* corelow.c, exec.c, inftarg.c, m3-nat.c, op50-rom.c, procfs.c,
[deliverable/binutils-gdb.git] / gdb / valops.c
index 75620d0601b7d77eee90b960b7c8cc22fede533d..100160ea0e186bbf2c2e4f1b7f8a8442812f2262 100644 (file)
 /* Perform non-arithmetic operations on values, for GDB.
-   Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
+   Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994
+   Free Software Foundation, Inc.
 
 This file is part of GDB.
 
-GDB is free software; you can redistribute it and/or modify
+This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 1, or (at your option)
-any later version.
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
 
-GDB is distributed in the hope that it will be useful,
+This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.
 
 You should have received a copy of the GNU General Public License
-along with GDB; see the file COPYING.  If not, write to
-the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */
 
-#include <stdio.h>
 #include "defs.h"
-#include "param.h"
 #include "symtab.h"
+#include "gdbtypes.h"
 #include "value.h"
 #include "frame.h"
 #include "inferior.h"
 #include "gdbcore.h"
 #include "target.h"
+#include "demangle.h"
+#include "language.h"
 
 #include <errno.h>
 
 /* Local functions.  */
-static value search_struct_field ();
+
+static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));
+
+static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
+
+static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
+
+static CORE_ADDR value_arg_push PARAMS ((CORE_ADDR, value_ptr));
+
+static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
+                                             struct type *, int));
+
+static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
+                                              value_ptr *,
+                                              int, int *, struct type *));
+
+static int check_field_in PARAMS ((struct type *, const char *));
+
+static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
+
+static value_ptr f77_cast_into_complex PARAMS ((struct type *, value_ptr));
+
+static value_ptr f77_assign_from_literal_string PARAMS ((value_ptr,
+                                                        value_ptr));
+
+static value_ptr f77_assign_from_literal_complex PARAMS ((value_ptr,
+                                                         value_ptr));
+
+#define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
+
 \f
+/* Allocate NBYTES of space in the inferior using the inferior's malloc
+   and return a value that is a pointer to the allocated space. */
+
+static CORE_ADDR
+allocate_space_in_inferior (len)
+     int len;
+{
+  register value_ptr val;
+  register struct symbol *sym;
+  struct minimal_symbol *msymbol;
+  struct type *type;
+  value_ptr blocklen;
+  LONGEST maddr;
+
+  /* Find the address of malloc in the inferior.  */
+
+  sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL);
+  if (sym != NULL)
+    {
+      if (SYMBOL_CLASS (sym) != LOC_BLOCK)
+       {
+         error ("\"malloc\" exists in this program but is not a function.");
+       }
+      val = value_of_variable (sym, NULL);
+    }
+  else
+    {
+      msymbol = lookup_minimal_symbol ("malloc", (struct objfile *) NULL);
+      if (msymbol != NULL)
+       {
+         type = lookup_pointer_type (builtin_type_char);
+         type = lookup_function_type (type);
+         type = lookup_pointer_type (type);
+         maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
+         val = value_from_longest (type, maddr);
+       }
+      else
+       {
+         error ("evaluation of this expression requires the program to have a function \"malloc\".");
+       }
+    }
+
+  blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
+  val = call_function_by_hand (val, 1, &blocklen);
+  if (value_logical_not (val))
+    {
+      error ("No memory available to program.");
+    }
+  return (value_as_long (val));
+}
+
 /* Cast value ARG2 to type TYPE and return as a value.
    More general than a C cast: accepts any two types of the same length,
    and if ARG2 is an lvalue it can be cast into anything at all.  */
-/* In C++, casts may change pointer representations.  */
+/* In C++, casts may change pointer or object representations.  */
 
-value
+value_ptr
 value_cast (type, arg2)
      struct type *type;
-     register value arg2;
+     register value_ptr arg2;
 {
   register enum type_code code1;
   register enum type_code code2;
@@ -53,14 +135,37 @@ value_cast (type, arg2)
 
   code1 = TYPE_CODE (type);
   code2 = TYPE_CODE (VALUE_TYPE (arg2));
+
+  if (code1 == TYPE_CODE_COMPLEX) 
+    return f77_cast_into_complex (type, arg2); 
+  if (code1 == TYPE_CODE_BOOL) 
+    code1 = TYPE_CODE_INT; 
+  if (code2 == TYPE_CODE_BOOL) 
+    code2 = TYPE_CODE_INT; 
+
   scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
            || code2 == TYPE_CODE_ENUM);
 
+  if (   code1 == TYPE_CODE_STRUCT
+      && code2 == TYPE_CODE_STRUCT
+      && TYPE_NAME (type) != 0)
+    {
+      /* Look in the type of the source to see if it contains the
+        type of the target as a superclass.  If so, we'll need to
+        offset the object in addition to changing its type.  */
+      value_ptr v = search_struct_field (type_name_no_tag (type),
+                                        arg2, 0, VALUE_TYPE (arg2), 1);
+      if (v)
+       {
+         VALUE_TYPE (v) = type;
+         return v;
+       }
+    }
   if (code1 == TYPE_CODE_FLT && scalar)
     return value_from_double (type, value_as_double (arg2));
   else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM)
           && (scalar || code2 == TYPE_CODE_PTR))
-    return value_from_long (type, value_as_long (arg2));
+    return value_from_longest (type, value_as_long (arg2));
   else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2)))
     {
       if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
@@ -70,12 +175,12 @@ value_cast (type, arg2)
             offset the pointer rather than just change its type.  */
          struct type *t1 = TYPE_TARGET_TYPE (type);
          struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
-         if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
+         if (   TYPE_CODE (t1) == TYPE_CODE_STRUCT
              && TYPE_CODE (t2) == TYPE_CODE_STRUCT
              && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
            {
-             value v = search_struct_field (type_name_no_tag (t1),
-                                            value_ind (arg2), 0, t2, 1);
+             value_ptr v = search_struct_field (type_name_no_tag (t1),
+                                                value_ind (arg2), 0, t2, 1);
              if (v)
                {
                  v = value_addr (v);
@@ -92,6 +197,10 @@ value_cast (type, arg2)
     {
       return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
     }
+  else if (code1 == TYPE_CODE_VOID)
+    {
+      return value_zero (builtin_type_void, not_lval);
+    }
   else
     {
       error ("Invalid cast.");
@@ -101,14 +210,14 @@ value_cast (type, arg2)
 
 /* Create a value of type TYPE that is zero, and return it.  */
 
-value
+value_ptr
 value_zero (type, lv)
      struct type *type;
      enum lval_type lv;
 {
-  register value val = allocate_value (type);
+  register value_ptr val = allocate_value (type);
 
-  bzero (VALUE_CONTENTS (val), TYPE_LENGTH (type));
+  memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type));
   VALUE_LVAL (val) = lv;
 
   return val;
@@ -123,12 +232,17 @@ value_zero (type, lv)
    is tested in the VALUE_CONTENTS macro, which is used if and when 
    the contents are actually required.  */
 
-value
+value_ptr
 value_at (type, addr)
      struct type *type;
      CORE_ADDR addr;
 {
-  register value val = allocate_value (type);
+  register value_ptr val;
+
+  if (TYPE_CODE (type) == TYPE_CODE_VOID)
+    error ("Attempt to dereference a generic pointer.");
+
+  val = allocate_value (type);
 
   read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
 
@@ -140,12 +254,17 @@ value_at (type, addr)
 
 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).  */
 
-value
+value_ptr
 value_at_lazy (type, addr)
      struct type *type;
      CORE_ADDR addr;
 {
-  register value val = allocate_value (type);
+  register value_ptr val;
+
+  if (TYPE_CODE (type) == TYPE_CODE_VOID)
+    error ("Attempt to dereference a generic pointer.");
+
+  val = allocate_value (type);
 
   VALUE_LVAL (val) = lval_memory;
   VALUE_ADDRESS (val) = addr;
@@ -159,18 +278,22 @@ value_at_lazy (type, addr)
    data from the user's process, and clears the lazy flag to indicate
    that the data in the buffer is valid.
 
+   If the value is zero-length, we avoid calling read_memory, which would
+   abort.  We mark the value as fetched anyway -- all 0 bytes of it.
+
    This function returns a value because it is used in the VALUE_CONTENTS
    macro as part of an expression, where a void would not work.  The
    value is ignored.  */
 
 int
 value_fetch_lazy (val)
-     register value val;
+     register value_ptr val;
 {
   CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
 
-  read_memory (addr, VALUE_CONTENTS_RAW (val), 
-              TYPE_LENGTH (VALUE_TYPE (val)));
+  if (TYPE_LENGTH (VALUE_TYPE (val)))
+    read_memory (addr, VALUE_CONTENTS_RAW (val), 
+                TYPE_LENGTH (VALUE_TYPE (val)));
   VALUE_LAZY (val) = 0;
   return 0;
 }
@@ -179,18 +302,35 @@ value_fetch_lazy (val)
 /* Store the contents of FROMVAL into the location of TOVAL.
    Return a new value with the location of TOVAL and contents of FROMVAL.  */
 
-value
+value_ptr
 value_assign (toval, fromval)
-     register value toval, fromval;
+     register value_ptr toval, fromval;
 {
-  register struct type *type = VALUE_TYPE (toval);
-  register value val;
+  register struct type *type;
+  register value_ptr val;
   char raw_buffer[MAX_REGISTER_RAW_SIZE];
-  char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
   int use_buffer = 0;
 
+  if (current_language->la_language == language_fortran)
+    {
+      /* Deal with literal assignment in F77.  All composite (i.e. string
+        and complex number types) types are allocated in the superior
+        NOT the inferior.  Therefore assigment is somewhat tricky.  */
+
+      if (TYPE_CODE (VALUE_TYPE (fromval)) == TYPE_CODE_LITERAL_STRING)
+       return f77_assign_from_literal_string (toval, fromval);
+
+      if (TYPE_CODE (VALUE_TYPE (fromval)) == TYPE_CODE_LITERAL_COMPLEX)
+       return f77_assign_from_literal_complex (toval, fromval);
+    }
+
+  if (!toval->modifiable)
+    error ("Left operand of assignment is not a modifiable lvalue.");
+
   COERCE_ARRAY (fromval);
+  COERCE_REF (toval);
 
+  type = VALUE_TYPE (toval);
   if (VALUE_LVAL (toval) != lval_internalvar)
     fromval = value_cast (type, fromval);
 
@@ -199,17 +339,19 @@ value_assign (toval, fromval)
      convert FROMVAL's contents now, with result in `raw_buffer',
      and set USE_BUFFER to the number of bytes to write.  */
 
