repetition is required, so insert a
+                   `dummy_failure_jump' before the initial
+                   `on_failure_jump' instruction of the loop. This
+                   effects a skip over that instruction the first time
+                   we hit that loop.  */
+                GET_BUFFER_SPACE (3);
+                INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
+                b += 3;
+              }
+            }
          break;
-       }
-#ifdef SWITCH_ENUM_BUG
-      switch ((int) ((enum regexpcode) *p++))
+
+
+       case '.':
+          laststart = b;
+          BUF_PUSH (anychar);
+          break;
+
+
+        case '[':
+          {
+            boolean had_char_class = false;
+
+            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+            /* Ensure that we have enough space to push a charset: the
+               opcode, the length count, and the bitset; 34 bytes in all.  */
+           GET_BUFFER_SPACE (34);
+
+            laststart = b;
+
+            /* We test `*p == '^' twice, instead of using an if
+               statement, so we only need one BUF_PUSH.  */
+            BUF_PUSH (*p == '^' ? charset_not : charset);
+            if (*p == '^')
+              p++;
+
+            /* Remember the first position in the bracket expression.  */
+            p1 = p;
+
+            /* Push the number of bytes in the bitmap.  */
+            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
+
+            /* Clear the whole map.  */
+            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
+
+            /* charset_not matches newline according to a syntax bit.  */
+            if ((re_opcode_t) b[-2] == charset_not
+                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
+              SET_LIST_BIT ('\n');
+
+            /* Read in characters and ranges, setting map bits.  */
+            for (;;)
+              {
+                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+                PATFETCH (c);
+
+                /* \ might escape characters inside [...] and [^...].  */
+                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
+                  {
+                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+
+                    PATFETCH (c1);
+                    SET_LIST_BIT (c1);
+                    continue;
+                  }
+
+                /* Could be the end of the bracket expression.  If it's
+                   not (i.e., when the bracket expression is `[]' so
+                   far), the ']' character bit gets set way below.  */
+                if (c == ']' && p != p1 + 1)
+                  break;
+
+                /* Look ahead to see if it's a range when the last thing
+                   was a character class.  */
+                if (had_char_class && c == '-' && *p != ']')
+                  FREE_STACK_RETURN (REG_ERANGE);
+
+                /* Look ahead to see if it's a range when the last thing
+                   was a character: if this is a hyphen not at the
+                   beginning or the end of a list, then it's the range
+                   operator.  */
+                if (c == '-'
+                    && !(p - 2 >= pattern && p[-2] == '[')
+                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
+                    && *p != ']')
+                  {
+                    reg_errcode_t ret
+                      = compile_range (&p, pend, translate, syntax, b);
+                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
+                  }
+
+                else if (p[0] == '-' && p[1] != ']')
+                  { /* This handles ranges made up of characters only.  */
+                    reg_errcode_t ret;
+
+                   /* Move past the `-'.  */
+                    PATFETCH (c1);
+
+                    ret = compile_range (&p, pend, translate, syntax, b);
+                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
+                  }
+
+                /* See if we're at the beginning of a possible character
+                   class.  */
+
+                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
+                  { /* Leave room for the null.  */
+                    char str[CHAR_CLASS_MAX_LENGTH + 1];
+
+                    PATFETCH (c);
+                    c1 = 0;
+
+                    /* If pattern is `[[:'.  */
+                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+                    for (;;)
+                      {
+                        PATFETCH (c);
+                        if ((c == ':' && *p == ']') || p == pend
+                            || c1 == CHAR_CLASS_MAX_LENGTH)
+                          break;
+                        str[c1++] = c;
+                      }
+                    str[c1] = '\0';
+
+                    /* If isn't a word bracketed by `[:' and `:]':
+                       undo the ending character, the letters, and leave
+                       the leading `:' and `[' (but set bits for them).  */
+                    if (c == ':' && *p == ']')
+                      {
+/* CYGNUS LOCAL: Skip this code if we don't have btowc().  btowc() is */
+/* defined in the 1994 Amendment 1 to ISO C and may not be present on */
+/* systems where we have wchar.h and wctype.h.   */
+#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
+                        boolean is_lower = STREQ (str, "lower");
+                        boolean is_upper = STREQ (str, "upper");
+                       wctype_t wt;
+                        int ch;
+
+                       wt = IS_CHAR_CLASS (str);
+                       if (wt == 0)
+                         FREE_STACK_RETURN (REG_ECTYPE);
+
+                        /* Throw away the ] at the end of the character
+                           class.  */
+                        PATFETCH (c);
+
+                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
+                         {
+# ifdef _LIBC
+                           if (__iswctype (__btowc (ch), wt))
+                             SET_LIST_BIT (ch);
 #else
-      switch ((enum regexpcode) *p++)
+                           if (iswctype (btowc (ch), wt))
+                             SET_LIST_BIT (ch);
 #endif
-       {
-       case exactn:
-         if (translate)
-           fastmap[translate[p[1]]] = 1;
-         else
-           fastmap[p[1]] = 1;
+
+                           if (translate && (is_upper || is_lower)
+                               && (ISUPPER (ch) || ISLOWER (ch)))
+                             SET_LIST_BIT (ch);
+                         }
+
+                        had_char_class = true;
+#else
+                        int ch;
+                        boolean is_alnum = STREQ (str, "alnum");
+                        boolean is_alpha = STREQ (str, "alpha");
+                        boolean is_blank = STREQ (str, "blank");
+                        boolean is_cntrl = STREQ (str, "cntrl");
+                        boolean is_digit = STREQ (str, "digit");
+                        boolean is_graph = STREQ (str, "graph");
+                        boolean is_lower = STREQ (str, "lower");
+                        boolean is_print = STREQ (str, "print");
+                        boolean is_punct = STREQ (str, "punct");
+                        boolean is_space = STREQ (str, "space");
+                        boolean is_upper = STREQ (str, "upper");
+                        boolean is_xdigit = STREQ (str, "xdigit");
+
+                        if (!IS_CHAR_CLASS (str))
+                         FREE_STACK_RETURN (REG_ECTYPE);
+
+                        /* Throw away the ] at the end of the character
+                           class.  */
+                        PATFETCH (c);
+
+                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
+                          {
+                           /* This was split into 3 if's to
+                              avoid an arbitrary limit in some compiler.  */
+                            if (   (is_alnum  && ISALNUM (ch))
+                                || (is_alpha  && ISALPHA (ch))
+                                || (is_blank  && ISBLANK (ch))
+                                || (is_cntrl  && ISCNTRL (ch)))
+                             SET_LIST_BIT (ch);
+                           if (   (is_digit  && ISDIGIT (ch))
+                                || (is_graph  && ISGRAPH (ch))
+                                || (is_lower  && ISLOWER (ch))
+                                || (is_print  && ISPRINT (ch)))
+                             SET_LIST_BIT (ch);
+                           if (   (is_punct  && ISPUNCT (ch))
+                                || (is_space  && ISSPACE (ch))
+                                || (is_upper  && ISUPPER (ch))
+                                || (is_xdigit && ISXDIGIT (ch)))
+                             SET_LIST_BIT (ch);
+                           if (   translate && (is_upper || is_lower)
+                               && (ISUPPER (ch) || ISLOWER (ch)))
+                             SET_LIST_BIT (ch);
+                          }
+                        had_char_class = true;
+#endif /* libc || wctype.h */
+                      }
+                    else
+                      {
+                        c1++;
+                        while (c1--)
+                          PATUNFETCH;
+                        SET_LIST_BIT ('[');
+                        SET_LIST_BIT (':');
+                        had_char_class = false;
+                      }
+                  }
+                else
+                  {
+                    had_char_class = false;
+                    SET_LIST_BIT (c);
+                  }
+              }
+
+            /* Discard any (non)matching list bytes that are all 0 at the
+               end of the map.  Decrease the map-length byte too.  */
+            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
+              b[-1]--;
+            b += b[-1];
+          }
+          break;
+
+
+       case '(':
+          if (syntax & RE_NO_BK_PARENS)
+            goto handle_open;
+          else
+            goto normal_char;
+
+
+        case ')':
+          if (syntax & RE_NO_BK_PARENS)
+            goto handle_close;
+          else
+            goto normal_char;
+
+
+        case '\n':
+          if (syntax & RE_NEWLINE_ALT)
+            goto handle_alt;
+          else
+            goto normal_char;
+
+
+       case '|':
+          if (syntax & RE_NO_BK_VBAR)
+            goto handle_alt;
+          else
+            goto normal_char;
+
+
+        case '{':
+           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
+             goto handle_interval;
+           else
+             goto normal_char;
+
+
+        case '\\':
+          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+
+          /* Do not translate the character after the \, so that we can
+             distinguish, e.g., \B from \b, even if we normally would
+             translate, e.g., B to b.  */
+          PATFETCH_RAW (c);
+
+          switch (c)
+            {
+            case '(':
+              if (syntax & RE_NO_BK_PARENS)
+                goto normal_backslash;
+
+            handle_open:
+              bufp->re_nsub++;
+              regnum++;
+
+              if (COMPILE_STACK_FULL)
+                {
+                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
+                            compile_stack_elt_t);
+                  if (compile_stack.stack == NULL) return REG_ESPACE;
+
+                  compile_stack.size <<= 1;
+                }
+
+              /* These are the values to restore when we hit end of this
+                 group.  They are all relative offsets, so that if the
+                 whole pattern moves because of realloc, they will still
+                 be valid.  */
+              COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
+              COMPILE_STACK_TOP.fixup_alt_jump
+                = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
+              COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
+              COMPILE_STACK_TOP.regnum = regnum;
+
+              /* We will eventually replace the 0 with the number of
+                 groups inner to this one.  But do not push a
+                 start_memory for groups beyond the last one we can
+                 represent in the compiled pattern.  */
+              if (regnum <= MAX_REGNUM)
+                {
+                  COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
+                  BUF_PUSH_3 (start_memory, regnum, 0);
+                }
+
+              compile_stack.avail++;
+
+              fixup_alt_jump = 0;
+              laststart = 0;
+              begalt = b;
+             /* If we've reached MAX_REGNUM groups, then this open
+                won't actually generate any code, so we'll have to
+                clear pending_exact explicitly.  */
+             pending_exact = 0;
+              break;
+
+
+            case ')':
+              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
+
+              if (COMPILE_STACK_EMPTY)
+               {
+                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+                   goto normal_backslash;
+                 else
+                   FREE_STACK_RETURN (REG_ERPAREN);
+               }
+
+            handle_close:
+              if (fixup_alt_jump)
+                { /* Push a dummy failure point at the end of the
+                     alternative for a possible future
+                     `pop_failure_jump' to pop.  See comments at
+                     `push_dummy_failure' in `re_match_2'.  */
+                  BUF_PUSH (push_dummy_failure);
+
+                  /* We allocated space for this jump when we assigned
+                     to `fixup_alt_jump', in the `handle_alt' case below.  */
+                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
+                }
+
+              /* See similar code for backslashed left paren above.  */
+              if (COMPILE_STACK_EMPTY)
+               {
+                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+                   goto normal_char;
+                 else
+                   FREE_STACK_RETURN (REG_ERPAREN);
+               }
+
+              /* Since we just checked for an empty stack above, this
+                 ``can't happen''.  */
+              assert (compile_stack.avail != 0);
+              {
+                /* We don't just want to restore into `regnum', because
+                   later groups should continue to be numbered higher,
+                   as in `(ab)c(de)' -- the second group is #2.  */
+                regnum_t this_group_regnum;
+
+                compile_stack.avail--;
+                begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
+                fixup_alt_jump
+                  = COMPILE_STACK_TOP.fixup_alt_jump
+                    ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
+                    : 0;
+                laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
+                this_group_regnum = COMPILE_STACK_TOP.regnum;
+               /* If we've reached MAX_REGNUM groups, then this open
+                  won't actually generate any code, so we'll have to
+                  clear pending_exact explicitly.  */
+               pending_exact = 0;
+
+                /* We're at the end of the group, so now we know how many
+                   groups were inside this one.  */
+                if (this_group_regnum <= MAX_REGNUM)
+                  {
+                    unsigned char *inner_group_loc
+                      = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
+
+                    *inner_group_loc = regnum - this_group_regnum;
+                    BUF_PUSH_3 (stop_memory, this_group_regnum,
+                                regnum - this_group_regnum);
+                  }
+              }
+              break;
+
+
+            case '|':                                  /* `\|'.  */
+              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
+                goto normal_backslash;
+            handle_alt:
+              if (syntax & RE_LIMITED_OPS)
+                goto normal_char;
+
+              /* Insert before the previous alternative a jump which
+                 jumps to this alternative if the former fails.  */
+              GET_BUFFER_SPACE (3);
+              INSERT_JUMP (on_failure_jump, begalt, b + 6);
+              pending_exact = 0;
+              b += 3;
+
+              /* The alternative before this one has a jump after it
+                 which gets executed if it gets matched.  Adjust that
+                 jump so it will jump to this alternative's analogous
+                 jump (put in below, which in turn will jump to the next
+                 (if any) alternative's such jump, etc.).  The last such
+                 jump jumps to the correct final destination.  A picture:
+                          _____ _____
+                          |   | |   |
+                          |   v |   v
+                         a | b   | c
+
+                 If we are at `b', then fixup_alt_jump right now points to a
+                 three-byte space after `a'.  We'll put in the jump, set
+                 fixup_alt_jump to right after `b', and leave behind three
+                 bytes which we'll fill in when we get to after `c'.  */
+
+              if (fixup_alt_jump)
+                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
+
+              /* Mark and leave space for a jump after this alternative,
+                 to be filled in later either by next alternative or
+                 when know we're at the end of a series of alternatives.  */
+              fixup_alt_jump = b;
+              GET_BUFFER_SPACE (3);
+              b += 3;
+
+              laststart = 0;
+              begalt = b;
+              break;
+
+
+            case '{':
+              /* If \{ is a literal.  */
+              if (!(syntax & RE_INTERVALS)
+                     /* If we're at `\{' and it's not the open-interval
+                        operator.  */
+                  || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
+                  || (p - 2 == pattern  &&  p == pend))
+                goto normal_backslash;
+
+            handle_interval:
+              {
+                /* If got here, then the syntax allows intervals.  */
+
+                /* At least (most) this many matches must be made.  */
+                int lower_bound = -1, upper_bound = -1;
+
+                beg_interval = p - 1;
+
+                if (p == pend)
+                  {
+                    if (syntax & RE_NO_BK_BRACES)
+                      goto unfetch_interval;
+                    else
+                      FREE_STACK_RETURN (REG_EBRACE);
+                  }
+
+                GET_UNSIGNED_NUMBER (lower_bound);
+
+                if (c == ',')
+                  {
+                    GET_UNSIGNED_NUMBER (upper_bound);
+                    if (upper_bound < 0) upper_bound = RE_DUP_MAX;
+                  }
+                else
+                  /* Interval such as `{1}' => match exactly once. */
+                  upper_bound = lower_bound;
+
+                if (lower_bound < 0 || upper_bound > RE_DUP_MAX
+                    || lower_bound > upper_bound)
+                  {
+                    if (syntax & RE_NO_BK_BRACES)
+                      goto unfetch_interval;
+                    else
+                      FREE_STACK_RETURN (REG_BADBR);
+                  }
+
+                if (!(syntax & RE_NO_BK_BRACES))
+                  {
+                    if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
+
+                    PATFETCH (c);
+                  }
+
+                if (c != '}')
+                  {
+                    if (syntax & RE_NO_BK_BRACES)
+                      goto unfetch_interval;
+                    else
+                      FREE_STACK_RETURN (REG_BADBR);
+                  }
+
+                /* We just parsed a valid interval.  */
+
+                /* If it's invalid to have no preceding re.  */
+                if (!laststart)
+                  {
+                    if (syntax & RE_CONTEXT_INVALID_OPS)
+                      FREE_STACK_RETURN (REG_BADRPT);
+                    else if (syntax & RE_CONTEXT_INDEP_OPS)
+                      laststart = b;
+                    else
+                      goto unfetch_interval;
+                  }
+
+                /* If the upper bound is zero, don't want to succeed at
+                   all; jump from `laststart' to `b + 3', which will be
+                   the end of the buffer after we insert the jump.  */
+                 if (upper_bound == 0)
+                   {
+                     GET_BUFFER_SPACE (3);
+                     INSERT_JUMP (jump, laststart, b + 3);
+                     b += 3;
+                   }
+
+                 /* Otherwise, we have a nontrivial interval.  When
+                    we're all done, the pattern will look like:
+                      set_number_at <jump count> <upper bound>
+                      set_number_at <succeed_n count> <lower bound>
+                      succeed_n <after jump addr> <succeed_n count>
+                      <body of loop>
+                      jump_n <succeed_n addr> <jump count>
+                    (The upper bound and `jump_n' are omitted if
+                    `upper_bound' is 1, though.)  */
+                 else
+                   { /* If the upper bound is > 1, we need to insert
+                        more at the end of the loop.  */
+                     unsigned nbytes = 10 + (upper_bound > 1) * 10;
+
+                     GET_BUFFER_SPACE (nbytes);
+
+                     /* Initialize lower bound of the `succeed_n', even
+                        though it will be set during matching by its
+                        attendant `set_number_at' (inserted next),
+                        because `re_compile_fastmap' needs to know.
+                        Jump to the `jump_n' we might insert below.  */
+                     INSERT_JUMP2 (succeed_n, laststart,
+                                   b + 5 + (upper_bound > 1) * 5,
+                                   lower_bound);
+                     b += 5;
+
+                     /* Code to initialize the lower bound.  Insert
+                        before the `succeed_n'.  The `5' is the last two
+                        bytes of this `set_number_at', plus 3 bytes of
+                        the following `succeed_n'.  */
+                     insert_op2 (set_number_at, laststart, 5, lower_bound, b);
+                     b += 5;
+
+                     if (upper_bound > 1)
+                       { /* More than one repetition is allowed, so
+                            append a backward jump to the `succeed_n'
+                            that starts this interval.
+
+                            When we've reached this during matching,
+                            we'll have matched the interval once, so
+                            jump back only `upper_bound - 1' times.  */
+                         STORE_JUMP2 (jump_n, b, laststart + 5,
+                                      upper_bound - 1);
+                         b += 5;
+
+                         /* The location we want to set is the second
+                            parameter of the `jump_n'; that is `b-2' as
+                            an absolute address.  `laststart' will be
+                            the `set_number_at' we're about to insert;
+                            `laststart+3' the number to set, the source
+                            for the relative address.  But we are
+                            inserting into the middle of the pattern --
+                            so everything is getting moved up by 5.
+                            Conclusion: (b - 2) - (laststart + 3) + 5,
+                            i.e., b - laststart.
+
+                            We insert this at the beginning of the loop
+                            so that if we fail during matching, we'll
+                            reinitialize the bounds.  */
+                         insert_op2 (set_number_at, laststart, b - laststart,
+                                     upper_bound - 1, b);
+                         b += 5;
+                       }
+                   }
+                pending_exact = 0;
+                beg_interval = NULL;
+              }
+              break;
+
+            unfetch_interval:
+              /* If an invalid interval, match the characters as literals.  */
+               assert (beg_interval);
+               p = beg_interval;
+               beg_interval = NULL;
+
+               /* normal_char and normal_backslash need `c'.  */
+               PATFETCH (c);
+
+               if (!(syntax & RE_NO_BK_BRACES))
+                 {
+                   if (p > pattern  &&  p[-1] == '\\')
+                     goto normal_backslash;
+                 }
+               goto normal_char;
+
+#ifdef emacs
+            /* There is no way to specify the before_dot and after_dot
+               operators.  rms says this is ok.  --karl  */
+            case '=':
+              BUF_PUSH (at_dot);
+              break;
+
+            case 's':
+              laststart = b;
+              PATFETCH (c);
+              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
+              break;
+
+            case 'S':
+              laststart = b;
+              PATFETCH (c);
+              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
+              break;
+#endif /* emacs */
+
+
+            case 'w':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+              laststart = b;
+              BUF_PUSH (wordchar);
+              break;
+
+
+            case 'W':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+              laststart = b;
+              BUF_PUSH (notwordchar);
+              break;
+
+
+            case '<':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+              BUF_PUSH (wordbeg);
+              break;
+
+            case '>':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+              BUF_PUSH (wordend);
+              break;
+
+            case 'b':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+              BUF_PUSH (wordbound);
+              break;
+
+            case 'B':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+              BUF_PUSH (notwordbound);
+              break;
+
+            case '`':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+              BUF_PUSH (begbuf);
+              break;
+
+            case '\'':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+              BUF_PUSH (endbuf);
+              break;
+
+            case '1': case '2': case '3': case '4': case '5':
+            case '6': case '7': case '8': case '9':
+              if (syntax & RE_NO_BK_REFS)
+                goto normal_char;
+
+              c1 = c - '0';
+
+              if (c1 > regnum)
+                FREE_STACK_RETURN (REG_ESUBREG);
+
+              /* Can't back reference to a subexpression if inside of it.  */
+              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
+                goto normal_char;
+
+              laststart = b;
+              BUF_PUSH_2 (duplicate, c1);
+              break;
+
+
+            case '+':
+            case '?':
+              if (syntax & RE_BK_PLUS_QM)
+                goto handle_plus;
+              else
+                goto normal_backslash;
+
+            default:
+            normal_backslash:
+              /* You might think it would be useful for \ to mean
+                 not to translate; but if we don't translate it
+                 it will never match anything.  */
+              c = TRANSLATE (c);
+              goto normal_char;
+            }
+          break;
+
+
+       default:
+        /* Expects the character in `c'.  */
+       normal_char:
+             /* If no exactn currently being built.  */
+          if (!pending_exact
+
+              /* If last exactn not at current position.  */
+              || pending_exact + *pending_exact + 1 != b
+
+              /* We have only one byte following the exactn for the count.  */
+             || *pending_exact == (1 << BYTEWIDTH) - 1
+
+              /* If followed by a repetition operator.  */
+              || *p == '*' || *p == '^'
+             || ((syntax & RE_BK_PLUS_QM)
+                 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
+                 : (*p == '+' || *p == '?'))
+             || ((syntax & RE_INTERVALS)
+                  && ((syntax & RE_NO_BK_BRACES)
+                     ? *p == '{'
+                      : (p[0] == '\\' && p[1] == '{'))))
+           {
+             /* Start building a new exactn.  */
+
+              laststart = b;
+
+             BUF_PUSH_2 (exactn, 0);
+             pending_exact = b - 1;
+            }
+
+         BUF_PUSH (c);
+          (*pending_exact)++;
          break;
+        } /* switch (c) */
+    } /* while p != pend */
 
