X-Git-Url: http://drtracing.org/?a=blobdiff_plain;f=gas%2Fconfig%2Ftc-i386.c;h=7070995f2e0875a9a9cd27185ead44701ae11024;hb=ab9da554193906c4406d4d5eadfc24ea8f521558;hp=42398ae6f0e908edb3a6a20082cd7e4d804f1240;hpb=a87b3269340cca83c2197909ade48e28023b9cfd;p=deliverable%2Fbinutils-gdb.git diff --git a/gas/config/tc-i386.c b/gas/config/tc-i386.c index 42398ae6f0..7070995f2e 100644 --- a/gas/config/tc-i386.c +++ b/gas/config/tc-i386.c @@ -1,21 +1,23 @@ /* i386.c -- Assemble code for the Intel 80386 - Copyright (C) 1989, 1991, 1992 Free Software Foundation. - + Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 97, 98, 1999 + Free Software Foundation. + This file is part of GAS, the GNU Assembler. - + GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. - + GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. - + You should have received a copy of the GNU General Public License - along with GAS; see the file COPYING. If not, write to - the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ + along with GAS; see the file COPYING. If not, write to the Free + Software Foundation, 59 Temple Place - Suite 330, Boston, MA + 02111-1307, USA. */ /* Intel 80386 machine specific gas. @@ -24,67 +26,132 @@ Please help us make it better. */ -#include "as.h" +#include -#include "obstack.h" +#include "as.h" +#include "subsegs.h" #include "opcode/i386.h" +#ifndef TC_RELOC +#define TC_RELOC(X,Y) (Y) +#endif + +#ifndef REGISTER_WARNINGS +#define REGISTER_WARNINGS 1 +#endif + +#ifndef SCALE1_WHEN_NO_INDEX +/* Specifying a scale factor besides 1 when there is no index is + futile. eg. `mov (%ebx,2),%al' does exactly the same as + `mov (%ebx),%al'. To slavishly follow what the programmer + specified, set SCALE1_WHEN_NO_INDEX to 0. */ +#define SCALE1_WHEN_NO_INDEX 1 +#endif + +#define true 1 +#define false 0 + +static unsigned int mode_from_disp_size PARAMS ((unsigned int)); +static int fits_in_signed_byte PARAMS ((long)); +static int fits_in_unsigned_byte PARAMS ((long)); +static int fits_in_unsigned_word PARAMS ((long)); +static int fits_in_signed_word PARAMS ((long)); +static int smallest_imm_type PARAMS ((long)); +static int add_prefix PARAMS ((unsigned int)); +static void set_16bit_code_flag PARAMS ((int)); +static void set_intel_syntax PARAMS ((int)); + +#ifdef BFD_ASSEMBLER +static bfd_reloc_code_real_type reloc + PARAMS ((int, int, bfd_reloc_code_real_type)); +#endif + /* 'md_assemble ()' gathers together information and puts it into a i386_insn. */ -typedef struct { - /* TM holds the template for the insn were currently assembling. */ - template tm; - /* SUFFIX holds the opcode suffix (e.g. 'l' for 'movl') if given. */ - char suffix; - /* Operands are coded with OPERANDS, TYPES, DISPS, IMMS, and REGS. */ - - /* OPERANDS gives the number of given operands. */ - unsigned int operands; - - /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number of - given register, displacement, memory operands and immediate operands. */ - unsigned int reg_operands, disp_operands, mem_operands, imm_operands; - - /* TYPES [i] is the type (see above #defines) which tells us how to - search through DISPS [i] & IMMS [i] & REGS [i] for the required - operand. */ - unsigned int types [MAX_OPERANDS]; - - /* Displacements (if given) for each operand. */ - expressionS * disps [MAX_OPERANDS]; - - /* Immediate operands (if given) for each operand. */ - expressionS * imms [MAX_OPERANDS]; - - /* Register operands (if given) for each operand. */ - reg_entry * regs [MAX_OPERANDS]; - - /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode - the base index byte below. */ - reg_entry * base_reg; - reg_entry * index_reg; - unsigned int log2_scale_factor; - - /* SEG gives the seg_entry of this insn. It is equal to zero unless - an explicit segment override is given. */ - seg_entry * seg; /* segment for memory operands (if given) */ - - /* PREFIX holds all the given prefix opcodes (usually null). - PREFIXES is the size of PREFIX. */ - char prefix [MAX_PREFIXES]; - unsigned int prefixes; - - /* RM and IB are the modrm byte and the base index byte where the addressing - modes of this insn are encoded. */ - - modrm_byte rm; - base_index_byte bi; -} i386_insn; +struct _i386_insn + { + /* TM holds the template for the insn were currently assembling. */ + template tm; + + /* SUFFIX holds the instruction mnemonic suffix if given. + (e.g. 'l' for 'movl') */ + char suffix; + + /* Operands are coded with OPERANDS, TYPES, DISPS, IMMS, and REGS. */ + + /* OPERANDS gives the number of given operands. */ + unsigned int operands; + + /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number + of given register, displacement, memory operands and immediate + operands. */ + unsigned int reg_operands, disp_operands, mem_operands, imm_operands; + + /* TYPES [i] is the type (see above #defines) which tells us how to + search through DISPS [i] & IMMS [i] & REGS [i] for the required + operand. */ + unsigned int types[MAX_OPERANDS]; + + /* Displacements (if given) for each operand. */ + expressionS *disps[MAX_OPERANDS]; + + /* Relocation type for operand */ +#ifdef BFD_ASSEMBLER + enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS]; +#else + int disp_reloc[MAX_OPERANDS]; +#endif + + /* Immediate operands (if given) for each operand. */ + expressionS *imms[MAX_OPERANDS]; + + /* Register operands (if given) for each operand. */ + const reg_entry *regs[MAX_OPERANDS]; + + /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode + the base index byte below. */ + const reg_entry *base_reg; + const reg_entry *index_reg; + unsigned int log2_scale_factor; + + /* SEG gives the seg_entries of this insn. They are zero unless + explicit segment overrides are given. */ + const seg_entry *seg[2]; /* segments for memory operands (if given) */ + + /* PREFIX holds all the given prefix opcodes (usually null). + PREFIXES is the number of prefix opcodes. */ + unsigned int prefixes; + unsigned char prefix[MAX_PREFIXES]; + + /* RM and SIB are the modrm byte and the sib byte where the + addressing modes of this insn are encoded. */ + + modrm_byte rm; + sib_byte sib; + }; + +typedef struct _i386_insn i386_insn; + +/* List of chars besides those in app.c:symbol_chars that can start an + operand. Used to prevent the scrubber eating vital white-space. */ +#ifdef LEX_AT +const char extra_symbol_chars[] = "*%-(@"; +#else +const char extra_symbol_chars[] = "*%-("; +#endif /* This array holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful */ +#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX)) +/* Putting '/' here makes it impossible to use the divide operator. + However, we need it for compatibility with SVR4 systems. */ +const char comment_chars[] = "#/"; +#define PREFIX_SEPARATOR '\\' +#else const char comment_chars[] = "#"; +#define PREFIX_SEPARATOR '/' +#endif /* This array holds the chars that only start a comment at the beginning of a line. If the line seems to have the form '# 123 filename' @@ -93,8 +160,14 @@ const char comment_chars[] = "#"; first line of the input file. This is because the compiler outputs #NO_APP at the beginning of its output. */ /* Also note that comments started like this one will always work if - '/' isn't otherwise defined. */ -const char line_comment_chars[] = "/"; /* removed '#' xoxorich. */ + '/' isn't otherwise defined. */ +#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX)) +const char line_comment_chars[] = ""; +#else +const char line_comment_chars[] = "/"; +#endif + +const char line_separator_chars[] = ""; /* Chars that can be used to separate mant from exp in floating point nums */ const char EXP_CHARS[] = "eE"; @@ -105,25 +178,22 @@ const char EXP_CHARS[] = "eE"; const char FLT_CHARS[] = "fFdDxX"; /* tables for lexical analysis */ -static char opcode_chars[256]; +static char mnemonic_chars[256]; static char register_chars[256]; static char operand_chars[256]; -static char space_chars[256]; static char identifier_chars[256]; static char digit_chars[256]; /* lexical macros */ -#define is_opcode_char(x) (opcode_chars[(unsigned char) x]) +#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x]) #define is_operand_char(x) (operand_chars[(unsigned char) x]) #define is_register_char(x) (register_chars[(unsigned char) x]) -#define is_space_char(x) (space_chars[(unsigned char) x]) +#define is_space_char(x) ((x) == ' ') #define is_identifier_char(x) (identifier_chars[(unsigned char) x]) #define is_digit_char(x) (digit_chars[(unsigned char) x]) /* put here all non-digit non-letter charcters that may occur in an operand */ -static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:"; - -static char *ordinal_names[] = { "first", "second", "third" }; /* for printfs */ +static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]"; /* md_assemble() always leaves the strings it's passed unaltered. To effect this we maintain a stack of saved characters that we've smashed @@ -131,1885 +201,4294 @@ static char *ordinal_names[] = { "first", "second", "third" }; /* for printfs */ assembler instruction). */ static char save_stack[32]; static char *save_stack_p; /* stack pointer */ -#define END_STRING_AND_SAVE(s) *save_stack_p++ = *s; *s = '\0' -#define RESTORE_END_STRING(s) *s = *--save_stack_p - - /* The instruction we're assembling. */ - static i386_insn i; +#define END_STRING_AND_SAVE(s) \ + do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0) +#define RESTORE_END_STRING(s) \ + do { *(s) = *--save_stack_p; } while (0) + +/* The instruction we're assembling. */ +static i386_insn i; + +/* Possible templates for current insn. */ +static const templates *current_templates; /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */ static expressionS disp_expressions[2], im_expressions[2]; -/* pointers to ebp & esp entries in reg_hash hash table */ -static reg_entry *ebp, *esp; - static int this_operand; /* current operand we are working on */ -/* - Interface to relax_segment. - There are 2 relax states for 386 jump insns: one for conditional & one - for unconditional jumps. This is because the these two types of jumps - add different sizes to frags when we're figuring out what sort of jump - to choose to reach a given label. */ +static int flag_do_long_jump; /* FIXME what does this do? */ + +static int flag_16bit_code; /* 1 if we're writing 16-bit code, 0 if 32-bit */ + +static int intel_syntax = 0; /* 1 for intel syntax, 0 if att syntax */ + +static int allow_naked_reg = 0; /* 1 if register prefix % not required */ + +/* Interface to relax_segment. + There are 2 relax states for 386 jump insns: one for conditional & + one for unconditional jumps. This is because the these two types + of jumps add different sizes to frags when we're figuring out what + sort of jump to choose to reach a given label. */ /* types */ #define COND_JUMP 1 /* conditional jump */ #define UNCOND_JUMP 2 /* unconditional jump */ /* sizes */ -#define BYTE 0 -#define WORD 1 -#define DWORD 2 -#define UNKNOWN_SIZE 3 +#define CODE16 1 +#define SMALL 0 +#define SMALL16 (SMALL|CODE16) +#define BIG 2 +#define BIG16 (BIG|CODE16) + +#ifndef INLINE +#ifdef __GNUC__ +#define INLINE __inline__ +#else +#define INLINE +#endif +#endif -#define ENCODE_RELAX_STATE(type,size) ((type<<2) | (size)) +#define ENCODE_RELAX_STATE(type,size) \ + ((relax_substateT)((type<<2) | (size))) #define SIZE_FROM_RELAX_STATE(s) \ - ( (((s) & 0x3) == BYTE ? 1 : (((s) & 0x3) == WORD ? 2 : 4)) ) - -const relax_typeS md_relax_table[] = { - /* - The fields are: - 1) most positive reach of this state, - 2) most negative reach of this state, - 3) how many bytes this mode will add to the size of the current frag - 4) which index into the table to try if we can't fit into this one. - */ - {1, 1, 0, 0}, - {1, 1, 0, 0}, - {1, 1, 0, 0}, - {1, 1, 0, 0}, - - /* For now we don't use word displacement jumps: they may be - untrustworthy. */ - {127+1, -128+1, 0, ENCODE_RELAX_STATE(COND_JUMP,DWORD) }, - /* word conditionals add 3 bytes to frag: - 2 opcode prefix; 1 displacement bytes */ - {32767+2, -32768+2, 3, ENCODE_RELAX_STATE(COND_JUMP,DWORD) }, - /* dword conditionals adds 4 bytes to frag: - 1 opcode prefix; 3 displacement bytes */ - {0, 0, 4, 0}, - {1, 1, 0, 0}, - - {127+1, -128+1, 0, ENCODE_RELAX_STATE(UNCOND_JUMP,DWORD) }, - /* word jmp adds 2 bytes to frag: - 1 opcode prefix; 1 displacement bytes */ - {32767+2, -32768+2, 2, ENCODE_RELAX_STATE(UNCOND_JUMP,DWORD) }, - /* dword jmp adds 3 bytes to frag: - 0 opcode prefix; 3 displacement bytes */ - {0, 0, 3, 0}, - {1, 1, 0, 0}, - -}; + ( (((s) & 0x3) == BIG ? 4 : (((s) & 0x3) == BIG16 ? 2 : 1)) ) -#if __STDC__ == 1 +/* This table is used by relax_frag to promote short jumps to long + ones where necessary. SMALL (short) jumps may be promoted to BIG + (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We + don't allow a short jump in a 32 bit code segment to be promoted to + a 16 bit offset jump because it's slower (requires data size + prefix), and doesn't work, unless the destination is in the bottom + 64k of the code segment (The top 16 bits of eip are zeroed). */ -static char *output_invalid(int c); -static int i386_operand(char *operand_string); -static reg_entry *parse_register(char *reg_string); +const relax_typeS md_relax_table[] = +{ +/* The fields are: + 1) most positive reach of this state, + 2) most negative reach of this state, + 3) how many bytes this mode will add to the size of the current frag + 4) which index into the table to try if we can't fit into this one. + */ + {1, 1, 0, 0}, + {1, 1, 0, 0}, + {1, 1, 0, 0}, + {1, 1, 0, 0}, -#else /* not __STDC__ */ + {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)}, + {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)}, + /* dword conditionals adds 4 bytes to frag: + 1 extra opcode byte, 3 extra displacement bytes. */ + {0, 0, 4, 0}, + /* word conditionals add 2 bytes to frag: + 1 extra opcode byte, 1 extra displacement byte. */ + {0, 0, 2, 0}, -static char *output_invalid(); -static int i386_operand(); -static reg_entry *parse_register(); + {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)}, + {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)}, + /* dword jmp adds 3 bytes to frag: + 0 extra opcode bytes, 3 extra displacement bytes. */ + {0, 0, 3, 0}, + /* word jmp adds 1 byte to frag: + 0 extra opcode bytes, 1 extra displacement byte. */ + {0, 0, 1, 0} -#endif /* not __STDC__ */ +}; -/* Ignore certain directives generated by gcc. This probably should - not be here. */ -void dummy () +void +i386_align_code (fragP, count) + fragS *fragP; + int count; { - while (*input_line_pointer && *input_line_pointer != '\n') - input_line_pointer++; -} + /* Various efficient no-op patterns for aligning code labels. */ + /* Note: Don't try to assemble the instructions in the comments. */ + /* 0L and 0w are not legal */ + static const char f32_1[] = + {0x90}; /* nop */ + static const char f32_2[] = + {0x89,0xf6}; /* movl %esi,%esi */ + static const char f32_3[] = + {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */ + static const char f32_4[] = + {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */ + static const char f32_5[] = + {0x90, /* nop */ + 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */ + static const char f32_6[] = + {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */ + static const char f32_7[] = + {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */ + static const char f32_8[] = + {0x90, /* nop */ + 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */ + static const char f32_9[] = + {0x89,0xf6, /* movl %esi,%esi */ + 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */ + static const char f32_10[] = + {0x8d,0x76,0x00, /* leal 0(%esi),%esi */ + 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */ + static const char f32_11[] = + {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */ + 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */ + static const char f32_12[] = + {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */ + 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */ + static const char f32_13[] = + {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */ + 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */ + static const char f32_14[] = + {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */ + 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */ + static const char f32_15[] = + {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */ + 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90}; + static const char f16_4[] = + {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */ + static const char f16_5[] = + {0x90, /* nop */ + 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */ + static const char f16_6[] = + {0x89,0xf6, /* mov %si,%si */ + 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */ + static const char f16_7[] = + {0x8d,0x74,0x00, /* lea 0(%si),%si */ + 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */ + static const char f16_8[] = + {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */ + 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */ + static const char *const f32_patt[] = { + f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8, + f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15 + }; + static const char *const f16_patt[] = { + f32_1, f32_2, f32_3, f16_4, f16_5, f16_6, f16_7, f16_8, + f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15 + }; -const pseudo_typeS md_pseudo_table[] = { - { "ffloat", float_cons, 'f' }, - { "dfloat", float_cons, 'd' }, - { "tfloat", float_cons, 'x' }, - { "value", cons, 2 }, - { 0, 0, 0 } -}; + if (count > 0 && count <= 15) + { + if (flag_16bit_code) + { + memcpy(fragP->fr_literal + fragP->fr_fix, + f16_patt[count - 1], count); + if (count > 8) /* adjust jump offset */ + fragP->fr_literal[fragP->fr_fix + 1] = count - 2; + } + else + memcpy(fragP->fr_literal + fragP->fr_fix, + f32_patt[count - 1], count); + fragP->fr_var = count; + } +} -/* for interface with expression () */ -extern char * input_line_pointer; +static char *output_invalid PARAMS ((int c)); +static int i386_operand PARAMS ((char *operand_string)); +static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float)); +static const reg_entry *parse_register PARAMS ((char *reg_string, + char **end_op)); -/* obstack for constructing various things in md_begin */ -struct obstack o; +#ifndef I386COFF +static void s_bss PARAMS ((int)); +#endif -/* hash table for opcode lookup */ -static struct hash_control *op_hash = (struct hash_control *) 0; -/* hash table for register lookup */ -static struct hash_control *reg_hash = (struct hash_control *) 0; -/* hash table for prefix lookup */ -static struct hash_control *prefix_hash = (struct hash_control *) 0; +symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */ - -void md_begin () +static INLINE unsigned int +mode_from_disp_size (t) + unsigned int t; { - char * hash_err; - - obstack_begin (&o,4096); - - /* initialize op_hash hash table */ - op_hash = hash_new(); /* xmalloc handles error */ - - { - register const template *optab; - register templates *core_optab; - char *prev_name; - - optab = i386_optab; /* setup for loop */ - prev_name = optab->name; - obstack_grow (&o, optab, sizeof(template)); - core_optab = (templates *) xmalloc (sizeof (templates)); - - for (optab++; optab < i386_optab_end; optab++) { - if (! strcmp (optab->name, prev_name)) { - /* same name as before --> append to current template list */ - obstack_grow (&o, optab, sizeof(template)); - } else { - /* different name --> ship out current template list; - add to hash table; & begin anew */ - /* Note: end must be set before start! since obstack_next_free changes - upon opstack_finish */ - core_optab->end = (template *) obstack_next_free(&o); - core_optab->start = (template *) obstack_finish(&o); - hash_err = hash_insert (op_hash, prev_name, (char *) core_optab); - if (hash_err && *hash_err) { - hash_error: - as_fatal("Internal Error: Can't hash %s: %s", prev_name, hash_err); - } - prev_name = optab->name; - core_optab = (templates *) xmalloc (sizeof(templates)); - obstack_grow (&o, optab, sizeof(template)); - } - } - } - - /* initialize reg_hash hash table */ - reg_hash = hash_new(); - { - register const reg_entry *regtab; - - for (regtab = i386_regtab; regtab < i386_regtab_end; regtab++) { - hash_err = hash_insert (reg_hash, regtab->reg_name, regtab); - if (hash_err && *hash_err) goto hash_error; - } - } - - esp = (reg_entry *) hash_find (reg_hash, "esp"); - ebp = (reg_entry *) hash_find (reg_hash, "ebp"); - - /* initialize reg_hash hash table */ - prefix_hash = hash_new(); - { - register const prefix_entry *prefixtab; - - for (prefixtab = i386_prefixtab; - prefixtab < i386_prefixtab_end; prefixtab++) { - hash_err = hash_insert (prefix_hash, prefixtab->prefix_name, prefixtab); - if (hash_err && *hash_err) goto hash_error; - } - } - - /* fill in lexical tables: opcode_chars, operand_chars, space_chars */ - { - register unsigned int c; - - bzero (opcode_chars, sizeof(opcode_chars)); - bzero (operand_chars, sizeof(operand_chars)); - bzero (space_chars, sizeof(space_chars)); - bzero (identifier_chars, sizeof(identifier_chars)); - bzero (digit_chars, sizeof(digit_chars)); - - for (c = 0; c < 256; c++) { - if (islower(c) || isdigit(c)) { - opcode_chars[c] = c; - register_chars[c] = c; - } else if (isupper(c)) { - opcode_chars[c] = tolower(c); - register_chars[c] = opcode_chars[c]; - } else if (c == PREFIX_SEPERATOR) { - opcode_chars[c] = c; - } else if (c == ')' || c == '(') { - register_chars[c] = c; - } - - if (isupper(c) || islower(c) || isdigit(c)) - operand_chars[c] = c; - else if (c && strchr(operand_special_chars, c)) - operand_chars[c] = c; - - if (isdigit(c) || c == '-') digit_chars[c] = c; - - if (isalpha(c) || c == '_' || c == '.' || isdigit(c)) - identifier_chars[c] = c; - - if (c == ' ' || c == '\t') space_chars[c] = c; - } - } + return (t & Disp8) ? 