+#ifdef REGISTER_CONVERTIBLE
   if (VALUE_REGNO (toval) >= 0
       && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
     {
       int regno = VALUE_REGNO (toval);
-      if (VALUE_TYPE (fromval) != REGISTER_VIRTUAL_TYPE (regno))
-       fromval = value_cast (REGISTER_VIRTUAL_TYPE (regno), fromval);
-      bcopy (VALUE_CONTENTS (fromval), virtual_buffer,
-            REGISTER_VIRTUAL_SIZE (regno));
-      target_convert_from_virtual (regno, virtual_buffer, raw_buffer);
-      use_buffer = REGISTER_RAW_SIZE (regno);
+      if (REGISTER_CONVERTIBLE (regno))
+       {
+         REGISTER_CONVERT_TO_RAW (VALUE_TYPE (fromval), regno,
+                                  VALUE_CONTENTS (fromval), raw_buffer);
+         use_buffer = REGISTER_RAW_SIZE (regno);
+       }
     }
+#endif
 
   switch (VALUE_LVAL (toval))
     {
@@ -228,13 +370,24 @@ value_assign (toval, fromval)
     case lval_memory:
       if (VALUE_BITSIZE (toval))
        {
-         int v;                /* FIXME, this won't work for large bitfields */
+         char buffer[sizeof (LONGEST)];
+         /* We assume that the argument to read_memory is in units of
+            host chars.  FIXME:  Is that correct?  */
+         int len = (VALUE_BITPOS (toval)
+                    + VALUE_BITSIZE (toval)
+                    + HOST_CHAR_BIT - 1)
+                   / HOST_CHAR_BIT;
+
+         if (len > sizeof (LONGEST))
+           error ("Can't handle bitfields which don't fit in a %d bit word.",
+                  sizeof (LONGEST) * HOST_CHAR_BIT);
+
          read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
-                      &v, sizeof v);
-         modify_field (&v, (int) value_as_long (fromval),
+                      buffer, len);
+         modify_field (buffer, value_as_long (fromval),
                        VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
          write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
-                       (char *)&v, sizeof v);
+                       buffer, len);
        }
       else if (use_buffer)
        write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
@@ -247,21 +400,50 @@ value_assign (toval, fromval)
     case lval_register:
       if (VALUE_BITSIZE (toval))
        {
-         int v;
-
-         read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
-                              &v, sizeof v);
-         modify_field (&v, (int) value_as_long (fromval),
-                       VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
-         write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
-                               &v, sizeof v);
+         char buffer[sizeof (LONGEST)];
+          int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
+
+         if (len > sizeof (LONGEST))
+           error ("Can't handle bitfields in registers larger than %d bits.",
+                  sizeof (LONGEST) * HOST_CHAR_BIT);
+
+         if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
+             > len * HOST_CHAR_BIT)
+           /* Getting this right would involve being very careful about
+              byte order.  */
+           error ("\
+Can't handle bitfield which doesn't fit in a single register.");
+
+          read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+                               buffer, len);
+          modify_field (buffer, value_as_long (fromval),
+                        VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
+          write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+                                buffer, len);
        }
       else if (use_buffer)
        write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
                              raw_buffer, use_buffer);
       else
-       write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
-                             VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
+        {
+         /* Do any conversion necessary when storing this type to more
+            than one register.  */
+#ifdef REGISTER_CONVERT_FROM_TYPE
+         memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
+         REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
+         write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+                               raw_buffer, TYPE_LENGTH (type));
+#else
+         write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
+                               VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
+#endif
+       }
+      /* Assigning to the stack pointer, frame pointer, and other
+        (architecture and calling convention specific) registers may
+        cause the frame cache to be out of date.  We just do this
+        on all assignments to registers for simplicity; I doubt the slowdown
+        matters.  */
+      reinit_frame_cache ();
       break;
 
     case lval_reg_frame_relative:
@@ -274,7 +456,12 @@ value_assign (toval, fromval)
        int byte_offset = VALUE_OFFSET (toval) % reg_size;
        int reg_offset = VALUE_OFFSET (toval) / reg_size;
        int amount_copied;
-       char *buffer = (char *) alloca (amount_to_copy);
+
+       /* Make the buffer large enough in all cases.  */
+       char *buffer = (char *) alloca (amount_to_copy
+                                       + sizeof (LONGEST)
+                                       + MAX_REGISTER_RAW_SIZE);
+
        int regno;
        FRAME frame;
 
@@ -296,20 +483,20 @@ value_assign (toval, fromval)
             amount_copied += reg_size, regno++)
          {
            get_saved_register (buffer + amount_copied,
-                               (int *)NULL, (CORE_ADDR)NULL,
+                               (int *)NULL, (CORE_ADDR *)NULL,
                                frame, regno, (enum lval_type *)NULL);
          }
 
        /* Modify what needs to be modified.  */
        if (VALUE_BITSIZE (toval))
          modify_field (buffer + byte_offset,
-                       (int) value_as_long (fromval),
+                       value_as_long (fromval),
                        VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
        else if (use_buffer)
-         bcopy (raw_buffer, buffer + byte_offset, use_buffer);
+         memcpy (buffer + byte_offset, raw_buffer, use_buffer);
        else
-         bcopy (VALUE_CONTENTS (fromval), buffer + byte_offset,
-                TYPE_LENGTH (type));
+         memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
+                 TYPE_LENGTH (type));
 
        /* Copy it back.  */
        for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
@@ -339,7 +526,7 @@ value_assign (toval, fromval)
        
 
     default:
-      error ("Left side of = operation is not an lvalue.");
+      error ("Left operand of assignment is not an lvalue.");
     }
 
   /* Return a value just like TOVAL except with the contents of FROMVAL
@@ -352,8 +539,9 @@ value_assign (toval, fromval)
     }
 
   val = allocate_value (type);
-  bcopy (toval, val, VALUE_CONTENTS_RAW (val) - (char *) val);
-  bcopy (VALUE_CONTENTS (fromval), VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
+  memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val);
+  memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
+         TYPE_LENGTH (type));
   VALUE_TYPE (val) = type;
   
   return val;
@@ -361,12 +549,12 @@ value_assign (toval, fromval)
 
 /* Extend a value VAL to COUNT repetitions of its type.  */
 
-value
+value_ptr
 value_repeat (arg1, count)
-     value arg1;
+     value_ptr arg1;
      int count;
 {
-  register value val;
+  register value_ptr val;
 
   if (VALUE_LVAL (arg1) != lval_memory)
     error ("Only values in memory can be extended with '@'.");
@@ -384,102 +572,130 @@ value_repeat (arg1, count)
   return val;
 }
 
-value
-value_of_variable (var)
+value_ptr
+value_of_variable (var, b)
      struct symbol *var;
+     struct block *b;
 {
-  value val;
+  value_ptr val;
+  FRAME fr;
 
-  val = read_var_value (var, (FRAME) 0);
+  if (b == NULL)
+    /* Use selected frame.  */
+    fr = NULL;
+  else
+    {
+      fr = block_innermost_frame (b);
+      if (fr == NULL && symbol_read_needs_frame (var))
+       {
+         if (BLOCK_FUNCTION (b) != NULL
+             && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL)
+           error ("No frame is currently executing in block %s.",
+                  SYMBOL_NAME (BLOCK_FUNCTION (b)));
+         else
+           error ("No frame is currently executing in specified block");
+       }
+    }
+  val = read_var_value (var, fr);
   if (val == 0)
-    error ("Address of symbol \"%s\" is unknown.", SYMBOL_NAME (var));
+    error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
   return val;
 }
 
-/* Given a value which is an array, return a value which is
-   a pointer to its first element.  */
+/* Given a value which is an array, return a value which is a pointer to its
+   first element, regardless of whether or not the array has a nonzero lower
+   bound.
+
+   FIXME:  A previous comment here indicated that this routine should be
+   substracting the array's lower bound.  It's not clear to me that this
+   is correct.  Given an array subscripting operation, it would certainly
+   work to do the adjustment here, essentially computing:
 
-value
+   (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
+
+   However I believe a more appropriate and logical place to account for
+   the lower bound is to do so in value_subscript, essentially computing:
+
+   (&array[0] + ((index - lowerbound) * sizeof array[0]))
+
+   As further evidence consider what would happen with operations other
+   than array subscripting, where the caller would get back a value that
+   had an address somewhere before the actual first element of the array,
+   and the information about the lower bound would be lost because of
+   the coercion to pointer type.
+   */
+
+value_ptr
 value_coerce_array (arg1)
-     value arg1;
+     value_ptr arg1;
 {
   register struct type *type;
-  register value val;
 
   if (VALUE_LVAL (arg1) != lval_memory)
     error ("Attempt to take address of value not located in memory.");
 
   /* Get type of elements.  */
-  if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY)
+  if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY
+      || TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRING)
     type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
   else
     /* A phony array made by value_repeat.
        Its type is the type of the elements, not an array type.  */
     type = VALUE_TYPE (arg1);
 
-  /* Get the type of the result.  */
-  type = lookup_pointer_type (type);
-  val = value_from_long (builtin_type_long,
+  return value_from_longest (lookup_pointer_type (type),
                       (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
-  VALUE_TYPE (val) = type;
-  return val;
 }
 
 /* Given a value which is a function, return a value which is a pointer
    to it.  */
 
-value
+value_ptr
 value_coerce_function (arg1)
-     value arg1;
+     value_ptr arg1;
 {
-  register struct type *type;
-  register value val;
 
   if (VALUE_LVAL (arg1) != lval_memory)
     error ("Attempt to take address of value not located in memory.");
 
-  /* Get the type of the result.  */
-  type = lookup_pointer_type (VALUE_TYPE (arg1));
-  val = value_from_long (builtin_type_long,
+  return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
                (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
-  VALUE_TYPE (val) = type;
-  return val;
 }  
 
 /* Return a pointer value for the object for which ARG1 is the contents.  */
 
-value
+value_ptr
 value_addr (arg1)
-     value arg1;
+     value_ptr arg1;
 {
-  register struct type *type;
-  register value val;
-
-  COERCE_REF(arg1);
-  /* Taking the address of an array is really a no-op
-     once the array is coerced to a pointer to its first element.  */
+  struct type *type = VALUE_TYPE (arg1);
+  if (TYPE_CODE (type) == TYPE_CODE_REF)
+    {
+      /* Copy the value, but change the type from (T&) to (T*).
+        We keep the same location information, which is efficient,
+        and allows &(&X) to get the location containing the reference. */
+      value_ptr arg2 = value_copy (arg1);
+      VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
+      return arg2;
+    }
   if (VALUE_REPEATED (arg1)
-      || TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY)
+      || TYPE_CODE (type) == TYPE_CODE_ARRAY)
     return value_coerce_array (arg1);
-  if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_FUNC)
+  if (TYPE_CODE (type) == TYPE_CODE_FUNC)
     return value_coerce_function (arg1);
 
   if (VALUE_LVAL (arg1) != lval_memory)
     error ("Attempt to take address of value not located in memory.");
 