-        case begline:
-        case before_dot:
-       case at_dot:
-       case after_dot:
-       case begbuf:
-       case endbuf:
-       case wordbound:
-       case notwordbound:
-       case wordbeg:
-       case wordend:
-         continue;
 
-       case endline:
-         if (translate)
-           fastmap[translate['\n']] = 1;
+  /* Through the pattern now.  */
+
+  if (fixup_alt_jump)
+    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
+
+  if (!COMPILE_STACK_EMPTY)
+    FREE_STACK_RETURN (REG_EPAREN);
+
+  /* If we don't want backtracking, force success
+     the first time we reach the end of the compiled pattern.  */
+  if (syntax & RE_NO_POSIX_BACKTRACKING)
+    BUF_PUSH (succeed);
+
+  free (compile_stack.stack);
+
+  /* We have succeeded; set the length of the buffer.  */
+  bufp->used = b - bufp->buffer;
+
+#ifdef DEBUG
+  if (debug)
+    {
+      DEBUG_PRINT1 ("\nCompiled pattern: \n");
+      print_compiled_pattern (bufp);
+    }
+#endif /* DEBUG */
+
+#ifndef MATCH_MAY_ALLOCATE
+  /* Initialize the failure stack to the largest possible stack.  This
+     isn't necessary unless we're trying to avoid calling alloca in
+     the search and match routines.  */
+  {
+    int num_regs = bufp->re_nsub + 1;
+
+    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
+       is strictly greater than re_max_failures, the largest possible stack
+       is 2 * re_max_failures failure points.  */
+    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
+      {
+       fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
+
+# ifdef emacs
+       if (! fail_stack.stack)
+         fail_stack.stack
+           = (fail_stack_elt_t *) xmalloc (fail_stack.size
+                                           * sizeof (fail_stack_elt_t));
+       else
+         fail_stack.stack
+           = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
+                                            (fail_stack.size
+                                             * sizeof (fail_stack_elt_t)));
+# else /* not emacs */
+       if (! fail_stack.stack)
+         fail_stack.stack
+           = (fail_stack_elt_t *) malloc (fail_stack.size
+                                          * sizeof (fail_stack_elt_t));
+       else
+         fail_stack.stack
+           = (fail_stack_elt_t *) realloc (fail_stack.stack,
+                                           (fail_stack.size
+                                            * sizeof (fail_stack_elt_t)));
+# endif /* not emacs */
+      }
+
+    regex_grow_registers (num_regs);
+  }
+#endif /* not MATCH_MAY_ALLOCATE */
+
+  return REG_NOERROR;
+} /* regex_compile */
+\f
+/* Subroutines for `regex_compile'.  */
+
+/* Store OP at LOC followed by two-byte integer parameter ARG.  */
+
+static void
+store_op1 (op, loc, arg)
+    re_opcode_t op;
+    unsigned char *loc;
+    int arg;
+{
+  *loc = (unsigned char) op;
+  STORE_NUMBER (loc + 1, arg);
+}
+
+
+/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
+
+static void
+store_op2 (op, loc, arg1, arg2)
+    re_opcode_t op;
+    unsigned char *loc;
+    int arg1, arg2;
+{
+  *loc = (unsigned char) op;
+  STORE_NUMBER (loc + 1, arg1);
+  STORE_NUMBER (loc + 3, arg2);
+}
+
+
+/* Copy the bytes from LOC to END to open up three bytes of space at LOC
+   for OP followed by two-byte integer parameter ARG.  */
+
+static void
+insert_op1 (op, loc, arg, end)
+    re_opcode_t op;
+    unsigned char *loc;
+    int arg;
+    unsigned char *end;
+{
+  register unsigned char *pfrom = end;
+  register unsigned char *pto = end + 3;
+
+  while (pfrom != loc)
+    *--pto = *--pfrom;
+
+  store_op1 (op, loc, arg);
+}
+
+
+/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
+
+static void
+insert_op2 (op, loc, arg1, arg2, end)
+    re_opcode_t op;
+    unsigned char *loc;
+    int arg1, arg2;
+    unsigned char *end;
+{
+  register unsigned char *pfrom = end;
+  register unsigned char *pto = end + 5;
+
+  while (pfrom != loc)
+    *--pto = *--pfrom;
+
+  store_op2 (op, loc, arg1, arg2);
+}
+
+
+/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
+   after an alternative or a begin-subexpression.  We assume there is at
+   least one character before the ^.  */
+
+static boolean
+at_begline_loc_p (pattern, p, syntax)
+    const char *pattern, *p;
+    reg_syntax_t syntax;
+{
+  const char *prev = p - 2;
+  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
+
+  return
+       /* After a subexpression?  */
+       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
+       /* After an alternative?  */
+    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
+}
+
+
+/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
+   at least one character after the $, i.e., `P < PEND'.  */
+
+static boolean
+at_endline_loc_p (p, pend, syntax)
+    const char *p, *pend;
+    reg_syntax_t syntax;
+{
+  const char *next = p;
+  boolean next_backslash = *next == '\\';
+  const char *next_next = p + 1 < pend ? p + 1 : 0;
+
+  return
+       /* Before a subexpression?  */
+       (syntax & RE_NO_BK_PARENS ? *next == ')'
+        : next_backslash && next_next && *next_next == ')')
+       /* Before an alternative?  */
+    || (syntax & RE_NO_BK_VBAR ? *next == '|'
+        : next_backslash && next_next && *next_next == '|');
+}
+
+
+/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
+   false if it's not.  */
+
+static boolean
+group_in_compile_stack (compile_stack, regnum)
+    compile_stack_type compile_stack;
+    regnum_t regnum;
+{
+  int this_element;
+
+  for (this_element = compile_stack.avail - 1;
+       this_element >= 0;
+       this_element--)
+    if (compile_stack.stack[this_element].regnum == regnum)
+      return true;
+
+  return false;
+}
+
+
+/* Read the ending character of a range (in a bracket expression) from the
+   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
+   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
+   Then we set the translation of all bits between the starting and
+   ending characters (inclusive) in the compiled pattern B.
+
+   Return an error code.
+
+   We use these short variable names so we can use the same macros as
+   `regex_compile' itself.  */
+
+static reg_errcode_t
+compile_range (p_ptr, pend, translate, syntax, b)
+    const char **p_ptr, *pend;
+    RE_TRANSLATE_TYPE translate;
+    reg_syntax_t syntax;
+    unsigned char *b;
+{
+  unsigned this_char;
+
+  const char *p = *p_ptr;
+  unsigned int range_start, range_end;
+
+  if (p == pend)
+    return REG_ERANGE;
+
+  /* Even though the pattern is a signed `char *', we need to fetch
+     with unsigned char *'s; if the high bit of the pattern character
+     is set, the range endpoints will be negative if we fetch using a
+     signed char *.
+
+     We also want to fetch the endpoints without translating them; the
+     appropriate translation is done in the bit-setting loop below.  */
+  /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *.  */
+  range_start = ((const unsigned char *) p)[-2];
+  range_end   = ((const unsigned char *) p)[0];
+
+  /* Have to increment the pointer into the pattern string, so the
+     caller isn't still at the ending character.  */
+  (*p_ptr)++;
+
+  /* If the start is after the end, the range is empty.  */
+  if (range_start > range_end)
+    return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
+
+  /* Here we see why `this_char' has to be larger than an `unsigned
+     char' -- the range is inclusive, so if `range_end' == 0xff
+     (assuming 8-bit characters), we would otherwise go into an infinite
+     loop, since all characters <= 0xff.  */
+  for (this_char = range_start; this_char <= range_end; this_char++)
+    {
+      SET_LIST_BIT (TRANSLATE (this_char));
+    }
+
+  return REG_NOERROR;
+}
+\f
+/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
+   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
+   characters can start a string that matches the pattern.  This fastmap
+   is used by re_search to skip quickly over impossible starting points.
+
+   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
+   area as BUFP->fastmap.
+
+   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
+   the pattern buffer.
+
+   Returns 0 if we succeed, -2 if an internal error.   */
+
+int
+re_compile_fastmap (bufp)
+     struct re_pattern_buffer *bufp;
+{
+  int j, k;
+#ifdef MATCH_MAY_ALLOCATE
+  fail_stack_type fail_stack;
+#endif
+#ifndef REGEX_MALLOC
+  char *destination;
+#endif
+
+  register char *fastmap = bufp->fastmap;
+  unsigned char *pattern = bufp->buffer;
+  unsigned char *p = pattern;
+  register unsigned char *pend = pattern + bufp->used;
+
+#ifdef REL_ALLOC
+  /* This holds the pointer to the failure stack, when
+     it is allocated relocatably.  */
+  fail_stack_elt_t *failure_stack_ptr;
+#endif
+
+  /* Assume that each path through the pattern can be null until
+     proven otherwise.  We set this false at the bottom of switch
+     statement, to which we get only if a particular path doesn't
+     match the empty string.  */
+  boolean path_can_be_null = true;
+
+  /* We aren't doing a `succeed_n' to begin with.  */
+  boolean succeed_n_p = false;
+
+  assert (fastmap != NULL && p != NULL);
+
+  INIT_FAIL_STACK ();
+  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
+  bufp->fastmap_accurate = 1;      /* It will be when we're done.  */
+  bufp->can_be_null = 0;
+
+  while (1)
+    {
+      if (p == pend || *p == succeed)
+       {
+         /* We have reached the (effective) end of pattern.  */
+         if (!FAIL_STACK_EMPTY ())
+           {
+             bufp->can_be_null |= path_can_be_null;
+
+             /* Reset for next path.  */
+             path_can_be_null = true;
+
+             p = fail_stack.stack[--fail_stack.avail].pointer;
+
+             continue;
+           }
          else
-           fastmap['\n'] = 1;
-         if (bufp->can_be_null != 1)
-           bufp->can_be_null = 2;
-         break;
+           break;
+       }
 
-       case finalize_jump:
-       case maybe_finalize_jump:
-       case jump:
-       case dummy_failure_jump:
-         bufp->can_be_null = 1;
-         j = *p++ & 0377;
-         j += SIGN_EXTEND_CHAR (*(char *)p) << 8;
-         p += j + 1;           /* The 1 compensates for missing ++ above */
-         if (j > 0)
-           continue;
-         /* Jump backward reached implies we just went through
-            the body of a loop and matched nothing.
-            Opcode jumped to should be an on_failure_jump.
-            Just treat it like an ordinary jump.
-            For a * loop, it has pushed its failure point already;
-            if so, discard that as redundant.  */
-         if ((enum regexpcode) *p != on_failure_jump)
-           continue;
-         p++;
-         j = *p++ & 0377;
-         j += SIGN_EXTEND_CHAR (*(char *)p) << 8;
-         p += j + 1;           /* The 1 compensates for missing ++ above */
-         if (stackp != stackb && *stackp == p)
-           stackp--;
-         continue;
-         
-       case on_failure_jump:
-         j = *p++ & 0377;
-         j += SIGN_EXTEND_CHAR (*(char *)p) << 8;
-         p++;
-         *++stackp = p + j;
-         continue;
+      /* We should never be about to go beyond the end of the pattern.  */
+      assert (p < pend);
 
-       case start_memory:
-       case stop_memory:
-         p++;
-         continue;
+      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
+       {
 
