X-Git-Url: http://drtracing.org/?a=blobdiff_plain;f=gdb%2Fgdbarch.sh;h=37f59b7b93a39f2d554008a3e461c876ab4888ce;hb=173981bc49c9e8fce9271cb47714952dbe2ec627;hp=ffafb5d0bfdd39344dee307291d603fed1459811;hpb=97030eea009ba78139fe20eae4585984435ac178;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/gdbarch.sh b/gdb/gdbarch.sh index ffafb5d0bf..37f59b7b93 100755 --- a/gdb/gdbarch.sh +++ b/gdb/gdbarch.sh @@ -2,8 +2,7 @@ # Architecture commands for GDB, the GNU debugger. # -# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 -# Free Software Foundation, Inc. +# Copyright (C) 1998-2016 Free Software Foundation, Inc. # # This file is part of GDB. # @@ -22,8 +21,8 @@ # Make certain that the script is not running in an internationalized # environment. -LANG=c ; export LANG -LC_ALL=c ; export LC_ALL +LANG=C ; export LANG +LC_ALL=C ; export LC_ALL compare_new () @@ -48,7 +47,10 @@ do_read () { comment="" class="" - while read line + # On some SH's, 'read' trims leading and trailing whitespace by + # default (e.g., bash), while on others (e.g., dash), it doesn't. + # Set IFS to empty to disable the trimming everywhere. + while IFS='' read line do if test "${line}" = "" then @@ -292,7 +294,7 @@ do # You cannot specify both a zero INVALID_P and a POSTDEFAULT. - # Variable declarations can refer to ``current_gdbarch'' which + # Variable declarations can refer to ``gdbarch'' which # will contain the current architecture. Care should be # taken. @@ -318,8 +320,8 @@ do # An optional expression that convers MEMBER to a value # suitable for formatting using %s. - # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d - # (anything else) is used. + # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR) + # or plongest (anything else) is used. garbage_at_eol ) : ;; @@ -336,13 +338,19 @@ function_list () { # See below (DOCO) for description of each field cat <printable_name +i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name # -i:int:byte_order:::BFD_ENDIAN_BIG +i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG +i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG # i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN # -i:const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc) +i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc) + +# The bit byte-order has to do just with numbering of bits in debugging symbols +# and such. Conceptually, it's quite separate from byte/word byte order. +v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0 + # Number of bits in a char or unsigned char for the target machine. # Just like CHAR_BIT in but describes the target machine. # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0: @@ -355,20 +363,25 @@ v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0 # Number of bits in a long long or unsigned long long for the target # machine. -v:int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0 +v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0 +# Alignment of a long long or unsigned long long for the target +# machine. +v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0 -# The ABI default bit-size and format for "float", "double", and "long -# double". These bit/format pairs should eventually be combined into -# a single object. For the moment, just initialize them as a pair. +# The ABI default bit-size and format for "half", "float", "double", and +# "long double". These bit/format pairs should eventually be combined +# into a single object. For the moment, just initialize them as a pair. # Each format describes both the big and little endian layouts (if # useful). +v:int:half_bit:::16:2*TARGET_CHAR_BIT::0 +v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format) v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0 -v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format) +v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format) v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0 -v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format) +v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format) v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0 -v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format) +v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format) # For most targets, a pointer on the target and its representation as an # address in GDB have the same size and "look the same". For such a @@ -376,13 +389,28 @@ v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::p # / addr_bit will be set from it. # # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably -# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer -# as well. +# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and +# gdbarch_address_to_pointer as well. # # ptr_bit is the size of a pointer on the target -v:int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0 +v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0 # addr_bit is the size of a target address as represented in gdb -v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch): +v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch): +# +# dwarf2_addr_size is the target address size as used in the Dwarf debug +# info. For .debug_frame FDEs, this is supposed to be the target address +# size from the associated CU header, and which is equivalent to the +# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end. +# Unfortunately there is no good way to determine this value. Therefore +# dwarf2_addr_size simply defaults to the target pointer size. +# +# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally +# defined using the target's pointer size so far. +# +# Note that dwarf2_addr_size only needs to be redefined by a target if the +# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size, +# and if Dwarf versions < 4 need to be supported. +v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT: # # One if \`char' acts like \`signed char', zero if \`unsigned char'. v:int:char_signed:::1:-1:1 @@ -392,9 +420,14 @@ F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val # Function for getting target's idea of a frame pointer. FIXME: GDB's # whole scheme for dealing with "frames" and "frame pointers" needs a # serious shakedown. -f:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0 +m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0 # -M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf +M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf +# Read a register into a new struct value. If the register is wholly +# or partly unavailable, this should call mark_value_bytes_unavailable +# as appropriate. If this is defined, then pseudo_register_read will +# never be called. +M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf # v:int:num_regs:::0:-1 @@ -404,6 +437,21 @@ v:int:num_regs:::0:-1 # combinations of other registers, or they may be computed by GDB. v:int:num_pseudo_regs:::0:0::0 +# Assemble agent expression bytecode to collect pseudo-register REG. +# Return -1 if something goes wrong, 0 otherwise. +M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg + +# Assemble agent expression bytecode to push the value of pseudo-register +# REG on the interpreter stack. +# Return -1 if something goes wrong, 0 otherwise. +M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg + +# Some targets/architectures can do extra processing/display of +# segmentation faults. E.g., Intel MPX boundary faults. +# Call the architecture dependent function to handle the fault. +# UIOUT is the output stream where the handler will place information. +M:void:handle_segmentation_fault:struct ui_out *uiout:uiout + # GDB's standard (or well known) register numbers. These can map onto # a real register or a pseudo (computed) register or not be defined at # all (-1). @@ -413,70 +461,104 @@ v:int:pc_regnum:::-1:-1::0 v:int:ps_regnum:::-1:-1::0 