1 : (t & (Disp16|Disp32)) ? 2 : 0; } -void md_end() {} /* not much to do here. */ +static INLINE int +fits_in_signed_byte (num) + long num; +{ + return (num >= -128) && (num <= 127); +} /* fits_in_signed_byte() */ - -#ifdef DEBUG386 +static INLINE int +fits_in_unsigned_byte (num) + long num; +{ + return (num & 0xff) == num; +} /* fits_in_unsigned_byte() */ -/* debugging routines for md_assemble */ -/* static void pi (), pte (), pt (), pe (), ps (); */ +static INLINE int +fits_in_unsigned_word (num) + long num; +{ + return (num & 0xffff) == num; +} /* fits_in_unsigned_word() */ -static void pi (line, x) -char * line; -i386_insn *x; +static INLINE int +fits_in_signed_word (num) + long num; { - register template *p; - int i; - - fprintf (stdout, "%s: template ", line); - pte (&x->tm); - fprintf (stdout, " modrm: mode %x reg %x reg/mem %x", - x->rm.mode, x->rm.reg, x->rm.regmem); - fprintf (stdout, " base %x index %x scale %x\n", - x->bi.base, x->bi.index, x->bi.scale); - for (i = 0; i < x->operands; i++) { - fprintf (stdout, " #%d: ", i+1); - pt (x->types[i]); - fprintf (stdout, "\n"); - if (x->types[i] & Reg) fprintf (stdout, "%s\n", x->regs[i]->reg_name); - if (x->types[i] & Imm) pe (x->imms[i]); - if (x->types[i] & (Disp|Abs)) pe (x->disps[i]); - } -} + return (-32768 <= num) && (num <= 32767); +} /* fits_in_signed_word() */ -static void pte (t) -template *t; +static int +smallest_imm_type (num) + long num; { - int i; - fprintf (stdout, " %d operands ", t->operands); - fprintf (stdout, "opcode %x ", - t->base_opcode); - if (t->extension_opcode != None) - fprintf (stdout, "ext %x ", t->extension_opcode); - if (t->opcode_modifier&D) - fprintf (stdout, "D"); - if (t->opcode_modifier&W) - fprintf (stdout, "W"); - fprintf (stdout, "\n"); - for (i = 0; i < t->operands; i++) { - fprintf (stdout, " #%d type ", i+1); - pt (t->operand_types[i]); - fprintf (stdout, "\n"); - } +#if 0 + /* This code is disabled because all the Imm1 forms in the opcode table + are slower on the i486, and they're the versions with the implicitly + specified single-position displacement, which has another syntax if + you really want to use that form. If you really prefer to have the + one-byte-shorter Imm1 form despite these problems, re-enable this + code. */ + if (num == 1) + return Imm1 | Imm8 | Imm8S | Imm16 | Imm32; +#endif + return (fits_in_signed_byte (num) + ? (Imm8S | Imm8 | Imm16 | Imm32) + : fits_in_unsigned_byte (num) + ? (Imm8 | Imm16 | Imm32) + : (fits_in_signed_word (num) || fits_in_unsigned_word (num)) + ? (Imm16 | Imm32) + : (Imm32)); +} /* smallest_imm_type() */ + +/* Returns 0 if attempting to add a prefix where one from the same + class already exists, 1 if non rep/repne added, 2 if rep/repne + added. */ +static int +add_prefix (prefix) + unsigned int prefix; +{ + int ret = 1; + int q; + + switch (prefix) + { + default: + abort (); + + case CS_PREFIX_OPCODE: + case DS_PREFIX_OPCODE: + case ES_PREFIX_OPCODE: + case FS_PREFIX_OPCODE: + case GS_PREFIX_OPCODE: + case SS_PREFIX_OPCODE: + q = SEG_PREFIX; + break; + + case REPNE_PREFIX_OPCODE: + case REPE_PREFIX_OPCODE: + ret = 2; + /* fall thru */ + case LOCK_PREFIX_OPCODE: + q = LOCKREP_PREFIX; + break; + + case FWAIT_OPCODE: + q = WAIT_PREFIX; + break; + + case ADDR_PREFIX_OPCODE: + q = ADDR_PREFIX; + break; + + case DATA_PREFIX_OPCODE: + q = DATA_PREFIX; + break; + } + + if (i.prefix[q]) + { + as_bad (_("same type of prefix used twice")); + return 0; + } + + i.prefixes += 1; + i.prefix[q] = prefix; + return ret; } -static void pe (e) -expressionS *e; +static void +set_16bit_code_flag (new_16bit_code_flag) + int new_16bit_code_flag; { - fprintf (stdout, " segment %s\n", segment_name (e->X_seg)); - fprintf (stdout, " add_number %d (%x)\n", - e->X_add_number, e->X_add_number); - if (e->X_add_symbol) { - fprintf (stdout, " add_symbol "); - ps (e->X_add_symbol); - fprintf (stdout, "\n"); - } - if (e->X_subtract_symbol) { - fprintf (stdout, " sub_symbol "); - ps (e->X_subtract_symbol); - fprintf (stdout, "\n"); - } + flag_16bit_code = new_16bit_code_flag; } -static void ps (s) -symbolS *s; +static void +set_intel_syntax (syntax_flag) + int syntax_flag; { - fprintf (stdout, "%s type %s%s", - S_GET_NAME(s), - S_IS_EXTERNAL(s) ? "EXTERNAL " : "", - segment_name(S_GET_SEGMENT(s))); + /* Find out if register prefixing is specified. */ + int ask_naked_reg = 0; + + SKIP_WHITESPACE (); + if (! is_end_of_line[(unsigned char) *input_line_pointer]) + { + char *string = input_line_pointer; + int e = get_symbol_end (); + + if (strcmp(string, "prefix") == 0) + ask_naked_reg = 1; + else if (strcmp(string, "noprefix") == 0) + ask_naked_reg = -1; + else + as_bad (_("Bad argument to syntax directive.")); + *input_line_pointer = e; + } + demand_empty_rest_of_line (); + + intel_syntax = syntax_flag; + + if (ask_naked_reg == 0) + { +#ifdef BFD_ASSEMBLER + allow_naked_reg = (intel_syntax + && (bfd_get_symbol_leading_char (stdoutput) != '\0')); +#else + allow_naked_reg = 0; /* conservative default */ +#endif + } + else + allow_naked_reg = (ask_naked_reg < 0); } -struct type_name { - unsigned int mask; - char *tname; -} type_names[] = { - { Reg8, "r8" }, { Reg16, "r16" }, { Reg32, "r32" }, { Imm8, "i8" }, - { Imm8S, "i8s" }, - { Imm16, "i16" }, { Imm32, "i32" }, { Mem8, "Mem8"}, { Mem16, "Mem16"}, - { Mem32, "Mem32"}, { BaseIndex, "BaseIndex" }, - { Abs8, "Abs8" }, { Abs16, "Abs16" }, { Abs32, "Abs32" }, - { Disp8, "d8" }, { Disp16, "d16" }, - { Disp32, "d32" }, { SReg2, "SReg2" }, { SReg3, "SReg3" }, { Acc, "Acc" }, - { InOutPortReg, "InOutPortReg" }, { ShiftCount, "ShiftCount" }, - { Imm1, "i1" }, { Control, "control reg" }, {Test, "test reg"}, - { FloatReg, "FReg"}, {FloatAcc, "FAcc"}, - { JumpAbsolute, "Jump Absolute"}, - { 0, "" } +const pseudo_typeS md_pseudo_table[] = +{ +#ifndef I386COFF + {"bss", s_bss, 0}, +#endif +#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO) + {"align", s_align_bytes, 0}, +#else + {"align", s_align_ptwo, 0}, +#endif + {"ffloat", float_cons, 'f'}, + {"dfloat", float_cons, 'd'}, + {"tfloat", float_cons, 'x'}, + {"value", cons, 2}, + {"noopt", s_ignore, 0}, + {"optim", s_ignore, 0}, + {"code16", set_16bit_code_flag, 1}, + {"code32", set_16bit_code_flag, 0}, + {"intel_syntax", set_intel_syntax, 1}, + {"att_syntax", set_intel_syntax, 0}, + {0, 0, 0} }; -static void pt (t) -unsigned int t; -{ - register struct type_name *ty; - - if (t == Unknown) { - fprintf (stdout, "Unknown"); - } else { - for (ty = type_names; ty->mask; ty++) - if (t & ty->mask) fprintf (stdout, "%s, ", ty->tname); - } - fflush (stdout); -} +/* for interface with expression () */ +extern char *input_line_pointer; -#endif /* DEBUG386 */ +/* hash table for instruction mnemonic lookup */ +static struct hash_control *op_hash; +/* hash table for register lookup */ +static struct hash_control *reg_hash; -/* - This is the guts of the machine-dependent assembler. LINE points to a - machine dependent instruction. This funciton is supposed to emit - the frags/bytes it assembles to. - */ -void md_assemble (line) -char *line; + +void +md_begin () { - /* Holds temlate once we've found it. */ - register template * t; - - /* Possible templates for current insn */ - templates *current_templates = (templates *) 0; - - /* Initialize globals. */ - bzero (&i, sizeof(i)); - bzero (disp_expressions, sizeof(disp_expressions)); - bzero (im_expressions, sizeof(im_expressions)); - save_stack_p = save_stack; /* reset stack pointer */ - - /* Fist parse an opcode & call i386_operand for the operands. - We assume that the scrubber has arranged it so that line[0] is the valid - start of a (possibly prefixed) opcode. */ - { - register char *l = line; /* Fast place to put LINE. */ - - /* 1 if operand is pending after ','. */ - unsigned int expecting_operand = 0; - /* 1 if we found a prefix only acceptable with string insns. */ - unsigned int expecting_string_instruction = 0; - /* Non-zero if operand parens not balenced. */ - unsigned int paren_not_balenced; - char * token_start = l; - - while (! is_space_char(*l) && *l != END_OF_INSN) { - if (! is_opcode_char(*l)) { - as_bad("invalid character %s in opcode", output_invalid(*l)); - return; - } else if (*l != PREFIX_SEPERATOR) { - *l = opcode_chars[(unsigned char) *l]; /* fold case of opcodes */ - l++; - } else { /* this opcode's got a prefix */ - register unsigned int q; - register prefix_entry * prefix; - - if (l == token_start) { - as_bad("expecting prefix; got nothing"); - return; - } - END_STRING_AND_SAVE (l); - prefix = (prefix_entry *) hash_find (prefix_hash, token_start); - if (! prefix) { - as_bad("no such opcode prefix ('%s')", token_start); - return; - } - RESTORE_END_STRING (l); - /* check for repeated prefix */ - for (q = 0; q < i.prefixes; q++) - if (i.prefix[q] == prefix->prefix_code) { - as_bad("same prefix used twice; you don't really want this!"); - return; - } - if (i.prefixes == MAX_PREFIXES) { - as_bad("too many opcode prefixes"); - return; - } - i.prefix[i.prefixes++] = prefix->prefix_code; - if (prefix->prefix_code == REPE || prefix->prefix_code == REPNE) - expecting_string_instruction = 1; - /* skip past PREFIX_SEPERATOR and reset token_start */ - token_start = ++l; - } - } - END_STRING_AND_SAVE (l); - if (token_start == l) { - as_bad("expecting opcode; got nothing"); - return; - } - - /* Lookup insn in hash; try intel & att naming conventions if appropriate; - that is: we only use the opcode suffix 'b' 'w' or 'l' if we need to. */ - current_templates = (templates *) hash_find (op_hash, token_start); - if (! current_templates) { - int last_index = strlen(token_start) - 1; - char last_char = token_start[last_index]; - switch (last_char) { - case DWORD_OPCODE_SUFFIX: - case WORD_OPCODE_SUFFIX: - case BYTE_OPCODE_SUFFIX: - token_start[last_index] = '\0'; - current_templates = (templates *) hash_find (op_hash, token_start); - token_start[last_index] = last_char; - i.suffix = last_char; - } - if (!current_templates) { - as_bad("no such 386 instruction: `%s'", token_start); return; - } - } - RESTORE_END_STRING (l); - - /* check for rep/repne without a string instruction */ - if (expecting_string_instruction && - ! IS_STRING_INSTRUCTION (current_templates-> - start->base_opcode)) { - as_bad("expecting string instruction after rep/repne"); - return; - } - - /* There may be operands to parse. */ - if (*l != END_OF_INSN && - /* For string instructions, we ignore any operands if given. This - kludges, for example, 'rep/movsb %ds:(%esi), %es:(%edi)' where - the operands are always going to be the same, and are not really - encoded in machine code. */ - ! IS_STRING_INSTRUCTION (current_templates-> - start->base_opcode)) { - /* parse operands */ - do { - /* skip optional white space before operand */ - while (! is_operand_char(*l) && *l != END_OF_INSN) { - if (! is_space_char(*l)) { - as_bad("invalid character %s before %s operand", - output_invalid(*l), - ordinal_names[i.operands]); - return; - } - l++; - } - token_start = l; /* after white space */ - paren_not_balenced = 0; - while (paren_not_balenced || *l != ',') { - if (*l == END_OF_INSN) { - if (paren_not_balenced) { - as_bad("unbalenced parenthesis in %s operand.", - ordinal_names[i.operands]); - return; - } else break; /* we are done */ - } else if (! is_operand_char(*l)) { - as_bad("invalid character %s in %s operand", - output_invalid(*l), - ordinal_names[i.operands]); - return; - } - if (*l == '(') ++paren_not_balenced; - if (*l == ')') --paren_not_balenced; - l++; - } - if (l != token_start) { /* yes, we've read in another operand */ - unsigned int operand_ok; - this_operand = i.operands++; - if (i.operands > MAX_OPERANDS) { - as_bad("spurious operands; (%d operands/instruction max)", - MAX_OPERANDS); - return; - } - /* now parse operand adding info to 'i' as we go along */ - END_STRING_AND_SAVE (l); - operand_ok = i386_operand (token_start); - RESTORE_END_STRING (l); /* restore old contents */ - if (!operand_ok) return; - } else { - if (expecting_operand) { - expecting_operand_after_comma: - as_bad("expecting operand after ','; got nothing"); - return; - } - if (*l == ',') { - as_bad("expecting operand before ','; got nothing"); - return; - } - } - - /* now *l must be either ',' or END_OF_INSN */ - if (*l == ',') { - if (*++l == END_OF_INSN) { /* just skip it, if it's \n complain */ - goto expecting_operand_after_comma; - } - expecting_operand = 1; - } - } while (*l != END_OF_INSN); /* until we get end of insn */ - } - } - - /* Now we've parsed the opcode into a set of templates, and have the - operands at hand. - Next, we find a template that matches the given insn, - making sure the overlap of the given operands types is consistent - with the template operand types. */ - -#define MATCH(overlap,given_type) \ - (overlap && \ - (overlap & (JumpAbsolute|BaseIndex|Mem8)) \ - == (given_type & (JumpAbsolute|BaseIndex|Mem8))) - - /* If m0 and m1 are register matches they must be consistent - with the expected operand types t0 and t1. - That is, if both m0 & m1 are register matches - i.e. ( ((m0 & (Reg)) && (m1 & (Reg)) ) ? - then, either 1. or 2. must be true: - 1. the expected operand type register overlap is null: - (t0 & t1 & Reg) == 0 - AND - the given register overlap is null: - (m0 & m1 & Reg) == 0 - 2. the expected operand type register overlap == the given - operand type overlap: (t0 & t1 & m0 & m1 & Reg). - */ -#define CONSISTENT_REGISTER_MATCH(m0, m1, t0, t1) \ - ( ((m0 & (Reg)) && (m1 & (Reg))) ? \ - ( ((t0 & t1 & (Reg)) == 0 && (m0 & m1 & (Reg)) == 0) || \ - ((t0 & t1) & (m0 & m1) & (Reg)) \ - ) : 1) - { - register unsigned int overlap0, overlap1; - expressionS * exp; - unsigned int overlap2; - unsigned int found_reverse_match; - - overlap0 = overlap1 = overlap2 = found_reverse_match = 0; - for (t = current_templates->start; - t < current_templates->end; - t++) { - - /* must have right number of operands */ - if (i.operands != t->operands) continue; - else if (!t->operands) break; /* 0 operands always matches */ - - overlap0 = i.types[0] & t->operand_types[0]; - switch (t->operands) { - case 1: - if (! MATCH (overlap0,i.types[0])) continue; - break; - case 2: case 3: - overlap1 = i.types[1] & t->operand_types[1]; - if (! MATCH (overlap0,i.types[0]) || - ! MATCH (overlap1,i.types[1]) || - ! CONSISTENT_REGISTER_MATCH(overlap0, overlap1, - t->operand_types[0], - t->operand_types[1])) { - - /* check if other direction is valid ... */ - if (! (t->opcode_modifier & COMES_IN_BOTH_DIRECTIONS)) - continue; - - /* try reversing direction of operands */ - overlap0 = i.types[0] & t->operand_types[1]; - overlap1 = i.types[1] & t->operand_types[0]; - if (! MATCH (overlap0,i.types[0]) || - ! MATCH (overlap1,i.types[1]) || - ! CONSISTENT_REGISTER_MATCH (overlap0, overlap1, - t->operand_types[0], - t->operand_types[1])) { - /* does not match either direction */ - continue; - } - /* found a reverse match here -- slip through */ - /* found_reverse_match holds which of D or FloatD we've found */ - found_reverse_match = t->opcode_modifier & COMES_IN_BOTH_DIRECTIONS; - } /* endif: not forward match */ - /* found either forward/reverse 2 operand match here */ - if (t->operands == 3) { - overlap2 = i.types[2] & t->operand_types[2]; - if (! MATCH (overlap2,i.types[2]) || - ! CONSISTENT_REGISTER_MATCH (overlap0, overlap2, - t->operand_types[0], - t->operand_types[2]) || - ! CONSISTENT_REGISTER_MATCH (overlap1, overlap2, - t->operand_types[1], - t->operand_types[2])) - continue; - } - /* found either forward/reverse 2 or 3 operand match here: - slip through to break */ - } - break; /* we've found a match; break out of loop */ - } /* for (t = ... */ - if (t == current_templates->end) { /* we found no match */ - as_bad("operands given don't match any known 386 instruction"); - return; - } - - /* Copy the template we found (we may change it!). */ - bcopy (t, &i.tm, sizeof (template)); - t = &i.tm; /* alter new copy of template */ - - /* If there's no opcode suffix we try to invent one based on register - operands. */ - if (! i.suffix && i.reg_operands) { - /* We take i.suffix from the LAST register operand specified. This - assumes that the last register operands is the destination register - operand. */ - int o; - for (o = 0; o < MAX_OPERANDS; o++) - if (i.types[o] & Reg) { - i.suffix = (i.types[o] == Reg8) ? BYTE_OPCODE_SUFFIX : - (i.types[o] == Reg16) ? WORD_OPCODE_SUFFIX : - DWORD_OPCODE_SUFFIX; - } - } - - /* Make still unresolved immediate matches conform to size of immediate - given in i.suffix. Note: overlap2 cannot be an immediate! - We assume this. */ - if ((overlap0 & (Imm8|Imm8S|Imm16|Imm32)) - && overlap0 != Imm8 && overlap0 != Imm8S - && overlap0 != Imm16 && overlap0 != Imm32) { - if (! i.suffix) { - as_bad("no opcode suffix given; can't determine immediate size"); - return; - } - overlap0 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8|Imm8S) : - (i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32)); - } - if ((overlap1 & (Imm8|Imm8S|Imm16|Imm32)) - && overlap1 != Imm8 && overlap1 != Imm8S - && overlap1 != Imm16 && overlap1 != Imm32) { - if (! i.suffix) { - as_bad("no opcode suffix given; can't determine immediate size"); - return; - } - overlap1 &= (i.suffix == BYTE_OPCODE_SUFFIX ? (Imm8|Imm8S) : - (i.suffix == WORD_OPCODE_SUFFIX ? Imm16 : Imm32)); - } - - i.types[0] = overlap0; - i.types[1] = overlap1; - i.types[2] = overlap2; - - if (overlap0 & ImplicitRegister) i.reg_operands--; - if (overlap1 & ImplicitRegister) i.reg_operands--; - if (overlap2 & ImplicitRegister) i.reg_operands--; - if (overlap0 & Imm1) i.imm_operands = 0; /* kludge for shift insns */ - - if (found_reverse_match) { - unsigned int save; - save = t->operand_types[0]; - t->operand_types[0] = t->operand_types[1]; - t->operand_types[1] = save; - } - - /* Finalize opcode. First, we change the opcode based on the operand - size given by i.suffix: we never have to change things for byte insns, - or when no opcode suffix is need to size the operands. */ - - if (! i.suffix && (t->opcode_modifier & W)) { - as_bad("no opcode suffix given and no register operands; can't size instruction"); - return; - } - - if (i.suffix && i.suffix != BYTE_OPCODE_SUFFIX) { - /* Select between byte and word/dword operations. */ - if (t->opcode_modifier & W) - t->base_opcode |= W; - /* Now select between word & dword operations via the - operand size prefix. */ - if (i.suffix == WORD_OPCODE_SUFFIX) { - if (i.prefixes == MAX_PREFIXES) { - as_bad("%d prefixes given and 'w' opcode suffix gives too many prefixes", - MAX_PREFIXES); - return; - } - i.prefix[i.prefixes++] = WORD_PREFIX_OPCODE; - } - } - - /* For insns with operands there are more diddles to do to the opcode. */ - if (i.operands) { - /* If we found a reverse match we must alter the opcode direction bit - found_reverse_match holds bit to set (different for int & - float insns). */ - - if (found_reverse_match) { - t->base_opcode |= found_reverse_match; - } - - /* - The imul $imm, %reg instruction is converted into - imul $imm, %reg, %reg. */ - if (t->opcode_modifier & imulKludge) { - i.regs[2] = i.regs[1]; /* Pretend we saw the 3 operand case. */ - i.reg_operands = 2; - } - - /* Certain instructions expect the destination to be in the i.rm.reg - field. This is by far the exceptional case. For these instructions, - if the source operand is a register, we must reverse the i.rm.reg - and i.rm.regmem fields. We accomplish this by faking that the - two register operands were given in the reverse order. */ - if ((t->opcode_modifier & ReverseRegRegmem) && i.reg_operands == 2) { - unsigned int first_reg_operand = (i.types[0] & Reg) ? 0 : 1; - unsigned int second_reg_operand = first_reg_operand + 1; - reg_entry *tmp = i.regs[first_reg_operand]; - i.regs[first_reg_operand] = i.regs[second_reg_operand]; - i.regs[second_reg_operand] = tmp; - } - - if (t->opcode_modifier & ShortForm) { - /* The register or float register operand is in operand 0 or 1. */ - unsigned int o = (i.types[0] & (Reg|FloatReg)) ? 