+        /* I guess the idea here is to simply not bother with a fastmap
+           if a backreference is used, since it's too hard to figure out
+           the fastmap for the corresponding group.  Setting
+           `can_be_null' stops `re_search_2' from using the fastmap, so
+           that is all we do.  */
        case duplicate:
          bufp->can_be_null = 1;
-         fastmap['\n'] = 1;
-       case anychar:
-         for (j = 0; j < (1 << BYTEWIDTH); j++)
-           if (j != '\n')
-             fastmap[j] = 1;
-         if (bufp->can_be_null)
-           return;
-         /* Don't return; check the alternative paths
-            so we can set can_be_null if appropriate.  */
+          goto done;
+
+
+      /* Following are the cases which match a character.  These end
+         with `break'.  */
+
+       case exactn:
+          fastmap[p[1]] = 1;
          break;
 
+
+        case charset:
+          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+           if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
+              fastmap[j] = 1;
+         break;
+
+
+       case charset_not:
+         /* Chars beyond end of map must be allowed.  */
+         for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
+            fastmap[j] = 1;
+
+         for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+           if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
+              fastmap[j] = 1;
+          break;
+
+
        case wordchar:
          for (j = 0; j < (1 << BYTEWIDTH); j++)
            if (SYNTAX (j) == Sword)
              fastmap[j] = 1;
          break;
 
+
        case notwordchar:
          for (j = 0; j < (1 << BYTEWIDTH); j++)
            if (SYNTAX (j) != Sword)
              fastmap[j] = 1;
          break;
 
+
+        case anychar:
+         {
+           int fastmap_newline = fastmap['\n'];
+
+           /* `.' matches anything ...  */
+           for (j = 0; j < (1 << BYTEWIDTH); j++)
+             fastmap[j] = 1;
+
+           /* ... except perhaps newline.  */
+           if (!(bufp->syntax & RE_DOT_NEWLINE))
+             fastmap['\n'] = fastmap_newline;
+
+           /* Return if we have already set `can_be_null'; if we have,
+              then the fastmap is irrelevant.  Something's wrong here.  */
+           else if (bufp->can_be_null)
+             goto done;
+
+           /* Otherwise, have to check alternative paths.  */
+           break;
+         }
+
 #ifdef emacs
-       case syntaxspec:
+        case syntaxspec:
          k = *p++;
          for (j = 0; j < (1 << BYTEWIDTH); j++)
            if (SYNTAX (j) == (enum syntaxcode) k)
              fastmap[j] = 1;
          break;
 
+
        case notsyntaxspec:
          k = *p++;
          for (j = 0; j < (1 << BYTEWIDTH); j++)
            if (SYNTAX (j) != (enum syntaxcode) k)
              fastmap[j] = 1;
          break;
+
+
+      /* All cases after this match the empty string.  These end with
+         `continue'.  */
+
+
+       case before_dot:
+       case at_dot:
+       case after_dot:
+          continue;
 #endif /* emacs */
 
-       case charset:
-         for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
-           if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
-             {
-               if (translate)
-                 fastmap[translate[j]] = 1;
-               else
-                 fastmap[j] = 1;
-             }
-         break;
 
-       case charset_not:
-         /* Chars beyond end of map must be allowed */
-         for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
-           if (translate)
-             fastmap[translate[j]] = 1;
-           else
-             fastmap[j] = 1;
+        case no_op:
+        case begline:
+        case endline:
+       case begbuf:
+       case endbuf:
+       case wordbound:
+       case notwordbound:
+       case wordbeg:
+       case wordend:
+        case push_dummy_failure:
+          continue;
+
+
+       case jump_n:
+        case pop_failure_jump:
+       case maybe_pop_jump:
+       case jump:
+        case jump_past_alt:
+       case dummy_failure_jump:
+          EXTRACT_NUMBER_AND_INCR (j, p);
+         p += j;
+         if (j > 0)
+           continue;
+
+          /* Jump backward implies we just went through the body of a
+             loop and matched nothing.  Opcode jumped to should be
+             `on_failure_jump' or `succeed_n'.  Just treat it like an
+             ordinary jump.  For a * loop, it has pushed its failure
+             point already; if so, discard that as redundant.  */
+          if ((re_opcode_t) *p != on_failure_jump
+             && (re_opcode_t) *p != succeed_n)
+           continue;
+
+          p++;
+          EXTRACT_NUMBER_AND_INCR (j, p);
+          p += j;
+
+          /* If what's on the stack is where we are now, pop it.  */
+          if (!FAIL_STACK_EMPTY ()
+             && fail_stack.stack[fail_stack.avail - 1].pointer == p)
+            fail_stack.avail--;
+
+          continue;
+
+
+        case on_failure_jump:
+        case on_failure_keep_string_jump:
+       handle_on_failure_jump:
+          EXTRACT_NUMBER_AND_INCR (j, p);
+
+          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
+             end of the pattern.  We don't want to push such a point,
+             since when we restore it above, entering the switch will
+             increment `p' past the end of the pattern.  We don't need
+             to push such a point since we obviously won't find any more
+             fastmap entries beyond `pend'.  Such a pattern can match
+             the null string, though.  */
+          if (p + j < pend)
+            {
+              if (!PUSH_PATTERN_OP (p + j, fail_stack))
+               {
+                 RESET_FAIL_STACK ();
+                 return -2;
+               }
+            }
+          else
+            bufp->can_be_null = 1;
+
+          if (succeed_n_p)
+            {
+              EXTRACT_NUMBER_AND_INCR (k, p);  /* Skip the n.  */
+              succeed_n_p = false;
+           }
+
+          continue;
+
+
+       case succeed_n:
+          /* Get to the number of times to succeed.  */
+          p += 2;
+
+          /* Increment p past the n for when k != 0.  */
+          EXTRACT_NUMBER_AND_INCR (k, p);
+          if (k == 0)
+           {
+              p -= 4;
+             succeed_n_p = true;  /* Spaghetti code alert.  */
+              goto handle_on_failure_jump;
+            }
+          continue;
+
+
+       case set_number_at:
+          p += 4;
+          continue;
+
+
+       case start_memory:
+        case stop_memory:
+         p += 2;
+         continue;
+
 
-         for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
-           if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
-             {
-               if (translate)
-                 fastmap[translate[j]] = 1;
-               else
-                 fastmap[j] = 1;
-             }
-         break;
-       case unused:
-       case syntaxspec:
-       case notsyntaxspec:
        default:
-         break;
-       }
+          abort (); /* We have listed all the cases.  */
+        } /* switch *p++ */
+
+      /* Getting here means we have found the possible starting
+         characters for one path of the pattern -- and that the empty
+         string does not match.  We need not follow this path further.
+         Instead, look at the next alternative (remembered on the
+         stack), or quit if no more.  The test at the top of the loop
+         does these things.  */
+      path_can_be_null = false;
+      p = pend;
+    } /* while p */
+
+  /* Set `can_be_null' for the last path (also the first path, if the
+     pattern is empty).  */
+  bufp->can_be_null |= path_can_be_null;
+
+ done:
+  RESET_FAIL_STACK ();
+  return 0;
+} /* re_compile_fastmap */
+#ifdef _LIBC
+weak_alias (__re_compile_fastmap, re_compile_fastmap)
+#endif
+\f
+/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
+   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
+   this memory for recording register information.  STARTS and ENDS
+   must be allocated using the malloc library routine, and must each
+   be at least NUM_REGS * sizeof (regoff_t) bytes long.
 
-      /* Get here means we have successfully found the possible starting characters
-        of one path of the pattern.  We need not follow this path any farther.
-        Instead, look at the next alternative remembered in the stack. */
-      if (stackp != stackb)
-       p = *stackp--;
-      else
-       break;
+   If NUM_REGS == 0, then subsequent matches should allocate their own
+   register data.
+
+   Unless this function is called, the first search or match using
+   PATTERN_BUFFER will allocate its own register data, without
+   freeing the old data.  */
+
+void
+re_set_registers (bufp, regs, num_regs, starts, ends)
+    struct re_pattern_buffer *bufp;
+    struct re_registers *regs;
+    unsigned num_regs;
+    regoff_t *starts, *ends;
+{
+  if (num_regs)
+    {
+      bufp->regs_allocated = REGS_REALLOCATE;
+      regs->num_regs = num_regs;
+      regs->start = starts;
+      regs->end = ends;
+    }
+  else
+    {
+      bufp->regs_allocated = REGS_UNALLOCATED;
+      regs->num_regs = 0;
+      regs->start = regs->end = (regoff_t *) 0;
     }
 }
+#ifdef _LIBC
+weak_alias (__re_set_registers, re_set_registers)
+#endif
 \f
-/* Like re_search_2, below, but only one string is specified. */
+/* Searching routines.  */
+
+/* Like re_search_2, below, but only one string is specified, and
+   doesn't let you say where to stop matching. */
 
 int
-re_search (pbufp, string, size, startpos, range, regs)
-     struct re_pattern_buffer *pbufp;
-     char *string;
+re_search (bufp, string, size, startpos, range, regs)
+     struct re_pattern_buffer *bufp;
+     const char *string;
      int size, startpos, range;
      struct re_registers *regs;
 {
-  return re_search_2 (pbufp, 0, 0, string, size, startpos, range, regs, size);
+  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
+                     regs, size);
 }
+#ifdef _LIBC
+weak_alias (__re_search, re_search)
+#endif
 
-/* Like re_match_2 but tries first a match starting at index STARTPOS,
-   then at STARTPOS + 1, and so on.
-   RANGE is the number of places to try before giving up.
-   If RANGE is negative, the starting positions tried are
-    STARTPOS, STARTPOS - 1, etc.
-   It is up to the caller to make sure that range is not so large
-   as to take the starting position outside of the input strings.
 
-The value returned is the position at which the match was found,
- or -1 if no match was found,
- or -2 if error (such as failure stack overflow).  */
+/* Using the compiled pattern in BUFP->buffer, first tries to match the
+   virtual concatenation of STRING1 and STRING2, starting first at index
+   STARTPOS, then at STARTPOS + 1, and so on.
+
+   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
+
+   RANGE is how far to scan while trying to match.  RANGE = 0 means try
+   only at STARTPOS; in general, the last start tried is STARTPOS +
+   RANGE.
+
+   In REGS, return the indices of the virtual concatenation of STRING1
+   and STRING2 that matched the entire BUFP->buffer and its contained
+   subexpressions.
+
+   Do not consider matching one past the index STOP in the virtual
+   concatenation of STRING1 and STRING2.
+
+   We return either the position in the strings at which the match was
+   found, -1 if no match, or -2 if error (such as failure
+   stack overflow).  */
 
 int
-re_search_2 (pbufp, string1, size1, string2, size2, startpos, range, regs, mstop)
-     struct re_pattern_buffer *pbufp;
-     char *string1, *string2;
+re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
+     struct re_pattern_buffer *bufp;
+     const char *string1, *string2;
      int size1, size2;
      int startpos;
-     register int range;
+     int range;
      struct re_registers *regs;
-     int mstop;
+     int stop;
 {
-  register char *fastmap = pbufp->fastmap;
-  register unsigned char *translate = (unsigned char *) pbufp->translate;
-  int total = size1 + size2;
   int val;
-
-  /* Update the fastmap now if not correct already */
-  if (fastmap && !pbufp->fastmap_accurate)
-    re_compile_fastmap (pbufp);
-  
-  /* Don't waste time in a long search for a pattern
-     that says it is anchored.  */
-  if (pbufp->used > 0 && (enum regexpcode) pbufp->buffer[0] == begbuf
-      && range > 0)
+  register char *fastmap = bufp->fastmap;
+  register RE_TRANSLATE_TYPE translate = bufp->translate;
+  int total_size = size1 + size2;
+  int endpos = startpos + range;
+
+  /* Check for out-of-range STARTPOS.  */
+  if (startpos < 0 || startpos > total_size)
+    return -1;
+
+  /* Fix up RANGE if it might eventually take us outside
+     the virtual concatenation of STRING1 and STRING2.
+     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
+  if (endpos < 0)
+    range = 0 - startpos;
+  else if (endpos > total_size)
+    range = total_size - startpos;
+
+  /* If the search isn't to be a backwards one, don't waste time in a
+     search for a pattern that must be anchored.  */
+  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
     {
       if (startpos > 0)
        return -1;
@@ -949,159 +3527,451 @@ re_search_2 (pbufp, string1, size1, string2, size2, startpos, range, regs, mstop
        range = 1;
     }
 
-  while (1)
+#ifdef emacs
+  /* In a forward search for something that starts with \=.
+     don't keep searching past point.  */
+  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
     {
-      /* If a fastmap is supplied, skip quickly over characters
-        that cannot possibly be the start of a match.
-        Note, however, that if the pattern can possibly match
-        the null string, we must test it at each starting point
-        so that we take the first null string we get.  */
+      range = PT - startpos;
+      if (range <= 0)
+       return -1;
+    }
+#endif /* emacs */
+
+  /* Update the fastmap now if not correct already.  */
+  if (fastmap && !bufp->fastmap_accurate)
+    if (re_compile_fastmap (bufp) == -2)
+      return -2;
 
-      if (fastmap && startpos < total && pbufp->can_be_null != 1)
+  /* Loop through the string, looking for a place to start matching.  */
+  for (;;)
+    {
+      /* If a fastmap is supplied, skip quickly over characters that
+         cannot be the start of a match.  If the pattern can match the
+         null string, however, we don't need to skip characters; we want
+         the first null string.  */
+      if (fastmap && startpos < total_size && !bufp->can_be_null)
        {
-         if (range > 0)
+         if (range > 0)        /* Searching forwards.  */
            {
+             register const char *d;
              register int lim = 0;
-             register unsigned char *p;
              int irange = range;
-             if (startpos < size1 && startpos + range >= size1)
-               lim = range - (size1 - startpos);
 
-             p = ((unsigned char *)
-                  &(startpos >= size1 ? string2 - size1 : string1)[startpos]);
+              if (startpos < size1 && startpos + range >= size1)
+                lim = range - (size1 - startpos);
+
+             d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
 
+              /* Written out as an if-else to avoid testing `translate'
+                 inside the loop.  */
              if (translate)
-               {
-                 while (range > lim && !fastmap[translate[*p++]])
-                   range--;
-               }
+                while (range > lim
+                       && !fastmap[(unsigned char)
+                                  translate[(unsigned char) *d++]])
+                  range--;
              else
-               {
-                 while (range > lim && !fastmap[*p++])
-                   range--;
-               }
+                while (range > lim && !fastmap[(unsigned char) *d++])
+                  range--;
+
              startpos += irange - range;
            }
-         else
+         else                          /* Searching backwards.  */
            {
-             register unsigned char c;
-             if (startpos >= size1)
-               c = string2[startpos - size1];
-             else
-               c = string1[startpos];
-             c &= 0xff;
-             if (translate ? !fastmap[translate[c]] : !fastmap[c])
+             register char c = (size1 == 0 || startpos >= size1
+                                 ? string2[startpos - size1]
+                                 : string1[startpos]);
+
+             if (!fastmap[(unsigned char) TRANSLATE (c)])
                goto advance;
            }
        }
 
-      if (range >= 0 && startpos == total
-         && fastmap && pbufp->can_be_null == 0)
+      /* If can't match the null string, and that's all we have left, fail.  */
+      if (range >= 0 && startpos == total_size && fastmap
+          && !bufp->can_be_null)
        return -1;
 
-      val = re_match_2 (pbufp, string1, size1, string2, size2, startpos, regs, mstop);
-      if (0 <= val)
-       {
-         if (val == -2)
-           return -2;
-         return startpos;
-       }
-
-#ifdef C_ALLOCA
+      val = re_match_2_internal (bufp, string1, size1, string2, size2,
+                                startpos, regs, stop);
+#ifndef REGEX_MALLOC
+# ifdef C_ALLOCA
       alloca (0);
-#endif /* C_ALLOCA */
+# endif
+#endif
+
+      if (val >= 0)
+       return startpos;
+
+      if (val == -2)
+       return -2;
 
     advance:
-      if (!range) break;
-      if (range > 0) range--, startpos++; else range++, startpos--;
+      if (!range)
+        break;
+      else if (range > 0)
+        {
+          range--;
+          startpos++;
+        }
+      else
+        {
+          range++;
+          startpos--;
+        }
     }
   return -1;
-}
+} /* re_search_2 */
+#ifdef _LIBC
+weak_alias (__re_search_2, re_search_2)
+#endif
 \f
-#ifndef emacs   /* emacs never uses this */
-int
-re_match (pbufp, string, size, pos, regs)
-     struct re_pattern_buffer *pbufp;
-     char *string;
-     int size, pos;
-     struct re_registers *regs;
-{
-  return re_match_2 (pbufp, 0, 0, string, size, pos, regs, size);
-}
-#endif /* emacs */
+/* This converts PTR, a pointer into one of the search strings `string1'
+   and `string2' into an offset from the beginning of that string.  */
+#define POINTER_TO_OFFSET(ptr)                 \
+  (FIRST_STRING_P (ptr)                                \
+   ? ((regoff_t) ((ptr) - string1))            \
+   : ((regoff_t) ((ptr) - string2 + size1)))
+
+/* Macros for dealing with the split strings in re_match_2.  */
+
+#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
+
+/* Call before fetching a character with *d.  This switches over to
+   string2 if necessary.  */
+#define PREFETCH()                                                     \
+  while (d == dend)                                                    \
+    {                                                                  \
+      /* End of string2 => fail.  */                                   \
+      if (dend == end_match_2)                                                 \
+        goto fail;                                                     \
+      /* End of string1 => advance to string2.  */                     \
+      d = string2;                                                     \
+      dend = end_match_2;                                              \
+    }
 