-  /* Get the type of the result.  */
-  type = lookup_pointer_type (VALUE_TYPE (arg1));
-  val = value_from_long (builtin_type_long,
+  return value_from_longest (lookup_pointer_type (type),
                (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
-  VALUE_TYPE (val) = type;
-  return val;
 }
 
 /* Given a value of a pointer type, apply the C unary * operator to it.  */
 
-value
+value_ptr
 value_ind (arg1)
-     value arg1;
+     value_ptr arg1;
 {
   COERCE_ARRAY (arg1);
 
@@ -495,7 +711,7 @@ value_ind (arg1)
                     (CORE_ADDR) value_as_long (arg1));
   else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
     return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)),
-                    (CORE_ADDR) value_as_long (arg1));
+                         value_as_pointer (arg1));
   error ("Attempt to take contents of a non-pointer value.");
   return 0;  /* For lint -- never reached */
 }
@@ -505,18 +721,19 @@ value_ind (arg1)
 /* Push one word (the size of object that a register holds).  */
 
 CORE_ADDR
-push_word (sp, buffer)
+push_word (sp, word)
      CORE_ADDR sp;
-     REGISTER_TYPE buffer;
+     unsigned LONGEST word;
 {
-  register int len = sizeof (REGISTER_TYPE);
+  register int len = REGISTER_SIZE;
+  char buffer[MAX_REGISTER_RAW_SIZE];
 
-  SWAP_TARGET_AND_HOST (&buffer, len);
+  store_unsigned_integer (buffer, len, word);
 #if 1 INNER_THAN 2
   sp -= len;
-  write_memory (sp, (char *)&buffer, len);
+  write_memory (sp, buffer, len);
 #else /* stack grows upward */
-  write_memory (sp, (char *)&buffer, len);
+  write_memory (sp, buffer, len);
   sp += len;
 #endif /* stack grows upward */
 
@@ -544,10 +761,10 @@ push_bytes (sp, buffer, len)
 
 /* Push onto the stack the specified value VALUE.  */
 
-CORE_ADDR
+static CORE_ADDR
 value_push (sp, arg)
      register CORE_ADDR sp;
-     value arg;
+     value_ptr arg;
 {
   register int len = TYPE_LENGTH (VALUE_TYPE (arg));
 
@@ -565,21 +782,37 @@ value_push (sp, arg)
 /* Perform the standard coercions that are specified
    for arguments to be passed to C functions.  */
 
-value
+value_ptr
 value_arg_coerce (arg)
-     value arg;
+     value_ptr arg;
 {
   register struct type *type;
 
-  COERCE_ENUM (arg);
+  /* FIXME: We should coerce this according to the prototype (if we have
+     one).  Right now we do a little bit of this in typecmp(), but that
+     doesn't always get called.  For example, if passing a ref to a function
+     without a prototype, we probably should de-reference it.  Currently
+     we don't.  */
+
+  if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ENUM)
+    arg = value_cast (builtin_type_unsigned_int, arg);
+
+#if 1  /* FIXME:  This is only a temporary patch.  -fnf */
+  if (VALUE_REPEATED (arg)
+      || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY)
+    arg = value_coerce_array (arg);
+  if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FUNC)
+    arg = value_coerce_function (arg);
+#endif
 
   type = VALUE_TYPE (arg);
 
   if (TYPE_CODE (type) == TYPE_CODE_INT
-      && TYPE_LENGTH (type) < sizeof (int))
+      && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
     return value_cast (builtin_type_int, arg);
 
-  if (type == builtin_type_float)
+  if (TYPE_CODE (type) == TYPE_CODE_FLT
+      && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
     return value_cast (builtin_type_double, arg);
 
   return arg;
@@ -588,10 +821,10 @@ value_arg_coerce (arg)
 /* Push the value ARG, first coercing it as an argument
    to a C function.  */
 
-CORE_ADDR
+static CORE_ADDR
 value_arg_push (sp, arg)
      register CORE_ADDR sp;
-     value arg;
+     value_ptr arg;
 {
   return value_push (sp, value_arg_coerce (arg));
 }
@@ -599,9 +832,9 @@ value_arg_push (sp, arg)
 /* Determine a function's address and its return type from its value. 
    Calls error() if the function is not valid for calling.  */
 
-CORE_ADDR
+static CORE_ADDR
 find_function_addr (function, retval_type)
-     value function;
+     value_ptr function;
      struct type **retval_type;
 {
   register struct type *ftype = VALUE_TYPE (function);
@@ -620,10 +853,18 @@ find_function_addr (function, retval_type)
     }
   else if (code == TYPE_CODE_PTR)
     {
-      funaddr = value_as_long (function);
+      funaddr = value_as_pointer (function);
       if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC
          || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD)
-       value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype));
+       {
+#ifdef CONVERT_FROM_FUNC_PTR_ADDR
+         /* FIXME: This is a workaround for the unusual function
+            pointer representation on the RS/6000, see comment
+            in config/rs6000/tm-rs6000.h  */
+         funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
+#endif
+         value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype));
+       }
       else
        value_type = builtin_type_int;
     }
@@ -632,10 +873,10 @@ find_function_addr (function, retval_type)
       /* Handle the case of functions lacking debugging info.
         Their values are characters since their addresses are char */
       if (TYPE_LENGTH (ftype) == 1)
-       funaddr = value_as_long (value_addr (function));
+       funaddr = value_as_pointer (value_addr (function));
       else
        /* Handle integer used as address of a function.  */
-       funaddr = value_as_long (function);
+       funaddr = (CORE_ADDR) value_as_long (function);
 
       value_type = builtin_type_int;
     }
@@ -663,20 +904,21 @@ find_function_addr (function, retval_type)
    May fail to return, if a breakpoint or signal is hit
    during the execution of the function.  */
 
-value
+value_ptr
 call_function_by_hand (function, nargs, args)
-     value function;
+     value_ptr function;
      int nargs;
-     value *args;
+     value_ptr *args;
 {
   register CORE_ADDR sp;
   register int i;
   CORE_ADDR start_sp;
-  /* CALL_DUMMY is an array of words (REGISTER_TYPE), but each word
-     in in host byte order.  It is switched to target byte order before calling
-     FIX_CALL_DUMMY.  */
-  static REGISTER_TYPE dummy[] = CALL_DUMMY;
-  REGISTER_TYPE dummy1[sizeof dummy / sizeof (REGISTER_TYPE)];
+  /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
+     is in host byte order.  Before calling FIX_CALL_DUMMY, we byteswap it
+     and remove any extra bytes which might exist because unsigned LONGEST is
+     bigger than REGISTER_SIZE.  */
+  static unsigned LONGEST dummy[] = CALL_DUMMY;
+  char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (unsigned LONGEST)];
   CORE_ADDR old_sp;
   struct type *value_type;
   unsigned char struct_return;
@@ -685,6 +927,10 @@ call_function_by_hand (function, nargs, args)
   struct cleanup *old_chain;
   CORE_ADDR funaddr;
   int using_gcc;
+  CORE_ADDR real_pc;
+
+  if (!target_has_execution)
+    noprocess();
 
   save_inferior_status (&inf_status, 1);
   old_chain = make_cleanup (restore_inferior_status, &inf_status);
@@ -694,14 +940,14 @@ call_function_by_hand (function, nargs, args)
      they are saved on the stack in the inferior.  */
   PUSH_DUMMY_FRAME;
 
-  old_sp = sp = read_register (SP_REGNUM);
+  old_sp = sp = read_sp ();
 
 #if 1 INNER_THAN 2             /* Stack grows down */
-  sp -= sizeof dummy;
+  sp -= sizeof dummy1;
   start_sp = sp;
 #else                          /* Stack grows up */
   start_sp = sp;
-  sp += sizeof dummy;
+  sp += sizeof dummy1;
 #endif
 
   funaddr = find_function_addr (function, &value_type);
@@ -720,41 +966,56 @@ call_function_by_hand (function, nargs, args)
 
   /* Create a call sequence customized for this function
      and the number of arguments for it.  */
-  bcopy (dummy, dummy1, sizeof dummy);
-  for (i = 0; i < sizeof dummy / sizeof (REGISTER_TYPE); i++)
-    SWAP_TARGET_AND_HOST (&dummy1[i], sizeof (REGISTER_TYPE));
+  for (i = 0; i < sizeof dummy / sizeof (dummy[0]); i++)
+    store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
+                           REGISTER_SIZE,
+                           (unsigned LONGEST)dummy[i]);
+
+#ifdef GDB_TARGET_IS_HPPA
+  real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
+                           value_type, using_gcc);
+#else
   FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
                  value_type, using_gcc);
+  real_pc = start_sp;
+#endif
 
 #if CALL_DUMMY_LOCATION == ON_STACK
-  write_memory (start_sp, (char *)dummy1, sizeof dummy);
+  write_memory (start_sp, (char *)dummy1, sizeof dummy1);
+#endif /* On stack.  */
 
-#else /* Not on stack.  */
 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
   /* Convex Unix prohibits executing in the stack segment. */
   /* Hope there is empty room at the top of the text segment. */
   {
+    extern CORE_ADDR text_end;
     static checked = 0;
     if (!checked)
-      for (start_sp = text_end - sizeof dummy; start_sp < text_end; ++start_sp)
+      for (start_sp = text_end - sizeof dummy1; start_sp < text_end; ++start_sp)
        if (read_memory_integer (start_sp, 1) != 0)
          error ("text segment full -- no place to put call");
     checked = 1;
     sp = old_sp;
-    start_sp = text_end - sizeof dummy;
-    write_memory (start_sp, (char *)dummy1, sizeof dummy);
+    real_pc = text_end - sizeof dummy1;
+    write_memory (real_pc, (char *)dummy1, sizeof dummy1);
   }
-#else /* After text_end.  */
+#endif /* Before text_end.  */
+
+#if CALL_DUMMY_LOCATION == AFTER_TEXT_END
   {
+    extern CORE_ADDR text_end;
     int errcode;
     sp = old_sp;
-    start_sp = text_end;
-    errcode = target_write_memory (start_sp, (char *)dummy1, sizeof dummy);
+    real_pc = text_end;
+    errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy1);
     if (errcode != 0)
       error ("Cannot write text segment -- call_function failed");
   }
 #endif /* After text_end.  */
-#endif /* Not on stack.  */
+
+#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
+  real_pc = funaddr;
+#endif /* At entry point.  */
 
 #ifdef lint
   sp = old_sp;         /* It really is used, for some ifdef's... */
@@ -800,29 +1061,30 @@ call_function_by_hand (function, nargs, args)
 
