X-Git-Url: http://drtracing.org/?a=blobdiff_plain;f=gdb%2Fhppa-hpux-tdep.c;h=b0ce4dfe53796bfa9e530c43a310967904401c7b;hb=2117c711ae07700adb57ea5b5ca61e4c32d7e3d2;hp=cc50e02783e8cd866b6d2c0b2b39b33c0168edc1;hpb=ef6e7e1393acc06ab23e1aba96396f39a3101add;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/hppa-hpux-tdep.c b/gdb/hppa-hpux-tdep.c index cc50e02783..b0ce4dfe53 100644 --- a/gdb/hppa-hpux-tdep.c +++ b/gdb/hppa-hpux-tdep.c @@ -1,115 +1,1574 @@ -/* Target-dependent code for HPUX running on PA-RISC, for GDB. +/* Target-dependent code for HP-UX on PA-RISC. - Copyright 2002, 2003 Free Software Foundation, Inc. + Copyright (C) 2002-2014 Free Software Foundation, Inc. -This file is part of GDB. + This file is part of GDB. -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + You should have received a copy of the GNU General Public License + along with this program. If not, see . */ #include "defs.h" #include "arch-utils.h" #include "gdbcore.h" #include "osabi.h" -#include "gdb_string.h" +#include "frame.h" +#include "frame-unwind.h" +#include "trad-frame.h" +#include "symtab.h" +#include "objfiles.h" +#include "inferior.h" +#include "infcall.h" +#include "observer.h" +#include "hppa-tdep.h" +#include "solib-som.h" +#include "solib-pa64.h" +#include "regset.h" +#include "regcache.h" +#include "exceptions.h" + +#include + +#define IS_32BIT_TARGET(_gdbarch) \ + ((gdbarch_tdep (_gdbarch))->bytes_per_address == 4) + +/* Bit in the `ss_flag' member of `struct save_state' that indicates + that the 64-bit register values are live. From + . */ +#define HPPA_HPUX_SS_WIDEREGS 0x40 + +/* Offsets of various parts of `struct save_state'. From + . */ +#define HPPA_HPUX_SS_FLAGS_OFFSET 0 +#define HPPA_HPUX_SS_NARROW_OFFSET 4 +#define HPPA_HPUX_SS_FPBLOCK_OFFSET 256 +#define HPPA_HPUX_SS_WIDE_OFFSET 640 + +/* The size of `struct save_state. */ +#define HPPA_HPUX_SAVE_STATE_SIZE 1152 + +/* The size of `struct pa89_save_state', which corresponds to PA-RISC + 1.1, the lowest common denominator that we support. */ +#define HPPA_HPUX_PA89_SAVE_STATE_SIZE 512 + /* Forward declarations. */ extern void _initialize_hppa_hpux_tdep (void); extern initialize_file_ftype _initialize_hppa_hpux_tdep; -/* FIXME: brobecker 2002-12-25. The following functions will eventually - become static, after the multiarching conversion is done. */ -int hppa_hpux_pc_in_sigtramp (CORE_ADDR pc, char *name); -void hppa_hpux_frame_saved_pc_in_sigtramp (struct frame_info *fi, - CORE_ADDR *tmp); -void hppa_hpux_frame_base_before_sigtramp (struct frame_info *fi, - CORE_ADDR *tmp); -void hppa_hpux_frame_find_saved_regs_in_sigtramp - (struct frame_info *fi, CORE_ADDR *fsr); +/* Return one if PC is in the call path of a trampoline, else return zero. + + Note we return one for *any* call trampoline (long-call, arg-reloc), not + just shared library trampolines (import, export). */ -int -hppa_hpux_pc_in_sigtramp (CORE_ADDR pc, char *name) +static int +hppa32_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc) { - /* Actually, for a PA running HPUX the kernel calls the signal handler - without an intermediate trampoline. Luckily the kernel always sets - the return pointer for the signal handler to point to _sigreturn. */ - return (name && (strcmp ("_sigreturn", name) == 0)); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + struct bound_minimal_symbol minsym; + struct unwind_table_entry *u; + + /* First see if PC is in one of the two C-library trampolines. */ + if (pc == hppa_symbol_address("$$dyncall") + || pc == hppa_symbol_address("_sr4export")) + return 1; + + minsym = lookup_minimal_symbol_by_pc (pc); + if (minsym.minsym + && strcmp (SYMBOL_LINKAGE_NAME (minsym.minsym), ".stub") == 0) + return 1; + + /* Get the unwind descriptor corresponding to PC, return zero + if no unwind was found. */ + u = find_unwind_entry (pc); + if (!u) + return 0; + + /* If this isn't a linker stub, then return now. */ + if (u->stub_unwind.stub_type == 0) + return 0; + + /* By definition a long-branch stub is a call stub. */ + if (u->stub_unwind.stub_type == LONG_BRANCH) + return 1; + + /* The call and return path execute the same instructions within + an IMPORT stub! So an IMPORT stub is both a call and return + trampoline. */ + if (u->stub_unwind.stub_type == IMPORT) + return 1; + + /* Parameter relocation stubs always have a call path and may have a + return path. */ + if (u->stub_unwind.stub_type == PARAMETER_RELOCATION + || u->stub_unwind.stub_type == EXPORT) + { + CORE_ADDR addr; + + /* Search forward from the current PC until we hit a branch + or the end of the stub. */ + for (addr = pc; addr <= u->region_end; addr += 4) + { + unsigned long insn; + + insn = read_memory_integer (addr, 4, byte_order); + + /* Does it look like a bl? If so then it's the call path, if + we find a bv or be first, then we're on the return path. */ + if ((insn & 0xfc00e000) == 0xe8000000) + return 1; + else if ((insn & 0xfc00e001) == 0xe800c000 + || (insn & 0xfc000000) == 0xe0000000) + return 0; + } + + /* Should never happen. */ + warning (_("Unable to find branch in parameter relocation stub.")); + return 0; + } + + /* Unknown stub type. For now, just return zero. */ + return 0; } -/* For hppa_hpux_frame_saved_pc_in_sigtramp, - hppa_hpux_frame_base_before_sigtramp and - hppa_hpux_frame_find_saved_regs_in_sigtramp: +static int +hppa64_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - The signal context structure pointer is always saved at the base - of the frame which "calls" the signal handler. We only want to find - the hardware save state structure, which lives 10 32bit words into - sigcontext structure. + /* PA64 has a completely different stub/trampoline scheme. Is it + better? Maybe. It's certainly harder to determine with any + certainty that we are in a stub because we can not refer to the + unwinders to help. - Within the hardware save state structure, registers are found in the - same order as the register numbers in GDB. + The heuristic is simple. Try to lookup the current PC value in th + minimal symbol table. If that fails, then assume we are not in a + stub and return. - At one time we peeked at %r31 rather than the PC queues to determine - what instruction took the fault. This was done on purpose, but I don't - remember why. Looking at the PC queues is really the right way, and - I don't remember why that didn't work when this code was originally - written. */ + Then see if the PC value falls within the section bounds for the + section containing the minimal symbol we found in the first + step. If it does, then assume we are not in a stub and return. -void -hppa_hpux_frame_saved_pc_in_sigtramp (struct frame_info *fi, CORE_ADDR *tmp) + Finally peek at the instructions to see if they look like a stub. */ + struct bound_minimal_symbol minsym; + asection *sec; + CORE_ADDR addr; + int insn; + + minsym = lookup_minimal_symbol_by_pc (pc); + if (! minsym.minsym) + return 0; + + sec = SYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym)->the_bfd_section; + + if (bfd_get_section_vma (sec->owner, sec) <= pc + && pc < (bfd_get_section_vma (sec->owner, sec) + + bfd_section_size (sec->owner, sec))) + return 0; + + /* We might be in a stub. Peek at the instructions. Stubs are 3 + instructions long. */ + insn = read_memory_integer (pc, 4, byte_order); + + /* Find out where we think we are within the stub. */ + if ((insn & 0xffffc00e) == 0x53610000) + addr = pc; + else if ((insn & 0xffffffff) == 0xe820d000) + addr = pc - 4; + else if ((insn & 0xffffc00e) == 0x537b0000) + addr = pc - 8; + else + return 0; + + /* Now verify each insn in the range looks like a stub instruction. */ + insn = read_memory_integer (addr, 4, byte_order); + if ((insn & 0xffffc00e) != 0x53610000) + return 0; + + /* Now verify each insn in the range looks like a stub instruction. */ + insn = read_memory_integer (addr + 4, 4, byte_order); + if ((insn & 0xffffffff) != 0xe820d000) + return 0; + + /* Now verify each insn in the range looks like a stub instruction. */ + insn = read_memory_integer (addr + 8, 4, byte_order); + if ((insn & 0xffffc00e) != 0x537b0000) + return 0; + + /* Looks like a stub. */ + return 1; +} + +/* Return one if PC is in the return path of a trampoline, else return zero. + + Note we return one for *any* call trampoline (long-call, arg-reloc), not + just shared library trampolines (import, export). */ + +static int +hppa_hpux_in_solib_return_trampoline (struct gdbarch *gdbarch, + CORE_ADDR pc, const char *name) { - *tmp = read_memory_integer (get_frame_base (fi) + (43 * 4), 4); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + struct unwind_table_entry *u; + + /* Get the unwind descriptor corresponding to PC, return zero + if no unwind was found. */ + u = find_unwind_entry (pc); + if (!u) + return 0; + + /* If this isn't a linker stub or it's just a long branch stub, then + return zero. */ + if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH) + return 0; + + /* The call and return path execute the same instructions within + an IMPORT stub! So an IMPORT stub is both a call and return + trampoline. */ + if (u->stub_unwind.stub_type == IMPORT) + return 1; + + /* Parameter relocation stubs always have a call path and may have a + return path. */ + if (u->stub_unwind.stub_type == PARAMETER_RELOCATION + || u->stub_unwind.stub_type == EXPORT) + { + CORE_ADDR addr; + + /* Search forward from the current PC until we hit a branch + or the end of the stub. */ + for (addr = pc; addr <= u->region_end; addr += 4) + { + unsigned long insn; + + insn = read_memory_integer (addr, 4, byte_order); + + /* Does it look like a bl? If so then it's the call path, if + we find a bv or be first, then we're on the return path. */ + if ((insn & 0xfc00e000) == 0xe8000000) + return 0; + else if ((insn & 0xfc00e001) == 0xe800c000 + || (insn & 0xfc000000) == 0xe0000000) + return 1; + } + + /* Should never happen. */ + warning (_("Unable to find branch in parameter relocation stub.")); + return 0; + } + + /* Unknown stub type. For now, just return zero. */ + return 0; + } -void -hppa_hpux_frame_base_before_sigtramp (struct frame_info *fi, - CORE_ADDR *tmp) +/* Figure out if PC is in a trampoline, and if so find out where + the trampoline will jump to. If not in a trampoline, return zero. + + Simple code examination probably is not a good idea since the code + sequences in trampolines can also appear in user code. + + We use unwinds and information from the minimal symbol table to + determine when we're in a trampoline. This won't work for ELF + (yet) since it doesn't create stub unwind entries. Whether or + not ELF will create stub unwinds or normal unwinds for linker + stubs is still being debated. + + This should handle simple calls through dyncall or sr4export, + long calls, argument relocation stubs, and dyncall/sr4export + calling an argument relocation stub. It even handles some stubs + used in dynamic executables. */ + +static CORE_ADDR +hppa_hpux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) { - *tmp = read_memory_integer (get_frame_base (fi) + (40 * 4), 4); + struct gdbarch *gdbarch = get_frame_arch (frame); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + long orig_pc = pc; + long prev_inst, curr_inst, loc; + struct bound_minimal_symbol msym; + struct unwind_table_entry *u; + + /* Addresses passed to dyncall may *NOT* be the actual address + of the function. So we may have to do something special. */ + if (pc == hppa_symbol_address("$$dyncall")) + { + pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22); + + /* If bit 30 (counting from the left) is on, then pc is the address of + the PLT entry for this function, not the address