0 : 1; - /* Register goes in low 3 bits of opcode. */ - t->base_opcode |= i.regs[o]->reg_num; - } else if (t->opcode_modifier & ShortFormW) { - /* Short form with 0x8 width bit. Register is always dest. operand */ - t->base_opcode |= i.regs[1]->reg_num; - if (i.suffix == WORD_OPCODE_SUFFIX || - i.suffix == DWORD_OPCODE_SUFFIX) - t->base_opcode |= 0x8; - } else if (t->opcode_modifier & Seg2ShortForm) { - if (t->base_opcode == POP_SEG_SHORT && i.regs[0]->reg_num == 1) { - as_bad("you can't 'pop cs' on the 386."); - return; - } - t->base_opcode |= (i.regs[0]->reg_num << 3); - } else if (t->opcode_modifier & Seg3ShortForm) { - /* 'push %fs' is 0x0fa0; 'pop %fs' is 0x0fa1. - 'push %gs' is 0x0fa8; 'pop %fs' is 0x0fa9. - So, only if i.regs[0]->reg_num == 5 (%gs) do we need - to change the opcode. */ - if (i.regs[0]->reg_num == 5) - t->base_opcode |= 0x08; - } else if (t->opcode_modifier & Modrm) { - /* The opcode is completed (modulo t->extension_opcode which must - be put into the modrm byte. - Now, we make the modrm & index base bytes based on all the info - we've collected. */ - - /* i.reg_operands MUST be the number of real register operands; - implicit registers do not count. */ - if (i.reg_operands == 2) { - unsigned int source, dest; - source = (i.types[0] & (Reg|SReg2|SReg3|Control|Debug|Test)) ? 0 : 1; - dest = source + 1; - i.rm.mode = 3; - /* We must be careful to make sure that all segment/control/test/ - debug registers go into the i.rm.reg field (despite the whether - they are source or destination operands). */ - if (i.regs[dest]->reg_type & (SReg2|SReg3|Control|Debug|Test)) { - i.rm.reg = i.regs[dest]->reg_num; - i.rm.regmem = i.regs[source]->reg_num; - } else { - i.rm.reg = i.regs[source]->reg_num; - i.rm.regmem = i.regs[dest]->reg_num; - } - } else { /* if it's not 2 reg operands... */ - if (i.mem_operands) { - unsigned int fake_zero_displacement = 0; - unsigned int o = (i.types[0] & Mem) ? 0 : ((i.types[1] & Mem) ? 1 : 2); - - /* Encode memory operand into modrm byte and base index byte. */ - - if (i.base_reg == esp && ! i.index_reg) { - /* (%esp) becomes two byte modrm with no index register. */ - i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING; - i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]); - i.bi.base = ESP_REG_NUM; - i.bi.index = NO_INDEX_REGISTER; - i.bi.scale = 0; /* Must be zero! */ - } else if (i.base_reg == ebp && !i.index_reg) { - if (! (i.types[o] & Disp)) { - /* Must fake a zero byte displacement. - There is no direct way to code '(%ebp)' directly. */ - fake_zero_displacement = 1; - /* fake_zero_displacement code does not set this. */ - i.types[o] |= Disp8; - } - i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]); - i.rm.regmem = EBP_REG_NUM; - } else if (! i.base_reg && (i.types[o] & BaseIndex)) { - /* There are three cases here. - Case 1: '<32bit disp>(,1)' -- indirect absolute. - (Same as cases 2 & 3 with NO index register) - Case 2: <32bit disp> (,) -- no base register with disp - Case 3: (, ) --- no base register; - no disp (must add 32bit 0 disp). */ - i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING; - i.rm.mode = 0; /* 32bit mode */ - i.bi.base = NO_BASE_REGISTER; - i.types[o] &= ~Disp; - i.types[o] |= Disp32; /* Must be 32bit! */ - if (i.index_reg) { /* case 2 or case 3 */ - i.bi.index = i.index_reg->reg_num; - i.bi.scale = i.log2_scale_factor; - if (i.disp_operands == 0) - fake_zero_displacement = 1; /* case 3 */ - } else { - i.bi.index = NO_INDEX_REGISTER; - i.bi.scale = 0; - } - } else if (i.disp_operands && !i.base_reg && !i.index_reg) { - /* Operand is just <32bit disp> */ - i.rm.regmem = EBP_REG_NUM; - i.rm.mode = 0; - i.types[o] &= ~Disp; - i.types[o] |= Disp32; - } else { - /* It's not a special case; rev'em up. */ - i.rm.regmem = i.base_reg->reg_num; - i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]); - if (i.index_reg) { - i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING; - i.bi.base = i.base_reg->reg_num; - i.bi.index = i.index_reg->reg_num; - i.bi.scale = i.log2_scale_factor; - if (i.base_reg == ebp && i.disp_operands == 0) { /* pace */ - fake_zero_displacement = 1; - i.types[o] |= Disp8; - i.rm.mode = MODE_FROM_DISP_SIZE (i.types[o]); - } - } - } - if (fake_zero_displacement) { - /* Fakes a zero displacement assuming that i.types[o] holds - the correct displacement size. */ - exp = &disp_expressions[i.disp_operands++]; - i.disps[o] = exp; - exp->X_seg = SEG_ABSOLUTE; - exp->X_add_number = 0; - exp->X_add_symbol = (symbolS *) 0; - exp->X_subtract_symbol = (symbolS *) 0; - } - - /* Select the correct segment for the memory operand. */ - if (i.seg) { - const unsigned int seg_index; - const seg_entry * default_seg; - - if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING) { - seg_index = (i.rm.mode<<3) | i.bi.base; - default_seg = two_byte_segment_defaults [seg_index]; - } else { - seg_index = (i.rm.mode<<3) | i.rm.regmem; - default_seg = one_byte_segment_defaults [seg_index]; - } - /* If the specified segment is not the default, use an - opcode prefix to select it */ - if (i.seg != default_seg) { - if (i.prefixes == MAX_PREFIXES) { - as_bad("%d prefixes given and %s segment override gives too many prefixes", - MAX_PREFIXES, i.seg->seg_name); - return; - } - i.prefix[i.prefixes++] = i.seg->seg_prefix; - } - } - } - - /* Fill in i.rm.reg or i.rm.regmem field with register operand - (if any) based on t->extension_opcode. Again, we must be careful - to make sure that segment/control/debug/test registers are coded - into the i.rm.reg field. */ - if (i.reg_operands) { - unsigned int o = - (i.types[0] & (Reg|SReg2|SReg3|Control|Debug|Test)) ? 0 : - (i.types[1] & (Reg|SReg2|SReg3|Control|Debug|Test)) ? 1 : 2; - /* If there is an extension opcode to put here, the register number - must be put into the regmem field. */ - if (t->extension_opcode != None) - i.rm.regmem = i.regs[o]->reg_num; - else i.rm.reg = i.regs[o]->reg_num; - - /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 - we must set it to 3 to indicate this is a register operand - int the regmem field */ - if (! i.mem_operands) i.rm.mode = 3; - } - - /* Fill in i.rm.reg field with extension opcode (if any). */ - if (t->extension_opcode != None) - i.rm.reg = t->extension_opcode; - } - } - } - } - - /* Handle conversion of 'int $3' --> special int3 insn. */ - if (t->base_opcode == INT_OPCODE && i.imms[0]->X_add_number == 3) { - t->base_opcode = INT3_OPCODE; - i.imm_operands = 0; - } - - /* We are ready to output the insn. */ - { - register char * p; - - /* Output jumps. */ - if (t->opcode_modifier & Jump) { - int n = i.disps[0]->X_add_number; - - switch (i.disps[0]->X_seg) { - case SEG_ABSOLUTE: - if (FITS_IN_SIGNED_BYTE (n)) { - p = frag_more (2); - p[0] = t->base_opcode; - p[1] = n; -#if 0 /* leave out 16 bit jumps - pace */ - } else if (FITS_IN_SIGNED_WORD (n)) { - p = frag_more (4); - p[0] = WORD_PREFIX_OPCODE; - p[1] = t->base_opcode; - md_number_to_chars (&p[2], n, 2); + const char *hash_err; + + /* initialize op_hash hash table */ + op_hash = hash_new (); + + { + register const template *optab; + register templates *core_optab; + + optab = i386_optab; /* setup for loop */ + core_optab = (templates *) xmalloc (sizeof (templates)); + core_optab->start = optab; + + while (1) + { + ++optab; + if (optab->name == NULL + || strcmp (optab->name, (optab - 1)->name) != 0) + { + /* different name --> ship out current template list; + add to hash table; & begin anew */ + core_optab->end = optab; + hash_err = hash_insert (op_hash, + (optab - 1)->name, + (PTR) core_optab); + if (hash_err) + { + hash_error: + as_fatal (_("Internal Error: Can't hash %s: %s"), + (optab - 1)->name, + hash_err); + } + if (optab->name == NULL) + break; + core_optab = (templates *) xmalloc (sizeof (templates)); + core_optab->start = optab; + } + } + } + + /* initialize reg_hash hash table */ + reg_hash = hash_new (); + { + register const reg_entry *regtab; + + for (regtab = i386_regtab; + regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]); + regtab++) + { + hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab); + if (hash_err) + goto hash_error; + } + } + + /* fill in lexical tables: mnemonic_chars, operand_chars. */ + { + register int c; + register char *p; + + for (c = 0; c < 256; c++) + { + if (isdigit (c)) + { + digit_chars[c] = c; + mnemonic_chars[c] = c; + register_chars[c] = c; + operand_chars[c] = c; + } + else if (islower (c)) + { + mnemonic_chars[c] = c; + register_chars[c] = c; + operand_chars[c] = c; + } + else if (isupper (c)) + { + mnemonic_chars[c] = tolower (c); + register_chars[c] = mnemonic_chars[c]; + operand_chars[c] = c; + } + + if (isalpha (c) || isdigit (c)) + identifier_chars[c] = c; + else if (c >= 128) + { + identifier_chars[c] = c; + operand_chars[c] = c; + } + } + +#ifdef LEX_AT + identifier_chars['@'] = '@'; +#endif + register_chars[')'] = ')'; + register_chars['('] = '('; + digit_chars['-'] = '-'; + identifier_chars['_'] = '_'; + identifier_chars['.'] = '.'; + + for (p = operand_special_chars; *p != '\0'; p++) + operand_chars[(unsigned char) *p] = *p; + } + +#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) + if (OUTPUT_FLAVOR == bfd_target_elf_flavour) + { + record_alignment (text_section, 2); + record_alignment (data_section, 2); + record_alignment (bss_section, 2); + } #endif - } else { /* It's an absolute dword displacement. */ - if (t->base_opcode == JUMP_PC_RELATIVE) { /* pace */ - /* unconditional jump */ - p = frag_more (5); - p[0] = 0xe9; - md_number_to_chars (&p[1], n, 4); - } else { - /* conditional jump */ - p = frag_more (6); - p[0] = TWO_BYTE_OPCODE_ESCAPE; - p[1] = t->base_opcode + 0x10; - md_number_to_chars (&p[2], n, 4); - } - } - break; - default: - /* It's a symbol; end frag & setup for relax. - Make sure there are 6 chars left in the current frag; if not - we'll have to start a new one. */ - /* I caught it failing with obstack_room == 6, - so I changed to <= pace */ - if (obstack_room (&frags) <= 6) { - frag_wane(frag_now); - frag_new (0); - } - p = frag_more (1); - p[0] = t->base_opcode; - frag_var (rs_machine_dependent, - 6, /* 2 opcode/prefix + 4 displacement */ - 1, - ((unsigned char) *p == JUMP_PC_RELATIVE - ? ENCODE_RELAX_STATE (UNCOND_JUMP, BYTE) - : ENCODE_RELAX_STATE (COND_JUMP, BYTE)), - i.disps[0]->X_add_symbol, - n, p); - break; - } - } else if (t->opcode_modifier & (JumpByte|JumpDword)) { - int size = (t->opcode_modifier & JumpByte) ? 1 : 4; - int n = i.disps[0]->X_add_number; - - if (FITS_IN_UNSIGNED_BYTE(t->base_opcode)) { - FRAG_APPEND_1_CHAR (t->base_opcode); - } else { - p = frag_more (2); /* opcode can be at most two bytes */ - /* put out high byte first: can't use md_number_to_chars! */ - *p++ = (t->base_opcode >> 8) & 0xff; - *p = t->base_opcode & 0xff; - } - - p = frag_more (size); - switch (i.disps[0]->X_seg) { - case SEG_ABSOLUTE: - md_number_to_chars (p, n, size); - if (size == 1 && ! FITS_IN_SIGNED_BYTE (n)) { - as_bad("loop/jecx only takes byte displacement; %d shortened to %d", - n, *p); - } - break; - default: - fix_new (frag_now, p - frag_now->fr_literal, size, - i.disps[0]->X_add_symbol, i.disps[0]->X_subtract_symbol, - i.disps[0]->X_add_number, 1, NO_RELOC); - break; - } - } else if (t->opcode_modifier & JumpInterSegment) { - p = frag_more (1 + 2 + 4); /* 1 opcode; 2 segment; 4 offset */ - p[0] = t->base_opcode; - if (i.imms[1]->X_seg == SEG_ABSOLUTE) - md_number_to_chars (p + 1, i.imms[1]->X_add_number, 4); - else - fix_new (frag_now, p + 1 - frag_now->fr_literal, 4, - i.imms[1]->X_add_symbol, - i.imms[1]->X_subtract_symbol, - i.imms[1]->X_add_number, 0, NO_RELOC); - if (i.imms[0]->X_seg != SEG_ABSOLUTE) - as_bad("can't handle non absolute segment in long call/jmp"); - md_number_to_chars (p + 5, i.imms[0]->X_add_number, 2); - } else { - /* Output normal instructions here. */ - register char *q; - - /* First the prefix bytes. */ - for (q = i.prefix; q < i.prefix + i.prefixes; q++) { - p = frag_more (1); - md_number_to_chars (p, (unsigned int) *q, 1); - } - - /* Now the opcode; be careful about word order here! */ - if (FITS_IN_UNSIGNED_BYTE(t->base_opcode)) { - FRAG_APPEND_1_CHAR (t->base_opcode); - } else if (FITS_IN_UNSIGNED_WORD(t->base_opcode)) { - p = frag_more (2); - /* put out high byte first: can't use md_number_to_chars! */ - *p++ = (t->base_opcode >> 8) & 0xff; - *p = t->base_opcode & 0xff; - } else { /* opcode is either 3 or 4 bytes */ - if (t->base_opcode & 0xff000000) { - p = frag_more (4); - *p++ = (t->base_opcode >> 24) & 0xff; - } else p = frag_more (3); - *p++ = (t->base_opcode >> 16) & 0xff; - *p++ = (t->base_opcode >> 8) & 0xff; - *p = (t->base_opcode ) & 0xff; - } - - /* Now the modrm byte and base index byte (if present). */ - if (t->opcode_modifier & Modrm) { - p = frag_more (1); - /* md_number_to_chars (p, i.rm, 1); */ - md_number_to_chars (p, (i.rm.regmem<<0 | i.rm.reg<<3 | i.rm.mode<<6), 1); - /* If i.rm.regmem == ESP (4) && i.rm.mode != Mode 3 (Register mode) - ==> need second modrm byte. */ - if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING && i.rm.mode != 3) { - p = frag_more (1); - /* md_number_to_chars (p, i.bi, 1); */ - md_number_to_chars (p,(i.bi.base<<0 | i.bi.index<<3 | i.bi.scale<<6), 1); - } - } - - if (i.disp_operands) { - register unsigned int n; - - for (n = 0; n < i.operands; n++) { - if (i.disps[n]) { - if (i.disps[n]->X_seg == SEG_ABSOLUTE) { - if (i.types[n] & (Disp8|Abs8)) { - p = frag_more (1); - md_number_to_chars (p, i.disps[n]->X_add_number, 1); - } else if (i.types[n] & (Disp16|Abs16)) { - p = frag_more (2); - md_number_to_chars (p, i.disps[n]->X_add_number, 2); - } else { /* Disp32|Abs32 */ - p = frag_more (4); - md_number_to_chars (p, i.disps[n]->X_add_number, 4); - } - } else { /* not SEG_ABSOLUTE */ - /* need a 32-bit fixup (don't support 8bit non-absolute disps) */ - p = frag_more (4); - fix_new (frag_now, p - frag_now->fr_literal, 4, - i.disps[n]->X_add_symbol, i.disps[n]->X_subtract_symbol, - i.disps[n]->X_add_number, 0, NO_RELOC); - } - } - } - } /* end displacement output */ - - /* output immediate */ - if (i.imm_operands) { - register unsigned int n; - - for (n = 0; n < i.operands; n++) { - if (i.imms[n]) { - if (i.imms[n]->X_seg == SEG_ABSOLUTE) { - if (i.types[n] & (Imm8|Imm8S)) { - p = frag_more (1); - md_number_to_chars (p, i.imms[n]->X_add_number, 1); - } else if (i.types[n] & Imm16) { - p = frag_more (2); - md_number_to_chars (p, i.imms[n]->X_add_number, 2); - } else { - p = frag_more (4); - md_number_to_chars (p, i.imms[n]->X_add_number, 4); - } - } else { /* not SEG_ABSOLUTE */ - /* need a 32-bit fixup (don't support 8bit non-absolute ims) */ - /* try to support other sizes ... */ - int size; - if (i.types[n] & (Imm8|Imm8S)) - size = 1; - else if (i.types[n] & Imm16) - size = 2; - else - size = 4; - p = frag_more (size); - fix_new (frag_now, p - frag_now->fr_literal, size, - i.imms[n]->X_add_symbol, i.imms[n]->X_subtract_symbol, - i.imms[n]->X_add_number, 0, NO_RELOC); - } - } - } - } /* end immediate output */ - } - -#ifdef DEBUG386 - if (flagseen ['D']) { - pi (line, &i); - } -#endif /* DEBUG386 */ - - } - return; } - -/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero - on error. */ -static int i386_operand (operand_string) -char *operand_string; +void +i386_print_statistics (file) + FILE *file; { - register char *op_string = operand_string; - - /* Address of '\0' at end of operand_string. */ - char * end_of_operand_string = operand_string + strlen(operand_string); - - /* Start and end of displacement string expression (if found). */ - char * displacement_string_start = 0; - char * displacement_string_end; - - /* We check for an absolute prefix (differentiating, - for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */ - if (*op_string == ABSOLUTE_PREFIX) { - op_string++; - i.types[this_operand] |= JumpAbsolute; - } - - /* Check if operand is a register. */ - if (*op_string == REGISTER_PREFIX) { - register reg_entry * r; - if (! (r = parse_register (op_string))) { - as_bad("bad register name ('%s')", op_string); - return 0; - } - /* Check for segment override, rather than segment register by - searching for ':' after %s where = s, c, d, e, f, g. */ - if ((r->reg_type & (SReg2|SReg3)) && op_string[3] == ':') { - switch (r->reg_num) { - case 0: - i.seg = &es; break; - case 1: - i.seg = &cs; break; - case 2: - i.seg = &ss; break; - case 3: - i.seg = &ds; break; - case 4: - i.seg = &fs; break; - case 5: - i.seg = &gs; break; - } - op_string += 4; /* skip % s : */ - operand_string = op_string; /* Pretend given string starts here. */ - if (!is_digit_char(*op_string) && !is_identifier_char(*op_string) - && *op_string != '(' && *op_string != ABSOLUTE_PREFIX) { - as_bad("bad memory operand after segment override"); - return 0; - } - /* Handle case of %es:*foo. */ - if (*op_string == ABSOLUTE_PREFIX) { - op_string++; - i.types[this_operand] |= JumpAbsolute; - } - goto do_memory_reference; - } - i.types[this_operand] |= r->reg_type; - i.regs[this_operand] = r; - i.reg_operands++; - } else if (*op_string == IMMEDIATE_PREFIX) { /* ... or an immediate */ - char * save_input_line_pointer; - register expressionS *exp; - segT exp_seg; - if (i.imm_operands == MAX_IMMEDIATE_OPERANDS) { - as_bad("only 1 or 2 immediate operands are allowed"); - return 0; - } - exp = &im_expressions[i.imm_operands++]; - i.imms [this_operand] = exp; - save_input_line_pointer = input_line_pointer; - input_line_pointer = ++op_string; /* must advance op_string! */ - exp_seg = expression (exp); - input_line_pointer = save_input_line_pointer; - switch (exp_seg) { - case SEG_ABSENT: /* missing or bad expr becomes absolute 0 */ - as_bad("missing or invalid immediate expression '%s' taken as 0", - operand_string); - exp->X_seg = SEG_ABSOLUTE; - exp->X_add_number = 0; - exp->X_add_symbol = (symbolS *) 0; - exp->X_subtract_symbol = (symbolS *) 0; - i.types[this_operand] |= Imm; - break; - case SEG_ABSOLUTE: - i.types[this_operand] |= SMALLEST_IMM_TYPE (exp->X_add_number); - break; - case SEG_TEXT: case SEG_DATA: case SEG_BSS: case SEG_UNKNOWN: - i.types[this_operand] |= Imm32; /* this is an address ==> 32bit */ - break; - default: - seg_unimplemented: - as_bad("Unimplemented segment type %d in parse_operand", exp_seg); - return 0; - } - /* shorten this type of this operand if the instruction wants - * fewer bits than are present in the immediate. The bit field - * code can put out 'andb $0xffffff, %al', for example. pace - * also 'movw $foo,(%eax)' - */ - switch (i.suffix) { - case WORD_OPCODE_SUFFIX: - i.types[this_operand] |= Imm16; - break; - case BYTE_OPCODE_SUFFIX: - i.types[this_operand] |= Imm16 | Imm8 | Imm8S; - break; - } - } else if (is_digit_char(*op_string) || is_identifier_char(*op_string) - || *op_string == '(') { - /* This is a memory reference of some sort. */ - register char * base_string; - unsigned int found_base_index_form; - - do_memory_reference: - if (i.mem_operands == MAX_MEMORY_OPERANDS) { - as_bad("more than 1 memory reference in instruction"); - return 0; - } - i.mem_operands++; - - /* Determine type of memory operand from opcode_suffix; - no opcode suffix implies general memory references. */ - switch (i.suffix) { - case BYTE_OPCODE_SUFFIX: - i.types[this_operand] |= Mem8; - break; - case WORD_OPCODE_SUFFIX: - i.types[this_operand] |= Mem16; - break; - case DWORD_OPCODE_SUFFIX: - default: - i.types[this_operand] |= Mem32; - } - - /* Check for base index form. We detect the base index form by - looking for an ')' at the end of the operand, searching - for the '(' matching it, and finding a REGISTER_PREFIX or ',' - after it. */ - base_string = end_of_operand_string - 1; - found_base_index_form = 0; - if (*base_string == ')') { - unsigned int parens_balenced = 1; - /* We've already checked that the number of left & right ()'s are equal, - so this loop will not be infinite. */ - do { - base_string--; - if (*base_string == ')') parens_balenced++; - if (*base_string == '(') parens_balenced--; - } while (parens_balenced); - base_string++; /* Skip past '('. */ - if (*base_string == REGISTER_PREFIX || *base_string == ',') - found_base_index_form = 1; - } - - /* If we can't parse a base index register expression, we've found - a pure displacement expression. We set up displacement_string_start - and displacement_string_end for the code below. */ - if (! found_base_index_form) { - displacement_string_start = op_string; - displacement_string_end = end_of_operand_string; - } else { - char *base_reg_name, *index_reg_name, *num_string; - int num; - - i.types[this_operand] |= BaseIndex; - - /* If there is a displacement set-up for it to be parsed later. */ - if (base_string != op_string + 1) { - displacement_string_start = op_string; - displacement_string_end = base_string - 1; - } - - /* Find base register (if any). */ - if (*base_string != ',') { - base_reg_name = base_string++; - /* skip past register name & parse it */ - while (isalpha(*base_string)) base_string++; - if (base_string == base_reg_name+1) { - as_bad("can't find base register name after '(%c'", - REGISTER_PREFIX); - return 0; - } - END_STRING_AND_SAVE (base_string); - if (! (i.base_reg = parse_register (base_reg_name))) { - as_bad("bad base register name ('%s')", base_reg_name); - return 0; - } - RESTORE_END_STRING (base_string); - } - - /* Now check seperator; must be ',' ==> index reg - OR num ==> no index reg. just scale factor - OR ')' ==> end. (scale factor = 