 #if defined (REG_STRUCT_HAS_ADDR)
   {
-    /* This is a machine like the sparc, where we need to pass a pointer
+    /* This is a machine like the sparc, where we may need to pass a pointer
        to the structure, not the structure itself.  */
-    if (REG_STRUCT_HAS_ADDR (using_gcc))
-      for (i = nargs - 1; i >= 0; i--)
-       if (TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT)
-         {
-           CORE_ADDR addr;
+    for (i = nargs - 1; i >= 0; i--)
+      if (TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT
+         && REG_STRUCT_HAS_ADDR (using_gcc, VALUE_TYPE (args[i])))
+       {
+         CORE_ADDR addr;
 #if !(1 INNER_THAN 2)
-           /* The stack grows up, so the address of the thing we push
-              is the stack pointer before we push it.  */
-           addr = sp;
+         /* The stack grows up, so the address of the thing we push
+            is the stack pointer before we push it.  */
+         addr = sp;
 #endif
-           /* Push the structure.  */
-           sp = value_push (sp, args[i]);
+         /* Push the structure.  */
+         sp = value_push (sp, args[i]);
 #if 1 INNER_THAN 2
-           /* The stack grows down, so the address of the thing we push
-              is the stack pointer after we push it.  */
-           addr = sp;
+         /* The stack grows down, so the address of the thing we push
+            is the stack pointer after we push it.  */
+         addr = sp;
 #endif
-           /* The value we're going to pass is the address of the thing
-              we just pushed.  */
-           args[i] = value_from_long (builtin_type_long, (LONGEST) addr);
-         }
+         /* The value we're going to pass is the address of the thing
+            we just pushed.  */
+         args[i] = value_from_longest (lookup_pointer_type (value_type),
+                                       (LONGEST) addr);
+       }
   }
 #endif /* REG_STRUCT_HAS_ADDR.  */
 
@@ -856,117 +1118,262 @@ call_function_by_hand (function, nargs, args)
   /* Write the stack pointer.  This is here because the statements above
      might fool with it.  On SPARC, this write also stores the register
      window into the right place in the new stack frame, which otherwise
-     wouldn't happen.  (See write_inferior_registers in sparc-xdep.c.)  */
-  write_register (SP_REGNUM, sp);
+     wouldn't happen.  (See store_inferior_registers in sparc-nat.c.)  */
+  write_sp (sp);
 
-  /* Figure out the value returned by the function.  */
   {
     char retbuf[REGISTER_BYTES];
+    char *name;
+    struct symbol *symbol;
+
+    name = NULL;
+    symbol = find_pc_function (funaddr);
+    if (symbol)
+      {
+       name = SYMBOL_SOURCE_NAME (symbol);
+      }
+    else
+      {
+       /* Try the minimal symbols.  */
+       struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
+
+       if (msymbol)
+         {
+           name = SYMBOL_SOURCE_NAME (msymbol);
+         }
+      }
+    if (name == NULL)
+      {
+       char format[80];
+       sprintf (format, "at %s", local_hex_format ());
+       name = alloca (80);
+       /* FIXME-32x64: assumes funaddr fits in a long.  */
+       sprintf (name, format, (unsigned long) funaddr);
+      }
 
     /* Execute the stack dummy routine, calling FUNCTION.
        When it is done, discard the empty frame
        after storing the contents of all regs into retbuf.  */
-    run_stack_dummy (start_sp + CALL_DUMMY_START_OFFSET, retbuf);
+    if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
+      {
+       /* We stopped somewhere besides the call dummy.  */
+
+       /* If we did the cleanups, we would print a spurious error message
+          (Unable to restore previously selected frame), would write the
+          registers from the inf_status (which is wrong), and would do other
+          wrong things (like set stop_bpstat to the wrong thing).  */
+       discard_cleanups (old_chain);
+       /* Prevent memory leak.  */
+       bpstat_clear (&inf_status.stop_bpstat);
+
+       /* The following error message used to say "The expression
+          which contained the function call has been discarded."  It
+          is a hard concept to explain in a few words.  Ideally, GDB
+          would be able to resume evaluation of the expression when
+          the function finally is done executing.  Perhaps someday
+          this will be implemented (it would not be easy).  */
+
+       /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
+          a C++ name with arguments and stuff.  */
+       error ("\
+The program being debugged stopped while in a function called from GDB.\n\
+When the function (%s) is done executing, GDB will silently\n\
+stop (instead of continuing to evaluate the expression containing\n\
+the function call).", name);
+      }
 
     do_cleanups (old_chain);
 
+    /* Figure out the value returned by the function.  */
     return value_being_returned (value_type, retbuf, struct_return);
   }
 }
 #else /* no CALL_DUMMY.  */
-value
+value_ptr
 call_function_by_hand (function, nargs, args)
-     value function;
+     value_ptr function;
      int nargs;
-     value *args;
+     value_ptr *args;
 {
   error ("Cannot invoke functions on this machine.");
 }
 #endif /* no CALL_DUMMY.  */
+
 \f
-/* Create a value for a string constant:
-   Call the function malloc in the inferior to get space for it,
-   then copy the data into that space
-   and then return the address with type char *.
-   PTR points to the string constant data; LEN is number of characters.  */
+/* Create a value for an array by allocating space in the inferior, copying
+   the data into that space, and then setting up an array value.
 
-value
-value_string (ptr, len)
-     char *ptr;
-     int len;
-{
-  register value val;
-  register struct symbol *sym;
-  value blocklen;
-  register char *copy = (char *) alloca (len + 1);
-  char *i = ptr;
-  register char *o = copy, *ibeg = ptr;
-  register int c;
+   The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
+   populated from the values passed in ELEMVEC.
 
-  /* Copy the string into COPY, processing escapes.
-     We could not conveniently process them in expread
-     because the string there wants to be a substring of the input.  */
+   The element type of the array is inherited from the type of the
+   first element, and all elements must have the same size (though we
+   don't currently enforce any restriction on their types). */
 
-  while (i - ibeg < len)
+value_ptr
+value_array (lowbound, highbound, elemvec)
+     int lowbound;
+     int highbound;
+     value_ptr *elemvec;
+{
+  int nelem;
+  int idx;
+  int typelength;
+  value_ptr val;
+  struct type *rangetype;
+  struct type *arraytype;
+  CORE_ADDR addr;
+
+  /* Validate that the bounds are reasonable and that each of the elements
+     have the same size. */
+
+  nelem = highbound - lowbound + 1;
+  if (nelem <= 0)
+    {
+      error ("bad array bounds (%d, %d)", lowbound, highbound);
+    }
+  typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
+  for (idx = 0; idx < nelem; idx++)
     {
-      c = *i++;
-      if (c == '\\')
+      if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
        {
-         c = parse_escape (&i);
-         if (c == -1)
-           continue;
+         error ("array elements must all be the same size");
        }
-      *o++ = c;
     }
-  *o = 0;
-
-  /* Get the length of the string after escapes are processed.  */
 
-  len = o - copy;
-
-  /* Find the address of malloc in the inferior.  */
+  /* Allocate space to store the array in the inferior, and then initialize
+     it by copying in each element.  FIXME:  Is it worth it to create a
+     local buffer in which to collect each value and then write all the
+     bytes in one operation? */
 
-  sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL);
-  if (sym != 0)
+  addr = allocate_space_in_inferior (nelem * typelength);
+  for (idx = 0; idx < nelem; idx++)
     {
-      if (SYMBOL_CLASS (sym) != LOC_BLOCK)
-       error ("\"malloc\" exists in this program but is not a function.");
-      val = value_of_variable (sym);
-    }
-  else
-    {
-      register int j;
-      for (j = 0; j < misc_function_count; j++)
-       if (!strcmp (misc_function_vector[j].name, "malloc"))
-         break;
-      if (j < misc_function_count)
-       val = value_from_long (builtin_type_long,
-                            (LONGEST) misc_function_vector[j].address);
-      else
-       error ("String constants require the program to have a function \"malloc\".");
+      write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
+                   typelength);
     }
 
-  blocklen = value_from_long (builtin_type_int, (LONGEST) (len + 1));
-  val = target_call_function (val, 1, &blocklen);
-  if (value_zerop (val))
-    error ("No memory available for string constant.");
-  write_memory ((CORE_ADDR) value_as_long (val), copy, len + 1);
-  VALUE_TYPE (val) = lookup_pointer_type (builtin_type_char);
-  return val;
+  /* Create the array type and set up an array value to be evaluated lazily. */
+
+  rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
+                                lowbound, highbound);
+  arraytype = create_array_type ((struct type *) NULL, 
+                                VALUE_TYPE (elemvec[0]), rangetype);
+  val = value_at_lazy (arraytype, addr);
+  return (val);
+}
+
+/* Create a value for a string constant by allocating space in the inferior,
+   copying the data into that space, and returning the address with type
+   TYPE_CODE_STRING.  PTR points to the string constant data; LEN is number
+   of characters.
+   Note that string types are like array of char types with a lower bound of
+   zero and an upper bound of LEN - 1.  Also note that the string may contain
+   embedded null bytes. */
+
+value_ptr
+value_string (ptr, len)
+     char *ptr;
+     int len;
+{
+  value_ptr val;
+  struct type *rangetype;
+  struct type *stringtype;
+  CORE_ADDR addr;
+
+  /* Allocate space to store the string in the inferior, and then
+     copy LEN bytes from PTR in gdb to that address in the inferior. */
+
+  addr = allocate_space_in_inferior (len);
+  write_memory (addr, ptr, len);
+
+  /* Create the string type and set up a string value to be evaluated
+     lazily. */
+
+  rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
+                                0, len - 1);
+  stringtype = create_string_type ((struct type *) NULL, rangetype);
+  val = value_at_lazy (stringtype, addr);
+  return (val);
 }
 \f
+/* See if we can pass arguments in T2 to a function which takes arguments
+   of types T1.  Both t1 and t2 are NULL-terminated vectors.  If some
+   arguments need coercion of some sort, then the coerced values are written
+   into T2.  Return value is 0 if the arguments could be matched, or the
+   position at which they differ if not.
+
+   STATICP is nonzero if the T1 argument list came from a
+   static member function.
+
+   For non-static member functions, we ignore the first argument,
+   which is the type of the instance variable.  This is because we want
+   to handle calls with objects from derived classes.  This is not
+   entirely correct: we should actually check to make sure that a
+   requested operation is type secure, shouldn't we?  FIXME.  */
+
+static int
+typecmp (staticp, t1, t2)
+     int staticp;
+     struct type *t1[];
+     value_ptr t2[];
+{
+  int i;
+
+  if (t2 == 0)
+    return 1;
+  if (staticp && t1 == 0)
+    return t2[1] != 0;
+  if (t1 == 0)
+    return 1;
+  if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
+  if (t1[!staticp] == 0) return 0;
+  for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
+    {
+    struct type *tt1, *tt2;
+      if (! t2[i])
+       return i+1;
+      tt1 = t1[i];
+      tt2 = VALUE_TYPE(t2[i]);
+      if (TYPE_CODE (tt1) == TYPE_CODE_REF
+         /* We should be doing hairy argument matching, as below.  */
+         && (TYPE_CODE (TYPE_TARGET_TYPE (tt1)) == TYPE_CODE (tt2)))
+       {
+         t2[i] = value_addr (t2[i]);
+         continue;
+       }
+
+      while (TYPE_CODE (tt1) == TYPE_CODE_PTR
+         && (TYPE_CODE(tt2)==TYPE_CODE_ARRAY || TYPE_CODE(tt2)==TYPE_CODE_PTR))
+       {
+          tt1 = TYPE_TARGET_TYPE(tt1); 
+          tt2 = TYPE_TARGET_TYPE(tt2);
+       }
+      if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
+      /* Array to pointer is a `trivial conversion' according to the ARM.  */
+
+      /* We should be doing much hairier argument matching (see section 13.2
+        of the ARM), but as a quick kludge, just check for the same type
+        code.  */
+      if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
+       return i+1;
+    }
+  if (!t1[i]) return 0;
+  return t2[i] ? i+1 : 0;
+}
+
 /* Helper function used by value_struct_elt to recurse through baseclasses.
    Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
-   and treat the result as having type TYPE.
+   and search in it assuming it has (class) type TYPE.
    If found, return value, else return NULL.
 