v:int:fp0_regnum:::0:-1::0 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM. -f:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0 +m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0 # Provide a default mapping from a ecoff register number to a gdb REGNUM. -f:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0 -# Provide a default mapping from a DWARF register number to a gdb REGNUM. -f:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0 +m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0 # Convert from an sdb register number to an internal gdb register number. -f:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0 -f:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0 -f:const char *:register_name:int regnr:regnr +m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0 +# Provide a default mapping from a DWARF2 register number to a gdb REGNUM. +# Return -1 for bad REGNUM. Note: Several targets get this wrong. +m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0 +m:const char *:register_name:int regnr:regnr::0 # Return the type of a register specified by the architecture. Only # the register cache should call this function directly; others should # use "register_type". M:struct type *:register_type:int reg_nr:reg_nr -# See gdbint.texinfo, and PUSH_DUMMY_CALL. -M:struct frame_id:unwind_dummy_id:struct frame_info *info:info -# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete +M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame +# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete # deprecated_fp_regnum. v:int:deprecated_fp_regnum:::-1:-1::0 -# See gdbint.texinfo. See infcall.c. M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr v:int:call_dummy_location::::AT_ENTRY_POINT::0 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0 -M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args +m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args # MAP a GDB RAW register number onto a simulator register number. See # also include/...-sim.h. -f:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0 -f:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0 -f:int:cannot_store_register:int regnum:regnum::cannot_register_not::0 -# setjmp/longjmp support. +m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0 +m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0 +m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0 + +# Determine the address where a longjmp will land and save this address +# in PC. Return nonzero on success. +# +# FRAME corresponds to the longjmp frame. F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc + # v:int:believe_pcc_promotion::::::: # -f:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0 -f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0 +m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0 +f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0 # Construct a value representing the contents of register REGNUM in -# frame FRAME, interpreted as type TYPE. The routine needs to +# frame FRAME_ID, interpreted as type TYPE. The routine needs to # allocate and return a struct value with all value attributes # (but not the value contents) filled in. -f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0 +m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0 # -f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0 -f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0 +m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0 +m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf -# It has been suggested that this, well actually its predecessor, -# should take the type/value of the function to be called and not the -# return type. This is left as an exercise for the reader. - -M:enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf +# Return the return-value convention that will be used by FUNCTION +# to return a value of type VALTYPE. FUNCTION may be NULL in which +# case the return convention is computed based only on VALTYPE. +# +# If READBUF is not NULL, extract the return value and save it in this buffer. +# +# If WRITEBUF is not NULL, it contains a return value which will be +# stored into the appropriate register. This can be used when we want +# to force the value returned by a function (see the "return" command +# for instance). +M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf + +# Return true if the return value of function is stored in the first hidden +# parameter. In theory, this feature should be language-dependent, specified +# by language and its ABI, such as C++. Unfortunately, compiler may +# implement it to a target-dependent feature. So that we need such hook here +# to be aware of this in GDB. +m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0 + +m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0 +M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip +# On some platforms, a single function may provide multiple entry points, +# e.g. one that is used for function-pointer calls and a different one +# that is used for direct function calls. +# In order to ensure that breakpoints set on the function will trigger +# no matter via which entry point the function is entered, a platform +# may provide the skip_entrypoint callback. It is called with IP set +# to the main entry point of a function (as determined by the symbol table), +# and should return the address of the innermost entry point, where the +# actual breakpoint needs to be set. Note that skip_entrypoint is used +# by GDB common code even when debugging optimized code, where skip_prologue +# is not used. +M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip -f:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0 -f:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0: +m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0: +# Return the adjusted address and kind to use for Z0/Z1 packets. +# KIND is usually the memory length of the breakpoint, but may have a +# different target-specific meaning. +m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr -f:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0 -f:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0 +m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0 +m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0 v:CORE_ADDR:decr_pc_after_break:::0:::0 # A function can be addressed by either it's "pointer" (possibly a @@ -517,23 +599,16 @@ m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:a # being a few stray bits in the PC which would mislead us, not as some # sort of generic thing to handle alignment or segmentation (it's # possible it should be in TARGET_READ_PC instead). -f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0 -# It is not at all clear why gdbarch_smash_text_address is not folded into -# gdbarch_addr_bits_remove. -f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0 +m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0 # FIXME/cagney/2001-01-18: This should be split in two. A target method that # indicates if the target needs software single step. An ISA method to # implement it. # -# FIXME/cagney/2001-01-18: This should be replaced with something that inserts -# breakpoints using the breakpoint system instead of blatting memory directly -# (as with rs6000). -# # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the # target can single step. If not, then implement single step using breakpoints. # -# A return value of 1 means that the software_single_step breakpoints +# A return value of 1 means that the software_single_step breakpoints # were inserted; 0 means they were not. F:int:software_single_step:struct frame_info *frame:frame @@ -546,52 +621,113 @@ f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0: f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0 -# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER +# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER # evaluates non-zero, this is the address where the debugger will place # a step-resume breakpoint to get us past the dynamic linker. m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0 # Some systems also have trampoline code for returning from shared libs. -f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0 +m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0 # A target might have problems with watchpoints as soon as the stack # frame of the current function has been destroyed. This mostly happens -# as the first action in a funtion's epilogue. in_function_epilogue_p() +# as the first action in a function's epilogue. stack_frame_destroyed_p() # is defined to return a non-zero value if either the given addr is one # instruction after the stack destroying instruction up to the trailing # return instruction or if we can figure out that the stack frame has # already been invalidated regardless of the value of addr. Targets # which don't suffer from that problem could just let this functionality # untouched. -m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0 -# Given a vector of command-line arguments, return a newly allocated -# string which, when passed to the create_inferior function, will be -# parsed (on Unix systems, by the shell) to yield the same vector. -# This function should call error() if the argument vector is not -# representable for this target or if this target does not support -# command-line arguments. -# ARGC is the number of elements in the vector. -# ARGV is an array of strings, one per argument. -m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0 -f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0 +m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0 +# Process an ELF symbol in the minimal symbol table in a backend-specific +# way. Normally this hook is supposed to do nothing, however if required, +# then this hook can be used to apply tranformations to symbols that are +# considered special in some way. For example the MIPS backend uses it +# to interpret \`st_other' information to mark compressed code symbols so +# that they can be treated in the appropriate manner in the processing of +# the main symbol table and DWARF-2 records. +F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0 -v:const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc +# Process a symbol in the main symbol table in a backend-specific way. +# Normally this hook is supposed to do nothing, however if required, +# then this hook can be used to apply tranformations to symbols that +# are considered special in some way. This is currently used by the +# MIPS backend to make sure compressed code symbols have the ISA bit +# set. This in turn is needed for symbol values seen in GDB to match +# the values used at the runtime by the program itself, for function +# and label references. +f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0 +# Adjust the address retrieved from a DWARF-2 record other than a line +# entry in a backend-specific way. Normally this hook is supposed to +# return the address passed unchanged, however if that is incorrect for +# any reason, then this hook can be used to fix the address up in the +# required manner. This is currently used by the MIPS backend to make +# sure addresses in FDE, range records, etc. referring to compressed +# code have the ISA bit set, matching line information and the symbol +# table. +f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0 +# Adjust the address updated by a line entry in a backend-specific way. +# Normally this hook is supposed to return the address passed unchanged, +# however in the case of inconsistencies in these records, this hook can +# be used to fix them up in the required manner. This is currently used +# by the MIPS backend to make sure all line addresses in compressed code +# are presented with the ISA bit set, which is not always the case. This +# in turn ensures breakpoint addresses are correctly matched against the +# stop PC. +f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0 v:int:cannot_step_breakpoint:::0:0::0 v:int:have_nonsteppable_watchpoint:::0:0::0 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class M:const char *:address_class_type_flags_to_name:int type_flags:type_flags + +# Return the appropriate type_flags for the supplied address class. +# This function should return 1 if the address class was recognized and +# type_flags was set, zero otherwise. M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr # Is a register in a group m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0 # Fetch the pointer to the ith function argument. F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type -# Return the appropriate register set for a core file section with -# name SECT_NAME and size SECT_SIZE. -M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size +# Iterate over all supported register notes in a core file. For each +# supported register note section, the iterator must call CB and pass +# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit +# the supported register note sections based on the current register +# values. Otherwise it should enumerate all supported register note +# sections. +M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache + +# Create core file notes +M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size + +# The elfcore writer hook to use to write Linux prpsinfo notes to core +# files. Most Linux architectures use the same prpsinfo32 or +# prpsinfo64 layouts, and so won't need to provide this hook, as we +# call the Linux generic routines in bfd to write prpsinfo notes by +# default. +F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info + +# Find core file memory regions +M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from -# core file into buffer READBUF with length LEN. -M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len +# core file into buffer READBUF with length LEN. Return the number of bytes read +# (zero indicates failure). +# failed, otherwise, return the red length of READBUF. +M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len + +# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared +# libraries list from core file into buffer READBUF with length LEN. +# Return the number of bytes read (zero indicates failure). +M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len + +# How the core target converts a PTID from a core file to a string. +M:char *:core_pid_to_str:ptid_t ptid:ptid + +# How the core target extracts the name of a thread from a core file. +M:const char *:core_thread_name:struct thread_info *thr:thr + +# BFD target to use when generating a core file. +V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target) # If the elements of C++ vtables are in-place function descriptors rather # than normal function pointers (which may point to code or a descriptor), @@ -603,7 +739,104 @@ v:int:vtable_function_descriptors:::0:0::0 v:int:vbit_in_delta:::0:0::0 # Advance PC to next instruction in order to skip a permanent breakpoint. -F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache +f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0 + +# The maximum length of an instruction on this architecture in bytes. +V:ULONGEST:max_insn_length:::0:0 + +# Copy the instruction at FROM to TO, and make any adjustments +# necessary to single-step it at that address. +# +# REGS holds the state the thread's registers will have before +# executing the copied instruction; the PC in REGS will refer to FROM, +# not the copy at TO. The caller should update it to point at TO later. +# +# Return a pointer to data of the architecture's choice to be passed +# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that +# the instruction's effects have been completely simulated, with the +# resulting state written back to REGS. +# +# For a general explanation of displaced stepping and how GDB uses it, +# see the comments in infrun.c. +# +# The TO area is only guaranteed to have space for +# gdbarch_max_insn_length (arch) bytes, so this function must not +# write more bytes than that to that area. +# +# If you do not provide this function, GDB assumes that the +# architecture does not support displaced stepping. +# +# If your architecture doesn't need to adjust instructions before +# single-stepping them, consider using simple_displaced_step_copy_insn +# here. +# +# If the instruction cannot execute out of line, return NULL. The +# core falls back to stepping past the instruction in-line instead in +# that case. +M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs + +# Return true if GDB should use hardware single-stepping to execute +# the displaced instruction identified by CLOSURE. If false, +# GDB will simply restart execution at the displaced instruction +# location, and it is up to the target to ensure GDB will receive +# control again (e.g. by placing a software breakpoint instruction +# into the displaced instruction buffer). +# +# The default implementation returns false on all targets that +# provide a gdbarch_software_single_step routine, and true otherwise. +m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0 + +# Fix up the state resulting from successfully single-stepping a +# displaced instruction, to give the result we would have gotten from +# stepping the instruction in its original location. +# +# REGS is the register state resulting from single-stepping the +# displaced instruction. +# +# CLOSURE is the result from the matching call to +# gdbarch_displaced_step_copy_insn. +# +# If you provide gdbarch_displaced_step_copy_insn.but not this +# function, then GDB assumes that no fixup is needed after +# single-stepping the instruction. +# +# For a general explanation of displaced stepping and how GDB uses it, +# see the comments in infrun.c. +M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL + +# Free a closure returned by gdbarch_displaced_step_copy_insn. +# +# If you provide gdbarch_displaced_step_copy_insn, you must provide +# this function as well. +# +# If your architecture uses closures that don't need to be freed, then +# you can use simple_displaced_step_free_closure here. +# +# For a general explanation of displaced stepping and how GDB uses it, +# see the comments in infrun.c. +m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn) + +# Return the address of an appropriate place to put displaced +# instructions while we step over them. There need only be one such +# place, since we're only stepping one thread over a breakpoint at a +# time. +# +# For a general explanation of displaced stepping and how GDB uses it, +# see the comments in infrun.c. +m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn) + +# Relocate an instruction to execute at a different address. OLDLOC +# is the address in the inferior memory where the instruction to +# relocate is currently at. On input, TO points to the destination +# where we want the instruction to be copied (and possibly adjusted) +# to. On output, it points to one past the end of the resulting +# instruction(s). The effect of executing the instruction at TO shall +# be the same as if executing it at FROM. For example, call +# instructions that implicitly push the return address on the stack +# should be adjusted to return to the instruction after OLDLOC; +# relative branches, and other PC-relative instructions need the +# offset adjusted; etc. +M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL # Refresh overlay mapped state for section OSECT. F:void:overlay_update:struct obj_section *osect:osect @@ -611,9 +844,297 @@ F:void:overlay_update:struct obj_section *osect:osect M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd # Handle special encoding of static variables in stabs debug info. -F:char *:static_transform_name:char *name:name +F:const char *:static_transform_name:const char *name:name # Set if the address in N_SO or N_FUN stabs may be zero. v:int:sofun_address_maybe_missing:::0:0::0 + +# Parse the instruction at ADDR storing in the record execution log +# the registers REGCACHE and memory ranges that will be affected when +# the instruction executes, along with their current values. +# Return -1 if something goes wrong, 0 otherwise. +M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr + +# Save process state after a signal. +# Return -1 if something goes wrong, 0 otherwise. +M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal + +# Signal translation: translate inferior's signal (target's) number +# into GDB's representation. The implementation of this method must +# be host independent. IOW, don't rely on symbols of the NAT_FILE +# header (the nm-*.h files), the host header, or similar +# headers. This is mainly used when cross-debugging core files --- +# "Live" targets hide the translation behind the target interface +# (target_wait, target_resume, etc.). +M:enum gdb_signal:gdb_signal_from_target:int signo:signo + +# Signal translation: translate the GDB's internal signal number into +# the inferior's signal (target's) representation. The implementation +# of this method must be host independent. IOW, don't rely on symbols +# of the NAT_FILE header (the nm-*.h files), the host +# header, or similar headers. +# Return the target signal number if found, or -1 if the GDB internal +# signal number is invalid. +M:int:gdb_signal_to_target:enum gdb_signal signal:signal + +# Extra signal info inspection. +# +# Return a type suitable to inspect extra signal information. +M:struct type *:get_siginfo_type:void: + +# Record architecture-specific information from the symbol table. +M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym + +# Function for the 'catch syscall' feature. + +# Get architecture-specific system calls information from registers. +M:LONGEST:get_syscall_number:ptid_t ptid:ptid + +# The filename of the XML syscall for this architecture. +v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file) + +# Information about system calls from this architecture +v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info) + +# SystemTap related fields and functions. + +# A NULL-terminated array of prefixes used to mark an integer constant +# on the architecture's assembly. +# For example, on x86 integer constants are written as: +# +# \$10 ;; integer constant 10 +# +# in this case, this prefix would be the character \`\$\'. +v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes) + +# A NULL-terminated array of suffixes used to mark an integer constant +# on the architecture's assembly. +v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes) + +# A NULL-terminated array of prefixes used to mark a register name on +# the architecture's assembly. +# For example, on x86 the register name is written as: +# +# \%eax ;; register eax +# +# in this case, this prefix would be the character \`\%\'. +v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes) + +# A NULL-terminated array of suffixes used to mark a register name on +# the architecture's assembly. +v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes) + +# A NULL-terminated array of prefixes used to mark a register +# indirection on the architecture's assembly. +# For example, on x86 the register indirection is written as: +# +# \(\%eax\) ;; indirecting eax +# +# in this case, this prefix would be the charater \`\(\'. +# +# Please note that we use the indirection prefix also for register +# displacement, e.g., \`4\(\%eax\)\' on x86. +v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes) + +# A