-/* Maximum size of failure stack.  Beyond this, overflow is an error.  */
 
-int re_max_failures = 2000;
+/* Test if at very beginning or at very end of the virtual concatenation
+   of `string1' and `string2'.  If only one string, it's `string2'.  */
+#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
+#define AT_STRINGS_END(d) ((d) == end2)
+
+
+/* Test if D points to a character which is word-constituent.  We have
+   two special cases to check for: if past the end of string1, look at
+   the first character in string2; and if before the beginning of
+   string2, look at the last character in string1.  */
+#define WORDCHAR_P(d)                                                  \
+  (SYNTAX ((d) == end1 ? *string2                                      \
+           : (d) == string2 - 1 ? *(end1 - 1) : *(d))                  \
+   == Sword)
+
+/* Disabled due to a compiler bug -- see comment at case wordbound */
+#if 0
+/* Test if the character before D and the one at D differ with respect
+   to being word-constituent.  */
+#define AT_WORD_BOUNDARY(d)                                            \
+  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)                            \
+   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
+#endif
 
-static int memcmp_translate();
-/* Match the pattern described by PBUFP
-   against data which is the virtual concatenation of STRING1 and STRING2.
-   SIZE1 and SIZE2 are the sizes of the two data strings.
-   Start the match at position POS.
-   Do not consider matching past the position MSTOP.
+/* Free everything we malloc.  */
+#ifdef MATCH_MAY_ALLOCATE
+# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
+# define FREE_VARIABLES()                                              \
+  do {                                                                 \
+    REGEX_FREE_STACK (fail_stack.stack);                               \
+    FREE_VAR (regstart);                                               \
+    FREE_VAR (regend);                                                 \
+    FREE_VAR (old_regstart);                                           \
+    FREE_VAR (old_regend);                                             \
+    FREE_VAR (best_regstart);                                          \
+    FREE_VAR (best_regend);                                            \
+    FREE_VAR (reg_info);                                               \
+    FREE_VAR (reg_dummy);                                              \
+    FREE_VAR (reg_info_dummy);                                         \
+  } while (0)
+#else
+# define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
+#endif /* not MATCH_MAY_ALLOCATE */
+
+/* These values must meet several constraints.  They must not be valid
+   register values; since we have a limit of 255 registers (because
+   we use only one byte in the pattern for the register number), we can
+   use numbers larger than 255.  They must differ by 1, because of
+   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
+   be larger than the value for the highest register, so we do not try
+   to actually save any registers when none are active.  */
+#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
+#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
+\f
+/* Matching routines.  */
 
-   If pbufp->fastmap is nonzero, then it had better be up to date.
+#ifndef emacs   /* Emacs never uses this.  */
+/* re_match is like re_match_2 except it takes only a single string.  */
 
-   The reason that the data to match are specified as two components
-   which are to be regarded as concatenated
-   is so this function can be used directly on the contents of an Emacs buffer.
+int
+re_match (bufp, string, size, pos, regs)
+     struct re_pattern_buffer *bufp;
+     const char *string;
+     int size, pos;
+     struct re_registers *regs;
+{
+  int result = re_match_2_internal (bufp, NULL, 0, string, size,
+                                   pos, regs, size);
+# ifndef REGEX_MALLOC
+#  ifdef C_ALLOCA
+  alloca (0);
+#  endif
+# endif
+  return result;
+}
+# ifdef _LIBC
+weak_alias (__re_match, re_match)
+# endif
+#endif /* not emacs */
 
-   -1 is returned if there is no match.  -2 is returned if there is
-   an error (such as match stack overflow).  Otherwise the value is the length
-   of the substring which was matched.  */
+static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
+                                                   unsigned char *end,
+                                               register_info_type *reg_info));
+static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
+                                                 unsigned char *end,
+                                               register_info_type *reg_info));
+static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
+                                                       unsigned char *end,
+                                               register_info_type *reg_info));
+static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
+                                    int len, char *translate));
+
+/* re_match_2 matches the compiled pattern in BUFP against the
+   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
+   and SIZE2, respectively).  We start matching at POS, and stop
+   matching at STOP.
+
+   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
+   store offsets for the substring each group matched in REGS.  See the
+   documentation for exactly how many groups we fill.
+
+   We return -1 if no match, -2 if an internal error (such as the
+   failure stack overflowing).  Otherwise, we return the length of the
+   matched substring.  */
 
 int
-re_match_2 (pbufp, string1, size1, string2, size2, pos, regs, mstop)
-     struct re_pattern_buffer *pbufp;
-     unsigned char *string1, *string2;
+re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
+     struct re_pattern_buffer *bufp;
+     const char *string1, *string2;
+     int size1, size2;
+     int pos;
+     struct re_registers *regs;
+     int stop;
+{
+  int result = re_match_2_internal (bufp, string1, size1, string2, size2,
+                                   pos, regs, stop);
+#ifndef REGEX_MALLOC
+# ifdef C_ALLOCA
+  alloca (0);
+# endif
+#endif
+  return result;
+}
+#ifdef _LIBC
+weak_alias (__re_match_2, re_match_2)
+#endif
+
+/* This is a separate function so that we can force an alloca cleanup
+   afterwards.  */
+static int
+re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
+     struct re_pattern_buffer *bufp;
+     const char *string1, *string2;
      int size1, size2;
      int pos;
      struct re_registers *regs;
-     int mstop;
+     int stop;
 {
-  register unsigned char *p = (unsigned char *) pbufp->buffer;
-  register unsigned char *pend = p + pbufp->used;
-  /* End of first string */
-  unsigned char *end1;
-  /* End of second string */
-  unsigned char *end2;
-  /* Pointer just past last char to consider matching */
-  unsigned char *end_match_1, *end_match_2;
-  register unsigned char *d, *dend;
-  register int mcnt;
-  unsigned char *translate = (unsigned char *) pbufp->translate;
-
- /* Failure point stack.  Each place that can handle a failure further down the line
-    pushes a failure point on this stack.  It consists of two char *'s.
-    The first one pushed is where to resume scanning the pattern;
-    the second pushed is where to resume scanning the strings.
-    If the latter is zero, the failure point is a "dummy".
-    If a failure happens and the innermost failure point is dormant,
-    it discards that failure point and tries the next one. */
-
-  unsigned char *initial_stack[2 * NFAILURES];
-  unsigned char **stackb = initial_stack;
-  unsigned char **stackp = stackb, **stacke = &stackb[2 * NFAILURES];
-
-  /* Information on the "contents" of registers.
-     These are pointers into the input strings; they record
-     just what was matched (on this attempt) by some part of the pattern.
-     The start_memory command stores the start of a register's contents
-     and the stop_memory command stores the end.
-
-     At that point, regstart[regnum] points to the first character in the register,
-     regend[regnum] points to the first character beyond the end of the register,
-     regstart_seg1[regnum] is true iff regstart[regnum] points into string1,
-     and regend_seg1[regnum] is true iff regend[regnum] points into string1.  */
-
-  unsigned char *regstart[RE_NREGS];
-  unsigned char *regend[RE_NREGS];
-  unsigned char regstart_seg1[RE_NREGS], regend_seg1[RE_NREGS];
-
-  /* Set up pointers to ends of strings.
-     Don't allow the second string to be empty unless both are empty.  */
-  if (!size2)
+  /* General temporaries.  */
+  int mcnt;
+  unsigned char *p1;
+
+  /* Just past the end of the corresponding string.  */
+  const char *end1, *end2;
+
+  /* Pointers into string1 and string2, just past the last characters in
+     each to consider matching.  */
+  const char *end_match_1, *end_match_2;
+
+  /* Where we are in the data, and the end of the current string.  */
+  const char *d, *dend;
+
+  /* Where we are in the pattern, and the end of the pattern.  */
+  unsigned char *p = bufp->buffer;
+  register unsigned char *pend = p + bufp->used;
+
+  /* Mark the opcode just after a start_memory, so we can test for an
+     empty subpattern when we get to the stop_memory.  */
+  unsigned char *just_past_start_mem = 0;
+
+  /* We use this to map every character in the string.  */
+  RE_TRANSLATE_TYPE translate = bufp->translate;
+
+  /* Failure point stack.  Each place that can handle a failure further
+     down the line pushes a failure point on this stack.  It consists of
+     restart, regend, and reg_info for all registers corresponding to
+     the subexpressions we're currently inside, plus the number of such
+     registers, and, finally, two char *'s.  The first char * is where
+     to resume scanning the pattern; the second one is where to resume
+     scanning the strings.  If the latter is zero, the failure point is
+     a ``dummy''; if a failure happens and the failure point is a dummy,
+     it gets discarded and the next next one is tried.  */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
+  fail_stack_type fail_stack;
+#endif
+#ifdef DEBUG
+  static unsigned failure_id = 0;
+  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
+#endif
+
+#ifdef REL_ALLOC
+  /* This holds the pointer to the failure stack, when
+     it is allocated relocatably.  */
+  fail_stack_elt_t *failure_stack_ptr;
+#endif
+
+  /* We fill all the registers internally, independent of what we
+     return, for use in backreferences.  The number here includes
+     an element for register zero.  */
+  size_t num_regs = bufp->re_nsub + 1;
+
+  /* The currently active registers.  */
+  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+
+  /* Information on the contents of registers. These are pointers into
+     the input strings; they record just what was matched (on this
+     attempt) by a subexpression part of the pattern, that is, the
+     regnum-th regstart pointer points to where in the pattern we began
+     matching and the regnum-th regend points to right after where we
+     stopped matching the regnum-th subexpression.  (The zeroth register
+     keeps track of what the whole pattern matches.)  */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
+  const char **regstart, **regend;
+#endif
+
+  /* If a group that's operated upon by a repetition operator fails to
+     match anything, then the register for its start will need to be
+     restored because it will have been set to wherever in the string we
+     are when we last see its open-group operator.  Similarly for a
+     register's end.  */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
+  const char **old_regstart, **old_regend;
+#endif
+
+  /* The is_active field of reg_info helps us keep track of which (possibly
+     nested) subexpressions we are currently in. The matched_something
+     field of reg_info[reg_num] helps us tell whether or not we have
+     matched any of the pattern so far this time through the reg_num-th
+     subexpression.  These two fields get reset each time through any
+     loop their register is in.  */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
+  register_info_type *reg_info;
+#endif
+
+  /* The following record the register info as found in the above
+     variables when we find a match better than any we've seen before.
+     This happens as we backtrack through the failure points, which in
+     turn happens only if we have not yet matched the entire string. */
+  unsigned best_regs_set = false;
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
+  const char **best_regstart, **best_regend;
+#endif
+
+  /* Logically, this is `best_regend[0]'.  But we don't want to have to
+     allocate space for that if we're not allocating space for anything
+     else (see below).  Also, we never need info about register 0 for
+     any of the other register vectors, and it seems rather a kludge to
+     treat `best_regend' differently than the rest.  So we keep track of
+     the end of the best match so far in a separate variable.  We
+     initialize this to NULL so that when we backtrack the first time
+     and need to test it, it's not garbage.  */
+  const char *match_end = NULL;
+
+  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
+  int set_regs_matched_done = 0;
+
+  /* Used when we pop values we don't care about.  */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
+  const char **reg_dummy;
+  register_info_type *reg_info_dummy;
+#endif
+
+#ifdef DEBUG
+  /* Counts the total number of registers pushed.  */
+  unsigned num_regs_pushed = 0;
+#endif
+
+  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
+
+  INIT_FAIL_STACK ();
+
+#ifdef MATCH_MAY_ALLOCATE
+  /* Do not bother to initialize all the register variables if there are
+     no groups in the pattern, as it takes a fair amount of time.  If
+     there are groups, we include space for register 0 (the whole
+     pattern), even though we never use it, since it simplifies the
+     array indexing.  We should fix this.  */
+  if (bufp->re_nsub)
+    {
+      regstart = REGEX_TALLOC (num_regs, const char *);
+      regend = REGEX_TALLOC (num_regs, const char *);
+      old_regstart = REGEX_TALLOC (num_regs, const char *);
+      old_regend = REGEX_TALLOC (num_regs, const char *);
+      best_regstart = REGEX_TALLOC (num_regs, const char *);
+      best_regend = REGEX_TALLOC (num_regs, const char *);
+      reg_info = REGEX_TALLOC (num_regs, register_info_type);
+      reg_dummy = REGEX_TALLOC (num_regs, const char *);
+      reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
+
+      if (!(regstart && regend && old_regstart && old_regend && reg_info
+            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
+        {
+          FREE_VARIABLES ();
+          return -2;
+        }
+    }
+  else
+    {
+      /* We must initialize all our variables to NULL, so that
+         `FREE_VARIABLES' doesn't try to free them.  */
+      regstart = regend = old_regstart = old_regend = best_regstart
+        = best_regend = reg_dummy = NULL;
+      reg_info = reg_info_dummy = (register_info_type *) NULL;
+    }
+#endif /* MATCH_MAY_ALLOCATE */
+
+  /* The starting position is bogus.  */
+  if (pos < 0 || pos > size1 + size2)
+    {
+      FREE_VARIABLES ();
+      return -1;
+    }
+
+  /* Initialize subexpression text positions to -1 to mark ones that no
+     start_memory/stop_memory has been seen for. Also initialize the
+     register information struct.  */
+  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
+    {
+      regstart[mcnt] = regend[mcnt]
+        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
+
+      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
+      IS_ACTIVE (reg_info[mcnt]) = 0;
+      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
+      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
+    }
+
+  /* We move `string1' into `string2' if the latter's empty -- but not if
+     `string1' is null.  */
+  if (size2 == 0 && string1 != NULL)
     {
       string2 = string1;
       size2 = size1;
@@ -1111,649 +3981,1824 @@ re_match_2 (pbufp, string1, size1, string2, size2, pos, regs, mstop)
   end1 = string1 + size1;
   end2 = string2 + size2;
 
-  /* Compute where to stop matching, within the two strings */
-  if (mstop <= size1)
+  /* Compute where to stop matching, within the two strings */
+  if (stop <= size1)
     {
-      end_match_1 = string1 + mstop;
+      end_match_1 = string1 + stop;
       end_match_2 = string2;
     }
   else
     {
       end_match_1 = end1;
-      end_match_2 = string2 + mstop - size1;
+      end_match_2 = string2 + stop - size1;
     }
 
-  /* Initialize \) text positions to -1
-     to mark ones that no \( or \) has been seen for.  */
-
-  for (mcnt = 0; mcnt < sizeof (regend) / sizeof (*regend); mcnt++)
-    regend[mcnt] = (unsigned char *) -1;
-
   /* `p' scans through the pattern as `d' scans through the data.
-     `dend' is the end of the input string that `d' points within.
-     `d' is advanced into the following input string whenever necessary,
-     but this happens before fetching;
-     therefore, at the beginning of the loop,
-     `d' can be pointing at the end of a string,
-     but it cannot equal string2.  */
-
-  if (pos <= size1)
-    d = string1 + pos, dend = end_match_1;
+     `dend' is the end of the input string that `d' points within.  `d'
+     is advanced into the following input string whenever necessary, but
+     this happens before fetching; therefore, at the beginning of the
+     loop, `d' can be pointing at the end of a string, but it cannot
+     equal `string2'.  */
+  if (size1 > 0 && pos <= size1)
+    {
+      d = string1 + pos;
+      dend = end_match_1;
+    }
   else
-    d = string2 + pos - size1, dend = end_match_2;
-
-/* Write PREFETCH; just before fetching a character with *d.  */
-#define PREFETCH \
- while (d == dend)                                                 \
-  { if (dend == end_match_2) goto fail;  /* end of string2 => failure */   \
-    d = string2;  /* end of string1 => advance to string2. */       \
-    dend = end_match_2; }
+    {
+      d = string2 + pos - size1;
+      dend = end_match_2;
+    }
 
-  /* This loop loops over pattern commands.
-     It exits by returning from the function if match is complete,
-     or it drops through if match fails at this starting point in the input data. */
+  DEBUG_PRINT1 ("The compiled pattern is:\n");
+  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
+  DEBUG_PRINT1 ("The string to match is: `");
+  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
+  DEBUG_PRINT1 ("'\n");
 