    If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
    look for a baseclass named NAME.  */
 
-static value
+static value_ptr
 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
      char *name;
-     register value arg1;
+     register value_ptr arg1;
      int offset;
      register struct type *type;
      int looking_for_baseclass;
@@ -980,11 +1387,22 @@ search_struct_field (name, arg1, offset, type, looking_for_baseclass)
       {
        char *t_field_name = TYPE_FIELD_NAME (type, i);
 
-       if (t_field_name && !strcmp (t_field_name, name))
+       if (t_field_name && STREQ (t_field_name, name))
          {
-           value v = (TYPE_FIELD_STATIC (type, i)
-                      ? value_static_field (type, name, i)
-                      : value_primitive_field (arg1, offset, i, type));
+           value_ptr v;
+           if (TYPE_FIELD_STATIC (type, i))
+             {
+               char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
+               struct symbol *sym =
+                   lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
+               if (sym == NULL)
+                   error ("Internal error: could not find physical static variable named %s",
+                          phys_name);
+               v = value_at (TYPE_FIELD_TYPE (type, i),
+                             (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
+             }
+           else
+             v = value_primitive_field (arg1, offset, i, type);
            if (v == 0)
              error("there is no field named %s", name);
            return v;
@@ -993,26 +1411,28 @@ search_struct_field (name, arg1, offset, type, looking_for_baseclass)
 
   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
     {
-      value v;
+      value_ptr v;
       /* If we are looking for baseclasses, this is what we get when we
-        hit them.  */
+        hit them.  But it could happen that the base part's member name
+        is not yet filled in.  */
       int found_baseclass = (looking_for_baseclass
-                            && !strcmp (name, TYPE_BASECLASS_NAME (type, i)));
+                            && TYPE_BASECLASS_NAME (type, i) != NULL
+                            && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
 
       if (BASETYPE_VIA_VIRTUAL (type, i))
        {
-         value v2;
-         baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset, &v2);
+         value_ptr v2;
+         /* Fix to use baseclass_offset instead. FIXME */
+         baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset,
+                         &v2, (int *)NULL);
          if (v2 == 0)
            error ("virtual baseclass botch");
          if (found_baseclass)
            return v2;
          v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
                                   looking_for_baseclass);
-         if (v) return v;
-         else continue;
        }
-      if (found_baseclass)
+      else if (found_baseclass)
        v = value_primitive_field (arg1, offset, i, type);
       else
        v = search_struct_field (name, arg1,
@@ -1026,41 +1446,56 @@ search_struct_field (name, arg1, offset, type, looking_for_baseclass)
 
 /* Helper function used by value_struct_elt to recurse through baseclasses.
    Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
-   and treat the result as having type TYPE.
-   If found, return value, else return NULL. */
+   and search in it assuming it has (class) type TYPE.
+   If found, return value, else if name matched and args not return (value)-1,
+   else return NULL. */
 
-static value
-search_struct_method (name, arg1, args, offset, static_memfuncp, type)
+static value_ptr
+search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
      char *name;
-     register value arg1, *args;
+     register value_ptr *arg1p, *args;
      int offset, *static_memfuncp;
      register struct type *type;
 {
   int i;
+  value_ptr v;
+  int name_matched = 0;
+  char dem_opname[64];
 
   check_stub_type (type);
   for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
     {
       char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
-      if (t_field_name && !strcmp (t_field_name, name))
+      if (strncmp(t_field_name, "__", 2)==0 ||
+       strncmp(t_field_name, "op", 2)==0 ||
+       strncmp(t_field_name, "type", 4)==0 )
+       {
+         if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
+           t_field_name = dem_opname;
+         else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
+           t_field_name = dem_opname; 
+       }
+      if (t_field_name && STREQ (t_field_name, name))
        {
          int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
          struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
+         name_matched = 1; 
 
          if (j > 0 && args == 0)
            error ("cannot resolve overloaded method `%s'", name);
          while (j >= 0)
            {
-             if (TYPE_FLAGS (TYPE_FN_FIELD_TYPE (f, j)) & TYPE_FLAG_STUB)
+             if (TYPE_FN_FIELD_STUB (f, j))
                check_stub_method (type, i, j);
              if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
                            TYPE_FN_FIELD_ARGS (f, j), args))
                {
                  if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
-                   return (value)value_virtual_fn_field (arg1, f, j, type);
+                   return value_virtual_fn_field (arg1p, f, j, type, offset);
                  if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
                    *static_memfuncp = 1;
-                 return (value)value_fn_field (arg1, i, j);
+                 v = value_fn_field (arg1p, f, j, type, offset);
+                 if (v != NULL) return v;
                }
              j--;
            }
@@ -1069,26 +1504,33 @@ search_struct_method (name, arg1, args, offset, static_memfuncp, type)
 
   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
     {
-      value v;
+      int base_offset;
 
       if (BASETYPE_VIA_VIRTUAL (type, i))
        {
-         value v2;
-         baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset, &v2);
-         if (v2 == 0)
+         base_offset = baseclass_offset (type, i, *arg1p, offset);
+         if (base_offset == -1)
            error ("virtual baseclass botch");
-         v = search_struct_method (name, v2, args, 0,
-                                   static_memfuncp, TYPE_BASECLASS (type, i));
-         if (v) return v;
-         else continue;
        }
-
-      v = search_struct_method (name, arg1, args,
-                               TYPE_BASECLASS_BITPOS (type, i) / 8,
+      else
+       {
+         base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
+        }
+      v = search_struct_method (name, arg1p, args, base_offset + offset,
                                static_memfuncp, TYPE_BASECLASS (type, i));
-      if (v) return v;
+      if (v == (value_ptr) -1)
+       {
+         name_matched = 1;
+       }
+      else if (v)
+       {
+/* FIXME-bothner:  Why is this commented out?  Why is it here?  */
+/*       *arg1p = arg1_tmp;*/
+         return v;
+        }
     }
-  return NULL;
+  if (name_matched) return (value_ptr) -1;
+  else return NULL;
 }
 
 /* Given *ARGP, a value of type (pointer to a)* structure/union,
@@ -1105,15 +1547,15 @@ search_struct_method (name, arg1, args, offset, static_memfuncp, type)
 
    ERR is an error message to be printed in case the field is not found.  */
 
-value
+value_ptr
 value_struct_elt (argp, args, name, static_memfuncp, err)
-     register value *argp, *args;
+     register value_ptr *argp, *args;
      char *name;
      int *static_memfuncp;
      char *err;
 {
   register struct type *t;
-  value v;
+  value_ptr v;
 
   COERCE_ARRAY (*argp);
 
@@ -1133,7 +1575,7 @@ value_struct_elt (argp, args, name, static_memfuncp, err)
   if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
     error ("not implemented: member type in value_struct_elt");
 
-  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
+  if (   TYPE_CODE (t) != TYPE_CODE_STRUCT
       && TYPE_CODE (t) != TYPE_CODE_UNION)
     error ("Attempt to extract a component of a value that is not a %s.", err);
 
@@ -1157,9 +1599,11 @@ value_struct_elt (argp, args, name, static_memfuncp, err)
       if (destructor_name_p (name, t))
        error ("Cannot get value of destructor");
 
-      v = search_struct_method (name, *argp, args, 0, static_memfuncp, t);
+      v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
 
-      if (v == 0)
+      if (v == (value_ptr) -1)
+       error ("Cannot take address of a method");
+      else if (v == 0)
        {
          if (TYPE_NFN_FIELDS (t))
            error ("There is no member or method named %s.", name);
@@ -1174,8 +1618,10 @@ value_struct_elt (argp, args, name, static_memfuncp, err)
       if (!args[1])
        {
          /* destructors are a special case.  */
-         return (value)value_fn_field (*argp, 0,
-                                       TYPE_FN_FIELDLIST_LENGTH (t, 0));
+         v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
+                             TYPE_FN_FIELDLIST_LENGTH (t, 0), 0, 0);
+         if (!v) error("could not find destructor function named %s.", name);
+         else return v;
        }
       else
        {
@@ -1183,9 +1629,13 @@ value_struct_elt (argp, args, name, static_memfuncp, err)
        }
     }
   else
-    v = search_struct_method (name, *argp, args, 0, static_memfuncp, t);
+    v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
 
-  if (v == 0)
+  if (v == (value_ptr) -1)
+    {
+       error("Argument list of %s mismatch with component in the structure.", name);
+    }
+  else if (v == 0)
     {
       /* See if user tried to invoke data as function.  If so,
         hand it back.  If it's not callable (i.e., a pointer to function),
@@ -1203,18 +1653,15 @@ value_struct_elt (argp, args, name, static_memfuncp, err)
    if NAME is inappropriate for TYPE, an error is signaled.  */
 int
 destructor_name_p (name, type)
-     char *name;
-     struct type *type;
+     const char *name;
+     const struct type *type;
 {
   /* destructors are a special case.  */
 
   if (name[0] == '~')
     {
       char *dname = type_name_no_tag (type);
-
-      if (! TYPE_HAS_DESTRUCTOR (type))
-       error ("type `%s' does not have destructor defined", dname);
-      if (strcmp (dname, name+1))
+      if (!STREQ (dname, name+1))
        error ("name of destructor must equal name of class");
       else
        return 1;
@@ -1229,14 +1676,14 @@ destructor_name_p (name, type)
 static int
 check_field_in (type, name)
      register struct type *type;
-     char *name;
+     const char *name;
 {
   register int i;
 
   for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
     {
       char *t_field_name = TYPE_FIELD_NAME (type, i);
-      if (t_field_name && !strcmp (t_field_name, name))
+      if (t_field_name && STREQ (t_field_name, name))
        return 1;
     }
 