1) */ - if (*base_string != ',' && *base_string != ')') { - as_bad("expecting ',' or ')' after base register in `%s'", - operand_string); - return 0; - } - - /* There may index reg here; and there may be a scale factor. */ - if (*base_string == ',' && *(base_string+1) == REGISTER_PREFIX) { - index_reg_name = ++base_string; - while (isalpha(*++base_string)); - END_STRING_AND_SAVE (base_string); - if (! (i.index_reg = parse_register(index_reg_name))) { - as_bad("bad index register name ('%s')", index_reg_name); - return 0; - } - RESTORE_END_STRING (base_string); - } - - /* Check for scale factor. */ - if (*base_string == ',' && isdigit(*(base_string+1))) { - num_string = ++base_string; - while (is_digit_char(*base_string)) base_string++; - if (base_string == num_string) { - as_bad("can't find a scale factor after ','"); - return 0; - } - END_STRING_AND_SAVE (base_string); - /* We've got a scale factor. */ - if (! sscanf (num_string, "%d", &num)) { - as_bad("can't parse scale factor from '%s'", num_string); - return 0; - } - RESTORE_END_STRING (base_string); - switch (num) { /* must be 1 digit scale */ - case 1: i.log2_scale_factor = 0; break; - case 2: i.log2_scale_factor = 1; break; - case 4: i.log2_scale_factor = 2; break; - case 8: i.log2_scale_factor = 3; break; - default: - as_bad("expecting scale factor of 1, 2, 4, 8; got %d", num); - return 0; - } - } else { - if (! i.index_reg && *base_string == ',') { - as_bad("expecting index register or scale factor after ','; got '%c'", - *(base_string+1)); - return 0; - } - } - } - - /* If there's an expression begining the operand, parse it, - assuming displacement_string_start and displacement_string_end - are meaningful. */ - if (displacement_string_start) { - register expressionS * exp; - segT exp_seg; - char * save_input_line_pointer; - exp = &disp_expressions[i.disp_operands]; - i.disps [this_operand] = exp; - i.disp_operands++; - save_input_line_pointer = input_line_pointer; - input_line_pointer = displacement_string_start; - END_STRING_AND_SAVE (displacement_string_end); - exp_seg = expression (exp); - if(*input_line_pointer) - as_bad("Ignoring junk '%s' after expression",input_line_pointer); - RESTORE_END_STRING (displacement_string_end); - input_line_pointer = save_input_line_pointer; - switch (exp_seg) { - case SEG_ABSENT: - /* missing expr becomes absolute 0 */ - as_bad("missing or invalid displacement '%s' taken as 0", - operand_string); - i.types[this_operand] |= (Disp|Abs); - exp->X_seg = SEG_ABSOLUTE; - exp->X_add_number = 0; - exp->X_add_symbol = (symbolS *) 0; - exp->X_subtract_symbol = (symbolS *) 0; - break; - case SEG_ABSOLUTE: - i.types[this_operand] |= SMALLEST_DISP_TYPE (exp->X_add_number); - break; - case SEG_TEXT: case SEG_DATA: case SEG_BSS: - case SEG_UNKNOWN: /* must be 32 bit displacement (i.e. address) */ - i.types[this_operand] |= Disp32; - break; - default: - goto seg_unimplemented; - } - } - - /* Make sure the memory operand we've been dealt is valid. */ - if (i.base_reg && i.index_reg && - ! (i.base_reg->reg_type & i.index_reg->reg_type & Reg)) { - as_bad("register size mismatch in (base,index,scale) expression"); - return 0; - } - if ((i.base_reg && (i.base_reg->reg_type & Reg32) == 0) || - (i.index_reg && (i.index_reg->reg_type & Reg32) == 0)) { - as_bad("base/index register must be 32 bit register"); - return 0; - } - if (i.index_reg && i.index_reg == esp) { - as_bad("%s may not be used as an index register", esp->reg_name); - return 0; - } - } else { /* it's not a memory operand; argh! */ - as_bad("invalid char %s begining %s operand '%s'", - output_invalid(*op_string), ordinal_names[this_operand], - op_string); - return 0; - } - return 1; /* normal return */ + hash_print_statistics (file, "i386 opcode", op_hash); + hash_print_statistics (file, "i386 register", reg_hash); } -/* - * md_estimate_size_before_relax() - * - * Called just before relax(). - * Any symbol that is now undefined will not become defined. - * Return the correct fr_subtype in the frag. - * Return the initial "guess for fr_var" to caller. - * The guess for fr_var is ACTUALLY the growth beyond fr_fix. - * Whatever we do to grow fr_fix or fr_var contributes to our returned value. - * Although it may not be explicit in the frag, pretend fr_var starts with a - * 0 value. - */ -int - md_estimate_size_before_relax (fragP, segment) -register fragS * fragP; -register segT segment; -{ - register unsigned char * opcode; - register int old_fr_fix; - - old_fr_fix = fragP -> fr_fix; - opcode = (unsigned char *) fragP -> fr_opcode; - /* We've already got fragP->fr_subtype right; all we have to do is check - for un-relaxable symbols. */ - if (S_GET_SEGMENT(fragP -> fr_symbol) != segment) { - /* symbol is undefined in this segment */ - switch (opcode[0]) { - case JUMP_PC_RELATIVE: /* make jmp (0xeb) a dword displacement jump */ - opcode[0] = 0xe9; /* dword disp jmp */ - fragP -> fr_fix += 4; - fix_new (fragP, old_fr_fix, 4, - fragP -> fr_symbol, - (symbolS *) 0, - fragP -> fr_offset, 1, NO_RELOC); - break; - - default: - /* This changes the byte-displacement jump 0x7N --> - the dword-displacement jump 0x0f8N */ - opcode[1] = opcode[0] + 0x10; - opcode[0] = TWO_BYTE_OPCODE_ESCAPE; /* two-byte escape */ - fragP -> fr_fix += 1 + 4; /* we've added an opcode byte */ - fix_new (fragP, old_fr_fix + 1, 4, - fragP -> fr_symbol, - (symbolS *) 0, - fragP -> fr_offset, 1, NO_RELOC); - break; - } - frag_wane (fragP); - } - return (fragP -> fr_var + fragP -> fr_fix - old_fr_fix); -} /* md_estimate_size_before_relax() */ - -/* - * md_convert_frag(); - * - * Called after relax() is finished. - * In: Address of frag. - * fr_type == rs_machine_dependent. - * fr_subtype is what the address relaxed to. - * - * Out: Any fixSs and constants are set up. - * Caller will turn frag into a ".space 0". - */ -void - md_convert_frag (headers, fragP) -object_headers *headers; -register fragS * fragP; + +#ifdef DEBUG386 + +/* debugging routines for md_assemble */ +static void pi PARAMS ((char *, i386_insn *)); +static void pte PARAMS ((template *)); +static void pt PARAMS ((unsigned int)); +static void pe PARAMS ((expressionS *)); +static void ps PARAMS ((symbolS *)); + +static void +pi (line, x) + char *line; + i386_insn *x; { - register unsigned char * opcode; - unsigned char * where_to_put_displacement; - unsigned int target_address, opcode_address; - unsigned int extension; - int displacement_from_opcode_start; - - opcode = (unsigned char *) fragP -> fr_opcode; - - /* Address we want to reach in file space. */ - target_address = S_GET_VALUE(fragP->fr_symbol) + fragP->fr_offset; - - /* Address opcode resides at in file space. */ - opcode_address = fragP->fr_address + fragP->fr_fix; - - /* Displacement from opcode start to fill into instruction. */ - displacement_from_opcode_start = target_address - opcode_address; - - switch (fragP->fr_subtype) { - case ENCODE_RELAX_STATE (COND_JUMP, BYTE): - case ENCODE_RELAX_STATE (UNCOND_JUMP, BYTE): - /* don't have to change opcode */ - extension = 1; /* 1 opcode + 1 displacement */ - where_to_put_displacement = &opcode[1]; - break; - - case ENCODE_RELAX_STATE (COND_JUMP, WORD): - opcode[1] = TWO_BYTE_OPCODE_ESCAPE; - opcode[2] = opcode[0] + 0x10; - opcode[0] = WORD_PREFIX_OPCODE; - extension = 4; /* 3 opcode + 2 displacement */ - where_to_put_displacement = &opcode[3]; - break; - - case ENCODE_RELAX_STATE (UNCOND_JUMP, WORD): - opcode[1] = 0xe9; - opcode[0] = WORD_PREFIX_OPCODE; - extension = 3; /* 2 opcode + 2 displacement */ - where_to_put_displacement = &opcode[2]; - break; - - case ENCODE_RELAX_STATE (COND_JUMP, DWORD): - opcode[1] = opcode[0] + 0x10; - opcode[0] = TWO_BYTE_OPCODE_ESCAPE; - extension = 5; /* 2 opcode + 4 displacement */ - where_to_put_displacement = &opcode[2]; - break; - - case ENCODE_RELAX_STATE (UNCOND_JUMP, DWORD): - opcode[0] = 0xe9; - extension = 4; /* 1 opcode + 4 displacement */ - where_to_put_displacement = &opcode[1]; - break; - - default: - BAD_CASE(fragP -> fr_subtype); - break; + register template *p; + int i; + + fprintf (stdout, "%s: template ", line); + pte (&x->tm); + fprintf (stdout, " modrm: mode %x reg %x reg/mem %x", + x->rm.mode, x->rm.reg, x->rm.regmem); + fprintf (stdout, " base %x index %x scale %x\n", + x->bi.base, x->bi.index, x->bi.scale); + for (i = 0; i < x->operands; i++) + { + fprintf (stdout, " #%d: ", i + 1); + pt (x->types[i]); + fprintf (stdout, "\n"); + if (x->types[i] + & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM)) + fprintf (stdout, "%s\n", x->regs[i]->reg_name); + if (x->types[i] & Imm) + pe (x->imms[i]); + if (x->types[i] & Disp) + pe (x->disps[i]); + } } - /* now put displacement after opcode */ - md_number_to_chars (where_to_put_displacement, - displacement_from_opcode_start - extension, - SIZE_FROM_RELAX_STATE (fragP->fr_subtype)); - fragP -> fr_fix += extension; + +static void +pte (t) + template *t; +{ + int i; + fprintf (stdout, " %d operands ", t->operands); + fprintf (stdout, "opcode %x ", + t->base_opcode); + if (t->extension_opcode != None) + fprintf (stdout, "ext %x ", t->extension_opcode); + if (t->opcode_modifier & D) + fprintf (stdout, "D"); + if (t->opcode_modifier & W) + fprintf (stdout, "W"); + fprintf (stdout, "\n"); + for (i = 0; i < t->operands; i++) + { + fprintf (stdout, " #%d type ", i + 1); + pt (t->operand_types[i]); + fprintf (stdout, "\n"); + } } - -int md_short_jump_size = 2; /* size of byte displacement jmp */ -int md_long_jump_size = 5; /* size of dword displacement jmp */ -int md_reloc_size = 8; /* Size of relocation record */ - -void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol) -char *ptr; -long from_addr, to_addr; -fragS *frag; -symbolS *to_symbol; +static void +pe (e) + expressionS *e; { - long offset; - - offset = to_addr - (from_addr + 2); - md_number_to_chars (ptr, (long) 0xeb, 1); /* opcode for byte-disp jump */ - md_number_to_chars (ptr + 1, offset, 1); + fprintf (stdout, " operation %d\n", e->X_op); + fprintf (stdout, " add_number %d (%x)\n", + e->X_add_number, e->X_add_number); + if (e->X_add_symbol) + { + fprintf (stdout, " add_symbol "); + ps (e->X_add_symbol); + fprintf (stdout, "\n"); + } + if (e->X_op_symbol) + { + fprintf (stdout, " op_symbol "); + ps (e->X_op_symbol); + fprintf (stdout, "\n"); + } } -void md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol) -char *ptr; -long from_addr, to_addr; -fragS *frag; -symbolS *to_symbol; +static void +ps (s) + symbolS *s; { - long offset; - - if (flagseen['m']) { - offset = to_addr - S_GET_VALUE(to_symbol); - md_number_to_chars (ptr, 0xe9, 1); /* opcode for long jmp */ - md_number_to_chars (ptr + 1, offset, 4); - fix_new (frag, (ptr+1) - frag->fr_literal, 4, - to_symbol, (symbolS *) 0, (long) 0, 0, NO_RELOC); - } else { - offset = to_addr - (from_addr + 5); - md_number_to_chars(ptr, (long) 0xe9, 1); - md_number_to_chars(ptr + 1, offset, 4); - } + fprintf (stdout, "%s type %s%s", + S_GET_NAME (s), + S_IS_EXTERNAL (s) ? "EXTERNAL " : "", + segment_name (S_GET_SEGMENT (s))); } - -int - md_parse_option(argP,cntP,vecP) -char **argP; -int *cntP; -char ***vecP; + +struct type_name + { + unsigned int mask; + char *tname; + } + +type_names[] = +{ + { Reg8, "r8" }, + { Reg16, "r16" }, + { Reg32, "r32" }, + { Imm8, "i8" }, + { Imm8S, "i8s" }, + { Imm16, "i16" }, + { Imm32, "i32" }, + { Imm1, "i1" }, + { BaseIndex, "BaseIndex" }, + { Disp8, "d8" }, + { Disp16, "d16" }, + { Disp32, "d32" }, + { InOutPortReg, "InOutPortReg" }, + { ShiftCount, "ShiftCount" }, + { Control, "control reg" }, + { Test, "test reg" }, + { Debug, "debug reg" }, + { FloatReg, "FReg" }, + { FloatAcc, "FAcc" }, + { SReg2, "SReg2" }, + { SReg3, "SReg3" }, + { Acc, "Acc" }, + { JumpAbsolute, "Jump Absolute" }, + { RegMMX, "rMMX" }, + { RegXMM, "rXMM" }, + { EsSeg, "es" }, + { 0, "" } +}; + +static void +pt (t) + unsigned int t; { - return 1; + register struct type_name *ty; + + if (t == Unknown) + { + fprintf (stdout, _("Unknown")); + } + else + { + for (ty = type_names; ty->mask; ty++) + if (t & ty->mask) + fprintf (stdout, "%s, ", ty->tname); + } + fflush (stdout); } + +#endif /* DEBUG386 */ -void /* Knows about order of bytes in address. */ - md_number_to_chars (con, value, nbytes) -char con []; /* Return 'nbytes' of chars here. */ -long value; /* The value of the bits. */ -int nbytes; /* Number of bytes in the output. */ +int +tc_i386_force_relocation (fixp) + struct fix *fixp; { - register char * p = con; - - switch (nbytes) { - case 1: - p[0] = value & 0xff; - break; - case 2: - p[0] = value & 0xff; - p[1] = (value >> 8) & 0xff; - break; - case 4: - p[0] = value & 0xff; - p[1] = (value>>8) & 0xff; - p[2] = (value>>16) & 0xff; - p[3] = (value>>24) & 0xff; - break; - default: - BAD_CASE (nbytes); - } +#ifdef BFD_ASSEMBLER + if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT + || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY) + return 1; + return 0; +#else + /* For COFF */ + return fixp->fx_r_type==7; +#endif } +#ifdef BFD_ASSEMBLER +static bfd_reloc_code_real_type reloc + PARAMS ((int, int, bfd_reloc_code_real_type)); -/* Apply a fixup (fixS) to segment data, once it has been determined - by our caller that we have all the info we need to fix it up. - - On the 386, immediates, displacements, and data pointers are all in - the same (little-endian) format, so we don't need to care about which - we are handling. */ - -void - md_apply_fix (fixP, value) -fixS * fixP; /* The fix we're to put in */ -long value; /* The value of the bits. */ +static bfd_reloc_code_real_type +reloc (size, pcrel, other) + int size; + int pcrel; + bfd_reloc_code_real_type other; { - register char * p = fixP->fx_where + fixP->fx_frag->fr_literal; - - switch (fixP->fx_size) { - case 1: - *p = value; - break; - case 2: - *p++ = value; - *p = (value>>8); - break; - case 4: - *p++ = value; - *p++ = (value>>8); - *p++ = (value>>16); - *p = (value>>24); - break; - default: - BAD_CASE (fixP->fx_size); + if (other != NO_RELOC) return other; + + if (pcrel) + { + switch (size) + { + case 1: return BFD_RELOC_8_PCREL; + case 2: return BFD_RELOC_16_PCREL; + case 4: return BFD_RELOC_32_PCREL; } -} + as_bad (_("Can not do %d byte pc-relative relocation"), size); + } + else + { + switch (size) + { + case 1: return BFD_RELOC_8; + case 2: return BFD_RELOC_16; + case 4: return BFD_RELOC_32; + } + as_bad (_("Can not do %d byte relocation"), size); + } -long /* Knows about the byte order in a word. */ - md_chars_to_number (con, nbytes) -unsigned char con[]; /* Low order byte 1st. */ -int nbytes; /* Number of bytes in the input. */ -{ - long retval; - for (retval=0, con+=nbytes-1; nbytes--; con--) - { - retval <<= BITS_PER_CHAR; - retval |= *con; - } - return retval; + return BFD_RELOC_NONE; } -/* Not needed for coff since relocation structure does not - contain bitfields. */ -#if defined(OBJ_AOUT) | defined(OBJ_BOUT) -#ifdef comment -/* Output relocation information in the target's format. */ -void - md_ri_to_chars(the_bytes, ri) -char *the_bytes; -struct reloc_info_generic *ri; +/* + * Here we decide which fixups can be adjusted to make them relative to + * the beginning of the section instead of the symbol. Basically we need + * to make sure that the dynamic relocations are done correctly, so in + * some cases we force the original symbol to be used. + */ +int +tc_i386_fix_adjustable(fixP) + fixS * fixP; { - /* this is easy */ - md_number_to_chars(the_bytes, ri->r_address, 4); - /* now the fun stuff */ - the_bytes[6] = (ri->r_symbolnum >> 16) & 0x0ff; - the_bytes[5] = (ri->r_symbolnum >> 8) & 0x0ff; - the_bytes[4] = ri->r_symbolnum & 0x0ff; - the_bytes[7] = (((ri->r_extern << 3) & 0x08) | ((ri->r_length << 1) & 0x06) | - ((ri->r_pcrel << 0) & 0x01)) & 0x0F; +#ifdef OBJ_ELF + /* Prevent all adjustments to global symbols. */ + if (S_IS_EXTERN (fixP->fx_addsy)) + return 0; + if (S_IS_WEAK (fixP->fx_addsy)) + return 0; +#endif + /* adjust_reloc_syms doesn't know about the GOT */ + if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF + || fixP->fx_r_type == BFD_RELOC_386_PLT32 + || fixP->fx_r_type == BFD_RELOC_386_GOT32 + || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT + || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY) + return 0; + return 1; } -#endif /* comment */ +#else +#define reloc(SIZE,PCREL,OTHER) 0 +#define BFD_RELOC_16 0 +#define BFD_RELOC_32 0 +#define BFD_RELOC_16_PCREL 0 +#define BFD_RELOC_32_PCREL 0 +#define BFD_RELOC_386_PLT32 0 +#define BFD_RELOC_386_GOT32 0 +#define BFD_RELOC_386_GOTOFF 0 +#endif -void tc_aout_fix_to_chars(where, fixP, segment_address_in_file) -char *where; -fixS *fixP; -relax_addressT segment_address_in_file; +int +intel_float_operand (mnemonic) + char *mnemonic; { - /* - * In: length of relocation (or of address) in chars: 1, 2 or 4. - * Out: GNU LD relocation length code: 0, 1, or 2. - */ - - static unsigned char nbytes_r_length [] = { 42, 0, 1, 42, 2 }; - long r_index; - - know(fixP->fx_addsy != NULL); - - r_index = (S_IS_DEFINED(fixP->fx_addsy) - ? S_GET_TYPE(fixP->fx_addsy) - : fixP->fx_addsy->sy_number); - - /* this is easy */ - md_number_to_chars(where, - fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file, - 4); - - /* now the fun stuff */ - where[4] = r_index & 0x0ff; - where[5] = (r_index >> 8) & 0x0ff; - where[6] = (r_index >> 16) & 0x0ff; - where[7] = ((((!S_IS_DEFINED(fixP->fx_addsy)) << 3) & 0x08) - | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06) - | ((fixP->fx_pcrel << 0) & 0x01) & 0x0f); - - return; -} /* tc_aout_fix_to_chars() */ + if (mnemonic[0] == 'f' && mnemonic[1] =='i') + return 0; -#endif /* OBJ_AOUT or OBJ_BOUT */ + if (mnemonic[0] == 'f') + return 1; + + return 0; +} + +/* This is the guts of the machine-dependent assembler. LINE points to a + machine dependent instruction. This function is supposed to emit + the frags/bytes it assembles to. */ + +void +md_assemble (line) + char *line; +{ + /* Points to template once we've found it. */ + const template *t; + + /* Count the size of the instruction generated. */ + int insn_size = 0; + + int j; + + char mnemonic[MAX_MNEM_SIZE]; + + /* Initialize globals. */ + memset (&i, '\0', sizeof (i)); + for (j = 0; j < MAX_OPERANDS; j++) + i.disp_reloc[j] = NO_RELOC; + memset (disp_expressions, '\0', sizeof (disp_expressions)); + memset (im_expressions, '\0', sizeof (im_expressions)); + save_stack_p = save_stack; /* reset stack pointer */ + + /* First parse an instruction mnemonic & call i386_operand for the operands. + We assume that the scrubber has arranged it so that line[0] is the valid + start of a (possibly prefixed) mnemonic. */ + { + char *l = line; + char *token_start = l; + char *mnem_p; + + /* Non-zero if we found a prefix only acceptable with string insns. */ + const char *expecting_string_instruction = NULL; + + while (1) + { + mnem_p = mnemonic; + while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0) + { + mnem_p++; + if (mnem_p >= mnemonic + sizeof (mnemonic)) + { + as_bad (_("no such 386 instruction: `%s'"), token_start); + return; + } + l++; + } + if (!is_space_char (*l) + && *l != END_OF_INSN + && *l != PREFIX_SEPARATOR) + { + as_bad (_("invalid character %s in mnemonic"), + output_invalid (*l)); + return; + } + if (token_start == l) + { + if (*l == PREFIX_SEPARATOR) + as_bad (_("expecting prefix; got nothing")); + else + as_bad (_("expecting mnemonic; got nothing")); + return; + } + + /* Look up instruction (or prefix) via hash table. */ + current_templates = hash_find (op_hash, mnemonic); + + if (*l != END_OF_INSN + && (! is_space_char (*l) || l[1] != END_OF_INSN) + && current_templates + && (current_templates->start->opcode_modifier & IsPrefix)) + { + /* If we are in 16-bit mode, do not allow addr16 or data16. + Similarly, in 32-bit mode, do not allow addr32 or data32. */ + if ((current_templates->start->opcode_modifier & (Size16 | Size32)) + && (((current_templates->start->opcode_modifier & Size32) != 0) + ^ flag_16bit_code)) + { + as_bad (_("redundant %s prefix"), + current_templates->start->name); + return; + } + /* Add prefix, checking for repeated prefixes. */ + switch (add_prefix (current_templates->start->base_opcode)) + { + case 0: + return; + case 2: + expecting_string_instruction = + current_templates->start->name; + break; + } + /* Skip past PREFIX_SEPARATOR and reset token_start. */ + token_start = ++l; + } + else + break; + } + + if (!current_templates) + { + /* See if we can get a match by trimming off a suffix. */ + switch (mnem_p[-1]) + { + case DWORD_MNEM_SUFFIX: + case WORD_MNEM_SUFFIX: + case BYTE_MNEM_SUFFIX: + case SHORT_MNEM_SUFFIX: +#if LONG_MNEM_SUFFIX != DWORD_MNEM_SUFFIX + case LONG_MNEM_SUFFIX: +#endif + i.suffix = mnem_p[-1]; + mnem_p[-1] = '\0'; + current_templates = hash_find (op_hash, mnemonic); + break; + + /* Intel Syntax */ + case INTEL_DWORD_MNEM_SUFFIX: + if (intel_syntax) + { + i.suffix = mnem_p[-1]; + mnem_p[-1] = '\0'; + current_templates = hash_find (op_hash, mnemonic); + break; + } + } + if (!current_templates) + { + as_bad (_("no such 386 instruction: `%s'"), token_start); + return; + } + } + + /* check for rep/repne without a string instruction */ + if (expecting_string_instruction + && !