of the function + itself. Bit 31 has meaning too, but only for MPE. */ + if (pc & 0x2) + pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, + byte_order); + } + if (pc == hppa_symbol_address("$$dyncall_external")) + { + pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22); + pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, byte_order); + } + else if (pc == hppa_symbol_address("_sr4export")) + pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22); + + /* Get the unwind descriptor corresponding to PC, return zero + if no unwind was found. */ + u = find_unwind_entry (pc); + if (!u) + return 0; + + /* If this isn't a linker stub, then return now. */ + /* elz: attention here! (FIXME) because of a compiler/linker + error, some stubs which should have a non zero stub_unwind.stub_type + have unfortunately a value of zero. So this function would return here + as if we were not in a trampoline. To fix this, we go look at the partial + symbol information, which reports this guy as a stub. + (FIXME): Unfortunately, we are not that lucky: it turns out that the + partial symbol information is also wrong sometimes. This is because + when it is entered (somread.c::som_symtab_read()) it can happen that + if the type of the symbol (from the som) is Entry, and the symbol is + in a shared library, then it can also be a trampoline. This would be OK, + except that I believe the way they decide if we are ina shared library + does not work. SOOOO..., even if we have a regular function w/o + trampolines its minimal symbol can be assigned type mst_solib_trampoline. + Also, if we find that the symbol is a real stub, then we fix the unwind + descriptor, and define the stub type to be EXPORT. + Hopefully this is correct most of the times. */ + if (u->stub_unwind.stub_type == 0) + { + +/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed + we can delete all the code which appears between the lines. */ +/*--------------------------------------------------------------------------*/ + msym = lookup_minimal_symbol_by_pc (pc); + + if (msym.minsym == NULL + || MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) + return orig_pc == pc ? 0 : pc & ~0x3; + + else if (msym.minsym != NULL + && MSYMBOL_TYPE (msym.minsym) == mst_solib_trampoline) + { + struct objfile *objfile; + struct minimal_symbol *msymbol; + int function_found = 0; + + /* Go look if there is another minimal symbol with the same name as + this one, but with type mst_text. This would happen if the msym + is an actual trampoline, in which case there would be another + symbol with the same name corresponding to the real function. */ + + ALL_MSYMBOLS (objfile, msymbol) + { + if (MSYMBOL_TYPE (msymbol) == mst_text + && strcmp (SYMBOL_LINKAGE_NAME (msymbol), + SYMBOL_LINKAGE_NAME (msym.minsym)) == 0) + { + function_found = 1; + break; + } + } + + if (function_found) + /* The type of msym is correct (mst_solib_trampoline), but + the unwind info is wrong, so set it to the correct value. */ + u->stub_unwind.stub_type = EXPORT; + else + /* The stub type info in the unwind is correct (this is not a + trampoline), but the msym type information is wrong, it + should be mst_text. So we need to fix the msym, and also + get out of this function. */ + { + MSYMBOL_TYPE (msym.minsym) = mst_text; + return orig_pc == pc ? 0 : pc & ~0x3; + } + } + +/*--------------------------------------------------------------------------*/ + } + + /* It's a stub. Search for a branch and figure out where it goes. + Note we have to handle multi insn branch sequences like ldil;ble. + Most (all?) other branches can be determined by examining the contents + of certain registers and the stack. */ + + loc = pc; + curr_inst = 0; + prev_inst = 0; + while (1) + { + /* Make sure we haven't walked outside the range of this stub. */ + if (u != find_unwind_entry (loc)) + { + warning (_("Unable to find branch in linker stub")); + return orig_pc == pc ? 0 : pc & ~0x3; + } + + prev_inst = curr_inst; + curr_inst = read_memory_integer (loc, 4, byte_order); + + /* Does it look like a branch external using %r1? Then it's the + branch from the stub to the actual function. */ + if ((curr_inst & 0xffe0e000) == 0xe0202000) + { + /* Yup. See if the previous instruction loaded + a value into %r1. If so compute and return the jump address. */ + if ((prev_inst & 0xffe00000) == 0x20200000) + return (hppa_extract_21 (prev_inst) + + hppa_extract_17 (curr_inst)) & ~0x3; + else + { + warning (_("Unable to find ldil X,%%r1 " + "before ble Y(%%sr4,%%r1).")); + return orig_pc == pc ? 0 : pc & ~0x3; + } + } + + /* Does it look like a be 0(sr0,%r21)? OR + Does it look like a be, n 0(sr0,%r21)? OR + Does it look like a bve (r21)? (this is on PA2.0) + Does it look like a bve, n(r21)? (this is also on PA2.0) + That's the branch from an + import stub to an export stub. + + It is impossible to determine the target of the branch via + simple examination of instructions and/or data (consider + that the address in the plabel may be the address of the + bind-on-reference routine in the dynamic loader). + + So we have try an alternative approach. + + Get the name of the symbol at our current location; it should + be a stub symbol with the same name as the symbol in the + shared library. + + Then lookup a minimal symbol with the same name; we should + get the minimal symbol for the target routine in the shared + library as those take precedence of import/export stubs. */ + if ((curr_inst == 0xe2a00000) || + (curr_inst == 0xe2a00002) || + (curr_inst == 0xeaa0d000) || + (curr_inst == 0xeaa0d002)) + { + struct bound_minimal_symbol stubsym; + struct minimal_symbol *libsym; + + stubsym = lookup_minimal_symbol_by_pc (loc); + if (stubsym.minsym == NULL) + { + warning (_("Unable to find symbol for 0x%lx"), loc); + return orig_pc == pc ? 