@@ -1249,7 +1696,7 @@ check_field_in (type, name)
 
   for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
     {
-      if (!strcmp (TYPE_FN_FIELDLIST_NAME (type, i), name))
+      if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
        return 1;
     }
 
@@ -1267,8 +1714,8 @@ check_field_in (type, name)
 
 int
 check_field (arg1, name)
-     register value arg1;
-     char *name;
+     register value_ptr arg1;
+     const char *name;
 {
   register struct type *t;
 
@@ -1284,176 +1731,162 @@ check_field (arg1, name)
   if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
     error ("not implemented: member type in check_field");
 
-  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
+  if (   TYPE_CODE (t) != TYPE_CODE_STRUCT
       && TYPE_CODE (t) != TYPE_CODE_UNION)
     error ("Internal error: `this' is not an aggregate");
 
   return check_field_in (t, name);
 }
 
-/* C++: Given an aggregate type DOMAIN, and a member name NAME,
-   return the address of this member as a pointer to member
+/* C++: Given an aggregate type CURTYPE, and a member name NAME,
+   return the address of this member as a "pointer to member"
    type.  If INTYPE is non-null, then it will be the type
    of the member we are looking for.  This will help us resolve
-   pointers to member functions.  */
+   "pointers to member functions".  This function is used
+   to resolve user expressions of the form "DOMAIN::NAME".  */
 
-value
-value_struct_elt_for_address (domain, intype, name)
-     struct type *domain, *intype;
+value_ptr
+value_struct_elt_for_reference (domain, offset, curtype, name, intype)
+     struct type *domain, *curtype, *intype;
+     int offset;
      char *name;
 {
-  register struct type *t = domain;
+  register struct type *t = curtype;
   register int i;
-  value v;
+  value_ptr v;
 
-  struct type *baseclass;
-
-  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
+  if (   TYPE_CODE (t) != TYPE_CODE_STRUCT
       && TYPE_CODE (t) != TYPE_CODE_UNION)
-    error ("Internal error: non-aggregate type to value_struct_elt_for_address");
-
-  baseclass = t;
+    error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
 
-  while (t)
+  for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
     {
-      for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
+      char *t_field_name = TYPE_FIELD_NAME (t, i);
+      
+      if (t_field_name && STREQ (t_field_name, name))
        {
-         char *t_field_name = TYPE_FIELD_NAME (t, i);
-         if (t_field_name && !strcmp (t_field_name, name))
+         if (TYPE_FIELD_STATIC (t, i))
            {
-             if (TYPE_FIELD_STATIC (t, i))
-               {
-                 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
-                 struct symbol *sym =
-                     lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
-                 if (! sym) error ("Internal error: could not find physical static variable named %s", phys_name);
-                 v = value_from_long(builtin_type_long,
-                                     (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
-                 VALUE_TYPE(v) = lookup_pointer_type (TYPE_FIELD_TYPE (t, i));
-                 return v;
-               }
-             if (TYPE_FIELD_PACKED (t, i))
-               error ("pointers to bitfield members not allowed");
-
-             v = value_from_long (builtin_type_int,
-                                  (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
-             VALUE_TYPE (v)
-               = lookup_pointer_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), baseclass));
-             return v;
+             char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
+             struct symbol *sym =
+               lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
+             if (sym == NULL)
+               error ("Internal error: could not find physical static variable named %s",
+                      phys_name);
+             return value_at (SYMBOL_TYPE (sym),
+                              (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
            }
+         if (TYPE_FIELD_PACKED (t, i))
+           error ("pointers to bitfield members not allowed");
+         
+         return value_from_longest
+           (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
+                                                       domain)),
+            offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
        }
-
-      if (TYPE_N_BASECLASSES (t) == 0)
-       break;
-
-      t = TYPE_BASECLASS (t, 0);
     }
 
   /* C++: If it was not found as a data field, then try to
      return it as a pointer to a method.  */
-  t = baseclass;
 
   /* Destructors are a special case.  */
   if (destructor_name_p (name, t))
     {
-      error ("pointers to destructors not implemented yet");
+      error ("member pointers to destructors not implemented yet");
     }
 
   /* Perform all necessary dereferencing.  */
   while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
     intype = TYPE_TARGET_TYPE (intype);
 
-  while (t)
+  for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
     {
-      for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
+      char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
+      char dem_opname[64];
+
+      if (strncmp(t_field_name, "__", 2)==0 ||
+       strncmp(t_field_name, "op", 2)==0 ||
+       strncmp(t_field_name, "type", 4)==0 )
        {
-         if (!strcmp (TYPE_FN_FIELDLIST_NAME (t, i), name))
+         if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
+           t_field_name = dem_opname;
+         else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
+           t_field_name = dem_opname; 
+       }
+      if (t_field_name && STREQ (t_field_name, name))
+       {
+         int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
+         struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
+         
+         if (intype == 0 && j > 1)
+           error ("non-unique member `%s' requires type instantiation", name);
+         if (intype)
            {
-             int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
-             struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
-
-             if (intype == 0 && j > 1)
-               error ("non-unique member `%s' requires type instantiation", name);
-             if (intype)
-               {
-                 while (j--)
-                   if (TYPE_FN_FIELD_TYPE (f, j) == intype)
-                     break;
-                 if (j < 0)
-                   error ("no member function matches that type instantiation");
-               }
-             else
-               j = 0;
-
-             check_stub_method (t, i, j);
-             if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
+             while (j--)
+               if (TYPE_FN_FIELD_TYPE (f, j) == intype)
+                 break;
+             if (j < 0)
+               error ("no member function matches that type instantiation");
+           }
+         else
+           j = 0;
+         
+         if (TYPE_FN_FIELD_STUB (f, j))
+           check_stub_method (t, i, j);
+         if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
+           {
+             return value_from_longest
+               (lookup_reference_type
+                (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
+                                     domain)),
+                (LONGEST) METHOD_PTR_FROM_VOFFSET
+                 (TYPE_FN_FIELD_VOFFSET (f, j)));
+           }
+         else
+           {
+             struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
+                                               0, VAR_NAMESPACE, 0, NULL);
+             if (s == NULL)
                {
-                 v = value_from_long (builtin_type_long,
-                                      (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
+                 v = 0;
                }
              else
                {
-                 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
-                                                   0, VAR_NAMESPACE, 0, NULL);
-                 v = locate_var_value (s, 0);
+                 v = read_var_value (s, 0);
+#if 0
+                 VALUE_TYPE (v) = lookup_reference_type
+                   (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
+                                        domain));
+#endif
                }
-             VALUE_TYPE (v) = lookup_pointer_type (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), baseclass));
              return v;
            }
        }
-
-      if (TYPE_N_BASECLASSES (t) == 0)
-       break;
-
-      t = TYPE_BASECLASS (t, 0);
     }
-  return 0;
-}
-
-/* Compare two argument lists and return the position in which they differ,
-   or zero if equal.
-
-   STATICP is nonzero if the T1 argument list came from a
-   static member function.
-
-   For non-static member functions, we ignore the first argument,
-   which is the type of the instance variable.  This is because we want
-   to handle calls with objects from derived classes.  This is not
-   entirely correct: we should actually check to make sure that a
-   requested operation is type secure, shouldn't we?  FIXME.  */
-
-int
-typecmp (staticp, t1, t2)
-     int staticp;
-     struct type *t1[];
-     value t2[];
-{
-  int i;
-
-  if (t2 == 0)
-    return 1;
-  if (staticp && t1 == 0)
-    return t2[1] != 0;
-  if (t1 == 0)
-    return 1;
-  if (t1[0]->code == TYPE_CODE_VOID) return 0;
-  if (t1[!staticp] == 0) return 0;
-  for (i = !staticp; t1[i] && t1[i]->code != TYPE_CODE_VOID; i++)
+  for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
     {
-      if (! t2[i]
-         || t1[i]->code != t2[i]->type->code
-/* Too pessimistic:  || t1[i]->target_type != t2[i]->type->target_type */
- )
-       return i+1;
+      value_ptr v;
+      int base_offset;
+
+      if (BASETYPE_VIA_VIRTUAL (t, i))
+       base_offset = 0;
+      else
+       base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
+      v = value_struct_elt_for_reference (domain,
+                                         offset + base_offset,
+                                         TYPE_BASECLASS (t, i),
+                                         name,
+                                         intype);
+      if (v)
+       return v;
     }
-  if (!t1[i]) return 0;
-  return t2[i] ? i+1 : 0;
+  return 0;
 }
 
 /* C++: return the value of the class instance variable, if one exists.
    Flag COMPLAIN signals an error if the request is made in an
    inappropriate context.  */
-value
+value_ptr
 value_of_this (complain)
      int complain;
 {
@@ -1462,7 +1895,7 @@ value_of_this (complain)
   struct block *b;
   int i;
   static const char funny_this[] = "this";
-  value this;
+  value_ptr this;
 