(current_templates->start->opcode_modifier & IsString)) + { + as_bad (_("expecting string instruction after `%s'"), + expecting_string_instruction); + return; + } + + /* There may be operands to parse. */ + if (*l != END_OF_INSN) + { + /* parse operands */ + + /* 1 if operand is pending after ','. */ + unsigned int expecting_operand = 0; + + /* Non-zero if operand parens not balanced. */ + unsigned int paren_not_balanced; + + do + { + /* skip optional white space before operand */ + if (is_space_char (*l)) + ++l; + if (!is_operand_char (*l) && *l != END_OF_INSN) + { + as_bad (_("invalid character %s before operand %d"), + output_invalid (*l), + i.operands + 1); + return; + } + token_start = l; /* after white space */ + paren_not_balanced = 0; + while (paren_not_balanced || *l != ',') + { + if (*l == END_OF_INSN) + { + if (paren_not_balanced) + { + if (!intel_syntax) + as_bad (_("unbalanced parenthesis in operand %d."), + i.operands + 1); + else + as_bad (_("unbalanced brackets in operand %d."), + i.operands + 1); + return; + } + else + break; /* we are done */ + } + else if (!is_operand_char (*l) && !is_space_char (*l)) + { + as_bad (_("invalid character %s in operand %d"), + output_invalid (*l), + i.operands + 1); + return; + } + if (!intel_syntax) + { + if (*l == '(') + ++paren_not_balanced; + if (*l == ')') + --paren_not_balanced; + } + else + { + if (*l == '[') + ++paren_not_balanced; + if (*l == ']') + --paren_not_balanced; + } + l++; + } + if (l != token_start) + { /* yes, we've read in another operand */ + unsigned int operand_ok; + this_operand = i.operands++; + if (i.operands > MAX_OPERANDS) + { + as_bad (_("spurious operands; (%d operands/instruction max)"), + MAX_OPERANDS); + return; + } + /* now parse operand adding info to 'i' as we go along */ + END_STRING_AND_SAVE (l); + + if (intel_syntax) + operand_ok = i386_intel_operand (token_start, intel_float_operand (mnemonic)); + else + operand_ok = i386_operand (token_start); + + RESTORE_END_STRING (l); /* restore old contents */ + if (!operand_ok) + return; + } + else + { + if (expecting_operand) + { + expecting_operand_after_comma: + as_bad (_("expecting operand after ','; got nothing")); + return; + } + if (*l == ',') + { + as_bad (_("expecting operand before ','; got nothing")); + return; + } + } + + /* now *l must be either ',' or END_OF_INSN */ + if (*l == ',') + { + if (*++l == END_OF_INSN) + { /* just skip it, if it's \n complain */ + goto expecting_operand_after_comma; + } + expecting_operand = 1; + } + } + while (*l != END_OF_INSN); /* until we get end of insn */ + } + } + + /* Now we've parsed the mnemonic into a set of templates, and have the + operands at hand. + + Next, we find a template that matches the given insn, + making sure the overlap of the given operands types is consistent + with the template operand types. */ + +#define MATCH(overlap, given, template) \ + ((overlap) \ + && ((given) & BaseIndex) == ((overlap) & BaseIndex) \ + && ((given) & JumpAbsolute) == ((template) & JumpAbsolute)) + + /* If given types r0 and r1 are registers they must be of the same type + unless the expected operand type register overlap is null. + Note that Acc in a template matches every size of reg. */ +#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \ + ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \ + ((g0) & Reg) == ((g1) & Reg) || \ + ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 ) + + { + register unsigned int overlap0, overlap1; + expressionS *exp; + unsigned int overlap2; + unsigned int found_reverse_match; + int suffix_check; + + /* All intel opcodes have reversed operands except for BOUND and ENTER */ + if (intel_syntax + && (strcmp (mnemonic, "enter") != 0) + && (strcmp (mnemonic, "bound") != 0) + && (strncmp (mnemonic, "fsub", 4) !=0) + && (strncmp (mnemonic, "fdiv", 4) !=0)) + { + const reg_entry *temp_reg = NULL; + expressionS *temp_disp = NULL; + expressionS *temp_imm = NULL; + unsigned int temp_type; + int xchg1 = 0; + int xchg2 = 0; + + if (i.operands == 2) + { + xchg1 = 0; + xchg2 = 1; + } + else if (i.operands == 3) + { + xchg1 = 0; + xchg2 = 2; + } + + if (i.operands > 1) + { + temp_type = i.types[xchg2]; + if (temp_type & (Reg | FloatReg)) + temp_reg = i.regs[xchg2]; + else if (temp_type & Imm) + temp_imm = i.imms[xchg2]; + else if (temp_type & Disp) + temp_disp = i.disps[xchg2]; + + i.types[xchg2] = i.types[xchg1]; + + if (i.types[xchg1] & (Reg | FloatReg)) + { + i.regs[xchg2] = i.regs[xchg1]; + i.regs[xchg1] = NULL; + } + else if (i.types[xchg2] & Imm) + { + i.imms[xchg2] = i.imms[xchg1]; + i.imms[xchg1] = NULL; + } + else if (i.types[xchg2] & Disp) + { + i.disps[xchg2] = i.disps[xchg1]; + i.disps[xchg1] = NULL; + } + + if (temp_type & (Reg | FloatReg)) + { + i.regs[xchg1] = temp_reg; + if (! (i.types[xchg1] & (Reg | FloatReg))) + i.regs[xchg2] = NULL; + } + else if (temp_type & Imm) + { + i.imms[xchg1] = temp_imm; + if (! (i.types[xchg1] & Imm)) + i.imms[xchg2] = NULL; + } + else if (temp_type & Disp) + { + i.disps[xchg1] = temp_disp; + if (! (i.types[xchg1] & Disp)) + i.disps[xchg2] = NULL; + } + + i.types[xchg1] = temp_type; + } + if (!strcmp(mnemonic,"jmp") + || !strcmp (mnemonic, "call")) + if ((i.types[0] & Reg) || i.types[0] & BaseIndex) + i.types[0] |= JumpAbsolute; + + } + overlap0 = 0; + overlap1 = 0; + overlap2 = 0; + found_reverse_match = 0; + suffix_check = (i.suffix == BYTE_MNEM_SUFFIX + ? No_bSuf + : (i.suffix == WORD_MNEM_SUFFIX + ? No_wSuf + : (i.suffix == SHORT_MNEM_SUFFIX + ? No_sSuf + : (i.suffix == LONG_MNEM_SUFFIX + ? No_lSuf + : (i.suffix == INTEL_DWORD_MNEM_SUFFIX + ? No_dSuf + : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0)))))); + + for (t = current_templates->start; + t < current_templates->end; + t++) + { + /* Must have right number of operands. */ + if (i.operands != t->operands) + continue; + + /* For some opcodes, don't check the suffix */ + if (intel_syntax) + { + if (strcmp (t->name, "fnstcw") + && strcmp (t->name, "fldcw") + && (t->opcode_modifier & suffix_check)) + continue; + } + /* Must not have disallowed suffix. */ + else if ((t->opcode_modifier & suffix_check)) + continue; + + else if (!t->operands) + break; /* 0 operands always matches */ + + overlap0 = i.types[0] & t->operand_types[0]; + switch (t->operands) + { + case 1: + if (!MATCH (overlap0, i.types[0], t->operand_types[0])) + continue; + break; + case 2: + case 3: + overlap1 = i.types[1] & t->operand_types[1]; + if (!MATCH (overlap0, i.types[0], t->operand_types[0]) + || !MATCH (overlap1, i.types[1], t->operand_types[1]) + || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0], + t->operand_types[0], + overlap1, i.types[1], + t->operand_types[1])) + { + + /* check if other direction is valid ... */ + if ((t->opcode_modifier & (D|FloatD)) == 0) + continue; + + /* try reversing direction of operands */ + overlap0 = i.types[0] & t->operand_types[1]; + overlap1 = i.types[1] & t->operand_types[0]; + if (!MATCH (overlap0, i.types[0], t->operand_types[1]) + || !MATCH (overlap1, i.types[1], t->operand_types[0]) + || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0], + t->operand_types[1], + overlap1, i.types[1], + t->operand_types[0])) + { + /* does not match either direction */ + continue; + } + /* found_reverse_match holds which of D or FloatDR + we've found. */ + found_reverse_match = t->opcode_modifier & (D|FloatDR); + break; + } + /* found a forward 2 operand match here */ + if (t->operands == 3) + { + /* Here we make use of the fact that there are no + reverse match 3 operand instructions, and all 3 + operand instructions only need to be checked for + register consistency between operands 2 and 3. */ + overlap2 = i.types[2] & t->operand_types[2]; + if (!MATCH (overlap2, i.types[2], t->operand_types[2]) + || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1], + t->operand_types[1], + overlap2, i.types[2], + t->operand_types[2])) + + continue; + } + /* found either forward/reverse 2 or 3 operand match here: + slip through to break */ + } + break; /* we've found a match; break out of loop */ + } /* for (t = ... */ + if (t == current_templates->end) + { /* we found no match */ + as_bad (_("suffix or operands invalid for `%s'"), + current_templates->start->name); + return; + } + + if ((t->opcode_modifier & (IsPrefix|IgnoreSize)) == (IsPrefix|IgnoreSize)) + { + /* Warn them that a data or address size prefix doesn't affect + assembly of the next line of code. */ + as_warn (_("stand-alone `%s' prefix"), t->name); + } + + /* Copy the template we found. */ + i.tm = *t; + if (found_reverse_match) + { + i.tm.operand_types[0] = t->operand_types[1]; + i.tm.operand_types[1] = t->operand_types[0]; + } + + + if (i.tm.opcode_modifier & FWait) + if (! add_prefix (FWAIT_OPCODE)) + return; + + /* Check string instruction segment overrides */ + if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0) + { + int mem_op = (i.types[0] & AnyMem) ? 0 : 1; + if ((i.tm.operand_types[mem_op] & EsSeg) != 0) + { + if (i.seg[0] != NULL && i.seg[0] != &es) + { + as_bad (_("`%s' operand %d must use `%%es' segment"), + i.tm.name, + mem_op + 1); + return; + } + /* There's only ever one segment override allowed per instruction. + This instruction possibly has a legal segment override on the + second operand, so copy the segment to where non-string + instructions store it, allowing common code. */ + i.seg[0] = i.seg[1]; + } + else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0) + { + if (i.seg[1] != NULL && i.seg[1] != &es) + { + as_bad (_("`%s' operand %d must use `%%es' segment"), + i.tm.name, + mem_op + 2); + return; + } + } + } + + /* If matched instruction specifies an explicit instruction mnemonic + suffix, use it. */ + if (i.tm.opcode_modifier & (Size16 | Size32)) + { + if (i.tm.opcode_modifier & Size16) + i.suffix = WORD_MNEM_SUFFIX; + else + i.suffix = DWORD_MNEM_SUFFIX; + } + else if (i.reg_operands) + { + /* If there's no instruction mnemonic suffix we try to invent one + based on register operands. */ + if (!i.suffix) + { + /* We take i.suffix from the last register operand specified, + Destination register type is more significant than source + register type. */ + int op; + for (op = i.operands; --op >= 0; ) + if (i.types[op] & Reg) + { + i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX : + (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX : + DWORD_MNEM_SUFFIX); + break; + } + } + else if (i.suffix == BYTE_MNEM_SUFFIX) + { + int op; + for (op = i.operands; --op >= 0; ) + { + /* If this is an eight bit register, it's OK. If it's + the 16 or 32 bit version of an eight bit register, + we will just use the low portion, and that's OK too. */ + if (i.types[op] & Reg8) + continue; + + /* movzx and movsx should not generate this warning. */ + if (intel_syntax + && (i.tm.base_opcode == 0xfb7 + || i.tm.base_opcode == 0xfb6 + || i.tm.base_opcode == 0xfbe + || i.tm.base_opcode == 0xfbf)) + continue; + + if ((i.types[op] & WordReg) && i.regs[op]->reg_num < 4 +#if 0 + /* Check that the template allows eight bit regs + This kills insns such as `orb $1,%edx', which + maybe should be allowed. */ + && (i.tm.operand_types[op] & (Reg8|InOutPortReg)) +#endif + ) + { +#if REGISTER_WARNINGS + if ((i.tm.operand_types[op] & InOutPortReg) == 0) + as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"), + (i.regs[op] - (i.types[op] & Reg16 ? 8 : 16))->reg_name, + i.regs[op]->reg_name, + i.suffix); +#endif + continue; + } + /* Any other register is bad */ + if (i.types[op] & (Reg | RegMMX | RegXMM + | SReg2 | SReg3 + | Control | Debug | Test + | FloatReg | FloatAcc)) + { + as_bad (_("`%%%s' not allowed with `%s%c'"), + i.regs[op]->reg_name, + i.tm.name, + i.suffix); + return; + } + } + } + else if (i.suffix == DWORD_MNEM_SUFFIX) + { + int op; + for (op = i.operands; --op >= 0; ) + /* Reject eight bit registers, except where the template + requires them. (eg. movzb) */ + if ((i.types[op] & Reg8) != 0 + && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0) + { + as_bad (_("`%%%s' not allowed with `%s%c'"), + i.regs[op]->reg_name, + i.tm.name, + i.suffix); + return; + } +#if REGISTER_WARNINGS + /* Warn if the e prefix on a general reg is missing. */ + else if ((i.types[op] & Reg16) != 0 + && (i.tm.operand_types[op] & (Reg32|Acc)) != 0) + { + as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"), + (i.regs[op] + 8)->reg_name, + i.regs[op]->reg_name, + i.suffix); + } +#endif + } + else if (i.suffix == WORD_MNEM_SUFFIX) + { + int op; + for (op = i.operands; --op >= 0; ) + /* Reject eight bit registers, except where the template + requires them. (eg. movzb) */ + if ((i.types[op] & Reg8) != 0 + && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0) + { + as_bad (_("`%%%s' not allowed with `%s%c'"), + i.regs[op]->reg_name, + i.tm.name, + i.suffix); + return; + } +#if REGISTER_WARNINGS + /* Warn if the e prefix on a general reg is present. */ + else if ((i.types[op] & Reg32) != 0 + && (i.tm.operand_types[op] & (Reg16|Acc)) != 0) + { + as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"), + (i.regs[op] - 8)->reg_name, + i.regs[op]->reg_name, + i.suffix); + } +#endif + } + else + abort(); + } + + /* Make still unresolved immediate matches conform to size of immediate + given in i.suffix. Note: overlap2 cannot be an immediate! */ + if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32)) + && overlap0 != Imm8 && overlap0 != Imm8S + && overlap0 != Imm16 && overlap0 != Imm32) + { + if (i.suffix) + { + overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) : + (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32)); + } + else if (overlap0 == (Imm16 | Imm32)) + { + overlap0 = + (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32; + } + else + { + as_bad (_("no instruction mnemonic suffix given; can't determine immediate size")); + return; + } + } + if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32)) + && overlap1 != Imm8 && overlap1 != Imm8S + && overlap1 != Imm16 && overlap1 != Imm32) + { + if (i.suffix) + { + overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) : + (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32)); + } + else if (overlap1 == (Imm16 | Imm32)) + { + overlap1 = + (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32; + } + else + { + as_bad (_("no instruction mnemonic suffix given; can't determine immediate size")); + return; + } + } + assert ((overlap2 & Imm) == 0); + + i.types[0] = overlap0; + if (overlap0 & ImplicitRegister) + i.reg_operands--; + if (overlap0 & Imm1) + i.imm_operands = 0; /* kludge for shift insns */ + + i.types[1] = overlap1; + if (overlap1 & ImplicitRegister) + i.reg_operands--; + + i.types[2] = overlap2; + if (overlap2 & ImplicitRegister) + i.reg_operands--; + + /* Finalize opcode. First, we change the opcode based on the operand + size given by i.suffix: We need not change things for byte insns. */ + + if (!i.suffix && (i.tm.opcode_modifier & W)) + { + as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction")); + return; + } + + /* For movzx and movsx, need to check the register type */ + if (intel_syntax + && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe)) + if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX) + { + unsigned int prefix = DATA_PREFIX_OPCODE; + + if ((i.regs[1]->reg_type & Reg16) != 0) + if (!add_prefix (prefix)) + return; + } + + if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX) + { + /* It's not a byte, select word/dword operation. */ + if (i.tm.opcode_modifier & W) + { + if (i.tm.opcode_modifier & ShortForm) + i.tm.base_opcode |= 8; + else + i.tm.base_opcode |= 1; + } + /* Now select between word & dword operations via the operand + size prefix, except for instructions that will ignore this + prefix anyway. */ + if (((intel_syntax && (i.suffix == INTEL_DWORD_MNEM_SUFFIX)) + || i.suffix == DWORD_MNEM_SUFFIX + || i.suffix == LONG_MNEM_SUFFIX) == flag_16bit_code + && !(i.tm.opcode_modifier & IgnoreSize)) + { + unsigned int prefix = DATA_PREFIX_OPCODE; + if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */ + prefix = ADDR_PREFIX_OPCODE; + + if (! add_prefix (prefix)) + return; + } + /* Size floating point instruction. */ + if (i.suffix == LONG_MNEM_SUFFIX + || (intel_syntax && i.suffix == INTEL_DWORD_MNEM_SUFFIX)) + { + if (i.tm.opcode_modifier & FloatMF) + i.tm.base_opcode ^= 4; + } + + if (intel_syntax && i.suffix == LONG_DOUBLE_MNEM_SUFFIX) + { + if (i.tm.opcode_modifier & FloatMF) + i.tm.base_opcode ^= 2; + } + } + + if (i.tm.opcode_modifier & ImmExt) + { + /* These AMD 3DNow! and Intel Katmai New Instructions have an + opcode suffix which is coded in the same place as an 8-bit + immediate field would be. Here we fake an 8-bit immediate + operand from the opcode suffix stored in tm.extension_opcode. */ + + expressionS *exp; + + assert(i.imm_operands == 0 && i.operands <= 2); + + exp = &im_expressions[i.imm_operands++]; + i.imms[i.operands] = exp; + i.types[i.operands++] = Imm8; + exp->X_op = O_constant; + exp->X_add_number = i.tm.extension_opcode; + i.tm.extension_opcode = None; + } + + /* For insns with operands there are more diddles to do to the opcode. */ + if (i.operands) + { + /* Default segment register this instruction will use + for memory accesses. 0 means unknown. + This is only for optimizing out unnecessary segment overrides. */ + const seg_entry *default_seg = 0; + + /* If we found a reverse match we must alter the opcode + direction bit. found_reverse_match holds bits to change + (different for int & float insns). */ + + i.tm.base_opcode ^= found_reverse_match; + + /* The imul $imm, %reg instruction is converted into + imul $imm, %reg, %reg, and the clr %reg instruction + is converted into xor %reg, %reg. */ + if (i.tm.opcode_modifier & regKludge) + { + unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1; + /* Pretend we saw the extra register operand. */ + i.regs[first_reg_op+1] = i.regs[first_reg_op]; + i.reg_operands = 2; + } + + if (i.tm.opcode_modifier & ShortForm) + { + /* The register or float register operand is in operand 0 or 1. */ + unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1; + /* Register goes in low 3 bits of opcode. */ + i.tm.base_opcode |= i.regs[op]->reg_num; + if ((i.tm.opcode_modifier & Ugh) != 0) + { + /* Warn about some common errors, but press on regardless. + The first case can be generated by gcc (<= 2.8.1). */ + if (i.operands == 2) + { + /* reversed arguments on faddp, fsubp, etc. */ + as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name, + i.regs[1]->reg_name, + i.regs[0]->reg_name); + } + else + { + /* extraneous `l' suffix on fp insn */ + as_warn (_("translating to `%s %%%s'"), i.tm.name, + i.regs[0]->reg_name); + } + } + } + else if (i.tm.opcode_modifier & Modrm) + { + /* The opcode is completed (modulo i.tm.extension_opcode which + must be put into the modrm byte). + Now, we make the modrm & index base bytes based on all the + info we've collected. */ + + /* i.reg_operands MUST be the number of real register operands; + implicit registers do not count. */ + if (i.reg_operands == 2) + { + unsigned int source, dest; + source = ((i.types[0] + & (Reg | RegMMX | RegXMM + | SReg2 | SReg3 + | Control | Debug | Test)) + ? 0 : 1); + dest = source + 1; + + i.rm.mode = 3; + /* One of the register operands will be encoded in the + i.tm.reg field, the other in the combined i.tm.mode + and i.tm.regmem fields. If no form of this + instruction supports a memory destination operand, + then we assume the source operand may sometimes be + a memory operand and so we need to store the + destination in the i.rm.reg field. */ + if ((i.tm.operand_types[dest] & AnyMem) == 0) + { + i.rm.reg = i.regs[dest]->reg_num; + i.rm.regmem = i.regs[source]->reg_num; + } + else + { + i.rm.reg = i.regs[source]->reg_num; + i.rm.regmem = i.regs[dest]->reg_num; + } + } + else + { /* if it's not 2 reg operands... */ + if (i.mem_operands) + { + unsigned int fake_zero_displacement = 0; + unsigned int op = ((i.types[0] & AnyMem) + ? 0 + : (i.types[1] & AnyMem) ? 