0 : pc & ~0x3; + } + + libsym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (stubsym.minsym), + NULL, NULL); + if (libsym == NULL) + { + warning (_("Unable to find library symbol for %s."), + SYMBOL_PRINT_NAME (stubsym.minsym)); + return orig_pc == pc ? 0 : pc & ~0x3; + } + + return SYMBOL_VALUE (libsym); + } + + /* Does it look like bl X,%rp or bl X,%r0? Another way to do a + branch from the stub to the actual function. */ + /*elz */ + else if ((curr_inst & 0xffe0e000) == 0xe8400000 + || (curr_inst & 0xffe0e000) == 0xe8000000 + || (curr_inst & 0xffe0e000) == 0xe800A000) + return (loc + hppa_extract_17 (curr_inst) + 8) & ~0x3; + + /* Does it look like bv (rp)? Note this depends on the + current stack pointer being the same as the stack + pointer in the stub itself! This is a branch on from the + stub back to the original caller. */ + /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */ + else if ((curr_inst & 0xffe0f000) == 0xe840c000) + { + /* Yup. See if the previous instruction loaded + rp from sp - 8. */ + if (prev_inst == 0x4bc23ff1) + { + CORE_ADDR sp; + sp = get_frame_register_unsigned (frame, HPPA_SP_REGNUM); + return read_memory_integer (sp - 8, 4, byte_order) & ~0x3; + } + else + { + warning (_("Unable to find restore of %%rp before bv (%%rp).")); + return orig_pc == pc ? 0 : pc & ~0x3; + } + } + + /* elz: added this case to capture the new instruction + at the end of the return part of an export stub used by + the PA2.0: BVE, n (rp) */ + else if ((curr_inst & 0xffe0f000) == 0xe840d000) + { + return (read_memory_integer + (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24, + word_size, byte_order)) & ~0x3; + } + + /* What about be,n 0(sr0,%rp)? It's just another way we return to + the original caller from the stub. Used in dynamic executables. */ + else if (curr_inst == 0xe0400002) + { + /* The value we jump to is sitting in sp - 24. But that's + loaded several instructions before the be instruction. + I guess we could check for the previous instruction being + mtsp %r1,%sr0 if we want to do sanity checking. */ + return (read_memory_integer + (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24, + word_size, byte_order)) & ~0x3; + } + + /* Haven't found the branch yet, but we're still in the stub. + Keep looking. */ + loc += 4; + } } -void -hppa_hpux_frame_find_saved_regs_in_sigtramp (struct frame_info *fi, - CORE_ADDR *fsr) +static void +hppa_skip_permanent_breakpoint (struct regcache *regcache) { - int i; - const CORE_ADDR tmp = get_frame_base (fi) + (10 * 4); + /* To step over a breakpoint instruction on the PA takes some + fiddling with the instruction address queue. + + When we stop at a breakpoint, the IA queue front (the instruction + we're executing now) points at the breakpoint instruction, and + the IA queue back (the next instruction to execute) points to + whatever instruction we would execute after the breakpoint, if it + were an ordinary instruction. This is the case even if the + breakpoint is in the delay slot of a branch instruction. + + Clearly, to step past the breakpoint, we need to set the queue + front to the back. But what do we put in the back? What + instruction comes after that one? Because of the branch delay + slot, the next insn is always at the back + 4. */ + + ULONGEST pcoq_tail, pcsq_tail; + regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, &pcoq_tail); + regcache_cooked_read_unsigned (regcache, HPPA_PCSQ_TAIL_REGNUM, &pcsq_tail); + + regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pcoq_tail); + regcache_cooked_write_unsigned (regcache, HPPA_PCSQ_HEAD_REGNUM, pcsq_tail); - for (i = 0; i < NUM_REGS; i++) + regcache_cooked_write_unsigned (regcache, + HPPA_PCOQ_TAIL_REGNUM, pcoq_tail + 4); + /* We can leave the tail's space the same, since there's no jump. */ +} + + +/* Signal frames. */ +struct hppa_hpux_sigtramp_unwind_cache +{ + CORE_ADDR base; + struct trad_frame_saved_reg *saved_regs; +}; + +static int hppa_hpux_tramp_reg[] = { + HPPA_SAR_REGNUM, + HPPA_PCOQ_HEAD_REGNUM, + HPPA_PCSQ_HEAD_REGNUM, + HPPA_PCOQ_TAIL_REGNUM, + HPPA_PCSQ_TAIL_REGNUM, + HPPA_EIEM_REGNUM, + HPPA_IIR_REGNUM, + HPPA_ISR_REGNUM, + HPPA_IOR_REGNUM, + HPPA_IPSW_REGNUM, + -1, + HPPA_SR4_REGNUM, + HPPA_SR4_REGNUM + 1, + HPPA_SR4_REGNUM + 2, + HPPA_SR4_REGNUM + 3, + HPPA_SR4_REGNUM + 4, + HPPA_SR4_REGNUM + 5, + HPPA_SR4_REGNUM + 6, + HPPA_SR4_REGNUM + 7, + HPPA_RCR_REGNUM, + HPPA_PID0_REGNUM, + HPPA_PID1_REGNUM, + HPPA_CCR_REGNUM, + HPPA_PID2_REGNUM, + HPPA_PID3_REGNUM, + HPPA_TR0_REGNUM, + HPPA_TR0_REGNUM + 1, + HPPA_TR0_REGNUM + 2, + HPPA_CR27_REGNUM +}; + +static struct hppa_hpux_sigtramp_unwind_cache * +hppa_hpux_sigtramp_frame_unwind_cache (struct frame_info *this_frame, + void **this_cache) + +{ + struct gdbarch *gdbarch = get_frame_arch (this_frame); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + struct hppa_hpux_sigtramp_unwind_cache *info; + unsigned int flag; + CORE_ADDR sp, scptr, off; + int i, incr, szoff; + + if (*this_cache) + return *this_cache; + + info = FRAME_OBSTACK_ZALLOC (struct hppa_hpux_sigtramp_unwind_cache); + *this_cache = info; + info->saved_regs = trad_frame_alloc_saved_regs (this_frame); + + sp = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); + + if (IS_32BIT_TARGET (gdbarch)) + scptr = sp - 1352; + else + scptr = sp - 1520; + + off = scptr; + + /* See /usr/include/machine/save_state.h for the structure of the + save_state_t structure. */ + + flag = read_memory_unsigned_integer (scptr + HPPA_HPUX_SS_FLAGS_OFFSET, + 4, byte_order); + + if (!(flag & HPPA_HPUX_SS_WIDEREGS)) + { + /* Narrow registers. */ + off = scptr + HPPA_HPUX_SS_NARROW_OFFSET; + incr = 4; + szoff = 0; + } + else + { + /* Wide registers. */ + off = scptr + HPPA_HPUX_SS_WIDE_OFFSET + 8; + incr = 8; + szoff = (tdep->bytes_per_address == 4 ? 