   if (selected_frame == 0)
     if (complain)
@@ -1500,3 +1933,669 @@ value_of_this (complain)
     error ("`this' argument at unknown address");
   return this;
 }
+
+/* Create a value for a literal string.  We copy data into a local 
+   (NOT inferior's memory) buffer, and then set up an array value.
+
+   The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
+   populated from the values passed in ELEMVEC.
+
+   The element type of the array is inherited from the type of the
+   first element, and all elements must have the same size (though we
+   don't currently enforce any restriction on their types). */
+
+value_ptr
+f77_value_literal_string (lowbound, highbound, elemvec)
+     int lowbound;
+     int highbound;
+     value_ptr *elemvec;
+{
+  int nelem;
+  int idx;
+  int typelength;
+  register value_ptr val;
+  struct type *rangetype;
+  struct type *arraytype;
+  char *addr;
+
+  /* Validate that the bounds are reasonable and that each of the elements
+     have the same size. */
+
+  nelem = highbound - lowbound + 1;
+  if (nelem <= 0)
+    error ("bad array bounds (%d, %d)", lowbound, highbound);
+  typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
+  for (idx = 0; idx < nelem; idx++)
+    {
+      if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
+       error ("array elements must all be the same size");
+    }
+
+  /* Make sure we are dealing with characters */ 
+
+  if (typelength != 1)
+    error ("Found a non character type in a literal string "); 
+
+  /* Allocate space to store the array */ 
+
+  addr = xmalloc (nelem); 
+  for (idx = 0; idx < nelem; idx++)
+    {
+      memcpy (addr + (idx), VALUE_CONTENTS (elemvec[idx]), 1);
+    }
+
+  rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
+                                lowbound, highbound);
+
+  arraytype = f77_create_literal_string_type ((struct type *) NULL, 
+                                              rangetype); 
+
+  val = allocate_value (arraytype); 
+
+  /* Make sure that this the rest of the world knows that this is 
+     a standard literal string, not one that is a substring of  
+     some base */ 
+
+  VALUE_SUBSTRING_MEMADDR (val) = (CORE_ADDR)0;
+
+  VALUE_LAZY (val) = 0; 
+  VALUE_LITERAL_DATA (val) = addr;
+
+  /* Since this is a standard literal string with no real lval, 
+     make sure that value_lval indicates this fact */ 
+
+  VALUE_LVAL (val) = not_lval; 
+  return val;
+}
+
+/* Create a value for a substring.  We copy data into a local 
+   (NOT inferior's memory) buffer, and then set up an array value.
+
+   The array bounds for the string are (1:(to-from +1))
+   The elements of the string are all characters.  */
+
+value_ptr
+f77_value_substring (str, from, to)
+     value_ptr str; 
+     int from;
+     int to; 
+{
+  int nelem;
+  register value_ptr val;
+  struct type *rangetype;
+  struct type *arraytype;
+  struct internalvar *var; 
+  char *addr;
+
+  /* Validate that the bounds are reasonable. */ 
+
+  nelem = to - from + 1;
+  if (nelem <= 0)
+    error ("bad substring bounds (%d, %d)", from, to);
+
+  rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
+                                1, nelem);
+
+  arraytype = f77_create_literal_string_type ((struct type *) NULL, 
+                                             rangetype); 
+
+  val = allocate_value (arraytype); 
+
+  /* Allocate space to store the substring array */ 
+
+  addr = xmalloc (nelem); 
+
+  /* Copy over the data */
+
+  /* In case we ever try to use this substring on the LHS of an assignment 
+     remember where the SOURCE substring begins, for lval_memory 
+     types this ptr is to a location in legal inferior memory, 
+     for lval_internalvars it is a ptr. to superior memory. This 
+     helps us out later when we do assigments like:
+
+     set var ARR(2:3) = 'ab'
+     */ 
+
+
+  if (VALUE_LVAL (str) == lval_memory) 
+    {
+      if (VALUE_SUBSTRING_MEMADDR (str) == (CORE_ADDR)0)
+       {
+         /* This is a regular lval_memory string located in the
+            inferior */ 
+
+         VALUE_SUBSTRING_MEMADDR (val) = VALUE_ADDRESS (str) + (from - 1); 
+         target_read_memory (VALUE_SUBSTRING_MEMADDR (val), addr, nelem);
+       }
+      else
+       {
+
+#if 0 
+         /* str is a substring allocated in the superior. Just 
+            do a memcpy */ 
+
+         VALUE_SUBSTRING_MYADDR (val) = VALUE_LITERAL_DATA(str)+(from - 1); 
+         memcpy(addr, VALUE_SUBSTRING_MYADDR (val), nelem); 
+#else
+         error ("Cannot get substrings of substrings"); 
+#endif
+       }
+    }
+  else
+    if (VALUE_LVAL(str) == lval_internalvar)
+      {
+        /* Internal variables of type TYPE_CODE_LITERAL_STRING 
+           have their data located in the superior 
+           process not the inferior */ 
+        var = VALUE_INTERNALVAR (str);
+        
+        if (VALUE_SUBSTRING_MEMADDR (str) == (CORE_ADDR)0) 
+           VALUE_SUBSTRING_MYADDR (val) =
+            ((char *) VALUE_LITERAL_DATA (var->value)) + (from - 1);
+        else 
+#if 0 
+         VALUE_SUBSTRING_MYADDR (val) = VALUE_LITERAL_DATA(str)+(from -1);
+#else
+       error ("Cannot get substrings of substrings"); 
+#endif
+        memcpy (addr, VALUE_SUBSTRING_MYADDR (val), nelem);
+      }
+    else
+      error ("Substrings can not be applied to this data item"); 
+
+  VALUE_LAZY (val) = 0; 
+  VALUE_LITERAL_DATA (val) = addr; 
+
+  /* This literal string's *data* is located in the superior BUT 
+     we do need to know where it came from (i.e. was the source
+     string an internalvar or a regular lval_memory variable), so 
+     we set the lval field to indicate this.  This will be useful 
+     when we use this value on the LHS of an expr. */ 
+     
+  VALUE_LVAL (val) = VALUE_LVAL (str); 
+  return val;
+}
+
+/* Create a value for a FORTRAN complex number.  Currently most of 
+   the time values are coerced to COMPLEX*16 (i.e. a complex number 
+   composed of 2 doubles.  This really should be a smarter routine 
+   that figures out precision inteligently as opposed to assuming 
+   doubles. FIXME: fmb */ 
+
+value_ptr
+f77_value_literal_complex (arg1, arg2, size)
+     value_ptr arg1;
+     value_ptr arg2;
+     int size;
+{
+  struct type *complex_type; 
+  register value_ptr val;
+  char *addr; 
+
+  if (size != 8 && size != 16 && size != 32)
+    error ("Cannot create number of type 'complex*%d'", size);
+  
+  /* If either value comprising a complex number is a non-floating 
+     type, cast to double. */
+
+  if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_FLT)
+    arg1 = value_cast (builtin_type_f_real_s8, arg1);
+
+  if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_FLT)
+    arg2 = value_cast (builtin_type_f_real_s8, arg2);
+     
+  complex_type = f77_create_literal_complex_type (VALUE_TYPE (arg1),
+                                                 VALUE_TYPE (arg2)
+#if 0
+/* FIXME: does f77_create_literal_complex_type need to do something with
+   this?  */
+                                                 ,
+                                                 size
+#endif
+                                                 );
+
+  val = allocate_value (complex_type); 
+
+  /* Now create a pointer to enough memory to hold the the two args */
+  
+  addr = xmalloc (TYPE_LENGTH (complex_type)); 
+
+  /* Copy over the two components */
+
+  memcpy (addr, VALUE_CONTENTS_RAW (arg1), TYPE_LENGTH (VALUE_TYPE (arg1)));
+  
+  memcpy (addr + TYPE_LENGTH (VALUE_TYPE (arg1)), VALUE_CONTENTS_RAW (arg2),
+         TYPE_LENGTH (VALUE_TYPE (arg2)));
+
+  VALUE_ADDRESS (val) = 0; /* Not located in the inferior */ 
+  VALUE_LAZY (val) = 0; 
+  VALUE_LITERAL_DATA (val) = addr; 
+
+  /* Since this is a literal value, make sure that value_lval indicates 
+     this fact */ 
+
+  VALUE_LVAL (val) = not_lval; 
+  return val;
+}
+
+/* Cast a value into the appropriate complex data type. Only works 
+   if both values are complex.  */
+
+static value_ptr
+f77_cast_into_complex (type, val)
+     struct type *type;
+     register value_ptr val;
+{
+  register enum type_code valcode;
+  float tmp_f;
+  double tmp_d;
+  register value_ptr piece1, piece2; 
+   
+  int lenfrom, lento;
+
+  valcode = TYPE_CODE (VALUE_TYPE (val));
+
+  /* This casting will only work if the right hand side is 
+     either a regular complex type or a literal complex type. 
+     I.e: this casting is only for size adjustment of 
+     complex numbers not anything else. */ 
+
+  if ((valcode != TYPE_CODE_COMPLEX) && 
+      (valcode != TYPE_CODE_LITERAL_COMPLEX))
+    error ("Cannot cast from a non complex type!"); 
+
+  lenfrom = TYPE_LENGTH (VALUE_TYPE (val));
+  lento =   TYPE_LENGTH (type); 
+
+  if (lento == lenfrom)
+    error ("Value to be cast is already of type %s", TYPE_NAME (type));
+
+  if (lento == 32 || lenfrom == 32) 
+    error ("Casting into/out of complex*32 unsupported"); 
+
+  switch (lento)
+    {
+    case 16:
+      {
+       /* Since we have excluded lenfrom == 32 and 
+          lenfrom == 16, it MUST be 8 */ 
+
+       if (valcode == TYPE_CODE_LITERAL_COMPLEX) 
+         {
+           /* Located in superior's memory. Routine should 
+              deal with both real literal complex numbers
+              as well as internal vars */ 
+
+           /* Grab the two 4 byte reals that make up the complex*8 */ 
+                     
+           tmp_f = *((float *) VALUE_LITERAL_DATA (val));
+                     
+           piece1 = value_from_double(builtin_type_f_real_s8,tmp_f);
+           
+           tmp_f = *((float *) (((char *) VALUE_LITERAL_DATA (val))
+                                + sizeof(float))); 
+                     
+           piece2 = value_from_double (builtin_type_f_real_s8, tmp_f);
+         }
+       else
+         {
+           /* Located in inferior memory, so first we need 
+              to read the 2 floats that make up the 8 byte
+              complex we are are casting from */ 
+
+           read_memory ((CORE_ADDR) VALUE_CONTENTS (val),
+                        (char *) &tmp_f, sizeof(float));
+           
+           piece1 = value_from_double (builtin_type_f_real_s8, tmp_f);
+           
+           read_memory ((CORE_ADDR) VALUE_CONTENTS (val) + sizeof(float),
+                        (char *) &tmp_f, sizeof(float));
+                     
+           piece2 = value_from_double (builtin_type_f_real_s8, tmp_f);
+         }
+       return f77_value_literal_complex (piece1, piece2, 16);
+      }
+
+    case 8:
+      {
+       /* Since we have excluded lenfrom == 32 and 
+          lenfrom == 8, it MUST be 16. NOTE: in this 
+          case data may be since we are dropping precison */ 
+
+       if (valcode == TYPE_CODE_LITERAL_COMPLEX) 
+         {
+           /* Located in superior's memory. Routine should 
+              deal with both real literal complex numbers
+              as well as internal vars */ 
+           
+           /* Grab the two 8 byte reals that make up the complex*16 */ 
+                     
+           tmp_d = *((double *) VALUE_LITERAL_DATA (val));
+                     
