X-Git-Url: http://drtracing.org/?a=blobdiff_plain;f=gdb%2Famd64-tdep.c;h=bcd37ef0484977d136d23891d452969008442bb4;hb=ac7936dfd0c85e5de2dfec45ca0dbf72baeffa51;hp=1b9797a29a57263d4aab73810a7c4b1b5ba73535;hpb=09424cff8c26073312e0bdc342989a955c766e31;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/amd64-tdep.c b/gdb/amd64-tdep.c index 1b9797a29a..bcd37ef048 100644 --- a/gdb/amd64-tdep.c +++ b/gdb/amd64-tdep.c @@ -1,6 +1,6 @@ /* Target-dependent code for AMD64. - Copyright (C) 2001-2014 Free Software Foundation, Inc. + Copyright (C) 2001-2017 Free Software Foundation, Inc. Contributed by Jiri Smid, SuSE Labs. @@ -29,6 +29,7 @@ #include "frame-base.h" #include "frame-unwind.h" #include "inferior.h" +#include "infrun.h" #include "gdbcmd.h" #include "gdbcore.h" #include "objfiles.h" @@ -36,22 +37,16 @@ #include "regset.h" #include "symfile.h" #include "disasm.h" -#include "gdb_assert.h" -#include "exceptions.h" #include "amd64-tdep.h" #include "i387-tdep.h" - -#include "features/i386/amd64.c" -#include "features/i386/amd64-avx.c" -#include "features/i386/amd64-mpx.c" -#include "features/i386/amd64-avx512.c" - -#include "features/i386/x32.c" -#include "features/i386/x32-avx.c" -#include "features/i386/x32-avx512.c" - +#include "x86-xstate.h" +#include +#include "target-descriptions.h" +#include "arch/amd64.h" +#include "producer.h" #include "ax.h" #include "ax-gdb.h" +#include "common/byte-vector.h" /* Note that the AMD64 architecture was previously known as x86-64. The latter is (forever) engraved into the canonical system name as @@ -154,6 +149,10 @@ static const char *amd64_xmm_avx512_names[] = { "xmm28", "xmm29", "xmm30", "xmm31" }; +static const char *amd64_pkeys_names[] = { + "pkru" +}; + /* DWARF Register Number Mapping as defined in the System V psABI, section 3.6. */ @@ -200,7 +199,13 @@ static int amd64_dwarf_regmap[] = AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3, AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5, AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7, - + + /* MMX Registers 0 - 7. + We have to handle those registers specifically, as their register + number within GDB depends on the target (or they may even not be + available at all). */ + -1, -1, -1, -1, -1, -1, -1, -1, + /* Control and Status Flags Register. */ AMD64_EFLAGS_REGNUM, @@ -246,9 +251,7 @@ amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) if (reg >= 0 && reg < amd64_dwarf_regmap_len) regnum = amd64_dwarf_regmap[reg]; - if (regnum == -1) - warning (_("Unmapped DWARF Register #%d encountered."), reg); - else if (ymm0_regnum >= 0 + if (ymm0_regnum >= 0 && i386_xmm_regnum_p (gdbarch, regnum)) regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep); @@ -347,7 +350,7 @@ amd64_pseudo_register_read_value (struct gdbarch *gdbarch, struct regcache *regcache, int regnum) { - gdb_byte raw_buf[MAX_REGISTER_SIZE]; + gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum)); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); enum register_status status; struct value *result_value; @@ -408,7 +411,7 @@ amd64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, int regnum, const gdb_byte *buf) { - gdb_byte raw_buf[MAX_REGISTER_SIZE]; + gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum)); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); if (i386_byte_regnum_p (gdbarch, regnum)) @@ -451,6 +454,35 @@ amd64_pseudo_register_write (struct gdbarch *gdbarch, i386_pseudo_register_write (gdbarch, regcache, regnum, buf); } +/* Implement the 'ax_pseudo_register_collect' gdbarch method. */ + +static int +amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch, + struct agent_expr *ax, int regnum) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + if (i386_byte_regnum_p (gdbarch, regnum)) + { + int gpnum = regnum - tdep->al_regnum; + + if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) + ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS); + else + ax_reg_mask (ax, gpnum); + return 0; + } + else if (i386_dword_regnum_p (gdbarch, regnum)) + { + int gpnum = regnum - tdep->eax_regnum; + + ax_reg_mask (ax, gpnum); + return 0; + } + else + return i386_ax_pseudo_register_collect (gdbarch, ax, regnum); +} + /* Register classes as defined in the psABI. */ @@ -503,7 +535,7 @@ amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) return AMD64_SSE; } -static void amd64_classify (struct type *type, enum amd64_reg_class