NULL-terminated array of suffixes used to mark a register +# indirection on the architecture's assembly. +# For example, on x86 the register indirection is written as: +# +# \(\%eax\) ;; indirecting eax +# +# in this case, this prefix would be the charater \`\)\'. +# +# Please note that we use the indirection suffix also for register +# displacement, e.g., \`4\(\%eax\)\' on x86. +v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes) + +# Prefix(es) used to name a register using GDB's nomenclature. +# +# For example, on PPC a register is represented by a number in the assembly +# language (e.g., \`10\' is the 10th general-purpose register). However, +# inside GDB this same register has an \`r\' appended to its name, so the 10th +# register would be represented as \`r10\' internally. +v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix) + +# Suffix used to name a register using GDB's nomenclature. +v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix) + +# Check if S is a single operand. +# +# Single operands can be: +# \- Literal integers, e.g. \`\$10\' on x86 +# \- Register access, e.g. \`\%eax\' on x86 +# \- Register indirection, e.g. \`\(\%eax\)\' on x86 +# \- Register displacement, e.g. \`4\(\%eax\)\' on x86 +# +# This function should check for these patterns on the string +# and return 1 if some were found, or zero otherwise. Please try to match +# as much info as you can from the string, i.e., if you have to match +# something like \`\(\%\', do not match just the \`\(\'. +M:int:stap_is_single_operand:const char *s:s + +# Function used to handle a "special case" in the parser. +# +# A "special case" is considered to be an unknown token, i.e., a token +# that the parser does not know how to parse. A good example of special +# case would be ARM's register displacement syntax: +# +# [R0, #4] ;; displacing R0 by 4 +# +# Since the parser assumes that a register displacement is of the form: +# +# +# +# it means that it will not be able to recognize and parse this odd syntax. +# Therefore, we should add a special case function that will handle this token. +# +# This function should generate the proper expression form of the expression +# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\' +# and so on). It should also return 1 if the parsing was successful, or zero +# if the token was not recognized as a special token (in this case, returning +# zero means that the special parser is deferring the parsing to the generic +# parser), and should advance the buffer pointer (p->arg). +M:int:stap_parse_special_token:struct stap_parse_info *p:p + +# DTrace related functions. + +# The expression to compute the NARTGth+1 argument to a DTrace USDT probe. +# NARG must be >= 0. +M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg + +# True if the given ADDR does not contain the instruction sequence +# corresponding to a disabled DTrace is-enabled probe. +M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr + +# Enable a DTrace is-enabled probe at ADDR. +M:void:dtrace_enable_probe:CORE_ADDR addr:addr + +# Disable a DTrace is-enabled probe at ADDR. +M:void:dtrace_disable_probe:CORE_ADDR addr:addr + +# True if the list of shared libraries is one and only for all +# processes, as opposed to a list of shared libraries per inferior. +# This usually means that all processes, although may or may not share +# an address space, will see the same set of symbols at the same +# addresses. +v:int:has_global_solist:::0:0::0 + +# On some targets, even though each inferior has its own private +# address space, the debug interface takes care of making breakpoints +# visible to all address spaces automatically. For such cases, +# this property should be set to true. +v:int:has_global_breakpoints:::0:0::0 + +# True if inferiors share an address space (e.g., uClinux). +m:int:has_shared_address_space:void:::default_has_shared_address_space::0 + +# True if a fast tracepoint can be set at an address. +m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0 + +# Guess register state based on tracepoint location. Used for tracepoints +# where no registers have been collected, but there's only one location, +# allowing us to guess the PC value, and perhaps some other registers. +# On entry, regcache has all registers marked as unavailable. +m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0 + +# Return the "auto" target charset. +f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0 +# Return the "auto" target wide charset. +f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0 + +# If non-empty, this is a file extension that will be opened in place +# of the file extension reported by the shared library list. +# +# This is most useful for toolchains that use a post-linker tool, +# where the names of the files run on the target differ in extension +# compared to the names of the files GDB should load for debug info. +v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension) + +# If true, the target OS has DOS-based file system semantics. That +# is, absolute paths include a drive name, and the backslash is +# considered a directory separator. +v:int:has_dos_based_file_system:::0:0::0 + +# Generate bytecodes to collect the return address in a frame. +# Since the bytecodes run on the target, possibly with GDB not even +# connected, the full unwinding machinery is not available, and +# typically this function will issue bytecodes for one or more likely +# places that the return address may be found. +m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0 + +# Implement the "info proc" command. +M:void:info_proc:const char *args, enum info_proc_what what:args, what + +# Implement the "info proc" command for core files. Noe that there +# are two "info_proc"-like methods on gdbarch -- one for core files, +# one for live targets. +M:void:core_info_proc:const char *args, enum info_proc_what what:args, what + +# Iterate over all objfiles in the order that makes the most sense +# for the architecture to make global symbol searches. +# +# CB is a callback function where OBJFILE is the objfile to be searched, +# and CB_DATA a pointer to user-defined data (the same data that is passed +# when calling this gdbarch method). The iteration stops if this function +# returns nonzero. +# +# CB_DATA is a pointer to some user-defined data to be passed to +# the callback. +# +# If not NULL, CURRENT_OBJFILE corresponds to the objfile being +# inspected when the symbol search was requested. +m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0 + +# Ravenscar arch-dependent ops. +v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops) + +# Return non-zero if the instruction at ADDR is a call; zero otherwise. +m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0 + +# Return non-zero if the instruction at ADDR is a return; zero otherwise. +m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0 + +# Return non-zero if the instruction at ADDR is a jump; zero otherwise. +m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0 + +# Read one auxv entry from *READPTR, not reading locations >= ENDPTR. +# Return 0 if *READPTR is already at the end of the buffer. +# Return -1 if there is insufficient buffer for a whole entry. +# Return 1 if an entry was read into *TYPEP and *VALP. +M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp + +# Find the address range of the current inferior's vsyscall/vDSO, and +# write it to *RANGE. If the vsyscall's length can't be determined, a +# range with zero length is returned. Returns true if the vsyscall is +# found, false otherwise. +m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0 + +# Allocate SIZE bytes of PROT protected page aligned memory in inferior. +# PROT has GDB_MMAP_PROT_* bitmask format. +# Throw an error if it is not possible. Returned address is always