1 : 2); + + default_seg = &ds; + + if (! i.base_reg) + { + i.rm.mode = 0; + if (! i.disp_operands) + fake_zero_displacement = 1; + if (! i.index_reg) + { + /* Operand is just */ + if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0)) + { + i.rm.regmem = NO_BASE_REGISTER_16; + i.types[op] &= ~Disp; + i.types[op] |= Disp16; + } + else + { + i.rm.regmem = NO_BASE_REGISTER; + i.types[op] &= ~Disp; + i.types[op] |= Disp32; + } + } + else /* ! i.base_reg && i.index_reg */ + { + i.sib.index = i.index_reg->reg_num; + i.sib.base = NO_BASE_REGISTER; + i.sib.scale = i.log2_scale_factor; + i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING; + i.types[op] &= ~Disp; + i.types[op] |= Disp32; /* Must be 32 bit */ + } + } + else if (i.base_reg->reg_type & Reg16) + { + switch (i.base_reg->reg_num) + { + case 3: /* (%bx) */ + if (! i.index_reg) + i.rm.regmem = 7; + else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */ + i.rm.regmem = i.index_reg->reg_num - 6; + break; + case 5: /* (%bp) */ + default_seg = &ss; + if (! i.index_reg) + { + i.rm.regmem = 6; + if ((i.types[op] & Disp) == 0) + { + /* fake (%bp) into 0(%bp) */ + i.types[op] |= Disp8; + fake_zero_displacement = 1; + } + } + else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */ + i.rm.regmem = i.index_reg->reg_num - 6 + 2; + break; + default: /* (%si) -> 4 or (%di) -> 5 */ + i.rm.regmem = i.base_reg->reg_num - 6 + 4; + } + i.rm.mode = mode_from_disp_size (i.types[op]); + } + else /* i.base_reg and 32 bit mode */ + { + i.rm.regmem = i.base_reg->reg_num; + i.sib.base = i.base_reg->reg_num; + if (i.base_reg->reg_num == EBP_REG_NUM) + { + default_seg = &ss; + if (i.disp_operands == 0) + { + fake_zero_displacement = 1; + i.types[op] |= Disp8; + } + } + else if (i.base_reg->reg_num == ESP_REG_NUM) + { + default_seg = &ss; + } + i.sib.scale = i.log2_scale_factor; + if (! i.index_reg) + { + /* (%esp) becomes two byte modrm + with no index register. We've already + stored the code for esp in i.rm.regmem + ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any + base register besides %esp will not use + the extra modrm byte. */ + i.sib.index = NO_INDEX_REGISTER; +#if ! SCALE1_WHEN_NO_INDEX + /* Another case where we force the second + modrm byte. */ + if (i.log2_scale_factor) + i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING; +#endif + } + else + { + i.sib.index = i.index_reg->reg_num; + i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING; + } + i.rm.mode = mode_from_disp_size (i.types[op]); + } + + if (fake_zero_displacement) + { + /* Fakes a zero displacement assuming that i.types[op] + holds the correct displacement size. */ + exp = &disp_expressions[i.disp_operands++]; + i.disps[op] = exp; + exp->X_op = O_constant; + exp->X_add_number = 0; + exp->X_add_symbol = (symbolS *) 0; + exp->X_op_symbol = (symbolS *) 0; + } + } + + /* Fill in i.rm.reg or i.rm.regmem field with register + operand (if any) based on i.tm.extension_opcode. + Again, we must be careful to make sure that + segment/control/debug/test/MMX registers are coded + into the i.rm.reg field. */ + if (i.reg_operands) + { + unsigned int op = + ((i.types[0] + & (Reg | RegMMX | RegXMM + | SReg2 | SReg3 + | Control | Debug | Test)) + ? 0 + : ((i.types[1] + & (Reg | RegMMX | RegXMM + | SReg2 | SReg3 + | Control | Debug | Test)) + ? 1 + : 2)); + /* If there is an extension opcode to put here, the + register number must be put into the regmem field. */ + if (i.tm.extension_opcode != None) + i.rm.regmem = i.regs[op]->reg_num; + else + i.rm.reg = i.regs[op]->reg_num; + + /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 + we must set it to 3 to indicate this is a register + operand in the regmem field. */ + if (!i.mem_operands) + i.rm.mode = 3; + } + + /* Fill in i.rm.reg field with extension opcode (if any). */ + if (i.tm.extension_opcode != None) + i.rm.reg = i.tm.extension_opcode; + } + } + else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm)) + { + if (i.tm.base_opcode == POP_SEG_SHORT && i.regs[0]->reg_num == 1) + { + as_bad (_("you can't `pop %%cs'")); + return; + } + i.tm.base_opcode |= (i.regs[0]->reg_num << 3); + } + else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32) + { + default_seg = &ds; + } + else if ((i.tm.opcode_modifier & IsString) != 0) + { + /* For the string instructions that allow a segment override + on one of their operands, the default segment is ds. */ + default_seg = &ds; + } + + /* If a segment was explicitly specified, + and the specified segment is not the default, + use an opcode prefix to select it. + If we never figured out what the default segment is, + then default_seg will be zero at this point, + and the specified segment prefix will always be used. */ + if ((i.seg[0]) && (i.seg[0] != default_seg)) + { + if (! add_prefix (i.seg[0]->seg_prefix)) + return; + } + } + else if ((i.tm.opcode_modifier & Ugh) != 0) + { + /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc */ + as_warn (_("translating to `%sp'"), i.tm.name); + } + } + + /* Handle conversion of 'int $3' --> special int3 insn. */ + if (i.tm.base_opcode == INT_OPCODE && i.imms[0]->X_add_number == 3) + { + i.tm.base_opcode = INT3_OPCODE; + i.imm_operands = 0; + } + + /* We are ready to output the insn. */ + { + register char *p; + + /* Output jumps. */ + if (i.tm.opcode_modifier & Jump) + { + long n = (long) i.disps[0]->X_add_number; + int prefix = (i.prefix[DATA_PREFIX] != 0); + int code16 = 0; + + if (prefix) + { + i.prefixes -= 1; + code16 = CODE16; + } + if (flag_16bit_code) + code16 ^= CODE16; + + if (!intel_syntax && (i.prefixes != 0)) + as_warn (_("skipping prefixes on this instruction")); + + if (i.disps[0]->X_op == O_constant) + { + if (fits_in_signed_byte (n)) + { + insn_size += 2; + p = frag_more (2); + p[0] = i.tm.base_opcode; + p[1] = n; + } + else + { + /* Use 16-bit jumps only for 16-bit code, + because text segments are limited to 64K anyway; + Use 32-bit jumps for 32-bit code, because they're faster, + and a 16-bit jump will clear the top 16 bits of %eip. */ + int jmp_size = code16 ? 2 : 4; + if (code16 && !fits_in_signed_word (n)) + { + as_bad (_("16-bit jump out of range")); + return; + } + + if (i.tm.base_opcode == JUMP_PC_RELATIVE) + { /* pace */ + /* unconditional jump */ + insn_size += prefix + 1 + jmp_size; + p = frag_more (prefix + 1 + jmp_size); + if (prefix) + *p++ = DATA_PREFIX_OPCODE; + *p++ = (char) 0xe9; + md_number_to_chars (p, (valueT) n, jmp_size); + } + else + { + /* conditional jump */ + insn_size += prefix + 2 + jmp_size; + p = frag_more (prefix + 2 + jmp_size); + if (prefix) + *p++ = DATA_PREFIX_OPCODE; + *p++ = TWO_BYTE_OPCODE_ESCAPE; + *p++ = i.tm.base_opcode + 0x10; + md_number_to_chars (p, (valueT) n, jmp_size); + } + } + } + else + { + int size = code16 ? 2 : 4; + + /* It's a symbol; end frag & setup for relax. + Make sure there are more than 6 chars left in the current frag; + if not we'll have to start a new one. */ + frag_grow (prefix + 1 + 2 + size); + insn_size += 1 + prefix; + p = frag_more (1 + prefix); + if (prefix) + *p++ = DATA_PREFIX_OPCODE; + *p = i.tm.base_opcode; + frag_var (rs_machine_dependent, + prefix + 2 + size, /* 2 opcode/prefix + displacement */ + 1, + ((unsigned char) *p == JUMP_PC_RELATIVE + ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16 + : ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16), + i.disps[0]->X_add_symbol, + (offsetT) n, p); + } + } + else if (i.tm.opcode_modifier & (JumpByte | JumpDword)) + { + int size = (i.tm.opcode_modifier & JumpByte) ? 1 : 4; + long n = (long) i.disps[0]->X_add_number; + + if (size == 1) /* then this is a loop or jecxz type instruction */ + { + if (i.prefix[ADDR_PREFIX]) + { + insn_size += 1; + FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE); + i.prefixes -= 1; + } + } + else + { + int code16 = 0; + + if (i.prefix[DATA_PREFIX]) + { + insn_size += 1; + FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE); + i.prefixes -= 1; + code16 = CODE16; + } + if (flag_16bit_code) + code16 ^= CODE16; + + if (code16) + size = 2; + } + + if (!intel_syntax && (i.prefixes != 0)) + as_warn (_("skipping prefixes on this instruction")); + + if (fits_in_unsigned_byte (i.tm.base_opcode)) + { + insn_size += 1 + size; + p = frag_more (1 + size); + } + else + { + insn_size += 2 + size; /* opcode can be at most two bytes */ + p = frag_more (2 + size); + *p++ = (i.tm.base_opcode >> 8) & 0xff; + } + *p++ = i.tm.base_opcode & 0xff; + + if (i.disps[0]->X_op == O_constant) + { + if (size == 1 && !fits_in_signed_byte (n)) + { + as_bad (_("`%s' only takes byte displacement; %ld shortened to %d"), + i.tm.name, n, *p); + } + else if (size == 2 && !fits_in_signed_word (n)) + { + as_bad (_("16-bit jump out of range")); + return; + } + md_number_to_chars (p, (valueT) n, size); + } + else + { + fix_new_exp (frag_now, p - frag_now->fr_literal, size, + i.disps[0], 1, reloc (size, 1, i.disp_reloc[0])); + + } + } + else if (i.tm.opcode_modifier & JumpInterSegment) + { + int size; + int reloc_type; + int prefix = i.prefix[DATA_PREFIX] != 0; + int code16 = 0; + + if (prefix) + { + code16 = CODE16; + i.prefixes -= 1; + } + if (flag_16bit_code) + code16 ^= CODE16; + + size = 4; + reloc_type = BFD_RELOC_32; + if (code16) + { + size = 2; + reloc_type = BFD_RELOC_16; + } + + if (!intel_syntax && (i.prefixes != 0)) + as_warn (_("skipping prefixes on this instruction")); + + insn_size += prefix + 1 + 2 + size; /* 1 opcode; 2 segment; offset */ + p = frag_more (prefix + 1 + 2 + size); + if (prefix) + *p++ = DATA_PREFIX_OPCODE; + *p++ = i.tm.base_opcode; + if (i.imms[1]->X_op == O_constant) + { + long n = (long) i.imms[1]->X_add_number; + + if (size == 2 && !fits_in_unsigned_word (n)) + { + as_bad (_("16-bit jump out of range")); + return; + } + md_number_to_chars (p, (valueT) n, size); + } + else + fix_new_exp (frag_now, p - frag_now->fr_literal, size, + i.imms[1], 0, reloc_type); + if (i.imms[0]->X_op != O_constant) + as_bad (_("can't handle non absolute segment in `%s'"), + i.tm.name); + md_number_to_chars (p + size, (valueT) i.imms[0]->X_add_number, 2); + } + else + { + /* Output normal instructions here. */ + unsigned char *q; + + /* The prefix bytes. */ + for (q = i.prefix; + q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]); + q++) + { + if (*q) + { + insn_size += 1; + p = frag_more (1); + md_number_to_chars (p, (valueT) *q, 1); + } + } + + /* Now the opcode; be careful about word order here! */ + if (fits_in_unsigned_byte (i.tm.base_opcode)) + { + insn_size += 1; + FRAG_APPEND_1_CHAR (i.tm.base_opcode); + } + else if (fits_in_unsigned_word (i.tm.base_opcode)) + { + insn_size += 2; + p = frag_more (2); + /* put out high byte first: can't use md_number_to_chars! */ + *p++ = (i.tm.base_opcode >> 8) & 0xff; + *p = i.tm.base_opcode & 0xff; + } + else + { /* opcode is either 3 or 4 bytes */ + if (i.tm.base_opcode & 0xff000000) + { + insn_size += 4; + p = frag_more (4); + *p++ = (i.tm.base_opcode >> 24) & 0xff; + } + else + { + insn_size += 3; + p = frag_more (3); + } + *p++ = (i.tm.base_opcode >> 16) & 0xff; + *p++ = (i.tm.base_opcode >> 8) & 0xff; + *p = (i.tm.base_opcode) & 0xff; + } + + /* Now the modrm byte and sib byte (if present). */ + if (i.tm.opcode_modifier & Modrm) + { + insn_size += 1; + p = frag_more (1); + md_number_to_chars (p, + (valueT) (i.rm.regmem << 0 + | i.rm.reg << 3 + | i.rm.mode << 6), + 1); + /* If i.rm.regmem == ESP (4) + && i.rm.mode != (Register mode) + && not 16 bit + ==> need second modrm byte. */ + if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING + && i.rm.mode != 3 + && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0)) + { + insn_size += 1; + p = frag_more (1); + md_number_to_chars (p, + (valueT) (i.sib.base << 0 + | i.sib.index << 3 + | i.sib.scale << 6), + 1); + } + } + + if (i.disp_operands) + { + register unsigned int n; + + for (n = 0; n < i.operands; n++) + { + if (i.disps[n]) + { + if (i.disps[n]->X_op == O_constant) + { + if (i.types[n] & Disp8) + { + insn_size += 1; + p = frag_more (1); + md_number_to_chars (p, + (valueT) i.disps[n]->X_add_number, + 1); + } + else if (i.types[n] & Disp16) + { + insn_size += 2; + p = frag_more (2); + md_number_to_chars (p, + (valueT) i.disps[n]->X_add_number, + 2); + } + else + { /* Disp32 */ + insn_size += 4; + p = frag_more (4); + md_number_to_chars (p, + (valueT) i.disps[n]->X_add_number, + 4); + } + } + else if (i.types[n] & Disp32) + { + insn_size += 4; + p = frag_more (4); + fix_new_exp (frag_now, p - frag_now->fr_literal, 4, + i.disps[n], 0, + TC_RELOC (i.disp_reloc[n], BFD_RELOC_32)); + } + else + { /* must be Disp16 */ + insn_size += 2; + p = frag_more (2); + fix_new_exp (frag_now, p - frag_now->fr_literal, 2, + i.disps[n], 0, + TC_RELOC (i.disp_reloc[n], BFD_RELOC_16)); + } + } + } + } /* end displacement output */ + + /* output immediate */ + if (i.imm_operands) + { + register unsigned int n; + + for (n = 0; n < i.operands; n++) + { + if (i.imms[n]) + { + if (i.imms[n]->X_op == O_constant) + { + if (i.types[n] & (Imm8 | Imm8S)) + { + insn_size += 1; + p = frag_more (1); + md_number_to_chars (p, + (valueT) i.imms[n]->X_add_number, + 1); + } + else if (i.types[n] & Imm16) + { + insn_size += 2; + p = frag_more (2); + md_number_to_chars (p, + (valueT) i.imms[n]->X_add_number, + 2); + } + else + { + insn_size += 4; + p = frag_more (4); + md_number_to_chars (p, + (valueT) i.imms[n]->X_add_number, + 4); + } + } + else + { /* not absolute_section */ + /* Need a 32-bit fixup (don't support 8bit + non-absolute ims). Try to support other + sizes ... */ + int r_type; + int size; + int pcrel = 0; + + if (i.types[n] & (Imm8 | Imm8S)) + size = 1; + else if (i.types[n] & Imm16) + size = 2; + else + size = 4; + insn_size += size; + p = frag_more (size); + r_type = reloc (size, 0, i.disp_reloc[0]); +#ifdef BFD_ASSEMBLER + if (r_type == BFD_RELOC_32 + && GOT_symbol + && GOT_symbol == i.imms[n]->X_add_symbol + && (i.imms[n]->X_op == O_symbol + || (i.imms[n]->X_op == O_add + && ((symbol_get_value_expression + (i.imms[n]->X_op_symbol)->X_op) + == O_subtract)))) + { + r_type = BFD_RELOC_386_GOTPC; + i.imms[n]->X_add_number += 3; + } +#endif + fix_new_exp (frag_now, p - frag_now->fr_literal, size, + i.imms[n], pcrel, r_type); + } + } + } + } /* end immediate output */ + } + +#ifdef DEBUG386 + if (flag_debug) + { + pi (line, &i); + } +#endif /* DEBUG386 */ + } +} + +static int i386_is_reg PARAMS ((char *)); + +static int +i386_is_reg (reg_string) + char *reg_string; +{ + register char *s = reg_string; + register char *p; + char reg_name_given[MAX_REG_NAME_SIZE + 1]; + + if (is_space_char (*s)) + ++s; + + p = reg_name_given; + while ((*p++ = register_chars[(unsigned char) *s++]) != '\0') + if (p >= reg_name_given + MAX_REG_NAME_SIZE) + return 0; + + if (!hash_find (reg_hash, reg_name_given)) + return 0; + else + return 1; +} + +static int i386_immediate PARAMS ((char *)); + +static int +i386_immediate (imm_start) + char *imm_start; +{ + char *save_input_line_pointer; + segT exp_seg = 0; + expressionS * exp; + + if (i.imm_operands == MAX_IMMEDIATE_OPERANDS) + { + as_bad (_("Only 1 or 2 immediate operands are allowed")); + return 0; + } + + exp = &im_expressions[i.imm_operands++]; + i.imms[this_operand] = exp; + + if (is_space_char (*imm_start)) + ++imm_start; + + save_input_line_pointer = input_line_pointer; + input_line_pointer = imm_start; + +#ifndef LEX_AT + { + /* + * We can have operands of the form + * @GOTOFF+ + * Take the easy way out here and copy everything + * into a temporary buffer... + */ + register char *cp; + + cp = strchr (input_line_pointer, '@'); + if (cp != NULL) + { + char *tmpbuf; + int len = 0; + int first; + + /* GOT relocations are not supported in 16 bit mode */ + if (flag_16bit_code) + as_bad (_("GOT relocations not supported in 16 bit mode")); + + if (GOT_symbol == NULL) + GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME); + + if (strncmp (cp + 1, "PLT", 3) == 0) + { + i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32; + len = 3; + } + else if (strncmp (cp + 1, "GOTOFF", 6) == 0) + { + i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF; + len = 6; + } + else if (strncmp (cp + 1, "GOT", 3) == 0) + { + i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32; + len = 3; + } + else + as_bad (_("Bad reloc specifier in expression")); + + /* Replace the relocation token with ' ', so that errors like + foo@GOTOFF1 will be detected. */ + first = cp - input_line_pointer; + tmpbuf = (char *) alloca (strlen(input_line_pointer)); + memcpy (tmpbuf, input_line_pointer, first); + tmpbuf[first] = ' '; + strcpy (tmpbuf + first + 1, cp + 1 + len); + input_line_pointer = tmpbuf; + } + } +#endif + + exp_seg = expression (exp); + + SKIP_WHITESPACE (); + if (*input_line_pointer) + as_bad (_("Ignoring junk `%s' after expression"), input_line_pointer); + + input_line_pointer = save_input_line_pointer; + + if (exp->X_op == O_absent) + { + /* missing or bad expr becomes absolute 0 */ + as_bad (_("Missing or invalid immediate expression `%s' taken as 0"), + imm_start); + exp->X_op = O_constant; + exp->X_add_number = 0; + exp->X_add_symbol = (symbolS *) 0; + exp->X_op_symbol = (symbolS *) 0; + i.types[this_operand] |= Imm; + } + else if (exp->X_op == O_constant) + { + i.types[this_operand] |= + smallest_imm_type ((long) exp->X_add_number); + + /* If a suffix is given, this operand may be shortended. */ + switch (i.suffix) + { + case WORD_MNEM_SUFFIX: + i.types[this_operand] |= Imm16; + break; + case BYTE_MNEM_SUFFIX: + i.types[this_operand] |= Imm16 | Imm8 | Imm8S; + break; + } + } +#ifdef OBJ_AOUT + else if (exp_seg != text_section + && exp_seg != data_section + && exp_seg != bss_section + && exp_seg != undefined_section +#ifdef BFD_ASSEMBLER + && !bfd_is_com_section (exp_seg) +#endif + ) + { + as_bad (_("Unimplemented segment type %d in operand"), exp_seg); + return 0; + } +#endif + else + { + /* This is an address. The size of the address will be + determined later, depending on destination register, + suffix, or the default for the section. We exclude + Imm8S here so that `push $foo' and other instructions + with an Imm8S form will use Imm16 or Imm32. */ + i.types[this_operand] |= (Imm8 | Imm16 | Imm32); + } + + return 1; +} + +static int i386_scale PARAMS ((char *)); + +static int +i386_scale (scale) + char *scale; +{ + if (!isdigit (*scale)) + goto bad_scale; + + switch (*scale) + { + case '0': + case '1': + i.log2_scale_factor = 0; + break; + case '2': + i.log2_scale_factor = 1; + break; + case '4': + i.log2_scale_factor = 2; + break; + case '8': + i.log2_scale_factor = 3; + break; + default: + bad_scale: + as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"), + scale); + return 0; + } + if (i.log2_scale_factor != 0 && ! i.index_reg) + { + as_warn (_("scale factor of %d without an index register"), + 1 << i.log2_scale_factor); +#if SCALE1_WHEN_NO_INDEX + i.log2_scale_factor = 0; +#endif + } + return 1; +} + +static int i386_displacement PARAMS ((char *, char *)); + +static int +i386_displacement (disp_start, disp_end) + char *disp_start; + char *disp_end; +{ + register expressionS *exp; + segT exp_seg = 0; + char *save_input_line_pointer; + int bigdisp = Disp32; + + /* All of the pieces of the displacement expression are handled together. */ + if (intel_syntax && i.disp_operands != 0) + return 1; + + if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0)) + bigdisp = Disp16; + i.types[this_operand] |= bigdisp; + + exp = &disp_expressions[i.disp_operands]; + i.disps[this_operand] = exp; + i.disp_reloc[this_operand] = NO_RELOC; + i.disp_operands++; + save_input_line_pointer = input_line_pointer; + input_line_pointer = disp_start; + END_STRING_AND_SAVE (disp_end); + +#ifndef GCC_ASM_O_HACK +#define GCC_ASM_O_HACK 0 +#endif +#if GCC_ASM_O_HACK + END_STRING_AND_SAVE (disp_end + 1); + if ((i.types[this_operand] & BaseIndex) != 0 + && displacement_string_end[-1] == '+') + { + /* This hack is to avoid a warning when using the "o" + constraint within gcc asm statements. + For instance: + + #define _set_tssldt_desc(n,addr,limit,type) \ + __asm__ __volatile__ ( \ + "movw %w2,%0\n\t" \ + "movw %w1,2+%0\n\t" \ + "rorl $16,%1\n\t" \ + "movb %b1,4+%0\n\t" \ + "movb %4,5+%0\n\t" \ + "movb $0,6+%0\n\t" \ + "movb %h1,7+%0\n\t" \ + "rorl $16,%1" \ + : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type)) + + This works great except that the output assembler ends + up looking a bit weird if it turns out that there is + no offset. You end up producing code that looks like: + + #APP + movw $235,(%eax) + movw %dx,2+(%eax) + rorl $16,%edx + movb %dl,4+(%eax) + movb $137,5+(%eax) + movb $0,6+(%eax) + movb %dh,7+(%eax) + rorl $16,%edx + #NO_APP + + So here we provide the missing zero. + */ + + *displacement_string_end = '0'; + } +#endif +#ifndef LEX_AT + { + /* + * We can have operands of the form + * @GOTOFF+ + * Take the easy way out here and copy everything + * into a temporary buffer... + */ + register char *cp; + + cp = strchr (input_line_pointer, '@'); + if (cp != NULL) + { + char *tmpbuf; + int len = 0; + int first; + + /* GOT relocations are not supported in 16 bit mode */ + if (flag_16bit_code) + as_bad (_("GOT relocations not supported in 16 bit mode")); + + if (GOT_symbol == NULL) + GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME); + + if (strncmp (cp + 1, "PLT", 3) == 0) + { + i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32; + len = 3; + } + else if (strncmp (cp + 1, "GOTOFF", 6) == 0) + { + i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF; + len = 6; + } + else if (strncmp (cp + 1, "GOT", 3) == 0) + { + i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32; + len = 3; + } + else + as_bad (_("Bad reloc specifier in expression")); + + /* Replace the relocation token with ' ', so that errors like + foo@GOTOFF1 will be detected. */ + first = cp - input_line_pointer; + tmpbuf = (char *) alloca (strlen(input_line_pointer)); + memcpy (tmpbuf, input_line_pointer, first); + tmpbuf[first] = ' '; + strcpy (tmpbuf + first + 1, cp + 1 + len); + input_line_pointer = tmpbuf; + } + } +#endif + + exp_seg = expression (exp); + +#ifdef BFD_ASSEMBLER + /* We do this to make sure that the section symbol is in + the