class[2]); +static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]); /* Return non-zero if TYPE is a non-POD structure or union type. */ @@ -522,19 +554,19 @@ amd64_non_pod_p (struct type *type) arrays) and union types, and store the result in CLASS. */ static void -amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) +amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2]) { /* 1. If the size of an object is larger than two eightbytes, or in C++, is a non-POD structure or union type, or contains unaligned fields, it has class memory. */ if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type)) { - class[0] = class[1] = AMD64_MEMORY; + theclass[0] = theclass[1] = AMD64_MEMORY; return; } /* 2. Both eightbytes get initialized to class NO_CLASS. */ - class[0] = class[1] = AMD64_NO_CLASS; + theclass[0] = theclass[1] = AMD64_NO_CLASS; /* 3. Each field of an object is classified recursively so that always two fields are considered. The resulting class is @@ -546,9 +578,9 @@ amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type)); /* All fields in an array have the same type. */ - amd64_classify (subtype, class); - if (TYPE_LENGTH (type) > 8 && class[1] == AMD64_NO_CLASS) - class[1] = class[0]; + amd64_classify (subtype, theclass); + if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS) + theclass[1] = theclass[0]; } else { @@ -577,7 +609,7 @@ amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) gdb_assert (pos == 0 || pos == 1); amd64_classify (subtype, subclass); - class[pos] = amd64_merge_classes (class[pos], subclass[0]); + theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]); if (bitsize <= 64 && pos == 0 && endpos == 1) /* This is a bit of an odd case: We have a field that would normally fit in one of the two eightbytes, except that @@ -601,9 +633,9 @@ amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) use up all 16 bytes of the aggregate, and are already handled just fine (because each portion sits on its own 8-byte). */ - class[1] = amd64_merge_classes (class[1], subclass[0]); + theclass[1] = amd64_merge_classes (theclass[1], subclass[0]); if (pos == 0) - class[1] = amd64_merge_classes (class[1], subclass[1]); + theclass[1] = amd64_merge_classes (theclass[1], subclass[1]); } } @@ -611,26 +643,26 @@ amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) /* Rule (a): If one of the classes is MEMORY, the whole argument is passed in memory. */ - if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY) - class[0] = class[1] = AMD64_MEMORY; + if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY) + theclass[0] = theclass[1] = AMD64_MEMORY; /* Rule (b): If SSEUP is not preceded by SSE, it is converted to SSE. */ - if (class[0] == AMD64_SSEUP) - class[0] = AMD64_SSE; - if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE) - class[1] = AMD64_SSE; + if (theclass[0] == AMD64_SSEUP) + theclass[0] = AMD64_SSE; + if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE) + theclass[1] = AMD64_SSE; } /* Classify TYPE, and store the result in CLASS. */ static void -amd64_classify (struct type *type, enum amd64_reg_class class[2]) +amd64_classify (struct type *type, enum amd64_reg_class theclass[2]) { enum type_code code = TYPE_CODE (type); int len = TYPE_LENGTH (type); - class[0] = class[1] = AMD64_NO_CLASS; + theclass[0] = theclass[1] = AMD64_NO_CLASS; /* Arguments of types (signed and unsigned) _Bool, char, short, int, long, long long, and pointers are in the INTEGER class. Similarly, @@ -639,30 +671,30 @@ amd64_classify (struct type *type, enum amd64_reg_class class[2]) if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE || code == TYPE_CODE_CHAR - || code == TYPE_CODE_PTR || code == TYPE_CODE_REF) + || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type)) && (len == 1 || len == 2 || len == 4 || len == 8)) - class[0] = AMD64_INTEGER; + theclass[0] = AMD64_INTEGER; /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64 are in class SSE. */ else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT) && (len == 4 || len == 8)) /* FIXME: __m64 . */ - class[0] = AMD64_SSE; + theclass[0] = AMD64_SSE; /* Arguments of types __float128, _Decimal128 and __m128 are split into two halves. The least significant ones belong to class SSE, the most significant one to class SSEUP. */ else if (code == TYPE_CODE_DECFLOAT && len == 16) /* FIXME: __float128, __m128. */ - class[0] = AMD64_SSE, class[1] = AMD64_SSEUP; + theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP; /* The 