valid. +f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0 + +# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap. +# Print a warning if it is not possible. +f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0 + +# Return string (caller has to use xfree for it) with options for GCC +# to produce code for this target, typically "-m64", "-m32" or "-m31". +# These options are put before CU's DW_AT_producer compilation options so that +# they can override it. Method may also return NULL. +m:char *:gcc_target_options:void:::default_gcc_target_options::0 + +# Return a regular expression that matches names used by this +# architecture in GNU configury triplets. The result is statically +# allocated and must not be freed. The default implementation simply +# returns the BFD architecture name, which is correct in nearly every +# case. +m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0 + +# Return the size in 8-bit bytes of an addressable memory unit on this +# architecture. This corresponds to the number of 8-bit bytes associated to +# each address in memory. +m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0 + EOF } @@ -662,12 +1183,12 @@ compare_new gdbarch.log copyright () { cat <. */ @@ -694,7 +1215,7 @@ cat <gdbarch'. */ +extern struct gdbarch *target_gdbarch (void); + +/* Callback type for the 'iterate_over_objfiles_in_search_order' + gdbarch method. */ + +typedef int (iterate_over_objfiles_in_search_order_cb_ftype) + (struct objfile *objfile, void *cb_data); + +/* Callback type for regset section iterators. The callback usually + invokes the REGSET's supply or collect method, to which it must + pass a buffer with at least the given SIZE. SECT_NAME is a BFD + section name, and HUMAN_NAME is used for diagnostic messages. + CB_DATA should have been passed unchanged through the iterator. */ + +typedef void (iterate_over_regset_sections_cb) + (const char *sect_name, int size, const struct regset *regset, + const char *human_name, void *cb_data); EOF # function typedef's printf "\n" printf "\n" -printf "/* The following are pre-initialized by GDBARCH. */\n" +printf "/* The following are pre-initialized by GDBARCH. */\n" function_list | while do_read do if class_is_info_p then printf "\n" printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n" - printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n" + printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n" fi done # function typedef's printf "\n" printf "\n" -printf "/* The following are initialized by the target dependent code. */\n" +printf "/* The following are initialized by the target dependent code. */\n" function_list | while do_read do if [ -n "${comment}" ] @@ -792,6 +1359,9 @@ done # close it off cat <gdbarch can used to access values from the previously selected architecture for this - architecture family. The global \`\`current_gdbarch'' shall not be - used. + architecture family. The INIT function shall return any of: NULL - indicating that it doesn't recognize the selected architecture; an existing \`\`struct @@ -851,7 +1420,7 @@ extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch); The DUMP_TDEP function shall print out all target specific values. Care should be taken to ensure that the function works in both the - multi-arch and non- multi-arch cases. */ + multi-arch and non- multi-arch cases. */ struct gdbarch_list { @@ -861,17 +1430,19 @@ struct gdbarch_list struct gdbarch_info { - /* Use default: NULL (ZERO). */ + /* Use default: NULL (ZERO). */ const struct bfd_arch_info *bfd_arch_info; /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */ - int byte_order; + enum bfd_endian byte_order; + + enum bfd_endian byte_order_for_code; - /* Use default: NULL (ZERO). */ + /* Use default: NULL (ZERO). */ bfd *abfd; - /* Use default: NULL (ZERO). */ - struct gdbarch_tdep_info *tdep_info; + /* Use default: NULL (ZERO). */ + void *tdep_info; /* Use default: GDB_OSABI_UNINITIALIZED (-1). */ enum gdb_osabi osabi; @@ -894,13 +1465,13 @@ extern void gdbarch_register (enum bfd_architecture architecture, /* Return a freshly allocated, NULL terminated, array of the valid architecture names. Since architectures are registered during the _initialize phase this function only returns useful information - once initialization has been completed. */ + once initialization has been completed. */ extern const char **gdbarch_printable_names (void); /* Helper function. Search the list of ARCHES for a GDBARCH that - matches the information provided by INFO. */ + matches the information provided by INFO. */ extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info); @@ -908,14 +1479,14 @@ extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *ar /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform basic initialization using values obtained from the INFO and TDEP parameters. set_gdbarch_*() functions are called to complete the - initialization of the object. */ + initialization of the object. */ extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep); /* Helper function. Free a partially-constructed \`\`struct gdbarch''. It is assumed that the caller freeds the \`\`struct - gdbarch_tdep''. */ + gdbarch_tdep''. */ extern void gdbarch_free (struct gdbarch *); @@ -928,15 +1499,20 @@ extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size); #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE))) #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE))) +/* Duplicate STRING, returning an equivalent string that's allocated on the + obstack associated with GDBARCH. The string is freed when the corresponding + architecture is also freed. */ + +extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string); -/* Helper function. Force an update of the current architecture. +/* Helper function. Force an update of the current architecture. The actual architecture selected is determined by INFO, \`\`(gdb) set architecture'' et.al., the existing architecture and BFD's default architecture. INFO should be initialized to zero and then selected fields should be updated. - Returns non-zero if the update succeeds */ + Returns non-zero if the update succeeds. */ extern int gdbarch_update_p (struct gdbarch_info info); @@ -947,20 +1523,14 @@ extern int gdbarch_update_p (struct gdbarch_info info); set, and then finished using gdbarch_info_fill. Returns the corresponding architecture, or NULL if no matching - architecture was found. "current_gdbarch" is not updated. */ + architecture was found. */ extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info); -/* Helper function. Set the global "current_gdbarch" to "gdbarch". +/* Helper function. Set the target gdbarch to "gdbarch". */ - FIXME: kettenis/20031124: Of the functions that follow, only - gdbarch_from_bfd is supposed to survive. The others will - dissappear since in the future GDB will (hopefully) be truly - multi-arch. However, for now we're still stuck with the concept of - a single active architecture. */ - -extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch); +extern void set_target_gdbarch (struct gdbarch *gdbarch); /* Register per-architecture data-pointer. @@ -994,7 +1564,7 @@ extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *); /* Set the dynamic target-system-dependent parameters (architecture, - byte-order, ...) using information found in the BFD */ + byte-order, ...) using information found in the BFD. */ extern void set_gdbarch_from_file (bfd *); @@ -1005,7 +1575,7 @@ extern void set_gdbarch_from_file (bfd *); extern void initialize_current_architecture (void); /* gdbarch trace variable */ -extern int gdbarch_debug; +extern unsigned int gdbarch_debug; extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file); @@ -1032,13 +1602,12 @@ cat <name; } +static const char * +pstring (const char *string) +{ + if (string == NULL) + return "(null)"; + return string; +} + +/* Helper function to print a list of strings, represented as "const + char *const *". The list is printed comma-separated. */ + +static char * +pstring_list (const char *const *list) +{ + static char ret[100]; + const char *const *p; + size_t offset = 0; + + if (list == NULL) + return "(null)"; + + ret[0] = '\0'; + for (p = list; *p != NULL && offset < sizeof (ret); ++p) + { + size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p); + offset += 2 + s; + } + + if (offset > 0) + { + gdb_assert (offset - 2 < sizeof (ret)); + ret[offset - 2] = '\0'; + } + + return ret; +} + EOF # gdbarch open the gdbarch object printf "\n" -printf "/* Maintain the struct gdbarch object */\n" +printf "/* Maintain the struct gdbarch object. */\n" printf "\n" printf "struct gdbarch\n" printf "{\n" @@ -1081,7 +1687,7 @@ printf "\n" printf " /* An obstack bound to the lifetime of the architecture. */\n" printf " struct obstack *obstack;\n" printf "\n" -printf " /* basic architectural information */\n" +printf " /* basic architectural information. */\n" function_list | while do_read do if class_is_info_p @@ -1090,17 +1696,14 @@ do fi done printf "\n" -printf " /* target specific vector. */\n" +printf " /* target specific vector. */\n" printf " struct gdbarch_tdep *tdep;\n" printf " gdbarch_dump_tdep_ftype *dump_tdep;\n" printf "\n" -printf " /* per-architecture data-pointers */\n" +printf " /* per-architecture data-pointers. */\n" printf " unsigned nr_data;\n" printf " void **data;\n" printf "\n" -printf " /* per-architecture swap-regions */\n" -printf " struct gdbarch_swap *swap;\n" -printf "\n" cat <obstack = obstack; + gdbarch = XOBNEW (obstack, struct gdbarch); + memset (gdbarch, 0, sizeof (*gdbarch)); + gdbarch->obstack = obstack; - alloc_gdbarch_data (current_gdbarch); + alloc_gdbarch_data (gdbarch); - current_gdbarch->tdep = tdep; + gdbarch->tdep = tdep; EOF printf "\n" function_list | while do_read do if class_is_info_p then - printf " current_gdbarch->${function} = info->${function};\n" + printf " gdbarch->${function} = info->${function};\n" fi done printf "\n" -printf " /* Force the explicit initialization of these. */\n" +printf " /* Force the explicit initialization of these. */\n" function_list | while do_read do if class_is_function_p || class_is_variable_p then if [ -n "${predefault}" -a "x${predefault}" != "x0" ] then - printf " current_gdbarch->${function} = ${predefault};\n" + printf " gdbarch->${function} = ${predefault};\n" fi fi done cat <obstack, size); + memset (data, 0, size); return data; } +/* See gdbarch.h. */ + +char * +gdbarch_obstack_strdup (struct gdbarch *arch, const char *string) +{ + return obstack_strdup (arch->obstack, string); +} + /* Free a gdbarch struct. This should never happen in normal operation --- once you've created a gdbarch, you keep it around. @@ -1268,6 +1828,7 @@ void gdbarch_free (struct gdbarch *arch) { struct obstack *obstack; + gdb_assert (arch != NULL); gdb_assert (!arch->initialized_p); obstack = arch->obstack; @@ -1282,27 +1843,22 @@ cat <byte_order == BFD_ENDIAN_UNKNOWN) + if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN) fprintf_unfiltered (log, "\n\tbyte-order"); - if (current_gdbarch->bfd_arch_info == NULL) + if (gdbarch->bfd_arch_info == NULL) fprintf_unfiltered (log, "\n\tbfd_arch_info"); - /* Check those that need to be defined for the given multi-arch level. */ + /* Check those that need to be defined for the given multi-arch level. */ EOF function_list | while do_read do @@ -1313,35 +1869,35 @@ do printf " /* Skip verify of ${function}, invalid_p == 0 */\n" elif class_is_predicate_p then - printf " /* Skip verify of ${function}, has predicate */\n" + printf " /* Skip verify of ${function}, has predicate. */\n" # FIXME: See do_read for potential simplification elif [ -n "${invalid_p}" -a -n "${postdefault}" ] then printf " if (${invalid_p})\n" - printf " current_gdbarch->${function} = ${postdefault};\n" + printf " gdbarch->${function} = ${postdefault};\n" elif [ -n "${predefault}" -a -n "${postdefault}" ] then - printf " if (current_gdbarch->${function} == ${predefault})\n" - printf " current_gdbarch->${function} = ${postdefault};\n" + printf " if (gdbarch->${function} == ${predefault})\n" + printf " gdbarch->${function} = ${postdefault};\n" elif [ -n "${postdefault}" ] then - printf " if (current_gdbarch->${function} == 0)\n" - printf " current_gdbarch->${function} = ${postdefault};\n" + printf " if (gdbarch->${function} == 0)\n" + printf " gdbarch->${function} = ${postdefault};\n" elif [ -n "${invalid_p}" ] then printf " if (${invalid_p})\n" printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n" elif [ -n "${predefault}" ] then - printf " if (current_gdbarch->${function} == ${predefault})\n" + printf " if (gdbarch->${function} == ${predefault})\n" printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n" fi fi done cat < 0) + if (length > 0) internal_error (__FILE__, __LINE__, _("verify_gdbarch: the following are invalid ...%s"), buf); @@ -1353,38 +1909,19 @@ EOF printf "\n" printf "\n" cat <\\\\n\",\n" - printf " (long) current_gdbarch->${function});\n" + printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n" + printf " host_address_to_string (gdbarch->${function}));\n" else # It is a variable case "${print}:${returntype}" in :CORE_ADDR ) - fmt="0x%s" - print="paddr_nz (current_gdbarch->${function})" + fmt="%s" + print="core_addr_to_string_nz (gdbarch->${function})" ;; :* ) fmt="%s" - print="paddr_d (current_gdbarch->${function})" + print="plongest (gdbarch->${function})" ;; * ) fmt="%s" @@ -1422,8 +1959,8 @@ do fi done cat <dump_tdep != NULL) - current_gdbarch->dump_tdep (current_gdbarch, file); + if (gdbarch->dump_tdep != NULL) + gdbarch->dump_tdep (gdbarch, file); } EOF @@ -1551,7 +2088,7 @@ cat <next); - (*curr) = XMALLOC (struct gdbarch_data_registration); + (*curr) = XNEW (struct gdbarch_data_registration); (*curr)->next = NULL; - (*curr)->data = XMALLOC (struct gdbarch_data); + (*curr)->data = XNEW (struct gdbarch_data); (*curr)->data->index = gdbarch_data_registry.nr++; (*curr)->data->pre_init = pre_init; (*curr)->data->post_init = post_init; @@ -1609,7 +2147,7 @@ gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init) return gdbarch_data_register (NULL, post_init); } -/* Create/delete the gdbarch data vector. */ +/* Create/delete the gdbarch data vector. */ static void alloc_gdbarch_data (struct gdbarch *gdbarch) @@ -1620,7 +2158,7 @@ alloc_gdbarch_data (struct gdbarch *gdbarch) } /* Initialize the current value of the specified per-architecture - data-pointer. */ + data-pointer. */ void deprecated_set_gdbarch_data (struct gdbarch *gdbarch, @@ -1634,7 +2172,7 @@ deprecated_set_gdbarch_data (struct gdbarch *gdbarch, } /* Return the current value of the specified per-architecture - data-pointer. */ + data-pointer. */ void * gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data) @@ -1673,7 +2211,7 @@ gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data) } -/* Keep a registry of the architectures known by GDB. */ +/* Keep a registry of the architectures known by GDB. */ struct gdbarch_registration { @@ -1689,7 +2227,7 @@ static struct gdbarch_registration *gdbarch_registry = NULL; static void append_name (const char ***buf, int *nr, const char *name) { - *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1)); + *buf = XRESIZEVEC (const char *, *buf, *nr + 1); (*buf)[*nr] = name; *nr += 1; } @@ -1698,11 +2236,11 @@ const char ** gdbarch_printable_names (void) { /* Accumulate a list of names based on the registed list of - architectures. */ - enum bfd_architecture a; + architectures. */ int nr_arches = 0; const char **arches = NULL; struct gdbarch_registration *rego; + for (rego = gdbarch_registry; rego != NULL; rego = rego->next) @@ -1731,31 +2269,34 @@ gdbarch_register (enum bfd_architecture bfd_architecture, { struct gdbarch_registration **curr; const struct bfd_arch_info *bfd_arch_info; + /* Check that BFD recognizes this architecture */ bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0); if (bfd_arch_info == NULL) { internal_error (__FILE__, __LINE__, - _("gdbarch: Attempt to register unknown architecture (%d)"), + _("gdbarch: Attempt to register " + "unknown architecture (%d)"), bfd_architecture); } - /* Check that we haven't seen this architecture before */ + /* Check that we haven't seen this architecture before. */ for (curr = &gdbarch_registry; (*curr) != NULL; curr = &(*curr)->next) { if (bfd_architecture == (*curr)->bfd_architecture) internal_error (__FILE__, __LINE__, - _("gdbarch: Duplicate registraration of architecture (%s)"), + _("gdbarch: Duplicate registration " + "of architecture (%s)"), bfd_arch_info->printable_name); } /* log it */ if (gdbarch_debug) - fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n", + fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n", bfd_arch_info->printable_name, - (long) init); + host_address_to_string (init)); /* Append it */ - (*curr) = XMALLOC (struct gdbarch_registration); + (*curr) = XNEW (struct gdbarch_registration); (*curr)->bfd_architecture = bfd_architecture; (*curr)->init = init; (*curr)->dump_tdep = dump_tdep; @@ -1794,49 +2335,44 @@ gdbarch_list_lookup_by_info (struct gdbarch_list *arches, /* Find an architecture that matches the specified INFO. Create a new - architecture if needed. Return that new architecture. Assumes - that there is no current architecture. */ + architecture if needed. Return that new architecture. */ -static struct gdbarch * -find_arch_by_info (struct gdbarch_info info) +struct gdbarch * +gdbarch_find_by_info (struct gdbarch_info info) { struct gdbarch *new_gdbarch; struct gdbarch_registration *rego; - /* The existing architecture has been swapped out - all this code - works from a clean slate. */ - gdb_assert (current_gdbarch == NULL); - /* Fill in missing parts of the INFO struct using a number of sources: "set ..."; INFOabfd supplied; and the global defaults. */ gdbarch_info_fill (&info); - /* Must have found some sort of architecture. */ + /* Must have found some sort of architecture. */ gdb_assert (info.bfd_arch_info != NULL); if (gdbarch_debug) { fprintf_unfiltered (gdb_stdlog, - "find_arch_by_info: info.bfd_arch_info %s\n", + "gdbarch_find_by_info: info.bfd_arch_info %s\n", (info.bfd_arch_info != NULL ? info.bfd_arch_info->printable_name : "(null)")); fprintf_unfiltered (gdb_stdlog, - "find_arch_by_info: info.byte_order %d (%s)\n", + "gdbarch_find_by_info: info.byte_order %d (%s)\n", info.byte_order, (info.byte_order == BFD_ENDIAN_BIG ? "big" : info.byte_order == BFD_ENDIAN_LITTLE ? "little" : "default")); fprintf_unfiltered (gdb_stdlog, - "find_arch_by_info: info.osabi %d (%s)\n", + "gdbarch_find_by_info: info.osabi %d (%s)\n", info.osabi, gdbarch_osabi_name (info.osabi)); fprintf_unfiltered (gdb_stdlog, - "find_arch_by_info: info.abfd 0x%lx\n", - (long) info.abfd); + "gdbarch_find_by_info: info.abfd %s\n", + host_address_to_string (info.abfd)); fprintf_unfiltered (gdb_stdlog, - "find_arch_by_info: info.tdep_info 0x%lx\n", - (long) info.tdep_info); + "gdbarch_find_by_info: info.tdep_info %s\n", + host_address_to_string (info.tdep_info)); } /* Find the tdep code that knows about this architecture. */ @@ -1848,7 +2384,7 @@ find_arch_by_info (struct gdbarch_info info) if (rego == NULL) { if (gdbarch_debug) - fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: " + fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: " "No matching architecture\n"); return 0; } @@ -1861,7 +2397,7 @@ find_arch_by_info (struct gdbarch_info info) if (new_gdbarch == NULL) { if (gdbarch_debug) - fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: " + fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: " "Target rejected architecture\n"); return NULL; } @@ -1872,11 +2408,11 @@ find_arch_by_info (struct gdbarch_info info) if (new_gdbarch->initialized_p) { struct gdbarch_list **list; - struct gdbarch_list *this; + struct gdbarch_list *self; if (gdbarch_debug) - fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: " - "Previous architecture 0x%08lx (%s) selected\n", - (long) new_gdbarch, + fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: " + "Previous architecture %s (%s) selected\n", + host_address_to_string (new_gdbarch), new_gdbarch->bfd_arch_info->printable_name); /* Find the existing arch in the list. */ for (list = ®o->arches; @@ -1884,30 +2420,30 @@ find_arch_by_info (struct gdbarch_info info) list = &(*list)->next); /* It had better be in the list of architectures. */ gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch); - /* Unlink THIS. */ - this = (*list); - (*list) = this->next; - /* Insert THIS at the front. */ - this->next = rego->arches; - rego->arches = this; + /* Unlink SELF. */ + self = (*list); + (*list) = self->next; + /* Insert SELF at the front. */ + self->next = rego->arches; + rego->arches = self; /* Return it. */ return new_gdbarch; } /* It's a new architecture. */ if (gdbarch_debug) - fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: " - "New architecture 0x%08lx (%s) selected\n", - (long) new_gdbarch, + fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: " + "New architecture %s (%s) selected\n", + host_address_to_string (new_gdbarch), new_gdbarch->bfd_arch_info->printable_name); /* Insert the new architecture into the front of the architecture list (keep the list sorted Most Recently Used). */ { - struct gdbarch_list *this = XMALLOC (struct gdbarch_list); - this->next = rego->arches; - this->gdbarch = new_gdbarch; - rego->arches = this; + struct gdbarch_list *self = XNEW (struct gdbarch_list); + self->next = rego->arches; + self->gdbarch = new_gdbarch; + rego->arches = self; } /* Check that the newly installed architecture is valid. Plug in @@ -1922,41 +2458,24 @@ find_arch_by_info (struct gdbarch_info info) return new_gdbarch; } -struct gdbarch * -gdbarch_find_by_info (struct gdbarch_info info) -{ - struct gdbarch *new_gdbarch; - - /* Save the previously selected architecture, setting the global to - NULL. This stops things like gdbarch->init() trying to use the - previous architecture's configuration. The previous architecture - may not even be of the same architecture family. The most recent - architecture of the same family is found at the head of the - rego->arches list. */ - struct gdbarch *old_gdbarch = current_gdbarch; - current_gdbarch = NULL; - - /* Find the specified architecture. */ - new_gdbarch = find_arch_by_info (info); - - /* Restore the existing architecture. */ - gdb_assert (current_gdbarch == NULL); - current_gdbarch = old_gdbarch; - - return new_gdbarch; -} - /* Make the specified architecture current. */ void -deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch) +set_target_gdbarch (struct gdbarch *new_gdbarch) { gdb_assert (new_gdbarch != NULL); - gdb_assert (current_gdbarch != NULL); gdb_assert (new_gdbarch->initialized_p); - current_gdbarch = new_gdbarch; - architecture_changed_event (); - reinit_frame_cache (); + current_inferior ()->gdbarch = new_gdbarch; + observer_notify_architecture_changed (new_gdbarch); + registers_changed (); +} + +/* Return the current inferior's arch. */ + +struct gdbarch * +target_gdbarch (void) +{ + return current_inferior ()->gdbarch; } extern void _initialize_gdbarch (void); @@ -1964,9 +2483,7 @@ extern void _initialize_gdbarch (void); void _initialize_gdbarch (void) { - struct cmd_list_element *c; - - add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\ + add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\ Set architecture debugging."), _("\\ Show architecture debugging."), _("\\ When non-zero, architecture debugging is enabled."),