4 : 0); + } + + for (i = 1; i < 32; i++) + { + info->saved_regs[HPPA_R0_REGNUM + i].addr = off + szoff; + off += incr; + } + + for (i = 0; i < ARRAY_SIZE (hppa_hpux_tramp_reg); i++) { - if (i == SP_REGNUM) - fsr[SP_REGNUM] = read_memory_integer (tmp + SP_REGNUM * 4, 4); - else - fsr[i] = tmp + i * 4; + if (hppa_hpux_tramp_reg[i] > 0) + info->saved_regs[hppa_hpux_tramp_reg[i]].addr = off + szoff; + + off += incr; } + + /* TODO: fp regs */ + + info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); + + return info; +} + +static void +hppa_hpux_sigtramp_frame_this_id (struct frame_info *this_frame, + void **this_prologue_cache, + struct frame_id *this_id) +{ + struct hppa_hpux_sigtramp_unwind_cache *info + = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); + + *this_id = frame_id_build (info->base, get_frame_pc (this_frame)); +} + +static struct value * +hppa_hpux_sigtramp_frame_prev_register (struct frame_info *this_frame, + void **this_prologue_cache, + int regnum) +{ + struct hppa_hpux_sigtramp_unwind_cache *info + = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); + + return hppa_frame_prev_register_helper (this_frame, + info->saved_regs, regnum); +} + +static int +hppa_hpux_sigtramp_unwind_sniffer (const struct frame_unwind *self, + struct frame_info *this_frame, + void **this_cache) +{ + struct gdbarch *gdbarch = get_frame_arch (this_frame); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + struct unwind_table_entry *u; + CORE_ADDR pc = get_frame_pc (this_frame); + + u = find_unwind_entry (pc); + + /* If this is an export stub, try to get the unwind descriptor for + the actual function itself. */ + if (u && u->stub_unwind.stub_type == EXPORT) + { + gdb_byte buf[HPPA_INSN_SIZE]; + unsigned long insn; + + if (!safe_frame_unwind_memory (this_frame, u->region_start, + buf, sizeof buf)) + return 0; + + insn = extract_unsigned_integer (buf, sizeof buf, byte_order); + if ((insn & 0xffe0e000) == 0xe8400000) + u = find_unwind_entry(u->region_start + hppa_extract_17 (insn) + 8); + } + + if (u && u->HP_UX_interrupt_marker) + return 1; + + return 0; } +static const struct frame_unwind hppa_hpux_sigtramp_frame_unwind = { + SIGTRAMP_FRAME, + default_frame_unwind_stop_reason, + hppa_hpux_sigtramp_frame_this_id, + hppa_hpux_sigtramp_frame_prev_register, + NULL, + hppa_hpux_sigtramp_unwind_sniffer +}; + +static CORE_ADDR +hppa32_hpux_find_global_pointer (struct gdbarch *gdbarch, + struct value *function) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + CORE_ADDR faddr; + + faddr = value_as_address (function); + + /* Is this a plabel? If so, dereference it to get the gp value. */ + if (faddr & 2) + { + int status; + gdb_byte buf[4]; + + faddr &= ~3; + + status = target_read_memory (faddr + 4, buf, sizeof (buf)); + if (status == 0) + return extract_unsigned_integer (buf, sizeof (buf), byte_order); + } + + return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr); +} + +static CORE_ADDR +hppa64_hpux_find_global_pointer (struct gdbarch *gdbarch, + struct value *function) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + CORE_ADDR faddr; + gdb_byte buf[32]; + + faddr = value_as_address (function); + + if (pc_in_section (faddr, ".opd")) + { + target_read_memory (faddr, buf, sizeof (buf)); + return extract_unsigned_integer (&buf[24], 8, byte_order); + } + else + { + return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr); + } +} + +static unsigned int ldsid_pattern[] = { + 0x000010a0, /* ldsid (rX),rY */ + 0x00001820, /* mtsp rY,sr0 */ + 0xe0000000 /* be,n (sr0,rX) */ +}; + +static CORE_ADDR +hppa_hpux_search_pattern (struct gdbarch *gdbarch, + CORE_ADDR start, CORE_ADDR end, + unsigned int *patterns, int count) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + int num_insns = (end - start + HPPA_INSN_SIZE) / HPPA_INSN_SIZE; + unsigned int *insns; + gdb_byte *buf; + int offset, i; + + buf = alloca (num_insns * HPPA_INSN_SIZE); + insns = alloca (num_insns * sizeof (unsigned int)); + + read_memory (start, buf, num_insns * HPPA_INSN_SIZE); + for (i = 0; i < num_insns; i++, buf += HPPA_INSN_SIZE) + insns[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order); + + for (offset = 0; offset <= num_insns - count; offset++) + { + for (i = 0; i < count; i++) + { + if ((insns[offset + i] & patterns[i]) != patterns[i]) + break; + } + if (i == count) + break; + } + + if (offset <= num_insns - count) + return start + offset * HPPA_INSN_SIZE; + else + return 0; +} + +static CORE_ADDR +hppa32_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc, + int *argreg) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + struct objfile *obj; + struct obj_section *sec; + struct hppa_objfile_private *priv; + struct frame_info *frame; + struct unwind_table_entry *u; + CORE_ADDR addr, rp; + gdb_byte buf[4]; + unsigned int insn; + + sec = find_pc_section (pc); + obj = sec->objfile; + priv = objfile_data (obj, hppa_objfile_priv_data); + + if (!priv) + priv = hppa_init_objfile_priv_data (obj); + if (!priv) + error (_("Internal error creating objfile private data.")); + + /* Use the cached value if we have one. */ + if (priv->dummy_call_sequence_addr != 0) + { + *argreg = priv->dummy_call_sequence_reg; + return priv->dummy_call_sequence_addr; + } + + /* First try a heuristic; if we are in a shared library call, our return + pointer is likely to point at an export stub. */ + frame = get_current_frame (); + rp = frame_unwind_register_unsigned (frame, 2); + u = find_unwind_entry (rp); + if (u && u->stub_unwind.stub_type == EXPORT) + { + addr = hppa_hpux_search_pattern (gdbarch, + u->region_start, u->region_end, + ldsid_pattern, + ARRAY_SIZE (ldsid_pattern)); + if (addr) + goto found_pattern; + } + + /* Next thing to try is to look for an export stub. */ + if (priv->unwind_info) + { + int i; + + for (i = 0; i < priv->unwind_info->last; i++) + { + struct unwind_table_entry *u; + u = &priv->unwind_info->table[i]; + if (u->stub_unwind.stub_type == EXPORT) + { + addr = hppa_hpux_search_pattern (gdbarch, + u->region_start, u->region_end, + ldsid_pattern, + ARRAY_SIZE (ldsid_pattern)); + if (addr) + { + goto found_pattern; + } + } + } + } + + /* Finally, if this is the main executable, try to locate a sequence + from noshlibs */ + addr = hppa_symbol_address ("noshlibs"); + sec = find_pc_section (addr); + + if (sec && sec->objfile == obj) + { + CORE_ADDR start, end; + + find_pc_partial_function (addr, NULL, &start, &end); + if (start != 0 && end != 0) + { + addr = hppa_hpux_search_pattern (gdbarch, start, end, ldsid_pattern, + ARRAY_SIZE (ldsid_pattern)); + if (addr) + goto found_pattern; + } + } + + /* Can't find a suitable sequence. */ + return 0; + +found_pattern: + target_read_memory (addr, buf, sizeof (buf)); + insn = extract_unsigned_integer (buf, sizeof (buf), byte_order); + priv->dummy_call_sequence_addr = addr; + priv->dummy_call_sequence_reg = (insn >> 21) & 0x1f; + + *argreg = priv->dummy_call_sequence_reg; + return priv->dummy_call_sequence_addr; +} + +static CORE_ADDR +hppa64_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc, + int *argreg) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + struct objfile *obj; + struct obj_section *sec; + struct hppa_objfile_private *priv; + CORE_ADDR addr; + struct minimal_symbol *msym; + + sec = find_pc_section (pc); + obj = sec->objfile; + priv = objfile_data (obj, hppa_objfile_priv_data); + + if (!priv) + priv = hppa_init_objfile_priv_data (obj); + if (!priv) + error (_("Internal error creating objfile private data.")); + + /* Use the cached value if we have one. */ + if (priv->dummy_call_sequence_addr != 0) + { + *argreg = priv->dummy_call_sequence_reg; + return priv->dummy_call_sequence_addr; + } + + /* FIXME: Without stub unwind information, locating a suitable sequence is + fairly difficult. For now, we implement a very naive and inefficient + scheme; try to read in blocks of code, and look for a "bve,n (rp)" + instruction. These are likely to occur at the end of functions, so + we only look at the last two instructions of each function. */ + ALL_OBJFILE_MSYMBOLS (obj, msym) + { + CORE_ADDR begin, end; + const char *name; + gdb_byte buf[2 * HPPA_INSN_SIZE]; + int offset; + + find_pc_partial_function (SYMBOL_VALUE_ADDRESS (msym), &name, + &begin, &end); + + if (name == NULL || begin == 0 || end == 0) + continue; + + if (target_read_memory (end - sizeof (buf), buf, sizeof (buf)) == 0) + { + for (offset = 0; offset < sizeof (buf); offset++) + { + unsigned int insn; + + insn = extract_unsigned_integer (buf + offset, + HPPA_INSN_SIZE, byte_order); + if (insn == 0xe840d002) /* bve,n (rp) */ + { + addr = (end - sizeof (buf)) + offset; + goto found_pattern; + } + } + } + } + + /* Can't find a suitable sequence. */ + return 0; + +found_pattern: + priv->dummy_call_sequence_addr = addr; + /* Right now we only look for a "bve,l (rp)" sequence, so the register is + always HPPA_RP_REGNUM. */ + priv->dummy_call_sequence_reg = HPPA_RP_REGNUM; + + *argreg = priv->dummy_call_sequence_reg; + return priv->dummy_call_sequence_addr; +} + +static CORE_ADDR +hppa_hpux_find_import_stub_for_addr (CORE_ADDR funcaddr) +{ + struct objfile *objfile; + struct bound_minimal_symbol funsym; + struct minimal_symbol *stubsym; + CORE_ADDR stubaddr; + + funsym = lookup_minimal_symbol_by_pc (funcaddr); + stubaddr = 0; + + ALL_OBJFILES (objfile) + { + stubsym = lookup_minimal_symbol_solib_trampoline + (SYMBOL_LINKAGE_NAME (funsym.minsym), objfile); + + if (stubsym) + { + struct unwind_table_entry *u; + + u = find_unwind_entry (SYMBOL_VALUE (stubsym)); + if (u == NULL + || (u->stub_unwind.stub_type != IMPORT + && u->stub_unwind.stub_type != IMPORT_SHLIB)) + continue; + + stubaddr = SYMBOL_VALUE (stubsym); + + /* If we found an IMPORT stub, then we can stop searching; + if we found an IMPORT_SHLIB, we want to continue the search + in the hopes that we will find an IMPORT stub. */ + if (u->stub_unwind.stub_type == IMPORT) + break; + } + } + + return stubaddr; +} + +static int +hppa_hpux_sr_for_addr (struct gdbarch *gdbarch, CORE_ADDR addr) +{ + int sr; + /* The space register to use is encoded in the top 2 bits of the address. */ + sr = addr >> (gdbarch_tdep (gdbarch)->bytes_per_address * 8 - 2); + return sr + 4; +} + +static CORE_ADDR +hppa_hpux_find_dummy_bpaddr (CORE_ADDR addr) +{ + /* In order for us to restore the space register to its starting state, + we need the dummy trampoline to return to an instruction address in + the same space as where we started the call. We used to place the + breakpoint near the current pc, however, this breaks nested dummy calls + as the nested call will hit the breakpoint address and terminate + prematurely. Instead, we try to look for an address in the same space to + put the breakpoint. + + This is similar in spirit to putting the breakpoint at the "entry point" + of an executable. */ + + struct obj_section *sec; + struct unwind_table_entry *u; + struct minimal_symbol *msym; + CORE_ADDR func; + + sec = find_pc_section (addr); + if (sec) + { + /* First try the lowest address in the section; we can use it as long + as it is "regular" code (i.e. not a stub). */ + u = find_unwind_entry (obj_section_addr (sec)); + if (!u || u->stub_unwind.stub_type == 0) + return obj_section_addr (sec); + + /* Otherwise, we need to find a symbol for a regular function. We + do this by walking the list of msymbols in the objfile. The symbol + we find should not be the same as the function that was passed in. */ + + /* FIXME: this is broken, because we can find a function that will be + called by the dummy call target function, which will still not + work. */ + + find_pc_partial_function (addr, NULL, &func, NULL); + ALL_OBJFILE_MSYMBOLS (sec->objfile, msym) + { + u = find_unwind_entry (SYMBOL_VALUE_ADDRESS (msym)); + if (func != SYMBOL_VALUE_ADDRESS (msym) + && (!u || u->stub_unwind.stub_type == 0)) + return SYMBOL_VALUE_ADDRESS (msym); + } + } + + warning (_("Cannot find suitable address to place dummy breakpoint; nested " + "calls may fail.")); + return addr - 4; +} + +static CORE_ADDR +hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, + CORE_ADDR funcaddr, + struct value **args, int nargs, + struct type *value_type, + CORE_ADDR *real_pc, CORE_ADDR *bp_addr, + struct regcache *regcache) +{ + CORE_ADDR pc, stubaddr; + int argreg = 0; + + pc = regcache_read_pc (regcache); + + /* Note: we don't want to pass a function descriptor here; push_dummy_call + fills in the PIC register for us. */ + funcaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funcaddr, NULL); + + /* The simple case is where we call a function in the same space that we are + currently in; in that case we don't really need to do anything. */ + if (hppa_hpux_sr_for_addr (gdbarch, pc) + == hppa_hpux_sr_for_addr (gdbarch, funcaddr)) + { + /* Intraspace call. */ + *bp_addr = hppa_hpux_find_dummy_bpaddr (pc); + *real_pc = funcaddr; + regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, *bp_addr); + + return sp; + } + + /* In order to make an interspace call, we need to go through a stub. + gcc supplies an appropriate stub called "__gcc_plt_call", however, if + an application is compiled with HP compilers then this stub is not + available. We used to fallback to "__d_plt_call", however that stub + is not entirely useful for us because it doesn't do an interspace + return back to the caller. Also, on hppa64-hpux, there is no + __gcc_plt_call available. In order to keep the code uniform, we + instead don't use either of these stubs, but instead write our own + onto the stack. + + A problem arises since the stack is located in a different space than + code, so in order to branch to a stack stub, we will need to do an + interspace branch. Previous versions of gdb did this by modifying code + at the current pc and doing single-stepping to set the pcsq. Since this + is highly undesirable, we use a different scheme: + + All we really need to do the branch to the stub is a short instruction + sequence like this: + + PA1.1: + ldsid (rX),r1 + mtsp r1,sr0 + be,n (sr0,rX) + + PA2.0: + bve,n (sr0,rX) + + Instead of writing these sequences ourselves, we can find it in + the instruction stream that belongs to the current space. While this + seems difficult at first, we are actually guaranteed to find the sequences + in several places: + + For 32-bit code: + - in export stubs for shared libraries + - in the "noshlibs" routine in the main module + + For 64-bit code: + - at the end of each "regular" function + + We cache the address of these sequences in the objfile's private data + since these operations can potentially be quite expensive. + + So, what we do is: + - write a stack trampoline + - look for a suitable instruction sequence in the current space + - point the sequence at the trampoline + - set the return address of the trampoline to the current space + (see hppa_hpux_find_dummy_call_bpaddr) + - set the continuing address of the "dummy code" as the sequence. */ + + if (IS_32BIT_TARGET (gdbarch)) + { +#define INSN(I1, I2, I3, I4) 0x ## I1, 0x ## I2, 0x ## I3, 0x ## I4 + static const gdb_byte hppa32_tramp[] = { + INSN(0f,df,12,91), /* stw r31,-8(,sp) */ + INSN(02,c0,10,a1), /* ldsid (,r22),r1 */ + INSN(00,01,18,20), /* mtsp r1,sr0 */ + INSN(e6,c0,00,00), /* be,l 0(sr0,r22),%sr0,%r31 */ + INSN(08,1f,02,42), /* copy r31,rp */ + INSN(0f,d1,10,82), /* ldw -8(,sp),rp */ + INSN(00,40,10,a1), /* ldsid (,rp),r1 */ + INSN(00,01,18,20), /* mtsp r1,sr0 */ + INSN(e0,40,00,00), /* be 0(sr0,rp) */ + INSN(08,00,02,40) /* nop */ + }; + + /* for hppa32, we must call the function through a stub so that on + return it can return to the space of our trampoline. */ + stubaddr = hppa_hpux_find_import_stub_for_addr (funcaddr); + if (stubaddr == 0) + error (_("Cannot call external function not referenced by application " + "(no import stub).\n")); + regcache_cooked_write_unsigned (regcache, 22, stubaddr); + + write_memory (sp, hppa32_tramp, sizeof (hppa32_tramp)); + + *bp_addr = hppa_hpux_find_dummy_bpaddr (pc); + regcache_cooked_write_unsigned (regcache, 31, *bp_addr); + + *real_pc = hppa32_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg); + if (*real_pc == 0) + error (_("Cannot make interspace call from here.")); + + regcache_cooked_write_unsigned (regcache, argreg, sp); + + sp += sizeof (hppa32_tramp); + } + else + { + static const gdb_byte hppa64_tramp[] = { + INSN(ea,c0,f0,00), /* bve,l (r22),%r2 */ + INSN(0f,df,12,d1), /* std r31,-8(,sp) */ + INSN(0f,d1,10,c2), /* ldd -8(,sp),rp */ + INSN(e8,40,d0,02), /* bve,n (rp) */ + INSN(08,00,02,40) /* nop */ + }; +#undef INSN + + /* for hppa64, we don't need to call through a stub; all functions + return via a bve. */ + regcache_cooked_write_unsigned (regcache, 22, funcaddr); + write_memory (sp, hppa64_tramp, sizeof (hppa64_tramp)); + + *bp_addr = pc - 4; + regcache_cooked_write_unsigned (regcache, 31, *bp_addr); + + *real_pc = hppa64_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg); + if (*real_pc == 0) + error (_("Cannot make interspace call from here.")); + + regcache_cooked_write_unsigned (regcache, argreg, sp); + + sp += sizeof (hppa64_tramp); + } + + sp = gdbarch_frame_align (gdbarch, sp); + + return sp; +} + + + +static void +hppa_hpux_supply_ss_narrow (struct regcache *regcache, + int regnum, const gdb_byte *save_state) +{ + const gdb_byte *ss_narrow = save_state + HPPA_HPUX_SS_NARROW_OFFSET; + int i, offset = 0; + + for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++) + { + if (regnum == i || regnum == -1) + regcache_raw_supply (regcache, i, ss_narrow + offset); + + offset += 