-  while (1)
+  /* This loops over pattern commands.  It exits by returning from the
+     function if the match is complete, or it drops through if the match
+     fails at this starting point in the input data.  */
+  for (;;)
     {
+#ifdef _LIBC
+      DEBUG_PRINT2 ("\n%p: ", p);
+#else
+      DEBUG_PRINT2 ("\n0x%x: ", p);
+#endif
+
       if (p == pend)
-       /* End of pattern means we have succeeded! */
-       {
-         /* If caller wants register contents data back, convert it to indices */
-         if (regs)
+       { /* End of pattern means we might have succeeded.  */
+          DEBUG_PRINT1 ("end of pattern ... ");
+
+         /* If we haven't matched the entire string, and we want the
+             longest match, try backtracking.  */
+          if (d != end_match_2)
            {
-             regs->start[0] = pos;
-             if (dend == end_match_1)
-               regs->end[0] = d - string1;
-             else
-               regs->end[0] = d - string2 + size1;
-             for (mcnt = 1; mcnt < RE_NREGS; mcnt++)
-               {
-                 if (regend[mcnt] == (unsigned char *) -1)
+             /* 1 if this match ends in the same string (string1 or string2)
+                as the best previous match.  */
+             boolean same_str_p = (FIRST_STRING_P (match_end)
+                                   == MATCHING_IN_FIRST_STRING);
+             /* 1 if this match is the best seen so far.  */
+             boolean best_match_p;
+
+             /* AIX compiler got confused when this was combined
+                with the previous declaration.  */
+             if (same_str_p)
+               best_match_p = d > match_end;
+             else
+               best_match_p = !MATCHING_IN_FIRST_STRING;
+
+              DEBUG_PRINT1 ("backtracking.\n");
+
+              if (!FAIL_STACK_EMPTY ())
+                { /* More failure points to try.  */
+
+                  /* If exceeds best match so far, save it.  */
+                  if (!best_regs_set || best_match_p)
+                    {
+                      best_regs_set = true;
+                      match_end = d;
+
+                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
+
+                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
+                        {
+                          best_regstart[mcnt] = regstart[mcnt];
+                          best_regend[mcnt] = regend[mcnt];
+                        }
+                    }
+                  goto fail;
+                }
+
+              /* If no failure points, don't restore garbage.  And if
+                 last match is real best match, don't restore second
+                 best one. */
+              else if (best_regs_set && !best_match_p)
+                {
+               restore_best_regs:
+                  /* Restore best match.  It may happen that `dend ==
+                     end_match_1' while the restored d is in string2.
+                     For example, the pattern `x.*y.*z' against the
+                     strings `x-' and `y-z-', if the two strings are
+                     not consecutive in memory.  */
+                  DEBUG_PRINT1 ("Restoring best registers.\n");
+
+                  d = match_end;
+                  dend = ((d >= string1 && d <= end1)
+                          ? end_match_1 : end_match_2);
+
+                 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
                    {
-                     regs->start[mcnt] = -1;
-                     regs->end[mcnt] = -1;
-                     continue;
+                     regstart[mcnt] = best_regstart[mcnt];
+                     regend[mcnt] = best_regend[mcnt];
                    }
-                 if (regstart_seg1[mcnt])
-                   regs->start[mcnt] = regstart[mcnt] - string1;
-                 else
-                   regs->start[mcnt] = regstart[mcnt] - string2 + size1;
-                 if (regend_seg1[mcnt])
-                   regs->end[mcnt] = regend[mcnt] - string1;
-                 else
-                   regs->end[mcnt] = regend[mcnt] - string2 + size1;
+                }
+            } /* d != end_match_2 */
+
+       succeed_label:
+          DEBUG_PRINT1 ("Accepting match.\n");
+
+          /* If caller wants register contents data back, do it.  */
+          if (regs && !bufp->no_sub)
+           {
+              /* Have the register data arrays been allocated?  */
+              if (bufp->regs_allocated == REGS_UNALLOCATED)
+                { /* No.  So allocate them with malloc.  We need one
+                     extra element beyond `num_regs' for the `-1' marker
+                     GNU code uses.  */
+                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
+                  regs->start = TALLOC (regs->num_regs, regoff_t);
+                  regs->end = TALLOC (regs->num_regs, regoff_t);
+                  if (regs->start == NULL || regs->end == NULL)
+                   {
+                     FREE_VARIABLES ();
+                     return -2;
+                   }
+                  bufp->regs_allocated = REGS_REALLOCATE;
+                }
+              else if (bufp->regs_allocated == REGS_REALLOCATE)
+                { /* Yes.  If we need more elements than were already
+                     allocated, reallocate them.  If we need fewer, just
+                     leave it alone.  */
+                  if (regs->num_regs < num_regs + 1)
+                    {
+                      regs->num_regs = num_regs + 1;
+                      RETALLOC (regs->start, regs->num_regs, regoff_t);
+                      RETALLOC (regs->end, regs->num_regs, regoff_t);
+                      if (regs->start == NULL || regs->end == NULL)
+                       {
+                         FREE_VARIABLES ();
+                         return -2;
+                       }
+                    }
+                }
+              else
+               {
+                 /* These braces fend off a "empty body in an else-statement"
+                    warning under GCC when assert expands to nothing.  */
+                 assert (bufp->regs_allocated == REGS_FIXED);
+               }
+
+              /* Convert the pointer data in `regstart' and `regend' to
+                 indices.  Register zero has to be set differently,
+                 since we haven't kept track of any info for it.  */
+              if (regs->num_regs > 0)
+                {
+                  regs->start[0] = pos;
+                  regs->end[0] = (MATCHING_IN_FIRST_STRING
+                                 ? ((regoff_t) (d - string1))
+                                 : ((regoff_t) (d - string2 + size1)));
+                }
+
+              /* Go through the first `min (num_regs, regs->num_regs)'
+                 registers, since that is all we initialized.  */
+             for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
+                  mcnt++)
+               {
+                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
+                    regs->start[mcnt] = regs->end[mcnt] = -1;
+                  else
+                    {
+                     regs->start[mcnt]
+                       = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
+                      regs->end[mcnt]
+                       = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
+                    }
+               }
+
+              /* If the regs structure we return has more elements than
+                 were in the pattern, set the extra elements to -1.  If
+                 we (re)allocated the registers, this is the case,
+                 because we always allocate enough to have at least one
+                 -1 at the end.  */
+              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
+                regs->start[mcnt] = regs->end[mcnt] = -1;
+           } /* regs && !bufp->no_sub */
+
+          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
+                        nfailure_points_pushed, nfailure_points_popped,
+                        nfailure_points_pushed - nfailure_points_popped);
+          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
+
+          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
+                           ? string1
+                           : string2 - size1);
+
+          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
+
+          FREE_VARIABLES ();
+          return mcnt;
+        }
+
+      /* Otherwise match next pattern command.  */
+      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
+       {
+        /* Ignore these.  Used to ignore the n of succeed_n's which
+           currently have n == 0.  */
+        case no_op:
+          DEBUG_PRINT1 ("EXECUTING no_op.\n");
+          break;
+
+       case succeed:
+          DEBUG_PRINT1 ("EXECUTING succeed.\n");
+         goto succeed_label;
+
+        /* Match the next n pattern characters exactly.  The following
+           byte in the pattern defines n, and the n bytes after that
+           are the characters to match.  */
+       case exactn:
+         mcnt = *p++;
+          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
+
+          /* This is written out as an if-else so we don't waste time
+             testing `translate' inside the loop.  */
+          if (translate)
+           {
+             do
+               {
+                 PREFETCH ();
+                 if ((unsigned char) translate[(unsigned char) *d++]
+                     != (unsigned char) *p++)
+                    goto fail;
                }
+             while (--mcnt);
            }
-         if (dend == end_match_1)
-           return (d - string1 - pos);
          else
-           return d - string2 + size1 - pos;
-       }
+           {
+             do
+               {
+                 PREFETCH ();
+                 if (*d++ != (char) *p++) goto fail;
+               }
+             while (--mcnt);
+           }
+         SET_REGS_MATCHED ();
+          break;
 
-      /* Otherwise match next pattern command */
-#ifdef SWITCH_ENUM_BUG
-      switch ((int) ((enum regexpcode) *p++))
-#else
-      switch ((enum regexpcode) *p++)
-#endif
-       {
 
-       /* \( is represented by a start_memory, \) by a stop_memory.
-           Both of those commands contain a "register number" argument.
-           The text matched within the \( and \) is recorded under that number.
-           Then, \<digit> turns into a `duplicate' command which
-           is followed by the numeric value of <digit> as the register number. */
+        /* Match any character except possibly a newline or a null.  */
+       case anychar:
+          DEBUG_PRINT1 ("EXECUTING anychar.\n");
 
-       case start_memory:
-         regstart[*p] = d;
-         regstart_seg1[*p++] = (dend == end_match_1);
+          PREFETCH ();
+
+          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
+              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
+           goto fail;
+
+          SET_REGS_MATCHED ();
+          DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
+          d++;
          break;
 
+
+       case charset:
+       case charset_not:
+         {
+           register unsigned char c;
+           boolean not = (re_opcode_t) *(p - 1) == charset_not;
+
+            DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
+
+           PREFETCH ();
+           c = TRANSLATE (*d); /* The character to match.  */
+
+            /* Cast to `unsigned' instead of `unsigned char' in case the
+               bit list is a full 32 bytes long.  */
+           if (c < (unsigned) (*p * BYTEWIDTH)
+               && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+             not = !not;
+
+           p += 1 + *p;
+
+           if (!not) goto fail;
+
+           SET_REGS_MATCHED ();
+            d++;
+           break;
+         }
+
+
+        /* The beginning of a group is represented by start_memory.
+           The arguments are the register number in the next byte, and the
+           number of groups inner to this one in the next.  The text
+           matched within the group is recorded (in the internal
+           registers data structure) under the register number.  */
+        case start_memory:
+         DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
+
+          /* Find out if this group can match the empty string.  */
+         p1 = p;               /* To send to group_match_null_string_p.  */
+
+          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
+            REG_MATCH_NULL_STRING_P (reg_info[*p])
+              = group_match_null_string_p (&p1, pend, reg_info);
+
+          /* Save the position in the string where we were the last time
+             we were at this open-group operator in case the group is
+             operated upon by a repetition operator, e.g., with `(a*)*b'
+             against `ab'; then we want to ignore where we are now in
+             the string in case this attempt to match fails.  */
+          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
+                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
+                             : regstart[*p];
+         DEBUG_PRINT2 ("  old_regstart: %d\n",
+                        POINTER_TO_OFFSET (old_regstart[*p]));
+
+          regstart[*p] = d;
+         DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
+
+          IS_ACTIVE (reg_info[*p]) = 1;
+          MATCHED_SOMETHING (reg_info[*p]) = 0;
+
+         /* Clear this whenever we change the register activity status.  */
+         set_regs_matched_done = 0;
+
+          /* This is the new highest active register.  */
+          highest_active_reg = *p;
+
+          /* If nothing was active before, this is the new lowest active
+             register.  */
+          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+            lowest_active_reg = *p;
+
+          /* Move past the register number and inner group count.  */
+          p += 2;
+         just_past_start_mem = p;
+
+          break;
+
+
+        /* The stop_memory opcode represents the end of a group.  Its
+           arguments are the same as start_memory's: the register
+           number, and the number of inner groups.  */
        case stop_memory:
-         regend[*p] = d;
-         regend_seg1[*p++] = (dend == end_match_1);
-         break;
+         DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
+
+          /* We need to save the string position the last time we were at
+             this close-group operator in case the group is operated
+             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
+             against `aba'; then we want to ignore where we are now in
+             the string in case this attempt to match fails.  */
+          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
+                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
+                          : regend[*p];
+         DEBUG_PRINT2 ("      old_regend: %d\n",
+                        POINTER_TO_OFFSET (old_regend[*p]));
+
+          regend[*p] = d;
+         DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
+
+          /* This register isn't active anymore.  */
+          IS_ACTIVE (reg_info[*p]) = 0;
+
+         /* Clear this whenever we change the register activity status.  */
+         set_regs_matched_done = 0;
+
+          /* If this was the only register active, nothing is active
+             anymore.  */
+          if (lowest_active_reg == highest_active_reg)
+            {
+              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+            }
+          else
+            { /* We must scan for the new highest active register, since
+                 it isn't necessarily one less than now: consider
+                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
+                 new highest active register is 1.  */
+              unsigned char r = *p - 1;
+              while (r > 0 && !IS_ACTIVE (reg_info[r]))
+                r--;
+
+              /* If we end up at register zero, that means that we saved
+                 the registers as the result of an `on_failure_jump', not
+                 a `start_memory', and we jumped to past the innermost
+                 `stop_memory'.  For example, in ((.)*) we save
+                 registers 1 and 2 as a result of the *, but when we pop
+                 back to the second ), we are at the stop_memory 1.
+                 Thus, nothing is active.  */
+             if (r == 0)
+                {
+                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+                }
+              else
+                highest_active_reg = r;
+            }
+
+          /* If just failed to match something this time around with a
+             group that's operated on by a repetition operator, try to
+             force exit from the ``loop'', and restore the register
+             information for this group that we had before trying this
+             last match.  */
+          if ((!MATCHED_SOMETHING (reg_info[*p])
+               || just_past_start_mem == p - 1)
+             && (p + 2) < pend)
+            {
+              boolean is_a_jump_n = false;
+
+              p1 = p + 2;
+              mcnt = 0;
+              switch ((re_opcode_t) *p1++)
+                {
+                  case jump_n:
+                   is_a_jump_n = true;
+                  case pop_failure_jump:
+                 case maybe_pop_jump:
+                 case jump:
+                 case dummy_failure_jump:
+                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+                   if (is_a_jump_n)
+                     p1 += 2;
+                    break;
+
+                  default:
+                    /* do nothing */ ;
+                }
+             p1 += mcnt;
+
+              /* If the next operation is a jump backwards in the pattern
+                to an on_failure_jump right before the start_memory
+                 corresponding to this stop_memory, exit from the loop
+                 by forcing a failure after pushing on the stack the
+                 on_failure_jump's jump in the pattern, and d.  */
+              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
+                  && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
+               {
+                  /* If this group ever matched anything, then restore
+                     what its registers were before trying this last
+                     failed match, e.g., with `(a*)*b' against `ab' for
+                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
+                     against `aba' for regend[3].
 
-       case duplicate:
+                     Also restore the registers for inner groups for,
+                     e.g., `((a*)(b*))*' against `aba' (register 3 would
+                     otherwise get trashed).  */
+
+                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
+                   {
+                     unsigned r;
+
+                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
+
+                     /* Restore this and inner groups' (if any) registers.  */
+                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
+                          r++)
+                        {
+                          regstart[r] = old_regstart[r];
+
+                          /* xx why this test?  */
+                          if (old_regend[r] >= regstart[r])
+                            regend[r] = old_regend[r];
+                        }
+                    }
+                 p1++;
+                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
+
+                  goto fail;
+                }
+            }
+
+          /* Move past the register number and the inner group count.  */
+          p += 2;
+          break;
+
+
+       /* \<digit> has been turned into a `duplicate' command which is
+           followed by the numeric value of <digit> as the register number.  */
+        case duplicate:
          {
-           int regno = *p++;   /* Get which register to match against */
-           register unsigned char *d2, *dend2;
+           register const char *d2, *dend2;
+           int regno = *p++;   /* Get which register to match against.  */
+           DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
+
+           /* Can't back reference a group which we've never matched.  */
+            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
+              goto fail;
+
+            /* Where in input to try to start matching.  */
+            d2 = regstart[regno];
+
+            /* Where to stop matching; if both the place to start and
+               the place to stop matching are in the same string, then
+               set to the place to stop, otherwise, for now have to use
+               the end of the first string.  */
 
-           d2 = regstart[regno];
-           dend2 = ((regstart_seg1[regno] == regend_seg1[regno])
+            dend2 = ((FIRST_STRING_P (regstart[regno])
+                     == FIRST_STRING_P (regend[regno]))
                     ? regend[regno] : end_match_1);
-           while (1)
+           for (;;)
              {
-               /* Advance to next segment in register contents, if necessary */
+               /* If necessary, advance to next segment in register
+                   contents.  */
                while (d2 == dend2)
                  {
                    if (dend2 == end_match_2) break;
                    if (dend2 == regend[regno]) break;
-                   d2 = string2, dend2 = regend[regno];  /* end of string1 => advance to string2. */
+
+                    /* End of string1 => advance to string2. */
+                    d2 = string2;
+                    dend2 = regend[regno];
                  }
                /* At end of register contents => success */
                if (d2 == dend2) break;
 
-               /* Advance to next segment in data being matched, if necessary */
-               PREFETCH;
+               /* If necessary, advance to next segment in data.  */
+               PREFETCH ();
 
-               /* mcnt gets # consecutive chars to compare */
+               /* How many characters left in this segment to match.  */
                mcnt = dend - d;
-               if (mcnt > dend2 - d2)
+
+               /* Want how many consecutive characters we can match in
+                   one shot, so, if necessary, adjust the count.  */
+                if (mcnt > dend2 - d2)
                  mcnt = dend2 - d2;
-               /* Compare that many; failure if mismatch, else skip them. */
-               if (translate ? memcmp_translate (d, d2, mcnt, translate) : memcmp (d, d2, mcnt))
+
+               /* Compare that many; failure if mismatch, else move
+                   past them.  */
+               if (translate
+                    ? bcmp_translate (d, d2, mcnt, translate)
+                    : memcmp (d, d2, mcnt))
                  goto fail;
                d += mcnt, d2 += mcnt;
+
+               /* Do this because we've match some characters.  */
+               SET_REGS_MATCHED ();
              }
          }
          break;
 