64-bit mantissa of arguments of type long double belongs to class X87, the 16-bit exponent plus 6 bytes of padding belongs to class X87UP. */ else if (code == TYPE_CODE_FLT && len == 16) /* Class X87 and X87UP. */ - class[0] = AMD64_X87, class[1] = AMD64_X87UP; + theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP; /* Arguments of complex T where T is one of the types float or double get treated as if they are implemented as: @@ -670,21 +702,23 @@ amd64_classify (struct type *type, enum amd64_reg_class class[2]) struct complexT { T real; T imag; - }; */ + }; + + */ else if (code == TYPE_CODE_COMPLEX && len == 8) - class[0] = AMD64_SSE; + theclass[0] = AMD64_SSE; else if (code == TYPE_CODE_COMPLEX && len == 16) - class[0] = class[1] = AMD64_SSE; + theclass[0] = theclass[1] = AMD64_SSE; /* A variable of type complex long double is classified as type COMPLEX_X87. */ else if (code == TYPE_CODE_COMPLEX && len == 32) - class[0] = AMD64_COMPLEX_X87; + theclass[0] = AMD64_COMPLEX_X87; /* Aggregates. */ else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION) - amd64_classify_aggregate (type, class); + amd64_classify_aggregate (type, theclass); } static enum return_value_convention @@ -692,7 +726,7 @@ amd64_return_value (struct gdbarch *gdbarch, struct value *function, struct type *type, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf) { - enum amd64_reg_class class[2]; + enum amd64_reg_class theclass[2]; int len = TYPE_LENGTH (type); static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM }; static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM }; @@ -703,7 +737,7 @@ amd64_return_value (struct gdbarch *gdbarch, struct value *function, gdb_assert (!(readbuf && writebuf)); /* 1. Classify the return type with the classification algorithm. */ - amd64_classify (type, class); + amd64_classify (type, theclass); /* 2. If the type has class MEMORY, then the caller provides space for the return value and passes the address of this storage in @@ -712,7 +746,7 @@ amd64_return_value (struct gdbarch *gdbarch, struct value *function, On return %rax will contain the address that has been passed in by the caller in %rdi. */ - if (class[0] == AMD64_MEMORY) + if (theclass[0] == AMD64_MEMORY) { /* As indicated by the comment above, the ABI guarantees that we can always find the return value just after the function has @@ -731,7 +765,7 @@ amd64_return_value (struct gdbarch *gdbarch, struct value *function, /* 8. If the class is COMPLEX_X87, the real part of the value is returned in %st0 and the imaginary part in %st1. */ - if (class[0] == AMD64_COMPLEX_X87) + if (theclass[0] == AMD64_COMPLEX_X87) { if (readbuf) { @@ -753,7 +787,7 @@ amd64_return_value (struct gdbarch *gdbarch, struct value *function, return RETURN_VALUE_REGISTER_CONVENTION; } - gdb_assert (class[1] != AMD64_MEMORY); + gdb_assert (theclass[1] != AMD64_MEMORY); gdb_assert (len <= 16); for (i = 0; len > 0; i++, len -= 8) @@ -761,7 +795,7 @@ amd64_return_value (struct gdbarch *gdbarch, struct value *function, int regnum = -1; int offset = 0; - switch (class[i]) + switch (theclass[i]) { case AMD64_INTEGER: /* 3. If the class is INTEGER, the next available register @@ -794,7 +828,7 @@ amd64_return_value (struct gdbarch *gdbarch, struct value *function, case AMD64_X87UP: /* 7. If the class is X87UP, the value is returned together with the previous X87 value in %st0. */ - gdb_assert (i > 0 && class[0] == AMD64_X87); + gdb_assert (i > 0 && theclass[0] == AMD64_X87); regnum = AMD64_ST0_REGNUM; offset = 8; len = 2; @@ -810,10 +844,10 @@ amd64_return_value (struct gdbarch *gdbarch, struct value *function, gdb_assert (regnum != -1); if (readbuf) - regcache_raw_read_part (regcache, regnum, offset, min (len, 8), + regcache_raw_read_part (regcache, regnum, offset, std::min (len, 8), readbuf + i * 8); if (writebuf) - regcache_raw_write_part (regcache, regnum, offset, min (len, 8), + regcache_raw_write_part (regcache, regnum, offset, std::min (len, 8), writebuf + i * 8); } @@ -842,7 +876,7 @@ amd64_push_arguments (struct regcache *regcache, int nargs, AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, }; - struct value **stack_args = alloca (nargs * sizeof (struct value *)); + struct value **stack_args = XALLOCAVEC (struct value *, nargs); int num_stack_args = 0; int num_elements = 0; int element = 0; @@ -858,21 +892,21 @@ amd64_push_arguments (struct regcache *regcache, int nargs, { struct type *type = value_type (args[i]); int len = TYPE_LENGTH (type); - enum amd64_reg_class class[2]; + enum amd64_reg_class theclass[2]; int needed_integer_regs = 0; int needed_sse_regs = 0; int j; /* Classify argument. */ - amd64_classify (type, class); + amd64_classify (type, theclass); /* Calculate the number of integer and SSE registers needed for this argument. */ for (j = 0; j < 2; j++) { - if (class[j] == AMD64_INTEGER) + if (theclass[j] == AMD64_INTEGER) needed_integer_regs++; - else if (class[j] == AMD64_SSE) + else if (theclass[j] == AMD64_SSE) needed_sse_regs++; } @@ -899,7 +933,7 @@ amd64_push_arguments (struct regcache *regcache, int nargs, int regnum = -1; int offset = 0; - switch (class[j]) + switch (theclass[j]) { case AMD64_INTEGER: regnum = integer_regnum[integer_reg++]; @@ -921,7 +955,7 @@ amd64_push_arguments (struct regcache *regcache, int nargs, gdb_assert (regnum != -1); memset (buf, 0, sizeof buf); - memcpy (buf, valbuf + j * 8, min (len, 8)); + memcpy (buf, valbuf + j * 8, std::min (len, 8)); regcache_raw_write_part (regcache, regnum, offset, 8, buf); } } @@ -962,6 +996,13 @@ amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); gdb_byte buf[8]; + /* BND registers can be in arbitrary values at the moment of the + inferior call. This can cause boundary violations that are not + due to a real bug or even desired by the user. The best to be done + is set the BND registers to allow access to the whole memory, INIT + state, before pushing the inferior call. */ + i387_reset_bnd_regs (gdbarch, regcache); + /* Pass arguments. */ sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return); @@ -1007,22 +1048,22 @@ struct amd64_insn gdb_byte *raw_insn; }; -struct displaced_step_closure +struct amd64_displaced_step_closure : public displaced_step_closure { + amd64_displaced_step_closure (int insn_buf_len) + : insn_buf (insn_buf_len, 0) + {} + /* For rip-relative insns, saved copy of the reg we use instead of %rip. */ - int tmp_used; + int tmp_used = 0; int tmp_regno; ULONGEST tmp_save; /* Details of the instruction. */ struct amd64_insn insn_details; - /* Amount of space allocated to insn_buf. */ - int max_len; - - /* The possibly modified insn. - This is a variable-length field. */ - gdb_byte insn_buf[1]; + /* The possibly modified insn. */ + gdb::byte_vector insn_buf; }; /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with @@ -1263,15 +1304,13 @@ amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details) We set base = pc + insn_length so we can leave disp unchanged. */ static void -fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc, +fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_closure *dsc, CORE_ADDR from, CORE_ADDR to, struct regcache *regs) { - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); const struct amd64_insn *insn_details = &dsc->insn_details; int modrm_offset = insn_details->modrm_offset; gdb_byte *insn = insn_details->raw_insn + modrm_offset; CORE_ADDR rip_base; - int32_t disp; int insn_length; int arch_tmp_regno, tmp_regno; ULONGEST orig_value; @@ -1280,9 +1319,8 @@ fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc, ++insn; /* Compute the rip-relative address. */ - disp = extract_signed_integer (insn, sizeof (int32_t), byte_order); - insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf, - dsc->max_len, from); + insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (), + dsc->insn_buf.size (), from); rip_base = from + insn_length; /* We need a register to hold the address. @@ -1316,7 +1354,7 @@ fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc, static void fixup_displaced_copy (struct gdbarch *gdbarch, - struct displaced_step_closure *dsc, + amd64_displaced_step_closure *dsc, CORE_ADDR from, CORE_ADDR to, struct regcache *regs) { const struct amd64_insn *details = &dsc->insn_details; @@ -1343,14 +1381,11 @@ amd64_displaced_step_copy_insn (struct gdbarch *gdbarch, /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to continually watch for running off the end of the buffer. */ int fixup_sentinel_space = len; - struct displaced_step_closure *dsc = - xmalloc (sizeof (*dsc) + len + fixup_sentinel_space); + amd64_displaced_step_closure *dsc + = new amd64_displaced_step_closure (len + fixup_sentinel_space); gdb_byte *buf = &dsc->insn_buf[0]; struct amd64_insn *details = &dsc->insn_details; - dsc->tmp_used = 0; - dsc->max_len = len + fixup_sentinel_space; - read_memory (from, buf, len); /* Set up the sentinel space so we don't have to worry about running @@ -1506,7 +1541,7 @@ amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr, int len, classification; len = gdbarch_max_insn_length (gdbarch); - buf = alloca (len); + buf = (gdb_byte *) alloca (len); read_code (addr, buf, len); amd64_get_insn_details (buf, &details); @@ -1545,14 +1580,15 @@ amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr) void amd64_displaced_step_fixup (struct gdbarch *gdbarch, - struct displaced_step_closure *dsc, + struct displaced_step_closure *dsc_, CORE_ADDR from, CORE_ADDR to, struct regcache *regs) { + amd64_displaced_step_closure *dsc = (amd64_displaced_step_closure *) dsc_; enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); /* The offset we applied to the instruction's address. */ ULONGEST insn_offset = to - from; - gdb_byte *insn = dsc->insn_buf; + gdb_byte *insn = dsc->insn_buf.data (); const struct amd64_insn *insn_details = &dsc->insn_details; if (debug_displaced) @@ -1654,7 +1690,7 @@ amd64_displaced_step_fixup (struct gdbarch *gdbarch, regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp); retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order); - retaddr = (retaddr - insn_offset) & 0xffffffffUL; + retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL; write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr); if (debug_displaced) @@ -1703,7 +1739,7 @@ amd64_relocate_instruction (struct gdbarch *gdbarch, int len = gdbarch_max_insn_length (gdbarch); /* Extra space for sentinels. */ int fixup_sentinel_space = len; - gdb_byte *buf = xmalloc (len + fixup_sentinel_space); + gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space); struct amd64_insn insn_details; int offset = 0; LONGEST rel32, newrel; @@ -1730,15 +1766,47 @@ amd64_relocate_instruction (struct gdbarch *gdbarch, the user program would return to. */ if (insn[0] == 0xe8) { - gdb_byte push_buf[16]; - unsigned int ret_addr; + gdb_byte push_buf[32]; + CORE_ADDR ret_addr; + int i = 0; /* Where "ret" in the original code will return to. */ ret_addr = oldloc + insn_length; - push_buf[0] = 0x68; /* pushq $... */ - store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr); + + /* If pushing an address higher than or equal to 0x80000000, + avoid 'pushq', as that sign extends its 32-bit operand, which + would be incorrect. */ + if (ret_addr <= 0x7fffffff) + { + push_buf[0] = 0x68; /* pushq $... */ + store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr); + i = 5; + } + else + { + push_buf[i++] = 0x48; /* sub $0x8,%rsp */ + push_buf[i++] = 0x83; + push_buf[i++] = 0xec; + push_buf[i++] = 0x08; + + push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */ + push_buf[i++] = 0x04; + push_buf[i++] = 0x24; + store_unsigned_integer (&push_buf[i], 4, byte_order, + ret_addr & 0xffffffff); + i += 4; + + push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */ + push_buf[i++] = 0x44; + push_buf[i++] = 0x24; + push_buf[i++] = 0x04; + store_unsigned_integer (&push_buf[i], 4, byte_order, + ret_addr >> 32); + i += 4; + } + gdb_assert (i <= sizeof (push_buf)); /* Push the push. */ - append_insns (to, 5, push_buf); + append_insns (to, i, push_buf); /* Convert the relative call to a relative jump. */ insn[0] = 0xe9; @@ -2001,7 +2069,7 @@ amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, if (current_pc > pc + offset_and) cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); - return min (pc + offset + 2, current_pc); + return std::min (pc + offset + 2, current_pc); } /* Similar to amd64_analyze_stack_align for x32. */ @@ -2183,7 +2251,7 @@ amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, if (current_pc > pc + offset_and) cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); - return min (pc + offset + 2, current_pc); + return std::min (pc + offset + 2, current_pc); } /* Do a limited analysis of the prologue at PC and update CACHE @@ -2300,7 +2368,8 @@ amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc) start_pc_sal = find_pc_sect_line (start_pc, NULL, 0); if (start_pc_sal.symtab == NULL - || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6 + || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER + (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end) return pc; @@ -2363,15 +2432,15 @@ amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) { CORE_ADDR post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr); - struct