+           piece1 = value_from_double (builtin_type_f_real, tmp_d);
+
+           tmp_d = *((double *) (((char *) VALUE_LITERAL_DATA (val))
+                                 + sizeof(double)));
+                     
+           piece2 = value_from_double (builtin_type_f_real, tmp_d);
+         }
+       else
+         {
+           /* Located in inferior memory, so first we need to read the
+              2 floats that make up the 8 byte complex we are are
+              casting from.  */ 
+
+           read_memory ((CORE_ADDR) VALUE_CONTENTS (val),
+                        (char *) &tmp_d, sizeof(double));
+                     
+           piece1 = value_from_double (builtin_type_f_real, tmp_d);
+
+           read_memory ((CORE_ADDR) VALUE_CONTENTS (val) + sizeof(double),
+                        (char *) &tmp_f, sizeof(double));
+                     
+           piece2 = value_from_double (builtin_type_f_real, tmp_d);
+         }
+       return f77_value_literal_complex (piece1, piece2, 8);
+      }
+                     
+    default:
+      error ("Invalid F77 complex number cast");
+    }
+}
+
+/* The following function is called in order to assign 
+   a literal F77 array to either an internal GDB variable 
+   or to a real array variable in the inferior. 
+   This function is necessary because in F77, literal 
+   arrays are allocated in the superior's memory space 
+   NOT the inferior's.  This function provides a way to 
+   get the F77 stuff to work without messing with the 
+   way C deals with this issue. NOTE: we are assuming 
+   that all F77 array literals are STRING array literals.  F77 
+   users have no good way of expressing non-string 
+   literal strings. 
+
+   This routine now also handles assignment TO literal strings 
+   in the peculiar case of substring assignments of the 
+   form:
+
+   STR(2:3) = 'foo' 
+
+   */ 
+
+static value_ptr
+f77_assign_from_literal_string (toval, fromval)
+     register value_ptr toval, fromval;
+{
+  register struct type *type = VALUE_TYPE (toval);
+  register value_ptr val;
+  struct internalvar *var; 
+  int lenfrom, lento; 
+  CORE_ADDR tmp_addr; 
+  char *c; 
+
+  lenfrom = TYPE_LENGTH (VALUE_TYPE (fromval));
+  lento = TYPE_LENGTH (VALUE_TYPE (toval)); 
+   
+  if ((VALUE_LVAL (toval) == lval_internalvar
+       || VALUE_LVAL (toval) == lval_memory)
+      && VALUE_SUBSTRING_START (toval) != 0) 
+    {
+      /* We are assigning TO a substring type. This is of the form:
+            
+        set A(2:5) = 'foov'
+
+        The result of this will be a modified toval not a brand new 
+        value. This is high F77 weirdness.  */ 
+
+      /* Simply overwrite the relevant memory, wherever it 
+        exists. Use standard F77 character assignment rules 
+        (if len(toval) > len(fromval) pad with blanks,
+        if len(toval) < len(fromval) truncate else just copy. */ 
+
+      if (VALUE_LVAL (toval) == lval_internalvar)
+       {
+         /* Memory in superior.  */ 
+         var = VALUE_INTERNALVAR (toval); 
+         memcpy ((char *) VALUE_SUBSTRING_START (toval),
+                 (char *) VALUE_LITERAL_DATA (fromval),
+                 (lento > lenfrom) ? lenfrom : lento); 
+         
+         /* Check to see if we have to pad. */
+
+         if (lento > lenfrom) 
+           {
+             memset((char *) VALUE_SUBSTRING_START(toval) + lenfrom,
+                    ' ', lento - lenfrom); 
+           }
+       }
+      else
+       {
+         /* Memory in inferior.  */ 
+         write_memory ((CORE_ADDR) VALUE_SUBSTRING_START (toval),
+                       (char *) VALUE_LITERAL_DATA (fromval),
+                       (lento > lenfrom) ? lenfrom : lento); 
+
+         /* Check to see if we have to pad.  */
+
+         if (lento > lenfrom) 
+           {
+             c = alloca (lento-lenfrom); 
+             memset (c, ' ', lento - lenfrom);
+
+             tmp_addr = VALUE_SUBSTRING_START (toval) + lenfrom; 
+             write_memory (tmp_addr, c, lento - lenfrom);
+           } 
+       }
+      return fromval;
+    }
+  else 
+    { 
+      if (VALUE_LVAL (toval) == lval_internalvar)
+       type = VALUE_TYPE (fromval); 
+
+      val = allocate_value (type);
+
+      switch (VALUE_LVAL (toval))
+       {
+       case lval_internalvar:
+
+         /* Internal variables are funny.  Their value information 
+            is stored in the location.internalvar sub structure.  */ 
+
+         var = VALUE_INTERNALVAR (toval); 
+
+         /* The item in toval is a regular internal variable
+            and this assignment is of the form:
+
+            set var $foo = 'hello' */
+
+         /* First free up any old stuff in this internalvar.  */
+
+         free (VALUE_LITERAL_DATA (var->value));
+         VALUE_LITERAL_DATA (var->value) = 0; 
+         VALUE_LAZY (var->value) = 0; /* Disable lazy fetches since this 
+                                         is not located in inferior. */ 
+
+         /* Copy over the relevant value data from 'fromval' */
+
+         set_internalvar (VALUE_INTERNALVAR (toval), fromval);
+
+         /* Now replicate the VALUE_LITERAL_DATA field so that 
+            we may later safely de-allocate fromval. */
+
+         VALUE_LITERAL_DATA (var->value) = 
+           malloc (TYPE_LENGTH (VALUE_TYPE (fromval)));
+         
+         memcpy((char *) VALUE_LITERAL_DATA (var->value), 
+                (char *) VALUE_LITERAL_DATA (fromval), 
+                lenfrom); 
+         
+         /* Copy over all relevant value data from 'toval'.  into 
+            the structure to returned */ 
+
+         memcpy (val, toval, sizeof(struct value));
+         
+         /* Lastly copy the pointer to the area where the 
+            internalvar data is stored to the VALUE_CONTENTS field.
+            This will be a helpful shortcut for printout 
+            routines later */ 
+
+         VALUE_LITERAL_DATA (val) = VALUE_LITERAL_DATA (var->value); 
+         break;
+
+       case lval_memory:
+
+         /* We are copying memory from the local (superior) 
+            literal string to a legitimate address in the 
+            inferior. VALUE_ADDRESS is the address in 
+            the inferior. VALUE_OFFSET is not used because
+            structs do not exist in F77. */ 
+
+         /* Copy over all relevant value data from 'toval'.  */ 
+
+         memcpy (val, toval, sizeof(struct value));
+
+         write_memory ((CORE_ADDR) VALUE_ADDRESS (val),
+                       (char *) VALUE_LITERAL_DATA (fromval),
+                       (lento > lenfrom) ? lenfrom : lento); 
+               
+         /* Check to see if we have to pad */
+               
+         if (lento > lenfrom) 
+           {
+             c = alloca (lento - lenfrom); 
+             memset (c, ' ', lento - lenfrom);
+             tmp_addr = VALUE_ADDRESS (val) + lenfrom; 
+             write_memory (tmp_addr, c, lento - lenfrom);
+           }
+         break;
+
+       default:
+         error ("Unknown lval type in f77_assign_from_literal_string"); 
+       }
+
+      /* Now free up the transient literal string's storage. */
+
+      free (VALUE_LITERAL_DATA (fromval)); 
+
+      VALUE_TYPE (val) = type;
+  
+      return val; 
+    }
+}
+
+
+/* The following function is called in order to assign a literal F77
+   complex to either an internal GDB variable or to a real complex
+   variable in the inferior.  This function is necessary because in F77,
+   composite literals are allocated in the superior's memory space 
+   NOT the inferior's.  This function provides a way to get the F77 stuff
+   to work without messing with the way C deals with this issue. */ 
+
+static value_ptr
+f77_assign_from_literal_complex (toval, fromval)
+     register value_ptr toval, fromval;
+{
+  register struct type *type = VALUE_TYPE (toval);
+  register value_ptr val;
+  struct internalvar *var; 
+  float tmp_float=0;
+  double tmp_double = 0;
+
+  if (VALUE_LVAL (toval) == lval_internalvar)
+    type = VALUE_TYPE (fromval); 
+
+  /* Allocate a value node for the result.  */
+
+  val = allocate_value (type);
+
+  if (VALUE_LVAL (toval) == lval_internalvar)
+    {
+      /* Internal variables are funny.  Their value information 
+        is stored in the location.internalvar sub structure.  */ 
+
+      var = VALUE_INTERNALVAR (toval);
+
+      /* First free up any old stuff in this internalvar. */
+
+      free (VALUE_LITERAL_DATA (var->value));
+      VALUE_LITERAL_DATA (var->value) = 0; 
+      VALUE_LAZY (var->value) = 0; /* Disable lazy fetches since 
+                                     this is not located in inferior. */ 
+              
+      /* Copy over the relevant value data from 'fromval'.  */
+
+      set_internalvar (VALUE_INTERNALVAR (toval), fromval);
+
+      /* Now replicate the VALUE_LITERAL_DATA field so that 
+        we may later safely de-allocate  fromval.  */
+
+      VALUE_LITERAL_DATA (var->value) = 
+       malloc (TYPE_LENGTH (VALUE_TYPE (fromval)));
+         
+      memcpy ((char *) VALUE_LITERAL_DATA (var->value), 
+             (char *) VALUE_LITERAL_DATA (fromval), 
+             TYPE_LENGTH (VALUE_TYPE (fromval))); 
+
+      /* Copy over all relevant value data from 'toval' into the
+        structure to be returned.  */ 
+
+      memcpy (val, toval, sizeof(struct value));
+    }
+  else
+    { 
+      /* We are copying memory from the local (superior) process to a
+        legitimate address in the inferior. VALUE_ADDRESS is the
+        address in the inferior. */ 
+
+      /* Copy over all relevant value data from 'toval'.  */ 
+
+      memcpy (val, toval, sizeof(struct value));
+         
+      if (TYPE_LENGTH (VALUE_TYPE (fromval))
+         > TYPE_LENGTH (VALUE_TYPE (toval)))
+       {
+         /* Since all literals are actually complex*16 types, deal with
+            the case when one tries to assign a literal to a complex*8.  */
+
+         if ((TYPE_LENGTH(VALUE_TYPE(fromval)) == 16) && 
+             (TYPE_LENGTH(VALUE_TYPE(toval)) == 8))
+           {
+             tmp_double = *((double *) VALUE_LITERAL_DATA (fromval));
+             
+             tmp_float = (float) tmp_double;
+
+             write_memory (VALUE_ADDRESS(val),
+                           (char *) &tmp_float, sizeof(float));
+
+             tmp_double = *((double *) 
+                            (((char *) VALUE_LITERAL_DATA (fromval))
+                             + sizeof(double))); 
+             
+             tmp_float = (float) tmp_double;
+
+             write_memory(VALUE_ADDRESS(val) + sizeof(float),
+                          (char *) &tmp_float, sizeof(float));
+           }
+         else
+           error ("Cannot assign literal complex to variable!");
+       }
+      else 
+       {
+         write_memory (VALUE_ADDRESS (val),
+                       (char *) VALUE_LITERAL_DATA (fromval),
+                       TYPE_LENGTH (VALUE_TYPE (fromval)));
+       }
+    }
+
+  /* Now free up the transient literal string's storage */
+   
+  free (VALUE_LITERAL_DATA (fromval)); 
+
+  VALUE_TYPE (val) = type;
+  
+  return val;
+}
This page took 0.052674 seconds and 4 git commands to generate.