-       case anychar:
-         /* fetch a data character */
-         PREFETCH;
-         /* Match anything but a newline.  */
-         if ((translate ? translate[*d++] : *d++) == '\n')
-           goto fail;
-         break;
 
-       case charset:
-       case charset_not:
-         {
-           /* Nonzero for charset_not */
-           int not = 0;
-           register int c;
-           if (*(p - 1) == (unsigned char) charset_not)
-             not = 1;
+        /* begline matches the empty string at the beginning of the string
+           (unless `not_bol' is set in `bufp'), and, if
+           `newline_anchor' is set, after newlines.  */
+       case begline:
+          DEBUG_PRINT1 ("EXECUTING begline.\n");
 
-           /* fetch a data character */
-           PREFETCH;
+          if (AT_STRINGS_BEG (d))
+            {
+              if (!bufp->not_bol) break;
+            }
+          else if (d[-1] == '\n' && bufp->newline_anchor)
+            {
+              break;
+            }
+          /* In all other cases, we fail.  */
+          goto fail;
 
-           if (translate)
-             c = translate [*d];
-           else
-             c = *d;
 
-           if (c < *p * BYTEWIDTH
-               && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
-             not = !not;
+        /* endline is the dual of begline.  */
+       case endline:
+          DEBUG_PRINT1 ("EXECUTING endline.\n");
+
+          if (AT_STRINGS_END (d))
+            {
+              if (!bufp->not_eol) break;
+            }
+
+          /* We have to ``prefetch'' the next character.  */
+          else if ((d == end1 ? *string2 : *d) == '\n'
+                   && bufp->newline_anchor)
+            {
+              break;
+            }
+          goto fail;
+
+
+       /* Match at the very beginning of the data.  */
+        case begbuf:
+          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
+          if (AT_STRINGS_BEG (d))
+            break;
+          goto fail;
+
+
+       /* Match at the very end of the data.  */
+        case endbuf:
+          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
+         if (AT_STRINGS_END (d))
+           break;
+          goto fail;
+
+
+        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
+           pushes NULL as the value for the string on the stack.  Then
+           `pop_failure_point' will keep the current value for the
+           string, instead of restoring it.  To see why, consider
+           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
+           then the . fails against the \n.  But the next thing we want
+           to do is match the \n against the \n; if we restored the
+           string value, we would be back at the foo.
+
+           Because this is used only in specific cases, we don't need to
+           check all the things that `on_failure_jump' does, to make
+           sure the right things get saved on the stack.  Hence we don't
+           share its code.  The only reason to push anything on the
+           stack at all is that otherwise we would have to change
+           `anychar's code to do something besides goto fail in this
+           case; that seems worse than this.  */
+        case on_failure_keep_string_jump:
+          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
+
+          EXTRACT_NUMBER_AND_INCR (mcnt, p);
+#ifdef _LIBC
+          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
+#else
+          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
+#endif
 
-           p += 1 + *p;
+          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
+          break;
 
-           if (!not) goto fail;
-           d++;
-           break;
-         }
 
-       case begline:
-         if (d == string1 || d[-1] == '\n')
-           break;
-         goto fail;
+       /* Uses of on_failure_jump:
 
-       case endline:
-         if (d == end2
-             || (d == end1 ? (size2 == 0 || *string2 == '\n') : *d == '\n'))
-           break;
-         goto fail;
+           Each alternative starts with an on_failure_jump that points
+           to the beginning of the next alternative.  Each alternative
+           except the last ends with a jump that in effect jumps past
+           the rest of the alternatives.  (They really jump to the
+           ending jump of the following alternative, because tensioning
+           these jumps is a hassle.)
 
-       /* "or" constructs ("|") are handled by starting each alternative
-           with an on_failure_jump that points to the start of the next alternative.
-           Each alternative except the last ends with a jump to the joining point.
-           (Actually, each jump except for the last one really jumps
-            to the following jump, because tensioning the jumps is a hassle.) */
+           Repeats start with an on_failure_jump that points past both
+           the repetition text and either the following jump or
+           pop_failure_jump back to this on_failure_jump.  */
+       case on_failure_jump:
+        on_failure:
+          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
 
-       /* The start of a stupid repeat has an on_failure_jump that points
-          past the end of the repeat text.
-          This makes a failure point so that, on failure to match a repetition,
-          matching restarts past as many repetitions have been found
-          with no way to fail and look for another one.  */
+          EXTRACT_NUMBER_AND_INCR (mcnt, p);
+#ifdef _LIBC
+          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
+#else
+          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
+#endif
 
-       /* A smart repeat is similar but loops back to the on_failure_jump
-          so that each repetition makes another failure point. */
+          /* If this on_failure_jump comes right before a group (i.e.,
+             the original * applied to a group), save the information
+             for that group and all inner ones, so that if we fail back
+             to this point, the group's information will be correct.
+             For example, in \(a*\)*\1, we need the preceding group,
+             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
+
+          /* We can't use `p' to check ahead because we push
+             a failure point to `p + mcnt' after we do this.  */
+          p1 = p;
+
+          /* We need to skip no_op's before we look for the
+             start_memory in case this on_failure_jump is happening as
+             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
+             against aba.  */
+          while (p1 < pend && (re_opcode_t) *p1 == no_op)
+            p1++;
+
+          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
+            {
+              /* We have a new highest active register now.  This will
+                 get reset at the start_memory we are about to get to,
+                 but we will have saved all the registers relevant to
+                 this repetition op, as described above.  */
+              highest_active_reg = *(p1 + 1) + *(p1 + 2);
+              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+                lowest_active_reg = *(p1 + 1);
+            }
+
+          DEBUG_PRINT1 (":\n");
+          PUSH_FAILURE_POINT (p + mcnt, d, -2);
+          break;
+
+
+        /* A smart repeat ends with `maybe_pop_jump'.
+          We change it to either `pop_failure_jump' or `jump'.  */
+        case maybe_pop_jump:
+          EXTRACT_NUMBER_AND_INCR (mcnt, p);
+          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
+          {
+           register unsigned char *p2 = p;
 
-       case on_failure_jump:
-         if (stackp == stacke)
-           {
-             unsigned char **stackx;
-             if (stacke - stackb > re_max_failures * 2)
-               return -2;
-             stackx = (unsigned char **) alloca (2 * (stacke - stackb)
-                                        * sizeof (char *));
-             memcpy (stackx, stackb, (stacke - stackb) * sizeof (char *));
-             stackp = stackx + (stackp - stackb);
-             stacke = stackx + 2 * (stacke - stackb);
-             stackb = stackx;
-           }
-         mcnt = *p++ & 0377;
-         mcnt += SIGN_EXTEND_CHAR (*(char *)p) << 8;
-         p++;
-         *stackp++ = mcnt + p;
-         *stackp++ = d;
-         break;
+            /* Compare the beginning of the repeat with what in the
+               pattern follows its end. If we can establish that there
+               is nothing that they would both match, i.e., that we
+               would have to backtrack because of (as in, e.g., `a*a')
+               then we can change to pop_failure_jump, because we'll
+               never have to backtrack.
+
+               This is not true in the case of alternatives: in
+               `(a|ab)*' we do need to backtrack to the `ab' alternative
+               (e.g., if the string was `ab').  But instead of trying to
+               detect that here, the alternative has put on a dummy
+               failure point which is what we will end up popping.  */
+
+           /* Skip over open/close-group commands.
+              If what follows this loop is a ...+ construct,
+              look at what begins its body, since we will have to
+              match at least one of that.  */
+           while (1)
+             {
+               if (p2 + 2 < pend
+                   && ((re_opcode_t) *p2 == stop_memory
+                       || (re_opcode_t) *p2 == start_memory))
+                 p2 += 3;
+               else if (p2 + 6 < pend
+                        && (re_opcode_t) *p2 == dummy_failure_jump)
+                 p2 += 6;
+               else
+                 break;
+             }
 
-       /* The end of a smart repeat has an maybe_finalize_jump back.
-          Change it either to a finalize_jump or an ordinary jump. */
+           p1 = p + mcnt;
+           /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
+              to the `maybe_finalize_jump' of this case.  Examine what
+              follows.  */
 
-       case maybe_finalize_jump:
-         mcnt = *p++ & 0377;
-         mcnt += SIGN_EXTEND_CHAR (*(char *)p) << 8;
-         p++;
-         {
-           register unsigned char *p2 = p;
-           /* Compare what follows with the begining of the repeat.
-              If we can establish that there is nothing that they would
-              both match, we can change to finalize_jump */
-           while (p2 != pend
-                  && (*p2 == (unsigned char) stop_memory
-                      || *p2 == (unsigned char) start_memory))
-             p2++;
-           if (p2 == pend)
-             p[-3] = (unsigned char) finalize_jump;
-           else if (*p2 == (unsigned char) exactn
-                    || *p2 == (unsigned char) endline)
+            /* If we're at the end of the pattern, we can change.  */
+            if (p2 == pend)
+             {
+               /* Consider what happens when matching ":\(.*\)"
+                  against ":/".  I don't really understand this code
+                  yet.  */
+               p[-3] = (unsigned char) pop_failure_jump;
+                DEBUG_PRINT1
+                  ("  End of pattern: change to `pop_failure_jump'.\n");
+              }
+
+            else if ((re_opcode_t) *p2 == exactn
+                    || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
              {
-               register int c = *p2 == (unsigned char) endline ? '\n' : p2[2];
-               register unsigned char *p1 = p + mcnt;
-               /* p1[0] ... p1[2] are an on_failure_jump.
-                  Examine what follows that */
-               if (p1[3] == (unsigned char) exactn && p1[5] != c)
-                 p[-3] = (unsigned char) finalize_jump;
-               else if (p1[3] == (unsigned char) charset
-                        || p1[3] == (unsigned char) charset_not)
+               register unsigned char c
+                  = *p2 == (unsigned char) endline ? '\n' : p2[2];
+
+                if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
+                  {
+                   p[-3] = (unsigned char) pop_failure_jump;
+                    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
+                                  c, p1[5]);
+                  }
+
+               else if ((re_opcode_t) p1[3] == charset
+                        || (re_opcode_t) p1[3] == charset_not)
                  {
-                   int not = p1[3] == (unsigned char) charset_not;
-                   if (c < p1[4] * BYTEWIDTH
+                   int not = (re_opcode_t) p1[3] == charset_not;
+
+                   if (c < (unsigned char) (p1[4] * BYTEWIDTH)
                        && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
                      not = !not;
-                   /* not is 1 if c would match */
-                   /* That means it is not safe to finalize */
+
+                    /* `not' is equal to 1 if c would match, which means
+                        that we can't change to pop_failure_jump.  */
                    if (!not)
-                     p[-3] = (unsigned char) finalize_jump;
+                      {
+                       p[-3] = (unsigned char) pop_failure_jump;
+                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
+                      }
+                 }
+             }
+            else if ((re_opcode_t) *p2 == charset)
+             {
+#ifdef DEBUG
+               register unsigned char c
+                  = *p2 == (unsigned char) endline ? '\n' : p2[2];
+#endif
+
+#if 0
+                if ((re_opcode_t) p1[3] == exactn
+                   && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
+                         && (p2[2 + p1[5] / BYTEWIDTH]
+                             & (1 << (p1[5] % BYTEWIDTH)))))
+#else
+                if ((re_opcode_t) p1[3] == exactn
+                   && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
+                         && (p2[2 + p1[4] / BYTEWIDTH]
+                             & (1 << (p1[4] % BYTEWIDTH)))))
+#endif
+                  {
+                   p[-3] = (unsigned char) pop_failure_jump;
+                    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
+                                  c, p1[5]);
+                  }
+
+               else if ((re_opcode_t) p1[3] == charset_not)
+                 {
+                   int idx;
+                   /* We win if the charset_not inside the loop
+                      lists every character listed in the charset after.  */
+                   for (idx = 0; idx < (int) p2[1]; idx++)
+                     if (! (p2[2 + idx] == 0
+                            || (idx < (int) p1[4]
+                                && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
+                       break;
+
+                   if (idx == p2[1])
+                      {
+                       p[-3] = (unsigned char) pop_failure_jump;
+                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
+                      }
+                 }
+               else if ((re_opcode_t) p1[3] == charset)
+                 {
+                   int idx;
+                   /* We win if the charset inside the loop
+                      has no overlap with the one after the loop.  */
+                   for (idx = 0;
+                        idx < (int) p2[1] && idx < (int) p1[4];
+                        idx++)
+                     if ((p2[2 + idx] & p1[5 + idx]) != 0)
+                       break;
+
+                   if (idx == p2[1] || idx == p1[4])
+                      {
+                       p[-3] = (unsigned char) pop_failure_jump;
+                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
+                      }
                  }
              }
          }
-         p -= 2;
-         if (p[-1] != (unsigned char) finalize_jump)
+         p -= 2;               /* Point at relative address again.  */
+         if ((re_opcode_t) p[-1] != pop_failure_jump)
            {
              p[-1] = (unsigned char) jump;
-             goto nofinalize;
+              DEBUG_PRINT1 ("  Match => jump.\n");
+             goto unconditional_jump;
            }
+        /* Note fall through.  */
+
+
+       /* The end of a simple repeat has a pop_failure_jump back to
+           its matching on_failure_jump, where the latter will push a
+           failure point.  The pop_failure_jump takes off failure
+           points put on by this pop_failure_jump's matching
+           on_failure_jump; we got through the pattern to here from the
+           matching on_failure_jump, so didn't fail.  */
+        case pop_failure_jump:
+          {
+            /* We need to pass separate storage for the lowest and
+               highest registers, even though we don't care about the
+               actual values.  Otherwise, we will restore only one
+               register from the stack, since lowest will == highest in
+               `pop_failure_point'.  */
+            active_reg_t dummy_low_reg, dummy_high_reg;
+            unsigned char *pdummy;
+            const char *sdummy;
+
+            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
+            POP_FAILURE_POINT (sdummy, pdummy,
+                               dummy_low_reg, dummy_high_reg,
+                               reg_dummy, reg_dummy, reg_info_dummy);
+          }
+         /* Note fall through.  */
+
+       unconditional_jump:
+#ifdef _LIBC
+         DEBUG_PRINT2 ("\n%p: ", p);
+#else
+         DEBUG_PRINT2 ("\n0x%x: ", p);
+#endif
+          /* Note fall through.  */
+
+        /* Unconditionally jump (without popping any failure points).  */
+        case jump:
+         EXTRACT_NUMBER_AND_INCR (mcnt, p);    /* Get the amount to jump.  */
+          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
+         p += mcnt;                            /* Do the jump.  */
+#ifdef _LIBC
+          DEBUG_PRINT2 ("(to %p).\n", p);
+#else
+          DEBUG_PRINT2 ("(to 0x%x).\n", p);
+#endif
+         break;
 
-       /* The end of a stupid repeat has a finalize-jump
-          back to the start, where another failure point will be made
-          which will point after all the repetitions found so far. */
 
-       case finalize_jump:
-         stackp -= 2;
+        /* We need this opcode so we can detect where alternatives end
+           in `group_match_null_string_p' et al.  */
+        case jump_past_alt:
+          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
+          goto unconditional_jump;
+
+
+        /* Normally, the on_failure_jump pushes a failure point, which
+           then gets popped at pop_failure_jump.  We will end up at
+           pop_failure_jump, also, and with a pattern of, say, `a+', we
+           are skipping over the on_failure_jump, so we have to push
+           something meaningless for pop_failure_jump to pop.  */
+        case dummy_failure_jump:
+          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
+          /* It doesn't matter what we push for the string here.  What
+             the code at `fail' tests is the value for the pattern.  */
+          PUSH_FAILURE_POINT (NULL, NULL, -2);
+          goto unconditional_jump;
+
+
+        /* At the end of an alternative, we need to push a dummy failure
+           point in case we are followed by a `pop_failure_jump', because
+           we don't want the failure point for the alternative to be
+           popped.  For example, matching `(a|ab)*' against `aab'
+           requires that we match the `ab' alternative.  */
+        case push_dummy_failure:
+          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
+          /* See comments just above at `dummy_failure_jump' about the
+             two zeroes.  */
+          PUSH_FAILURE_POINT (NULL, NULL, -2);
+          break;
+
+        /* Have to succeed matching what follows at least n times.
+           After that, handle like `on_failure_jump'.  */
+        case succeed_n:
+          EXTRACT_NUMBER (mcnt, p + 2);
+          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
+
+          assert (mcnt >= 0);
+          /* Originally, this is how many times we HAVE to succeed.  */
+          if (mcnt > 0)
+            {
+               mcnt--;
+              p += 2;
+               STORE_NUMBER_AND_INCR (p, mcnt);
+#ifdef _LIBC
+               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - 2, mcnt);
+#else
+               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - 2, mcnt);
+#endif
+            }
+         else if (mcnt == 0)
+            {
+#ifdef _LIBC
+              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n", p+2);
+#else
+              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
+#endif
+             p[2] = (unsigned char) no_op;
+              p[3] = (unsigned char) no_op;
+              goto on_failure;
+            }
+          break;
+
+        case jump_n:
+          EXTRACT_NUMBER (mcnt, p + 2);
+          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
+
+          /* Originally, this is how many times we CAN jump.  */
+          if (mcnt)
+            {
+               mcnt--;
+               STORE_NUMBER (p + 2, mcnt);
+#ifdef _LIBC
+               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + 2, mcnt);
+#else
+               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + 2, mcnt);
+#endif
+              goto unconditional_jump;
+            }
+          /* If don't have to jump any more, skip over the rest of command.  */
+         else
+           p += 4;
+          break;
+
+       case set_number_at:
+         {
+            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
 