symtab *s = find_pc_symtab (func_addr); + struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr); /* Clang always emits a line note before the prologue and another one after. We trust clang to emit usable line notes. */ if (post_prologue_pc - && (s != NULL - && s->producer != NULL - && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0)) - return max (start_pc, post_prologue_pc); + && (cust != NULL + && COMPUNIT_PRODUCER (cust) != NULL + && startswith (COMPUNIT_PRODUCER (cust), "clang "))) + return std::max (start_pc, post_prologue_pc); } amd64_init_frame_cache (&cache); @@ -2458,21 +2527,24 @@ amd64_frame_cache_1 (struct frame_info *this_frame, static struct amd64_frame_cache * amd64_frame_cache (struct frame_info *this_frame, void **this_cache) { - volatile struct gdb_exception ex; struct amd64_frame_cache *cache; if (*this_cache) - return *this_cache; + return (struct amd64_frame_cache *) *this_cache; cache = amd64_alloc_frame_cache (); *this_cache = cache; - TRY_CATCH (ex, RETURN_MASK_ERROR) + TRY { amd64_frame_cache_1 (this_frame, cache); } - if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR) - throw_exception (ex); + CATCH (ex, RETURN_MASK_ERROR) + { + if (ex.error != NOT_AVAILABLE_ERROR) + throw_exception (ex); + } + END_CATCH return cache; } @@ -2571,18 +2643,17 @@ amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache) struct gdbarch *gdbarch = get_frame_arch (this_frame); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - volatile struct gdb_exception ex; struct amd64_frame_cache *cache; CORE_ADDR addr; gdb_byte buf[8]; int i; if (*this_cache) - return *this_cache; + return (struct amd64_frame_cache *) *this_cache; cache = amd64_alloc_frame_cache (); - TRY_CATCH (ex, RETURN_MASK_ERROR) + TRY { get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8; @@ -2596,8 +2667,12 @@ amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache) cache->base_p = 1; } - if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR) - throw_exception (ex); + CATCH (ex, RETURN_MASK_ERROR) + { + if (ex.error != NOT_AVAILABLE_ERROR) + throw_exception (ex); + } + END_CATCH *this_cache = cache; return cache; @@ -2704,18 +2779,20 @@ static const struct frame_base amd64_frame_base = /* Normal frames, but in a function epilogue. */ -/* The epilogue is defined here as the 'ret' instruction, which will +/* Implement the stack_frame_destroyed_p gdbarch method. + + The epilogue is defined here as the 'ret' instruction, which will follow any instruction such as 'leave' or 'pop %ebp' that destroys the function's stack frame. */ static int -amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) +amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) { gdb_byte insn; - struct symtab *symtab; + struct compunit_symtab *cust; - symtab = find_pc_symtab (pc); - if (symtab && symtab->epilogue_unwind_valid) + cust = find_pc_compunit_symtab (pc); + if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust)) return 0; if (target_read_memory (pc, &insn, 1)) @@ -2733,8 +2810,8 @@ amd64_epilogue_frame_sniffer (const struct frame_unwind *self, void **this_prologue_cache) { if (frame_relative_level (this_frame) == 0) - return amd64_in_function_epilogue_p (get_frame_arch (this_frame), - get_frame_pc (this_frame)); + return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame), + get_frame_pc (this_frame)); else return 0; } @@ -2744,17 +2821,16 @@ amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache) { struct gdbarch *gdbarch = get_frame_arch (this_frame); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - volatile struct gdb_exception ex; struct amd64_frame_cache *cache; gdb_byte buf[8]; if (*this_cache) - return *this_cache; + return (struct amd64_frame_cache *) *this_cache; cache = amd64_alloc_frame_cache (); *this_cache = cache; - TRY_CATCH (ex, RETURN_MASK_ERROR) + TRY { /* Cache base will be %esp plus cache->sp_offset (-8). */ get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); @@ -2772,8 +2848,12 @@ amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache) cache->base_p = 1; } - if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR) - throw_exception (ex); + CATCH (ex, RETURN_MASK_ERROR) + { + if (ex.error != NOT_AVAILABLE_ERROR) + throw_exception (ex); + } + END_CATCH return cache; } @@ -2842,10 +2922,10 @@ static void amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *fpregs, size_t len) { - struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch *gdbarch = regcache->arch (); const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - gdb_assert (len == tdep->sizeof_fpregset); + gdb_assert (len >= tdep->sizeof_fpregset); amd64_supply_fxsave (regcache, regnum, fpregs); } @@ -2859,63 +2939,17 @@ amd64_collect_fpregset (const struct regset *regset, const struct regcache *regcache, int regnum, void *fpregs, size_t len) { - struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch *gdbarch = regcache->arch (); const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - gdb_assert (len == tdep->sizeof_fpregset); + gdb_assert (len >= tdep->sizeof_fpregset); amd64_collect_fxsave (regcache, regnum, fpregs); } -/* Similar to amd64_supply_fpregset, but use XSAVE extended state. */ - -static void -amd64_supply_xstateregset (const struct regset *regset, - struct regcache *regcache, int regnum, - const void *xstateregs, size_t len) -{ - amd64_supply_xsave (regcache, regnum, xstateregs); -} - -/* Similar to amd64_collect_fpregset, but use XSAVE extended state. */ - -static void -amd64_collect_xstateregset (const struct regset *regset, - const struct regcache *regcache, - int regnum, void *xstateregs, size_t len) -{ - amd64_collect_xsave (regcache, regnum, xstateregs, 1); -} - -/* Return the appropriate register set for the core section identified - by SECT_NAME and SECT_SIZE. */ - -static const struct regset * -amd64_regset_from_core_section (struct gdbarch *gdbarch, - const char *sect_name, size_t sect_size) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - - if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset) - { - if (tdep->fpregset == NULL) - tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset, - amd64_collect_fpregset); - - return tdep->fpregset; - } - - if (strcmp (sect_name, ".reg-xstate") == 0) - { - if (tdep->xstateregset == NULL) - tdep->xstateregset = regset_alloc (gdbarch, - amd64_supply_xstateregset, - amd64_collect_xstateregset); - - return tdep->xstateregset; - } - - return i386_regset_from_core_section (gdbarch, sect_name, sect_size); -} +const struct regset amd64_fpregset = + { + NULL, amd64_supply_fpregset, amd64_collect_fpregset + }; /* Figure out where the longjmp will land. Slurp the jmp_buf out of @@ -2960,7 +2994,8 @@ static const int amd64_record_regmap[] = }; void -amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) +amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch, + const target_desc *default_tdesc) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); const struct target_desc *tdesc = info.target_desc; @@ -2974,9 +3009,10 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) /* AMD64 generally uses `fxsave' instead of `fsave' for saving its floating-point registers. */ tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE; + tdep->fpregset = &amd64_fpregset; if (! tdesc_has_registers (tdesc)) - tdesc = tdesc_amd64; + tdesc = default_tdesc; tdep->tdesc = tdesc; tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS; @@ -3013,6 +3049,26 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) tdep->bnd0r_regnum = AMD64_BND0R_REGNUM; } + if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL) + { + const struct tdesc_feature *feature = + tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments"); + struct tdesc_arch_data *tdesc_data_segments = + (struct tdesc_arch_data *) info.tdep_info; + + tdesc_numbered_register (feature, tdesc_data_segments, + AMD64_FSBASE_REGNUM, "fs_base"); + tdesc_numbered_register (feature, tdesc_data_segments, + AMD64_GSBASE_REGNUM, "gs_base"); + } + + if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL) + { + tdep->pkeys_register_names = amd64_pkeys_names; + tdep->pkru_regnum = AMD64_PKRU_REGNUM; + tdep->num_pkeys_regs = 1; + } + tdep->num_byte_regs = 20; tdep->num_word_regs = 16; tdep->num_dword_regs = 16; @@ -3023,6 +3079,8 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) amd64_pseudo_register_read_value); set_gdbarch_pseudo_register_write (gdbarch, amd64_pseudo_register_write); + set_gdbarch_ax_pseudo_register_collect (gdbarch, + amd64_ax_pseudo_register_collect); set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name); @@ -3087,11 +3145,6 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind); frame_base_set_default (gdbarch, &amd64_frame_base); - /* If we have a register mapping, enable the generic core file support. */ - if (tdep->gregset_reg_offset) - set_gdbarch_regset_from_core_section (gdbarch, - amd64_regset_from_core_section); - set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target); set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction); @@ -3133,16 +3186,12 @@ amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum) } void -amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) +amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch, + const target_desc *default_tdesc) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - const struct target_desc *tdesc = info.target_desc; - amd64_init_abi (info, gdbarch); - - if (! tdesc_has_registers (tdesc)) - tdesc = tdesc_x32; - tdep->tdesc = tdesc; + amd64_init_abi (info, gdbarch, default_tdesc); tdep->num_dword_regs = 17; set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type); @@ -3151,20 +3200,51 @@ amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) set_gdbarch_ptr_bit (gdbarch, 32); } -/* Provide a prototype to silence -Wmissing-prototypes. */ -void _initialize_amd64_tdep (void); +/* Return the target description for a specified XSAVE feature mask. */ + +const struct target_desc * +amd64_target_description (uint64_t xcr0) +{ + static target_desc *amd64_tdescs \ + [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {}; + target_desc **tdesc; + + tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0] + [(xcr0 & X86_XSTATE_MPX) ? 1 : 0] + [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0] + [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]; + + if (*tdesc == NULL) + *tdesc = amd64_create_target_description (xcr0, false, false); + + return *tdesc; +} void _initialize_amd64_tdep (void) { - initialize_tdesc_amd64 (); - initialize_tdesc_amd64_avx (); - initialize_tdesc_amd64_mpx (); - initialize_tdesc_amd64_avx512 (); +#if GDB_SELF_TEST + struct + { + const char *xml; + uint64_t mask; + } xml_masks[] = { + { "i386/amd64.xml", X86_XSTATE_SSE_MASK }, + { "i386/amd64-avx.xml", X86_XSTATE_AVX_MASK }, + { "i386/amd64-mpx.xml", X86_XSTATE_MPX_MASK }, + { "i386/amd64-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK }, + { "i386/amd64-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK }, + { "i386/amd64-avx-mpx-avx512-pku.xml", + X86_XSTATE_AVX_MPX_AVX512_PKU_MASK }, + }; - initialize_tdesc_x32 (); - initialize_tdesc_x32_avx (); - initialize_tdesc_x32_avx512 (); + for (auto &a : xml_masks) + { + auto tdesc = amd64_target_description (a.mask); + + selftests::record_xml_tdesc (a.xml, tdesc); + } +#endif /* GDB_SELF_TEST */ } @@ -3184,7 +3264,7 @@ void amd64_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave) { - struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch *gdbarch = regcache->arch (); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); i387_supply_fxsave (regcache, regnum, fxsave); @@ -3192,7 +3272,7 @@ amd64_supply_fxsave (struct regcache *regcache, int regnum, if (fxsave && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) { - const gdb_byte *regs = fxsave; + const gdb_byte *regs = (const gdb_byte *) fxsave; if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12); @@ -3207,7 +3287,7 @@ void amd64_supply_xsave (struct regcache *regcache, int regnum, const void *xsave) { - struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch *gdbarch = regcache->arch (); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); i387_supply_xsave (regcache, regnum, xsave); @@ -3215,7 +3295,7 @@ amd64_supply_xsave (struct regcache *regcache, int regnum, if (xsave && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) { - const gdb_byte *regs = xsave; + const gdb_byte *regs = (const gdb_byte *) xsave; if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), @@ -3235,9 +3315,9 @@ void amd64_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave) { - struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch *gdbarch = regcache->arch (); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - gdb_byte *regs = fxsave; + gdb_byte *regs = (gdb_byte *) fxsave; i387_collect_fxsave (regcache, regnum, fxsave); @@ -3256,9 +3336,9 @@ void amd64_collect_xsave (const struct regcache *regcache, int regnum, void *xsave, int gcore) { - struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch *gdbarch = regcache->arch (); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - gdb_byte *regs = xsave; + gdb_byte *regs = (gdb_byte *) xsave; i387_collect_xsave (regcache, regnum, xsave, gcore);