symbol table. We will ultimately change the relocation + to be relative to the beginning of the section */ + if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF) + { + if (S_IS_LOCAL(exp->X_add_symbol) + && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section) + section_symbol (S_GET_SEGMENT (exp->X_add_symbol)); + assert (exp->X_op == O_symbol); + exp->X_op = O_subtract; + exp->X_op_symbol = GOT_symbol; + i.disp_reloc[this_operand] = BFD_RELOC_32; + } +#endif + + SKIP_WHITESPACE (); + if (*input_line_pointer) + as_bad (_("Ignoring junk `%s' after expression"), + input_line_pointer); +#if GCC_ASM_O_HACK + RESTORE_END_STRING (disp_end + 1); +#endif + RESTORE_END_STRING (disp_end); + input_line_pointer = save_input_line_pointer; + + if (exp->X_op == O_constant) + { + if (fits_in_signed_byte (exp->X_add_number)) + i.types[this_operand] |= Disp8; + } +#ifdef OBJ_AOUT + else if (exp_seg != text_section + && exp_seg != data_section + && exp_seg != bss_section + && exp_seg != undefined_section) + { + as_bad (_ ("Unimplemented segment type %d in operand"), exp_seg); + return 0; + } +#endif + return 1; +} + +static int i386_operand_modifier PARAMS ((char **, int)); + +static int +i386_operand_modifier (op_string, got_a_float) + char **op_string; + int got_a_float; +{ + if (!strncasecmp (*op_string, "BYTE PTR", 8)) + { + i.suffix = BYTE_MNEM_SUFFIX; + *op_string += 8; + return BYTE_PTR; + + } + else if (!strncasecmp (*op_string, "WORD PTR", 8)) + { + i.suffix = WORD_MNEM_SUFFIX; + *op_string += 8; + return WORD_PTR; + } + + else if (!strncasecmp (*op_string, "DWORD PTR", 9)) + { + if (got_a_float) + i.suffix = SHORT_MNEM_SUFFIX; + else + i.suffix = DWORD_MNEM_SUFFIX; + *op_string += 9; + return DWORD_PTR; + } + + else if (!strncasecmp (*op_string, "QWORD PTR", 9)) + { + i.suffix = INTEL_DWORD_MNEM_SUFFIX; + *op_string += 9; + return QWORD_PTR; + } + + else if (!strncasecmp (*op_string, "XWORD PTR", 9)) + { + i.suffix = LONG_DOUBLE_MNEM_SUFFIX; + *op_string += 9; + return XWORD_PTR; + } + + else if (!strncasecmp (*op_string, "SHORT", 5)) + { + *op_string += 5; + return SHORT; + } + + else if (!strncasecmp (*op_string, "OFFSET FLAT:", 12)) + { + *op_string += 12; + return OFFSET_FLAT; + } + + else if (!strncasecmp (*op_string, "FLAT", 4)) + { + *op_string += 4; + return FLAT; + } + + else return NONE_FOUND; +} + +static char * build_displacement_string PARAMS ((int, char *)); + +static char * +build_displacement_string (initial_disp, op_string) + int initial_disp; + char *op_string; +{ + char *temp_string = (char *) malloc (strlen (op_string) + 1); + char *end_of_operand_string; + char *tc; + char *temp_disp; + + temp_string[0] = '\0'; + tc = end_of_operand_string = strchr (op_string, '['); + if ( initial_disp && !end_of_operand_string) + { + strcpy (temp_string, op_string); + return (temp_string); + } + + /* Build the whole displacement string */ + if (initial_disp) + { + strncpy (temp_string, op_string, end_of_operand_string - op_string); + temp_string[end_of_operand_string - op_string] = '\0'; + temp_disp = tc; + } + else + temp_disp = op_string; + + while (*temp_disp != '\0') + { + int add_minus = (*temp_disp == '-'); + + if (*temp_disp == '+' || *temp_disp == '-' || *temp_disp == '[') + temp_disp++; + + if (is_space_char (*temp_disp)) + temp_disp++; + + /* Don't consider registers */ + if (*temp_disp != REGISTER_PREFIX + && !(allow_naked_reg && i386_is_reg (temp_disp))) + { + char *string_start = temp_disp; + + while (*temp_disp != ']' + && *temp_disp != '+' + && *temp_disp != '-' + && *temp_disp != '*') + ++temp_disp; + + if (add_minus) + strcat (temp_string, "-"); + else + strcat (temp_string, "+"); + + strncat (temp_string, string_start, temp_disp - string_start); + if (*temp_disp == '+' || *temp_disp == '-') + --temp_disp; + } + + while (*temp_disp != '\0' + && *temp_disp != '+' + && *temp_disp != '-') + ++temp_disp; + } + + return temp_string; +} + +static int i386_parse_seg PARAMS ((char *)); + +static int +i386_parse_seg (op_string) + char *op_string; +{ + if (is_space_char (*op_string)) + ++op_string; + + /* Should be one of es, cs, ss, ds fs or gs */ + switch (*op_string++) + { + case 'e': + i.seg[i.mem_operands] = &es; + break; + case 'c': + i.seg[i.mem_operands] = &cs; + break; + case 's': + i.seg[i.mem_operands] = &ss; + break; + case 'd': + i.seg[i.mem_operands] = &ds; + break; + case 'f': + i.seg[i.mem_operands] = &fs; + break; + case 'g': + i.seg[i.mem_operands] = &gs; + break; + default: + as_bad (_("bad segment name `%s'"), op_string); + return 0; + } + + if (*op_string++ != 's') + { + as_bad (_("bad segment name `%s'"), op_string); + return 0; + } + + if (is_space_char (*op_string)) + ++op_string; + + if (*op_string != ':') + { + as_bad (_("bad segment name `%s'"), op_string); + return 0; + } + + return 1; + +} + +static int i386_intel_memory_operand PARAMS ((char *)); + +static int +i386_intel_memory_operand (op_string) + char *op_string; +{ + + char *end_of_operand_string; + + if (is_digit_char (*op_string) + && strchr (op_string, '[') == 0) + { + if (!i386_immediate (op_string)) + return 0; + else + return 1; + } + + /* Look for displacement preceding open bracket */ + if (*op_string != '[') + { + char *end_seg; + char *temp_string; + + end_seg = strchr (op_string, ':'); + if (end_seg) + { + if (!i386_parse_seg (op_string)) + return 0; + op_string = end_seg + 1; + } + + temp_string = build_displacement_string (true, op_string); + if (!i386_displacement (temp_string, temp_string + strlen (temp_string))) + return 0; + + end_of_operand_string = strchr (op_string, '['); + if (!end_of_operand_string) + end_of_operand_string = op_string + strlen (op_string); + + if (is_space_char (*end_of_operand_string)) + --end_of_operand_string; + + op_string = end_of_operand_string; + } + + if (*op_string == '[') + { + ++op_string; + + /* Pick off each component and figure out where it belongs */ + + end_of_operand_string = op_string; + + while (*op_string != ']') + { + + while (*end_of_operand_string != '+' + && *end_of_operand_string != '-' + && *end_of_operand_string != '*' + && *end_of_operand_string != ']') + end_of_operand_string++; + + if (*op_string == '+') + { + char *temp_string = op_string + 1; + if (is_space_char (*temp_string)) + ++temp_string; + if (*temp_string == REGISTER_PREFIX + || (allow_naked_reg && i386_is_reg (temp_string))) + ++op_string; + } + + if (*op_string == REGISTER_PREFIX + || (allow_naked_reg && i386_is_reg (op_string))) + { + const reg_entry *temp_reg; + char *end_op; + + END_STRING_AND_SAVE (end_of_operand_string); + temp_reg = parse_register (op_string, &end_op); + RESTORE_END_STRING (end_of_operand_string); + + if (temp_reg == NULL) + return 0; + + if (i.base_reg == NULL) + i.base_reg = temp_reg; + else + i.index_reg = temp_reg; + + i.types[this_operand] |= BaseIndex; + + } + else if (is_digit_char (*op_string) || *op_string == '+' || *op_string == '-') + { + + char *temp_string = build_displacement_string (false, op_string); + + if (*temp_string == '+') + ++temp_string; + + if (!i386_displacement (temp_string, temp_string + strlen (temp_string))) + return 0; + + ++op_string; + end_of_operand_string = op_string; + while (*end_of_operand_string != ']' + && *end_of_operand_string != '+' + && *end_of_operand_string != '-' + && *end_of_operand_string != '*') + ++end_of_operand_string; + } + else if (*op_string == '*') + { + ++op_string; + + if (i.base_reg && !i.index_reg) + { + i.index_reg = i.base_reg; + i.base_reg = 0; + } + + if (!i386_scale (op_string)) + return 0; + } + op_string = end_of_operand_string; + ++end_of_operand_string; + } + } + + return 1; +} + +static int i386_intel_operand PARAMS ((char *, int)); + +static int +i386_intel_operand (operand_string, got_a_float) + char *operand_string; + int got_a_float; +{ + char *op_string = operand_string; + + int operand_modifier = i386_operand_modifier (&op_string, got_a_float); + if (is_space_char (*op_string)) + ++op_string; + + switch (operand_modifier) + { + case BYTE_PTR: + case WORD_PTR: + case DWORD_PTR: + case QWORD_PTR: + case XWORD_PTR: + if ((i.mem_operands == 1 + && (current_templates->start->opcode_modifier & IsString) == 0) + || i.mem_operands == 2) + { + as_bad (_("too many memory references for `%s'"), + current_templates->start->name); + return 0; + } + + if (!i386_intel_memory_operand (op_string)) + return 0; + + i.mem_operands++; + break; + + case FLAT: + + case OFFSET_FLAT: + if (!i386_immediate (op_string)) + return 0; + break; + + case SHORT: + + case NONE_FOUND: + /* Should be register or immediate */ + if (is_digit_char (*op_string) + && strchr (op_string, '[') == 0) + { + if (!i386_immediate (op_string)) + return 0; + } + else if (*op_string == REGISTER_PREFIX + || (allow_naked_reg + && i386_is_reg (op_string))) + { + + register const reg_entry * r; + char *end_op; + + r = parse_register (op_string, &end_op); + if (r == NULL) + return 0; + + /* Check for a segment override by searching for ':' after a + segment register. */ + op_string = end_op; + if (is_space_char (*op_string)) + ++op_string; + if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3))) + { + switch (r->reg_num) + { + case 0: + i.seg[i.mem_operands] = &es; + break; + case 1: + i.seg[i.mem_operands] = &cs; + break; + case 2: + i.seg[i.mem_operands] = &ss; + break; + case 3: + i.seg[i.mem_operands] = &ds; + break; + case 4: + i.seg[i.mem_operands] = &fs; + break; + case 5: + i.seg[i.mem_operands] = &gs; + break; + } + + } + i.types[this_operand] |= r->reg_type & ~BaseIndex; + i.regs[this_operand] = r; + i.reg_operands++; + } + + else + { + + if (!i386_intel_memory_operand (op_string)) + return 0; + + i.mem_operands++; + } + break; + + } /* end switch */ + /* Special case for (%dx) while doing input/output op. */ + if (i.base_reg + && i.base_reg->reg_type == (Reg16 | InOutPortReg) + && i.index_reg == 0 + && i.log2_scale_factor == 0 + && i.seg[i.mem_operands] == 0 + && (i.types[this_operand] & Disp) == 0) + { + i.types[this_operand] = InOutPortReg; + return 1; + } + /* Make sure the memory operand we've been dealt is valid. */ + if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0)) + { + if ((i.base_reg + && ((i.base_reg->reg_type & (Reg16|BaseIndex)) + != (Reg16|BaseIndex))) + || (i.index_reg + && (((i.index_reg->reg_type & (Reg16|BaseIndex)) + != (Reg16|BaseIndex)) + || ! (i.base_reg + && i.base_reg->reg_num < 6 + && i.index_reg->reg_num >= 6 + && i.log2_scale_factor == 0)))) + { + as_bad (_("`%s' is not a valid %s bit base/index expression"), + operand_string, "16"); + return 0; + } + } + else + { + if ((i.base_reg + && (i.base_reg->reg_type & Reg32) == 0) + || (i.index_reg + && ((i.index_reg->reg_type & (Reg32|BaseIndex)) + != (Reg32|BaseIndex)))) + { + as_bad (_("`%s' is not a valid %s bit base/index expression"), + operand_string, "32"); + return 0; + } + } + return 1; +} + +/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero + on error. */ + +static int i386_operand PARAMS ((char *)); + +static int +i386_operand (operand_string) + char *operand_string; +{ + char *op_string = operand_string; + + if (is_space_char (*op_string)) + ++op_string; + + /* We check for an absolute prefix (differentiating, + for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */ + if (*op_string == ABSOLUTE_PREFIX) + { + ++op_string; + if (is_space_char (*op_string)) + ++op_string; + i.types[this_operand] |= JumpAbsolute; + } + + /* Check if operand is a register. */ + if (*op_string == REGISTER_PREFIX + || (allow_naked_reg && i386_is_reg (op_string))) + { + register const reg_entry *r; + char *end_op; + + r = parse_register (op_string, &end_op); + if (r == NULL) + return 0; + + /* Check for a segment override by searching for ':' after a + segment register. */ + op_string = end_op; + if (is_space_char (*op_string)) + ++op_string; + if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3))) + { + switch (r->reg_num) + { + case 0: + i.seg[i.mem_operands] = &es; + break; + case 1: + i.seg[i.mem_operands] = &cs; + break; + case 2: + i.seg[i.mem_operands] = &ss; + break; + case 3: + i.seg[i.mem_operands] = &ds; + break; + case 4: + i.seg[i.mem_operands] = &fs; + break; + case 5: + i.seg[i.mem_operands] = &gs; + break; + } + + /* Skip the ':' and whitespace. */ + ++op_string; + if (is_space_char (*op_string)) + ++op_string; + + /* Pretend given string starts here. */ + operand_string = op_string; + if (!is_digit_char (*op_string) + && !is_identifier_char (*op_string) + && *op_string != '(' + && *op_string != ABSOLUTE_PREFIX) + { + as_bad (_("bad memory operand `%s'"), op_string); + return 0; + } + /* Handle case of %es:*foo. */ + if (*op_string == ABSOLUTE_PREFIX) + { + ++op_string; + if (is_space_char (*op_string)) + ++op_string; + i.types[this_operand] |= JumpAbsolute; + } + goto do_memory_reference; + } + if (*op_string) + { + as_bad (_("Junk `%s' after register"), op_string); + return 0; + } + i.types[this_operand] |= r->reg_type & ~BaseIndex; + i.regs[this_operand] = r; + i.reg_operands++; + } + else if (*op_string == IMMEDIATE_PREFIX) + { /* ... or an immediate */ + ++op_string; + if (!i386_immediate (op_string)) + return 0; + } + else if (is_digit_char (*op_string) + || is_identifier_char (*op_string) + || *op_string == '(' ) + { + /* This is a memory reference of some sort. */ + char *end_of_operand_string; + register char *base_string; + int found_base_index_form; + + /* Start and end of displacement string expression (if found). */ + char *displacement_string_start = NULL; + char *displacement_string_end = NULL; + + do_memory_reference: + + if ((i.mem_operands == 1 + && (current_templates->start->opcode_modifier & IsString) == 0) + || i.mem_operands == 2) + { + as_bad (_("too many memory references for `%s'"), + current_templates->start->name); + return 0; + } + + /* Check for base index form. We detect the base index form by + looking for an ')' at the end of the operand, searching + for the '(' matching it, and finding a REGISTER_PREFIX or ',' + after the '('. */ + found_base_index_form = 0; + end_of_operand_string = op_string + strlen (op_string); + + --end_of_operand_string; + if (is_space_char (*end_of_operand_string)) + --end_of_operand_string; + + base_string = end_of_operand_string; + + if (*base_string == ')') + { + unsigned int parens_balanced = 1; + /* We've already checked that the number of left & right ()'s are + equal, so this loop will not be infinite. */ + do + { + base_string--; + if (*base_string == ')') + parens_balanced++; + if (*base_string == '(') + parens_balanced--; + } + while (parens_balanced); + + /* If there is a displacement set-up for it to be parsed later. */ + displacement_string_start = op_string; + displacement_string_end = base_string; + + /* Skip past '(' and whitespace. */ + ++base_string; + if (is_space_char (*base_string)) + ++base_string; + + if (*base_string == REGISTER_PREFIX + || (allow_naked_reg && i386_is_reg (base_string)) + || *base_string == ',') + found_base_index_form = 1; + } + + /* If we can't parse a base index register expression, we've found + a pure displacement expression. We set up displacement_string_start + and displacement_string_end for the code below. */ + if (!found_base_index_form) + { + displacement_string_start = op_string; + displacement_string_end = end_of_operand_string + 1; + } + else + { + i.types[this_operand] |= BaseIndex; + + /* Find base register (if any). */ + if (*base_string != ',') + { + char *end_op; + + /* Trim off the closing ')' so that parse_register won't + see it. */ + END_STRING_AND_SAVE (end_of_operand_string); + i.base_reg = parse_register (base_string, &end_op); + RESTORE_END_STRING (end_of_operand_string); + + if (i.base_reg == NULL) + return 0; + + base_string = end_op; + if (is_space_char (*base_string)) + ++base_string; + } + + /* There may be an index reg or scale factor here. */ + if (*base_string == ',') + { + ++base_string; + if (is_space_char (*base_string)) + ++base_string; + + if (*base_string == REGISTER_PREFIX + || (allow_naked_reg && i386_is_reg (base_string))) + { + char *end_op; + + END_STRING_AND_SAVE (end_of_operand_string); + i.index_reg = parse_register (base_string, &end_op); + RESTORE_END_STRING (end_of_operand_string); + + if (i.index_reg == NULL) + return 0; + + base_string = end_op; + if (is_space_char (*base_string)) + ++base_string; + if (*base_string == ',') + { + ++base_string; + if (is_space_char (*base_string)) + ++base_string; + } + else if (*base_string != ')' ) + { + as_bad (_("expecting `,' or `)' after index register in `%s'"), + operand_string); + return 0; + } + } + + /* Check for scale factor. */ + if (isdigit ((unsigned char) *base_string)) + { + if (!i386_scale (base_string)) + return 0; + + ++base_string; + if (is_space_char (*base_string)) + ++base_string; + if (*base_string != ')') + { + as_bad (_("expecting `)' after scale factor in `%s'"), + operand_string); + return 0; + } + } + else if (!i.index_reg) + { + as_bad (_("expecting index register or scale factor after `,'; got '%c'"), + *base_string); + return 0; + } + } + else if (*base_string != ')') + { + as_bad (_("expecting `,' or `)' after base register in `%s'"), + operand_string); + return 0; + } + } + + /* If there's an expression beginning the operand, parse it, + assuming displacement_string_start and + displacement_string_end are meaningful. */ + if (displacement_string_start != displacement_string_end) + { + if (!i386_displacement (displacement_string_start, + displacement_string_end)) + return 0; + } + + /* Special case for (%dx) while doing input/output op. */ + if (i.base_reg + && i.base_reg->reg_type == (Reg16 | InOutPortReg) + && i.index_reg == 0 + && i.log2_scale_factor == 0 + && i.seg[i.mem_operands] == 0 + && (i.types[this_operand] & Disp) == 0) + { + i.types[this_operand] = InOutPortReg; + return 1; + } + /* Make sure the memory operand we've been dealt is valid. */ + if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0)) + { + if ((i.base_reg + && ((i.base_reg->reg_type & (Reg16|BaseIndex)) + != (Reg16|BaseIndex))) + || (i.index_reg + && (((i.index_reg->reg_type & (Reg16|BaseIndex)) + != (Reg16|BaseIndex)) + || ! (i.base_reg + && i.base_reg->reg_num < 6 + && i.index_reg->reg_num >= 6 + && i.log2_scale_factor == 0)))) + { + as_bad (_("`%s' is not a valid %s bit base/index expression"), + operand_string, "16"); + return 0; + } + } + else + { + if ((i.base_reg + && (i.base_reg->reg_type & Reg32) == 0) + || (i.index_reg + && ((i.index_reg->reg_type & (Reg32|BaseIndex)) + != (Reg32|BaseIndex)))) + { + as_bad (_("`%s' is not a valid %s bit base/index expression"), + operand_string, "32"); + return 0; + } + } + i.mem_operands++; + } + else + { /* it's not a memory operand; argh! */ + as_bad (_("invalid char %s beginning operand %d `%s'"), + output_invalid (*op_string), + this_operand + 1, + op_string); + return 0; + } + return 1; /* normal return */ +} + +/* + * md_estimate_size_before_relax() + * + * Called just before relax(). + * Any symbol that is now undefined will not become defined. + * Return the correct fr_subtype in the frag. + * Return the initial "guess for fr_var" to caller. + * The guess for fr_var is ACTUALLY the growth beyond fr_fix. + * Whatever we do to grow fr_fix or fr_var contributes to our returned value. + * Although it may not be explicit in the frag, pretend fr_var starts with a + * 0 value. + */ +int +md_estimate_size_before_relax (fragP, segment) + register fragS *fragP; + register segT segment; +{ + register unsigned char *opcode; + register int old_fr_fix; + + old_fr_fix = fragP->fr_fix; + opcode = (unsigned char *) fragP->fr_opcode; + /* We've already got fragP->fr_subtype right; all we have to do is + check for un-relaxable symbols. */ + if (S_GET_SEGMENT (fragP->fr_symbol) != segment) + { + /* symbol is undefined in this segment */ + int code16 = fragP->fr_subtype & CODE16; + int size = code16 ? 