-       case jump:
-       nofinalize:
-         mcnt = *p++ & 0377;
-         mcnt += SIGN_EXTEND_CHAR (*(char *)p) << 8;
-         p += mcnt + 1;        /* The 1 compensates for missing ++ above */
-         break;
+            EXTRACT_NUMBER_AND_INCR (mcnt, p);
+            p1 = p + mcnt;
+            EXTRACT_NUMBER_AND_INCR (mcnt, p);
+#ifdef _LIBC
+            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
+#else
+            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
+#endif
+           STORE_NUMBER (p1, mcnt);
+            break;
+          }
 
-       case dummy_failure_jump:
-         if (stackp == stacke)
-           {
-             unsigned char **stackx
-               = (unsigned char **) alloca (2 * (stacke - stackb)
-                                            * sizeof (char *));
-             memcpy (stackx, stackb, (stacke - stackb) * sizeof (char *));
-             stackp = stackx + (stackp - stackb);
-             stacke = stackx + 2 * (stacke - stackb);
-             stackb = stackx;
-           }
-         *stackp++ = 0;
-         *stackp++ = 0;
-         goto nofinalize;
+#if 0
+       /* The DEC Alpha C compiler 3.x generates incorrect code for the
+          test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
+          AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
+          macro and introducing temporary variables works around the bug.  */
 
        case wordbound:
-         if (d == string1  /* Points to first char */
-             || d == end2  /* Points to end */
-             || (d == end1 && size2 == 0)) /* Points to end */
-           break;
-         if ((SYNTAX (d[-1]) == Sword)
-             != (SYNTAX (d == end1 ? *string2 : *d) == Sword))
+         DEBUG_PRINT1 ("EXECUTING wordbound.\n");
+         if (AT_WORD_BOUNDARY (d))
            break;
          goto fail;
 
        case notwordbound:
-         if (d == string1  /* Points to first char */
-             || d == end2  /* Points to end */
-             || (d == end1 && size2 == 0)) /* Points to end */
-           goto fail;
-         if ((SYNTAX (d[-1]) == Sword)
-             != (SYNTAX (d == end1 ? *string2 : *d) == Sword))
+         DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
+         if (AT_WORD_BOUNDARY (d))
            goto fail;
          break;
+#else
+       case wordbound:
+       {
+         boolean prevchar, thischar;
 
-       case wordbeg:
-         if (d == end2  /* Points to end */
-             || (d == end1 && size2 == 0) /* Points to end */
-             || SYNTAX (* (d == end1 ? string2 : d)) != Sword) /* Next char not a letter */
-           goto fail;
-         if (d == string1  /* Points to first char */
-             || SYNTAX (d[-1]) != Sword)  /* prev char not letter */
+         DEBUG_PRINT1 ("EXECUTING wordbound.\n");
+         if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
            break;
-         goto fail;
 
-       case wordend:
-         if (d == string1  /* Points to first char */
-             || SYNTAX (d[-1]) != Sword)  /* prev char not letter */
-           goto fail;
-         if (d == end2  /* Points to end */
-             || (d == end1 && size2 == 0) /* Points to end */
-             || SYNTAX (d == end1 ? *string2 : *d) != Sword) /* Next char not a letter */
+         prevchar = WORDCHAR_P (d - 1);
+         thischar = WORDCHAR_P (d);
+         if (prevchar != thischar)
            break;
          goto fail;
+       }
 
-#ifdef emacs
-       case before_dot:
-         if (((d - string2 <= (unsigned) size2)
-              ? d - bf_p2 : d - bf_p1)
-             <= point)
-           goto fail;
-         break;
+      case notwordbound:
+       {
+         boolean prevchar, thischar;
 
-       case at_dot:
-         if (((d - string2 <= (unsigned) size2)
-              ? d - bf_p2 : d - bf_p1)
-             == point)
+         DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
+         if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
            goto fail;
-         break;
 
-       case after_dot:
-         if (((d - string2 <= (unsigned) size2)
-              ? d - bf_p2 : d - bf_p1)
-             >= point)
+         prevchar = WORDCHAR_P (d - 1);
+         thischar = WORDCHAR_P (d);
+         if (prevchar != thischar)
            goto fail;
          break;
+       }
+#endif
 
-       case wordchar:
-         mcnt = (int) Sword;
-         goto matchsyntax;
+       case wordbeg:
+          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
+         if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
+           break;
+          goto fail;
+
+       case wordend:
+          DEBUG_PRINT1 ("EXECUTING wordend.\n");
+         if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
+              && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
+           break;
+          goto fail;
+
+#ifdef emacs
+       case before_dot:
+          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
+         if (PTR_CHAR_POS ((unsigned char *) d) >= point)
+           goto fail;
+         break;
+
+       case at_dot:
+          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
+         if (PTR_CHAR_POS ((unsigned char *) d) != point)
+           goto fail;
+         break;
+
+       case after_dot:
+          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
+          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
+           goto fail;
+         break;
 
        case syntaxspec:
+          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
          mcnt = *p++;
-       matchsyntax:
-         PREFETCH;
-         if (SYNTAX (*d++) != (enum syntaxcode) mcnt) goto fail;
-         break;
-         
-       case notwordchar:
+         goto matchsyntax;
+
+        case wordchar:
+          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
          mcnt = (int) Sword;
-         goto matchnotsyntax;
+        matchsyntax:
+         PREFETCH ();
+         /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
+         d++;
+         if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
+           goto fail;
+          SET_REGS_MATCHED ();
+         break;
 
        case notsyntaxspec:
+          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
          mcnt = *p++;
-       matchnotsyntax:
-         PREFETCH;
-         if (SYNTAX (*d++) == (enum syntaxcode) mcnt) goto fail;
-         break;
-#else
+         goto matchnotsyntax;
+
+        case notwordchar:
+          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
+         mcnt = (int) Sword;
+        matchnotsyntax:
+         PREFETCH ();
+         /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
+         d++;
+         if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
+           goto fail;
+         SET_REGS_MATCHED ();
+          break;
+
+#else /* not emacs */
        case wordchar:
-         PREFETCH;
-         if (SYNTAX (*d++) == 0) goto fail;
+          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
+         PREFETCH ();
+          if (!WORDCHAR_P (d))
+            goto fail;
+         SET_REGS_MATCHED ();
+          d++;
          break;
-         
+
        case notwordchar:
-         PREFETCH;
-         if (SYNTAX (*d++) != 0) goto fail;
+          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
+         PREFETCH ();
+         if (WORDCHAR_P (d))
+            goto fail;
+          SET_REGS_MATCHED ();
+          d++;
          break;
 #endif /* not emacs */
 
-       case begbuf:
-         if (d == string1)     /* Note, d cannot equal string2 */
-           break;              /* unless string1 == string2.  */
-         goto fail;
+        default:
+          abort ();
+       }
+      continue;  /* Successfully executed one pattern command; keep going.  */
 
-       case endbuf:
-         if (d == end2 || (d == end1 && size2 == 0))
-           break;
-         goto fail;
 
-       case exactn:
-         /* Match the next few pattern characters exactly.
-            mcnt is how many characters to match. */
-         mcnt = *p++;
-         if (translate)
-           {
-             do
-               {
-                 PREFETCH;
-                 if (translate[*d++] != *p++) goto fail;
-               }
-             while (--mcnt);
-           }
-         else
+    /* We goto here if a matching operation fails. */
+    fail:
+      if (!FAIL_STACK_EMPTY ())
+       { /* A restart point is known.  Restore to that state.  */
+          DEBUG_PRINT1 ("\nFAIL:\n");
+          POP_FAILURE_POINT (d, p,
+                             lowest_active_reg, highest_active_reg,
+                             regstart, regend, reg_info);
+
+          /* If this failure point is a dummy, try the next one.  */
+          if (!p)
+           goto fail;
+
+          /* If we failed to the end of the pattern, don't examine *p.  */
+         assert (p <= pend);
+          if (p < pend)
+            {
+              boolean is_a_jump_n = false;
+
+              /* If failed to a backwards jump that's part of a repetition
+                 loop, need to pop this failure point and use the next one.  */
+              switch ((re_opcode_t) *p)
+                {
+                case jump_n:
+                  is_a_jump_n = true;
+                case maybe_pop_jump:
+                case pop_failure_jump:
+                case jump:
+                  p1 = p + 1;
+                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+                  p1 += mcnt;
+
+                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
+                      || (!is_a_jump_n
+                          && (re_opcode_t) *p1 == on_failure_jump))
+                    goto fail;
+                  break;
+                default:
+                  /* do nothing */ ;
+                }
+            }
+
+          if (d >= string1 && d <= end1)
+           dend = end_match_1;
+        }
+      else
+        break;   /* Matching at this starting point really fails.  */
+    } /* for (;;) */
+
+  if (best_regs_set)
+    goto restore_best_regs;
+
+  FREE_VARIABLES ();
+
+  return -1;                           /* Failure to match.  */
+} /* re_match_2 */
+\f
+/* Subroutine definitions for re_match_2.  */
+
+
+/* We are passed P pointing to a register number after a start_memory.
+
+   Return true if the pattern up to the corresponding stop_memory can
+   match the empty string, and false otherwise.
+
+   If we find the matching stop_memory, sets P to point to one past its number.
+   Otherwise, sets P to an undefined byte less than or equal to END.
+
+   We don't handle duplicates properly (yet).  */
+
+static boolean
+group_match_null_string_p (p, end, reg_info)
+    unsigned char **p, *end;
+    register_info_type *reg_info;
+{
+  int mcnt;
+  /* Point to after the args to the start_memory.  */
+  unsigned char *p1 = *p + 2;
+
+  while (p1 < end)
+    {
+      /* Skip over opcodes that can match nothing, and return true or
+        false, as appropriate, when we get to one that can't, or to the
+         matching stop_memory.  */
+
+      switch ((re_opcode_t) *p1)
+        {
+        /* Could be either a loop or a series of alternatives.  */
+        case on_failure_jump:
+          p1++;
+          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+
+          /* If the next operation is not a jump backwards in the
+            pattern.  */
+
+         if (mcnt >= 0)
            {
-             do
-               {
-                 PREFETCH;
-                 if (*d++ != *p++) goto fail;
-               }
-             while (--mcnt);
-           }
-         break;
-       case unused:
-       case before_dot:
-       case at_dot:
-       case after_dot:
-       case syntaxspec:
-       case notsyntaxspec:
+              /* Go through the on_failure_jumps of the alternatives,
+                 seeing if any of the alternatives cannot match nothing.
+                 The last alternative starts with only a jump,
+                 whereas the rest start with on_failure_jump and end
+                 with a jump, e.g., here is the pattern for `a|b|c':
+
+                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
+                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
+                 /exactn/1/c
+
+                 So, we have to first go through the first (n-1)
+                 alternatives and then deal with the last one separately.  */
+
+
+              /* Deal with the first (n-1) alternatives, which start
+                 with an on_failure_jump (see above) that jumps to right
+                 past a jump_past_alt.  */
+
+              while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
+                {
+                  /* `mcnt' holds how many bytes long the alternative
+                     is, including the ending `jump_past_alt' and
+                     its number.  */
+
+                  if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
+                                                     reg_info))
+                    return false;
+
+                  /* Move to right after this alternative, including the
+                    jump_past_alt.  */
+                  p1 += mcnt;
+
+                  /* Break if it's the beginning of an n-th alternative
+                     that doesn't begin with an on_failure_jump.  */
+                  if ((re_opcode_t) *p1 != on_failure_jump)
+                    break;
+
+                 /* Still have to check that it's not an n-th
+                    alternative that starts with an on_failure_jump.  */
+                 p1++;
+                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+                  if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
+                    {
+                     /* Get to the beginning of the n-th alternative.  */
+                      p1 -= 3;
+                      break;
+                    }
+                }
+
+              /* Deal with the last alternative: go back and get number
+                 of the `jump_past_alt' just before it.  `mcnt' contains
+                 the length of the alternative.  */
+              EXTRACT_NUMBER (mcnt, p1 - 2);
+
+              if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
+                return false;
+
+              p1 += mcnt;      /* Get past the n-th alternative.  */
+            } /* if mcnt > 0 */
+          break;
+
+
+        case stop_memory:
+         assert (p1[1] == **p);
+          *p = p1 + 2;
+          return true;
+
+
+        default:
+          if (!common_op_match_null_string_p (&p1, end, reg_info))
+            return false;
+        }
+    } /* while p1 < end */
+
+  return false;
+} /* group_match_null_string_p */
+
+
+/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
+   It expects P to be the first byte of a single alternative and END one
+   byte past the last. The alternative can contain groups.  */
+
+static boolean
+alt_match_null_string_p (p, end, reg_info)
+    unsigned char *p, *end;
+    register_info_type *reg_info;
+{
+  int mcnt;
+  unsigned char *p1 = p;
+
+  while (p1 < end)
+    {
+      /* Skip over opcodes that can match nothing, and break when we get
+         to one that can't.  */
+
+      switch ((re_opcode_t) *p1)
+        {
+       /* It's a loop.  */
+        case on_failure_jump:
+          p1++;
+          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+          p1 += mcnt;
+          break;
+
        default:
-         break;
-       }
-      continue;    /* Successfully matched one pattern command; keep matching */
+          if (!common_op_match_null_string_p (&p1, end, reg_info))
+            return false;
+        }
+    }  /* while p1 < end */
 
-      /* Jump here if any matching operation fails. */
-    fail:
-      if (stackp != stackb)
-       /* A restart point is known.  Restart there and pop it. */
-       {
-         if (!stackp[-2])
-           {   /* If innermost failure point is dormant, flush it and keep looking */
-             stackp -= 2;
-             goto fail;
-           }
-         d = *--stackp;
-         p = *--stackp;
-         if (d >= string1 && d <= end1)
-           dend = end_match_1;
-       }
-      else break;   /* Matching at this starting point really fails! */
-    }
-  return -1;         /* Failure to match */
-}
+  return true;
+} /* alt_match_null_string_p */
+
+
+/* Deals with the ops common to group_match_null_string_p and
+   alt_match_null_string_p.
+
+   Sets P to one after the op and its arguments, if any.  */
+
+static boolean
+common_op_match_null_string_p (p, end, reg_info)
+    unsigned char **p, *end;
+    register_info_type *reg_info;
+{
+  int mcnt;
+  boolean ret;
+  int reg_no;
+  unsigned char *p1 = *p;
+
+  switch ((re_opcode_t) *p1++)
+    {
+    case no_op:
+    case begline:
+    case endline:
+    case begbuf:
+    case endbuf:
+    case wordbeg:
+    case wordend:
+    case wordbound:
+    case notwordbound:
+#ifdef emacs
+    case before_dot:
+    case at_dot:
+    case after_dot:
+#endif
+      break;
+
+    case start_memory:
+      reg_no = *p1;
+      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
+      ret = group_match_null_string_p (&p1, end, reg_info);
+
+      /* Have to set this here in case we're checking a group which
+         contains a group and a back reference to it.  */
+
+      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
+        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
+
+      if (!ret)
+        return false;
+      break;
+
+    /* If this is an optimized succeed_n for zero times, make the jump.  */
+    case jump:
+      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+      if (mcnt >= 0)
+        p1 += mcnt;
+      else
+        return false;
+      break;
+
+    case succeed_n:
+      /* Get to the number of times to succeed.  */
+      p1 += 2;
+      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+
+      if (mcnt == 0)
+        {
+          p1 -= 4;
+          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
+          p1 += mcnt;
+        }
+      else
+        return false;
+      break;
+
+    case duplicate:
+      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
+        return false;
+      break;
+
+    case set_number_at:
+      p1 += 4;
+
+    default:
+      /* All other opcodes mean we cannot match the empty string.  */
+      return false;
+  }
+
+  *p = p1;
+  return true;
+} /* common_op_match_null_string_p */
+
+
+/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
+   bytes; nonzero otherwise.  */
 
 static int
-memcmp_translate (s1, s2, len, translate)
-     unsigned char *s1, *s2;
+bcmp_translate (s1, s2, len, translate)
+     const char *s1, *s2;
      register int len;
-     unsigned char *translate;
+     RE_TRANSLATE_TYPE translate;
 {
-  register unsigned char *p1 = s1, *p2 = s2;
+  register const unsigned char *p1 = (const unsigned char *) s1;
+  register const unsigned char *p2 = (const unsigned char *) s2;
   while (len)
     {
-      if (translate [*p1++] != translate [*p2++]) return 1;
+      if (translate[*p1++] != translate[*p2++]) return 1;
       len--;
     }
   return 0;
 }
 \f
-/* Entry points compatible with bsd4.2 regex library */
+/* Entry points for GNU code.  */
 
-#ifndef emacs
+/* re_compile_pattern is the GNU regular expression compiler: it
+   compiles PATTERN (of length SIZE) and puts the result in BUFP.
+   Returns 0 if the pattern was valid, otherwise an error string.
+
+   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
+   are set in BUFP on entry.
+
+   We call regex_compile to do the actual compilation.  */
+
+const char *
+re_compile_pattern (pattern, length, bufp)
+     const char *pattern;
+     size_t length;
+     struct re_pattern_buffer *bufp;
+{
+  reg_errcode_t ret;
 
+  /* GNU code is written to assume at least RE_NREGS registers will be set
+     (and at least one extra will be -1).  */
+  bufp->regs_allocated = REGS_UNALLOCATED;
+
+  /* And GNU code determines whether or not to get register information
+     by passing null for the REGS argument to re_match, etc., not by
+     setting no_sub.  */
+  bufp->no_sub = 0;
+
+  /* Match anchors at newline.  */
+  bufp->newline_anchor = 1;
+
+  ret = regex_compile (pattern, length, re_syntax_options, bufp);
+
+  if (!ret)
+    return NULL;
+  return gettext (re_error_msgid[(int) ret]);
+}
+#ifdef _LIBC
+weak_alias (__re_compile_pattern, re_compile_pattern)
+#endif
+\f
+/* Entry points compatible with 4.2 BSD regex library.  We don't define
+   them unless specifically requested.  */
+
+#if defined _REGEX_RE_COMP || defined _LIBC
+
+/* BSD has one and only one pattern buffer.  */
 static struct re_pattern_buffer re_comp_buf;
 
 char *
+#ifdef _LIBC
+/* Make these definitions weak in libc, so POSIX programs can redefine
+   these names if they don't use our functions, and still use
+   regcomp/regexec below without link errors.  */
+weak_function
+#endif
 re_comp (s)
-     const char *s;
+    const char *s;
 {
+  reg_errcode_t ret;
+
   if (!s)
     {
       if (!re_comp_buf.buffer)
-       return "No previous regular expression";
+       return gettext ("No previous regular expression");
       return 0;
     }
 
   if (!re_comp_buf.buffer)
     {
-      if (!(re_comp_buf.buffer = (char *) malloc (200)))
-       return "Memory exhausted";
+      re_comp_buf.buffer = (unsigned char *) malloc (200);
+      if (re_comp_buf.buffer == NULL)
+        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
       re_comp_buf.allocated = 200;
-      if (!(re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH)))
-       return "Memory exhausted";
+
+      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
+      if (re_comp_buf.fastmap == NULL)
+       return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
     }
-  return re_compile_pattern (s, strlen (s), &re_comp_buf);
+
+  /* Since `re_exec' always passes NULL for the `regs' argument, we
+     don't need to initialize the pattern buffer fields which affect it.  */
+
+  /* Match anchors at newlines.  */
+  re_comp_buf.newline_anchor = 1;
+
+  ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
+
+  if (!ret)
+    return NULL;
+
+  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
+  return (char *) gettext (re_error_msgid[(int) ret]);
 }
 
+
 int
+#ifdef _LIBC
+weak_function
+#endif
 re_exec (s)
-     char *s;
+    const char *s;
 {
-  int len = strlen (s);
-  return 0 <= re_search (&re_comp_buf, s, len, 0, len, 0);
+  const int len = strlen (s);
+  return
+    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
 }
 
-#endif /* emacs */
+#endif /* _REGEX_RE_COMP */
 \f
-#ifdef test
-
-#include <stdio.h>
-
-/* Indexed by a character, gives the upper case equivalent of the character */
-
-static char upcase[0400] = 
-  { 000, 001, 002, 003, 004, 005, 006, 007,
-    010, 011, 012, 013, 014, 015, 016, 017,
-    020, 021, 022, 023, 024, 025, 026, 027,
-    030, 031, 032, 033, 034, 035, 036, 037,
-    040, 041, 042, 043, 044, 045, 046, 047,
-    050, 051, 052, 053, 054, 055, 056, 057,
-    060, 061, 062, 063, 064, 065, 066, 067,
-    070, 071, 072, 073, 074, 075, 076, 077,
-    0100, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
-    0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
-    0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
-    0130, 0131, 0132, 0133, 0134, 0135, 0136, 0137,
-    0140, 0101, 0102, 0103, 0104, 0105, 0106, 0107,
-    0110, 0111, 0112, 0113, 0114, 0115, 0116, 0117,
-    0120, 0121, 0122, 0123, 0124, 0125, 0126, 0127,
-    0130, 0131, 0132, 0173, 0174, 0175, 0176, 0177,
-    0200, 0201, 0202, 0203, 0204, 0205, 0206, 0207,
-    0210, 0211, 0212, 0213, 0214, 0215, 0216, 0217,
-    0220, 0221, 0222, 0223, 0224, 0225, 0226, 0227,
-    0230, 0231, 0232, 0233, 0234, 0235, 0236, 0237,
-    0240, 0241, 0242, 0243, 0244, 0245, 0246, 0247,
-    0250, 0251, 0252, 0253, 0254, 0255, 0256, 0257,
-    0260, 0261, 0262, 0263, 0264, 0265, 0266, 0267,
-    0270, 0271, 0272, 0273, 0274, 0275, 0276, 0277,
-    0300, 0301, 0302, 0303, 0304, 0305, 0306, 0307,
-    0310, 0311, 0312, 0313, 0314, 0315, 0316, 0317,
-    0320, 0321, 0322, 0323, 0324, 0325, 0326, 0327,
-    0330, 0331, 0332, 0333, 0334, 0335, 0336, 0337,
-    0340, 0341, 0342, 0343, 0344, 0345, 0346, 0347,
-    0350, 0351, 0352, 0353, 0354, 0355, 0356, 0357,
-    0360, 0361, 0362, 0363, 0364, 0365, 0366, 0367,
-    0370, 0371, 0372, 0373, 0374, 0375, 0376, 0377
-  };
+/* POSIX.2 functions.  Don't define these for Emacs.  */
 
-main (argc, argv)
-     int argc;
-     char **argv;
-{
-  char pat[80];
-  struct re_pattern_buffer buf;
-  int i;
-  char c;
-  char fastmap[(1 << BYTEWIDTH)];
+#ifndef emacs
 
-  /* Allow a command argument to specify the style of syntax.  */
-  if (argc > 1)
-    obscure_syntax = atoi (argv[1]);
+/* regcomp takes a regular expression as a string and compiles it.
 
-  buf.allocated = 40;
-  buf.buffer = (char *) malloc (buf.allocated);
-  buf.fastmap = fastmap;
-  buf.translate = upcase;
+   PREG is a regex_t *.  We do not expect any fields to be initialized,
+   since POSIX says we shouldn't.  Thus, we set
 
-  while (1)
-    {
-      gets (pat);
+     `buffer' to the compiled pattern;
+     `used' to the length of the compiled pattern;
+     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
+       REG_EXTENDED bit in CFLAGS is set; otherwise, to
+       RE_SYNTAX_POSIX_BASIC;
+     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
+     `fastmap' and `fastmap_accurate' to zero;
+     `re_nsub' to the number of subexpressions in PATTERN.
 
-      if (*pat)
-       {
-          re_compile_pattern (pat, strlen(pat), &buf);
+   PATTERN is the address of the pattern string.
 
-         for (i = 0; i < buf.used; i++)
-           printchar (buf.buffer[i]);
+   CFLAGS is a series of bits which affect compilation.
 
-         putchar_unfiltered ('\n');
+     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
+     use POSIX basic syntax.
 
-         printf_unfiltered ("%d allocated, %d used.\n", buf.allocated, buf.used);
+     If REG_NEWLINE is set, then . and [^...] don't match newline.
+     Also, regexec will try a match beginning after every newline.
 
-         re_compile_fastmap (&buf);
-         printf_unfiltered ("Allowed by fastmap: ");
-         for (i = 0; i < (1 << BYTEWIDTH); i++)
-           if (fastmap[i]) printchar (i);
-         putchar_unfiltered ('\n');
-       }
+     If REG_ICASE is set, then we considers upper- and lowercase
+     versions of letters to be equivalent when matching.
+
+     If REG_NOSUB is set, then when PREG is passed to regexec, that
+     routine will report only success or failure, and nothing about the
+     registers.
+
+   It returns 0 if it succeeds, nonzero if it doesn't.  (See gnu-regex.h for
+   the return codes and their meanings.)  */
+
+int
+regcomp (preg, pattern, cflags)
+    regex_t *preg;
+    const char *pattern;
+    int cflags;
+{
+  reg_errcode_t ret;
+  reg_syntax_t syntax
+    = (cflags & REG_EXTENDED) ?
+      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
+
+  /* regex_compile will allocate the space for the compiled pattern.  */
+  preg->buffer = 0;
+  preg->allocated = 0;
+  preg->used = 0;
+
+  /* Don't bother to use a fastmap when searching.  This simplifies the
+     REG_NEWLINE case: if we used a fastmap, we'd have to put all the
+     characters after newlines into the fastmap.  This way, we just try
+     every character.  */
+  preg->fastmap = 0;
+
+  if (cflags & REG_ICASE)
+    {
+      unsigned i;
 
-      gets (pat);      /* Now read the string to match against */
+      preg->translate
+       = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
+                                     * sizeof (*(RE_TRANSLATE_TYPE)0));
+      if (preg->translate == NULL)
+        return (int) REG_ESPACE;
 
-      i = re_match (&buf, pat, strlen (pat), 0, 0);
-      printf_unfiltered ("Match value %d.\n", i);
+      /* Map uppercase characters to corresponding lowercase ones.  */
+      for (i = 0; i < CHAR_SET_SIZE; i++)
+        preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
+    }
+  else
+    preg->translate = NULL;
+
+  /* If REG_NEWLINE is set, newlines are treated differently.  */
+  if (cflags & REG_NEWLINE)
+    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
+      syntax &= ~RE_DOT_NEWLINE;
+      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
+      /* It also changes the matching behavior.  */
+      preg->newline_anchor = 1;
     }
+  else
+    preg->newline_anchor = 0;
+
+  preg->no_sub = !!(cflags & REG_NOSUB);
+
+  /* POSIX says a null character in the pattern terminates it, so we
+     can use strlen here in compiling the pattern.  */
+  ret = regex_compile (pattern, strlen (pattern), syntax, preg);
+
+  /* POSIX doesn't distinguish between an unmatched open-group and an
+     unmatched close-group: both are REG_EPAREN.  */
+  if (ret == REG_ERPAREN) ret = REG_EPAREN;
+
+  return (int) ret;
 }
+#ifdef _LIBC
+weak_alias (__regcomp, regcomp)
+#endif
 
-#ifdef NOTDEF
-print_buf (bufp)
-     struct re_pattern_buffer *bufp;
+
+/* regexec searches for a given pattern, specified by PREG, in the
+   string STRING.
+
+   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
+   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
+   least NMATCH elements, and we set them to the offsets of the
+   corresponding matched substrings.
+
+   EFLAGS specifies `execution flags' which affect matching: if
+   REG_NOTBOL is set, then ^ does not match at the beginning of the
+   string; if REG_NOTEOL is set, then $ does not match at the end.
+
+   We return 0 if we find a match and REG_NOMATCH if not.  */
+
+int
+regexec (preg, string, nmatch, pmatch, eflags)
+    const regex_t *preg;
+    const char *string;
+    size_t nmatch;
+    regmatch_t pmatch[];
+    int eflags;
 {
-  int i;
-
-  printf_unfiltered ("buf is :\n----------------\n");
-  for (i = 0; i < bufp->used; i++)
-    printchar (bufp->buffer[i]);
-  
-  printf_unfiltered ("\n%d allocated, %d used.\n", bufp->allocated, bufp->used);
-  
-  printf_unfiltered ("Allowed by fastmap: ");
-  for (i = 0; i < (1 << BYTEWIDTH); i++)
-    if (bufp->fastmap[i])
-      printchar (i);
-  printf_unfiltered ("\nAllowed by translate: ");
-  if (bufp->translate)
-    for (i = 0; i < (1 << BYTEWIDTH); i++)
-      if (bufp->translate[i])
-       printchar (i);
-  printf_unfiltered ("\nfastmap is%s accurate\n", bufp->fastmap_accurate ? "" : "n't");
-  printf_unfiltered ("can %s be null\n----------", bufp->can_be_null ? "" : "not");
+  int ret;
+  struct re_registers regs;
+  regex_t private_preg;
+  int len = strlen (string);
+  boolean want_reg_info = !preg->no_sub && nmatch > 0;
+
+  private_preg = *preg;
+
+  private_preg.not_bol = !!(eflags & REG_NOTBOL);
+  private_preg.not_eol = !!(eflags & REG_NOTEOL);
+
+  /* The user has told us exactly how many registers to return
+     information about, via `nmatch'.  We have to pass that on to the
+     matching routines.  */
+  private_preg.regs_allocated = REGS_FIXED;
+
+  if (want_reg_info)
+    {
+      regs.num_regs = nmatch;
+      regs.start = TALLOC (nmatch, regoff_t);
+      regs.end = TALLOC (nmatch, regoff_t);
+      if (regs.start == NULL || regs.end == NULL)
+        return (int) REG_NOMATCH;
+    }
+
+  /* Perform the searching operation.  */
+  ret = re_search (&private_preg, string, len,
+                   /* start: */ 0, /* range: */ len,
+                   want_reg_info ? &regs : (struct re_registers *) 0);
+
+  /* Copy the register information to the POSIX structure.  */
+  if (want_reg_info)
+    {
+      if (ret >= 0)
+        {
+          unsigned r;
+
+          for (r = 0; r < nmatch; r++)
+            {
+              pmatch[r].rm_so = regs.start[r];
+              pmatch[r].rm_eo = regs.end[r];
+            }
+        }
+
+      /* If we needed the temporary register info, free the space now.  */
+      free (regs.start);
+      free (regs.end);
+    }
+
+  /* We want zero return to mean success, unlike `re_search'.  */
+  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
 }
+#ifdef _LIBC
+weak_alias (__regexec, regexec)
 #endif
 
-printchar (c)
-     char c;
+
+/* Returns a message corresponding to an error code, ERRCODE, returned
+   from either regcomp or regexec.   We don't use PREG here.  */
+
+size_t
+regerror (errcode, preg, errbuf, errbuf_size)
+    int errcode;
+    const regex_t *preg;
+    char *errbuf;
+    size_t errbuf_size;
 {
-  if (c < 041 || c >= 0177)
+  const char *msg;
+  size_t msg_size;
+
+  if (errcode < 0
+      || errcode >= (int) (sizeof (re_error_msgid)
+                          / sizeof (re_error_msgid[0])))
+    /* Only error codes returned by the rest of the code should be passed
+       to this routine.  If we are given anything else, or if other regex
+       code generates an invalid error code, then the program has a bug.
+       Dump core so we can fix it.  */
+    abort ();
+
+  msg = gettext (re_error_msgid[errcode]);
+
+  msg_size = strlen (msg) + 1; /* Includes the null.  */
+
+  if (errbuf_size != 0)
     {
-      putchar_unfiltered ('\\');
-      putchar_unfiltered (((c >> 6) & 3) + '0');
-      putchar_unfiltered (((c >> 3) & 7) + '0');
-      putchar_unfiltered ((c & 7) + '0');
+      if (msg_size > errbuf_size)
+        {
+#if defined HAVE_MEMPCPY || defined _LIBC
+         *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
+#else
+          memcpy (errbuf, msg, errbuf_size - 1);
+          errbuf[errbuf_size - 1] = 0;
+#endif
+        }
+      else
+        memcpy (errbuf, msg, msg_size);
     }
-  else
-    putchar_unfiltered (c);
+
+  return msg_size;
 }
+#ifdef _LIBC
+weak_alias (__regerror, regerror)
+#endif
+
 
-error (string)
-     char *string;
+/* Free dynamically allocated space used by PREG.  */
+
+void
+regfree (preg)
+    regex_t *preg;
 {
-  puts_unfiltered (string);
-  exit (1);
+  if (preg->buffer != NULL)
+    free (preg->buffer);
+  preg->buffer = NULL;
+
+  preg->allocated = 0;
+  preg->used = 0;
+
+  if (preg->fastmap != NULL)
+    free (preg->fastmap);
+  preg->fastmap = NULL;
+  preg->fastmap_accurate = 0;
+
+  if (preg->translate != NULL)
+    free (preg->translate);
+  preg->translate = NULL;
 }
+#ifdef _LIBC
+weak_alias (__regfree, regfree)
+#endif
 
-#endif /* test */
+#endif /* not emacs  */
This page took 0.099374 seconds and 4 git commands to generate.