2 : 4; + int pcrel_reloc = code16 ? BFD_RELOC_16_PCREL : BFD_RELOC_32_PCREL; + + switch (opcode[0]) + { + case JUMP_PC_RELATIVE: /* make jmp (0xeb) a dword displacement jump */ + opcode[0] = 0xe9; /* dword disp jmp */ + fragP->fr_fix += size; + fix_new (fragP, old_fr_fix, size, + fragP->fr_symbol, + fragP->fr_offset, 1, + (GOT_symbol && /* Not quite right - we should switch on + presence of @PLT, but I cannot see how + to get to that from here. We should have + done this in md_assemble to really + get it right all of the time, but I + think it does not matter that much, as + this will be right most of the time. ERY*/ + S_GET_SEGMENT(fragP->fr_symbol) == undefined_section) + ? BFD_RELOC_386_PLT32 : pcrel_reloc); + break; + + default: + /* This changes the byte-displacement jump 0x7N --> + the dword-displacement jump 0x0f8N */ + opcode[1] = opcode[0] + 0x10; + opcode[0] = TWO_BYTE_OPCODE_ESCAPE; /* two-byte escape */ + fragP->fr_fix += 1 + size; /* we've added an opcode byte */ + fix_new (fragP, old_fr_fix + 1, size, + fragP->fr_symbol, + fragP->fr_offset, 1, + (GOT_symbol && /* Not quite right - we should switch on + presence of @PLT, but I cannot see how + to get to that from here. ERY */ + S_GET_SEGMENT(fragP->fr_symbol) == undefined_section) + ? BFD_RELOC_386_PLT32 : pcrel_reloc); + break; + } + frag_wane (fragP); + } + return (fragP->fr_var + fragP->fr_fix - old_fr_fix); +} /* md_estimate_size_before_relax() */ + +/* + * md_convert_frag(); + * + * Called after relax() is finished. + * In: Address of frag. + * fr_type == rs_machine_dependent. + * fr_subtype is what the address relaxed to. + * + * Out: Any fixSs and constants are set up. + * Caller will turn frag into a ".space 0". + */ +#ifndef BFD_ASSEMBLER +void +md_convert_frag (headers, sec, fragP) + object_headers *headers; + segT sec; + register fragS *fragP; +#else +void +md_convert_frag (abfd, sec, fragP) + bfd *abfd ATTRIBUTE_UNUSED; + segT sec ATTRIBUTE_UNUSED; + register fragS *fragP; +#endif +{ + register unsigned char *opcode; + unsigned char *where_to_put_displacement = NULL; + unsigned int target_address; + unsigned int opcode_address; + unsigned int extension = 0; + int displacement_from_opcode_start; + + opcode = (unsigned char *) fragP->fr_opcode; + + /* Address we want to reach in file space. */ + target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset; +#ifdef BFD_ASSEMBLER /* not needed otherwise? */ + target_address += symbol_get_frag (fragP->fr_symbol)->fr_address; +#endif + + /* Address opcode resides at in file space. */ + opcode_address = fragP->fr_address + fragP->fr_fix; + + /* Displacement from opcode start to fill into instruction. */ + displacement_from_opcode_start = target_address - opcode_address; + + switch (fragP->fr_subtype) + { + case ENCODE_RELAX_STATE (COND_JUMP, SMALL): + case ENCODE_RELAX_STATE (COND_JUMP, SMALL16): + case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL): + case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL16): + /* don't have to change opcode */ + extension = 1; /* 1 opcode + 1 displacement */ + where_to_put_displacement = &opcode[1]; + break; + + case ENCODE_RELAX_STATE (COND_JUMP, BIG): + extension = 5; /* 2 opcode + 4 displacement */ + opcode[1] = opcode[0] + 0x10; + opcode[0] = TWO_BYTE_OPCODE_ESCAPE; + where_to_put_displacement = &opcode[2]; + break; + + case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG): + extension = 4; /* 1 opcode + 4 displacement */ + opcode[0] = 0xe9; + where_to_put_displacement = &opcode[1]; + break; + + case ENCODE_RELAX_STATE (COND_JUMP, BIG16): + extension = 3; /* 2 opcode + 2 displacement */ + opcode[1] = opcode[0] + 0x10; + opcode[0] = TWO_BYTE_OPCODE_ESCAPE; + where_to_put_displacement = &opcode[2]; + break; + + case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16): + extension = 2; /* 1 opcode + 2 displacement */ + opcode[0] = 0xe9; + where_to_put_displacement = &opcode[1]; + break; + + default: + BAD_CASE (fragP->fr_subtype); + break; + } + /* now put displacement after opcode */ + md_number_to_chars ((char *) where_to_put_displacement, + (valueT) (displacement_from_opcode_start - extension), + SIZE_FROM_RELAX_STATE (fragP->fr_subtype)); + fragP->fr_fix += extension; +} + + +int md_short_jump_size = 2; /* size of byte displacement jmp */ +int md_long_jump_size = 5; /* size of dword displacement jmp */ +const int md_reloc_size = 8; /* Size of relocation record */ + +void +md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol) + char *ptr; + addressT from_addr, to_addr; + fragS *frag ATTRIBUTE_UNUSED; + symbolS *to_symbol ATTRIBUTE_UNUSED; +{ + long offset; + + offset = to_addr - (from_addr + 2); + md_number_to_chars (ptr, (valueT) 0xeb, 1); /* opcode for byte-disp jump */ + md_number_to_chars (ptr + 1, (valueT) offset, 1); +} + +void +md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol) + char *ptr; + addressT from_addr, to_addr; + fragS *frag; + symbolS *to_symbol; +{ + long offset; + + if (flag_do_long_jump) + { + offset = to_addr - S_GET_VALUE (to_symbol); + md_number_to_chars (ptr, (valueT) 0xe9, 1);/* opcode for long jmp */ + md_number_to_chars (ptr + 1, (valueT) offset, 4); + fix_new (frag, (ptr + 1) - frag->fr_literal, 4, + to_symbol, (offsetT) 0, 0, BFD_RELOC_32); + } + else + { + offset = to_addr - (from_addr + 5); + md_number_to_chars (ptr, (valueT) 0xe9, 1); + md_number_to_chars (ptr + 1, (valueT) offset, 4); + } +} + +/* Apply a fixup (fixS) to segment data, once it has been determined + by our caller that we have all the info we need to fix it up. + + On the 386, immediates, displacements, and data pointers are all in + the same (little-endian) format, so we don't need to care about which + we are handling. */ + +int +md_apply_fix3 (fixP, valp, seg) + fixS *fixP; /* The fix we're to put in. */ + valueT *valp; /* Pointer to the value of the bits. */ + segT seg; /* Segment fix is from. */ +{ + register char *p = fixP->fx_where + fixP->fx_frag->fr_literal; + valueT value = *valp; + +#if defined (BFD_ASSEMBLER) && !defined (TE_Mach) + if (fixP->fx_pcrel) + { + switch (fixP->fx_r_type) + { + default: + break; + + case BFD_RELOC_32: + fixP->fx_r_type = BFD_RELOC_32_PCREL; + break; + case BFD_RELOC_16: + fixP->fx_r_type = BFD_RELOC_16_PCREL; + break; + case BFD_RELOC_8: + fixP->fx_r_type = BFD_RELOC_8_PCREL; + break; + } + } + + /* + * This is a hack. There should be a better way to + * handle this. + */ + if ((fixP->fx_r_type == BFD_RELOC_32_PCREL + || fixP->fx_r_type == BFD_RELOC_16_PCREL + || fixP->fx_r_type == BFD_RELOC_8_PCREL) + && fixP->fx_addsy) + { +#ifndef OBJ_AOUT + if (OUTPUT_FLAVOR == bfd_target_elf_flavour +#ifdef TE_PE + || OUTPUT_FLAVOR == bfd_target_coff_flavour +#endif + ) + value += fixP->fx_where + fixP->fx_frag->fr_address; +#endif +#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) + if (OUTPUT_FLAVOR == bfd_target_elf_flavour + && (S_GET_SEGMENT (fixP->fx_addsy) == seg + || symbol_section_p (fixP->fx_addsy)) + && ! S_IS_EXTERNAL (fixP->fx_addsy) + && ! S_IS_WEAK (fixP->fx_addsy) + && S_IS_DEFINED (fixP->fx_addsy) + && ! S_IS_COMMON (fixP->fx_addsy)) + { + /* Yes, we add the values in twice. This is because + bfd_perform_relocation subtracts them out again. I think + bfd_perform_relocation is broken, but I don't dare change + it. FIXME. */ + value += fixP->fx_where + fixP->fx_frag->fr_address; + } +#endif +#if defined (OBJ_COFF) && defined (TE_PE) + /* For some reason, the PE format does not store a section + address offset for a PC relative symbol. */ + if (S_GET_SEGMENT (fixP->fx_addsy) != seg) + value += md_pcrel_from (fixP); +#endif + } + + /* Fix a few things - the dynamic linker expects certain values here, + and we must not dissappoint it. */ +#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) + if (OUTPUT_FLAVOR == bfd_target_elf_flavour + && fixP->fx_addsy) + switch (fixP->fx_r_type) { + case BFD_RELOC_386_PLT32: + /* Make the jump instruction point to the address of the operand. At + runtime we merely add the offset to the actual PLT entry. */ + value = 0xfffffffc; + break; + case BFD_RELOC_386_GOTPC: +/* + * This is tough to explain. We end up with this one if we have + * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal + * here is to obtain the absolute address of the GOT, and it is strongly + * preferable from a performance point of view to avoid using a runtime + * relocation for this. The actual sequence of instructions often look + * something like: + * + * call .L66 + * .L66: + * popl %ebx + * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx + * + * The call and pop essentially return the absolute address of + * the label .L66 and store it in %ebx. The linker itself will + * ultimately change the first operand of the addl so that %ebx points to + * the GOT, but to keep things simple, the .o file must have this operand + * set so that it generates not the absolute address of .L66, but the + * absolute address of itself. This allows the linker itself simply + * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be + * added in, and the addend of the relocation is stored in the operand + * field for the instruction itself. + * + * Our job here is to fix the operand so that it would add the correct + * offset so that %ebx would point to itself. The thing that is tricky is + * that .-.L66 will point to the beginning of the instruction, so we need + * to further modify the operand so that it will point to itself. + * There are other cases where you have something like: + * + * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66] + * + * and here no correction would be required. Internally in the assembler + * we treat operands of this form as not being pcrel since the '.' is + * explicitly mentioned, and I wonder whether it would simplify matters + * to do it this way. Who knows. In earlier versions of the PIC patches, + * the pcrel_adjust field was used to store the correction, but since the + * expression is not pcrel, I felt it would be confusing to do it this way. + */ + value -= 1; + break; + case BFD_RELOC_386_GOT32: + value = 0; /* Fully resolved at runtime. No addend. */ + break; + case BFD_RELOC_386_GOTOFF: + break; + + case BFD_RELOC_VTABLE_INHERIT: + case BFD_RELOC_VTABLE_ENTRY: + fixP->fx_done = 0; + return 1; + + default: + break; + } +#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */ + *valp = value; +#endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */ + md_number_to_chars (p, value, fixP->fx_size); + + return 1; +} + +#if 0 +/* This is never used. */ +long /* Knows about the byte order in a word. */ +md_chars_to_number (con, nbytes) + unsigned char con[]; /* Low order byte 1st. */ + int nbytes; /* Number of bytes in the input. */ +{ + long retval; + for (retval = 0, con += nbytes - 1; nbytes--; con--) + { + retval <<= BITS_PER_CHAR; + retval |= *con; + } + return retval; +} +#endif /* 0 */ + - #define MAX_LITTLENUMS 6 /* Turn the string pointed to by litP into a floating point constant of type type, and emit the appropriate bytes. The number of LITTLENUMS emitted - is stored in *sizeP . An error message is returned, or NULL on OK. - */ + is stored in *sizeP . An error message is returned, or NULL on OK. */ char * - md_atof(type,litP,sizeP) -char type; -char *litP; -int *sizeP; +md_atof (type, litP, sizeP) + char type; + char *litP; + int *sizeP; { - int prec; - LITTLENUM_TYPE words[MAX_LITTLENUMS]; - LITTLENUM_TYPE *wordP; - char *t; - - switch(type) { - case 'f': - case 'F': - prec = 2; - break; - - case 'd': - case 'D': - prec = 4; - break; - - case 'x': - case 'X': - prec = 5; - break; - - default: - *sizeP=0; - return "Bad call to md_atof ()"; - } - t = atof_ieee (input_line_pointer,type,words); - if(t) - input_line_pointer=t; - - *sizeP = prec * sizeof(LITTLENUM_TYPE); - /* this loops outputs the LITTLENUMs in REVERSE order; in accord with - the bigendian 386 */ - for(wordP = words + prec - 1;prec--;) { - md_number_to_chars (litP, (long) (*wordP--), sizeof(LITTLENUM_TYPE)); - litP += sizeof(LITTLENUM_TYPE); - } - return ""; /* Someone should teach Dean about null pointers */ + int prec; + LITTLENUM_TYPE words[MAX_LITTLENUMS]; + LITTLENUM_TYPE *wordP; + char *t; + + switch (type) + { + case 'f': + case 'F': + prec = 2; + break; + + case 'd': + case 'D': + prec = 4; + break; + + case 'x': + case 'X': + prec = 5; + break; + + default: + *sizeP = 0; + return _("Bad call to md_atof ()"); + } + t = atof_ieee (input_line_pointer, type, words); + if (t) + input_line_pointer = t; + + *sizeP = prec * sizeof (LITTLENUM_TYPE); + /* This loops outputs the LITTLENUMs in REVERSE order; in accord with + the bigendian 386. */ + for (wordP = words + prec - 1; prec--;) + { + md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE)); + litP += sizeof (LITTLENUM_TYPE); + } + return 0; } char output_invalid_buf[8]; -static char * output_invalid (c) -char c; +static char * output_invalid PARAMS ((int)); + +static char * +output_invalid (c) + int c; { - if (isprint(c)) sprintf (output_invalid_buf, "'%c'", c); - else sprintf (output_invalid_buf, "(0x%x)", (unsigned) c); - return output_invalid_buf; + if (isprint (c)) + sprintf (output_invalid_buf, "'%c'", c); + else + sprintf (output_invalid_buf, "(0x%x)", (unsigned) c); + return output_invalid_buf; } -static reg_entry *parse_register (reg_string) -char *reg_string; /* reg_string starts *before* REGISTER_PREFIX */ +/* REG_STRING starts *before* REGISTER_PREFIX. */ + +static const reg_entry * parse_register PARAMS ((char *, char **)); + +static const reg_entry * +parse_register (reg_string, end_op) + char *reg_string; + char **end_op; { - register char *s = reg_string; - register char *p; - char reg_name_given[MAX_REG_NAME_SIZE]; - - s++; /* skip REGISTER_PREFIX */ - for (p = reg_name_given; is_register_char (*s); p++, s++) { - *p = register_chars [*s]; - if (p >= reg_name_given + MAX_REG_NAME_SIZE) - return (reg_entry *) 0; + register char *s = reg_string; + register char *p; + char reg_name_given[MAX_REG_NAME_SIZE + 1]; + const reg_entry *r; + + /* Skip possible REGISTER_PREFIX and possible whitespace. */ + if (*s == REGISTER_PREFIX) + ++s; + + if (is_space_char (*s)) + ++s; + + p = reg_name_given; + while ((*p++ = register_chars[(unsigned char) *s++]) != '\0') + { + if (p >= reg_name_given + MAX_REG_NAME_SIZE) + { + if (!allow_naked_reg) + { + *p = '\0'; + as_bad (_("bad register name `%s'"), reg_name_given); + } + return (const reg_entry *) NULL; } - *p = '\0'; - return (reg_entry *) hash_find (reg_hash, reg_name_given); + } + + *end_op = s - 1; + + r = (const reg_entry *) hash_find (reg_hash, reg_name_given); + + if (r == NULL) + { + if (!allow_naked_reg) + as_bad (_("bad register name `%s'"), reg_name_given); + return (const reg_entry *) NULL; + } + + return r; } + +#ifdef OBJ_ELF +CONST char *md_shortopts = "kmVQ:"; +#else +CONST char *md_shortopts = "m"; +#endif +struct option md_longopts[] = { + {NULL, no_argument, NULL, 0} +}; +size_t md_longopts_size = sizeof (md_longopts); +int +md_parse_option (c, arg) + int c; + char *arg ATTRIBUTE_UNUSED; +{ + switch (c) + { + case 'm': + flag_do_long_jump = 1; + break; -/* We have no need to default values of symbols. */ +#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) + /* -k: Ignore for FreeBSD compatibility. */ + case 'k': + break; -/* ARGSUSED */ -symbolS * - md_undefined_symbol (name) -char *name; + /* -V: SVR4 argument to print version ID. */ + case 'V': + print_version_id (); + break; + + /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section + should be emitted or not. FIXME: Not implemented. */ + case 'Q': + break; +#endif + + default: + return 0; + } + return 1; +} + +void +md_show_usage (stream) + FILE *stream; { - return 0; + fprintf (stream, _("\ +-m do long jump\n")); } -/* Parse an operand that is machine-specific. - We just return without modifying the expression if we have nothing - to do. */ +#ifdef BFD_ASSEMBLER +#ifdef OBJ_MAYBE_ELF +#ifdef OBJ_MAYBE_COFF + +/* Pick the target format to use. */ +const char * +i386_target_format () +{ + switch (OUTPUT_FLAVOR) + { + case bfd_target_coff_flavour: + return "coff-i386"; + case bfd_target_elf_flavour: + return "elf32-i386"; + default: + abort (); + return NULL; + } +} + +#endif /* OBJ_MAYBE_COFF */ +#endif /* OBJ_MAYBE_ELF */ +#endif /* BFD_ASSEMBLER */ + /* ARGSUSED */ -void - md_operand (expressionP) -expressionS *expressionP; +symbolS * +md_undefined_symbol (name) + char *name; { + if (*name == '_' && *(name+1) == 'G' + && strcmp(name, GLOBAL_OFFSET_TABLE_NAME) == 0) + { + if (!GOT_symbol) + { + if (symbol_find (name)) + as_bad (_("GOT already in symbol table")); + GOT_symbol = symbol_new (name, undefined_section, + (valueT) 0, &zero_address_frag); + }; + return GOT_symbol; + } + return 0; } /* Round up a section size to the appropriate boundary. */ -long - md_section_align (segment, size) -segT segment; -long size; +valueT +md_section_align (segment, size) + segT segment ATTRIBUTE_UNUSED; + valueT size; { - return size; /* Byte alignment is fine */ +#ifdef OBJ_AOUT +#ifdef BFD_ASSEMBLER + /* For a.out, force the section size to be aligned. If we don't do + this, BFD will align it for us, but it will not write out the + final bytes of the section. This may be a bug in BFD, but it is + easier to fix it here since that is how the other a.out targets + work. */ + int align; + + align = bfd_get_section_alignment (stdoutput, segment); + size = ((size + (1 << align) - 1) & ((valueT) -1 << align)); +#endif +#endif + + return size; } -/* Exactly what point is a PC-relative offset relative TO? - On the i386, they're relative to the address of the offset, plus - its size. (??? Is this right? FIXME-SOON!) */ +/* On the i386, PC-relative offsets are relative to the start of the + next instruction. That is, the address of the offset, plus its + size, since the offset is always the last part of the insn. */ + long - md_pcrel_from (fixP) -fixS *fixP; +md_pcrel_from (fixP) + fixS *fixP; { - return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address; + return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address; } -/* - * Local Variables: - * comment-column: 0 - * End: - */ +#ifndef I386COFF + +static void +s_bss (ignore) + int ignore ATTRIBUTE_UNUSED; +{ + register int temp; + + temp = get_absolute_expression (); + subseg_set (bss_section, (subsegT) temp); + demand_empty_rest_of_line (); +} + +#endif + + +#ifdef BFD_ASSEMBLER + +void +i386_validate_fix (fixp) + fixS *fixp; +{ + if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol) + { + fixp->fx_r_type = BFD_RELOC_386_GOTOFF; + fixp->fx_subsy = 0; + } +} + +arelent * +tc_gen_reloc (section, fixp) + asection *section ATTRIBUTE_UNUSED; + fixS *fixp; +{ + arelent *rel; + bfd_reloc_code_real_type code; + + switch (fixp->fx_r_type) + { + case BFD_RELOC_386_PLT32: + case BFD_RELOC_386_GOT32: + case BFD_RELOC_386_GOTOFF: + case BFD_RELOC_386_GOTPC: + case BFD_RELOC_RVA: + case BFD_RELOC_VTABLE_ENTRY: + case BFD_RELOC_VTABLE_INHERIT: + code = fixp->fx_r_type; + break; + default: + if (fixp->fx_pcrel) + { + switch (fixp->fx_size) + { + default: + as_bad (_("Can not do %d byte pc-relative relocation"), + fixp->fx_size); + code = BFD_RELOC_32_PCREL; + break; + case 1: code = BFD_RELOC_8_PCREL; break; + case 2: code = BFD_RELOC_16_PCREL; break; + case 4: code = BFD_RELOC_32_PCREL; break; + } + } + else + { + switch (fixp->fx_size) + { + default: + as_bad (_("Can not do %d byte relocation"), fixp->fx_size); + code = BFD_RELOC_32; + break; + case 1: code = BFD_RELOC_8; break; + case 2: code = BFD_RELOC_16; break; + case 4: code = BFD_RELOC_32; break; + } + } + break; + } + + if (code == BFD_RELOC_32 + && GOT_symbol + && fixp->fx_addsy == GOT_symbol) + code = BFD_RELOC_386_GOTPC; + + rel = (arelent *) xmalloc (sizeof (arelent)); + rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); + *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); + + rel->address = fixp->fx_frag->fr_address + fixp->fx_where; + /* HACK: Since i386 ELF uses Rel instead of Rela, encode the + vtable entry to be used in the relocation's section offset. */ + if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY) + rel->address = fixp->fx_offset; + + if (fixp->fx_pcrel) + rel->addend = fixp->fx_addnumber; + else + rel->addend = 0; + + rel->howto = bfd_reloc_type_lookup (stdoutput, code); + if (rel->howto == NULL) + { + as_bad_where (fixp->fx_file, fixp->fx_line, + _("Cannot represent relocation type %s"), + bfd_get_reloc_code_name (code)); + /* Set howto to a garbage value so that we can keep going. */ + rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32); + assert (rel->howto != NULL); + } + + return rel; +} + +#else /* ! BFD_ASSEMBLER */ + +#if (defined(OBJ_AOUT) | defined(OBJ_BOUT)) +void +tc_aout_fix_to_chars (where, fixP, segment_address_in_file) + char *where; + fixS *fixP; + relax_addressT segment_address_in_file; +{ + /* + * In: length of relocation (or of address) in chars: 1, 2 or 4. + * Out: GNU LD relocation length code: 0, 1, or 2. + */ + + static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2}; + long r_symbolnum; + + know (fixP->fx_addsy != NULL); + + md_number_to_chars (where, + (valueT) (fixP->fx_frag->fr_address + + fixP->fx_where - segment_address_in_file), + 4); + r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy) + ? S_GET_TYPE (fixP->fx_addsy) + : fixP->fx_addsy->sy_number); + + where[6] = (r_symbolnum >> 16) & 0x0ff; + where[5] = (r_symbolnum >> 8) & 0x0ff; + where[4] = r_symbolnum & 0x0ff; + where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08) + | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06) + | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f)); +} + +#endif /* OBJ_AOUT or OBJ_BOUT */ + +#if defined (I386COFF) + +short +tc_coff_fix2rtype (fixP) + fixS *fixP; +{ + if (fixP->fx_r_type == R_IMAGEBASE) + return R_IMAGEBASE; + + return (fixP->fx_pcrel ? + (fixP->fx_size == 1 ? R_PCRBYTE : + fixP->fx_size == 2 ? R_PCRWORD : + R_PCRLONG) : + (fixP->fx_size == 1 ? R_RELBYTE : + fixP->fx_size == 2 ? R_RELWORD : + R_DIR32)); +} + +int +tc_coff_sizemachdep (frag) + fragS *frag; +{ + if (frag->fr_next) + return (frag->fr_next->fr_address - frag->fr_address); + else + return 0; +} + +#endif /* I386COFF */ + +#endif /* ! BFD_ASSEMBLER */ + /* end of tc-i386.c */