4; + } +} + +static void +hppa_hpux_supply_ss_fpblock (struct regcache *regcache, + int regnum, const gdb_byte *save_state) +{ + const gdb_byte *ss_fpblock = save_state + HPPA_HPUX_SS_FPBLOCK_OFFSET; + int i, offset = 0; + + /* FIXME: We view the floating-point state as 64 single-precision + registers for 32-bit code, and 32 double-precision register for + 64-bit code. This distinction is artificial and should be + eliminated. If that ever happens, we should remove the if-clause + below. */ + + if (register_size (get_regcache_arch (regcache), HPPA_FP0_REGNUM) == 4) + { + for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 64; i++) + { + if (regnum == i || regnum == -1) + regcache_raw_supply (regcache, i, ss_fpblock + offset); + + offset += 4; + } + } + else + { + for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 32; i++) + { + if (regnum == i || regnum == -1) + regcache_raw_supply (regcache, i, ss_fpblock + offset); + + offset += 8; + } + } +} + +static void +hppa_hpux_supply_ss_wide (struct regcache *regcache, + int regnum, const gdb_byte *save_state) +{ + const gdb_byte *ss_wide = save_state + HPPA_HPUX_SS_WIDE_OFFSET; + int i, offset = 8; + + if (register_size (get_regcache_arch (regcache), HPPA_R1_REGNUM) == 4) + offset += 4; + + for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++) + { + if (regnum == i || regnum == -1) + regcache_raw_supply (regcache, i, ss_wide + offset); + + offset += 8; + } +} + +static void +hppa_hpux_supply_save_state (const struct regset *regset, + struct regcache *regcache, + int regnum, const void *regs, size_t len) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + const gdb_byte *proc_info = regs; + const gdb_byte *save_state = proc_info + 8; + ULONGEST flags; + + flags = extract_unsigned_integer (save_state + HPPA_HPUX_SS_FLAGS_OFFSET, + 4, byte_order); + if (regnum == -1 || regnum == HPPA_FLAGS_REGNUM) + { + size_t size = register_size (gdbarch, HPPA_FLAGS_REGNUM); + gdb_byte buf[8]; + + store_unsigned_integer (buf, size, byte_order, flags); + regcache_raw_supply (regcache, HPPA_FLAGS_REGNUM, buf); + } + + /* If the SS_WIDEREGS flag is set, we really do need the full + `struct save_state'. */ + if (flags & HPPA_HPUX_SS_WIDEREGS && len < HPPA_HPUX_SAVE_STATE_SIZE) + error (_("Register set contents too small")); + + if (flags & HPPA_HPUX_SS_WIDEREGS) + hppa_hpux_supply_ss_wide (regcache, regnum, save_state); + else + hppa_hpux_supply_ss_narrow (regcache, regnum, save_state); + + hppa_hpux_supply_ss_fpblock (regcache, regnum, save_state); +} + +/* HP-UX register set. */ + +static struct regset hppa_hpux_regset = +{ + NULL, + hppa_hpux_supply_save_state +}; + +static const struct regset * +hppa_hpux_regset_from_core_section (struct gdbarch *gdbarch, + const char *sect_name, size_t sect_size) +{ + if (strcmp (sect_name, ".reg") == 0 + && sect_size >= HPPA_HPUX_PA89_SAVE_STATE_SIZE + 8) + return &hppa_hpux_regset; + + return NULL; +} + + +/* Bit in the `ss_flag' member of `struct save_state' that indicates + the state was saved from a system call. From + . */ +#define HPPA_HPUX_SS_INSYSCALL 0x02 + +static CORE_ADDR +hppa_hpux_read_pc (struct regcache *regcache) +{ + ULONGEST flags; + + /* If we're currently in a system call return the contents of %r31. */ + regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags); + if (flags & HPPA_HPUX_SS_INSYSCALL) + { + ULONGEST pc; + regcache_cooked_read_unsigned (regcache, HPPA_R31_REGNUM, &pc); + return pc & ~0x3; + } + + return hppa_read_pc (regcache); +} + +static void +hppa_hpux_write_pc (struct regcache *regcache, CORE_ADDR pc) +{ + ULONGEST flags; + + /* If we're currently in a system call also write PC into %r31. */ + regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags); + if (flags & HPPA_HPUX_SS_INSYSCALL) + regcache_cooked_write_unsigned (regcache, HPPA_R31_REGNUM, pc | 0x3); + + hppa_write_pc (regcache, pc); +} + +static CORE_ADDR +hppa_hpux_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + ULONGEST flags; + + /* If we're currently in a system call return the contents of %r31. */ + flags = frame_unwind_register_unsigned (next_frame, HPPA_FLAGS_REGNUM); + if (flags & HPPA_HPUX_SS_INSYSCALL) + return frame_unwind_register_unsigned (next_frame, HPPA_R31_REGNUM) & ~0x3; + + return hppa_unwind_pc (gdbarch, next_frame); +} + + +/* Given the current value of the pc, check to see if it is inside a stub, and + if so, change the value of the pc to point to the caller of the stub. + THIS_FRAME is the current frame in the current list of frames. + BASE contains to stack frame base of the current frame. + SAVE_REGS is the register file stored in the frame cache. */ +static void +hppa_hpux_unwind_adjust_stub (struct frame_info *this_frame, CORE_ADDR base, + struct trad_frame_saved_reg *saved_regs) +{ + struct gdbarch *gdbarch = get_frame_arch (this_frame); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + struct value *pcoq_head_val; + ULONGEST pcoq_head; + CORE_ADDR stubpc; + struct unwind_table_entry *u; + + pcoq_head_val = trad_frame_get_prev_register (this_frame, saved_regs, + HPPA_PCOQ_HEAD_REGNUM); + pcoq_head = + extract_unsigned_integer (value_contents_all (pcoq_head_val), + register_size (gdbarch, HPPA_PCOQ_HEAD_REGNUM), + byte_order); + + u = find_unwind_entry (pcoq_head); + if (u && u->stub_unwind.stub_type == EXPORT) + { + stubpc = read_memory_integer (base - 24, word_size, byte_order); + trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc); + } + else if (hppa_symbol_address ("__gcc_plt_call") + == get_pc_function_start (pcoq_head)) + { + stubpc = read_memory_integer (base - 8, word_size, byte_order); + trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc); + } +} + +static void +hppa_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + if (IS_32BIT_TARGET (gdbarch)) + tdep->in_solib_call_trampoline = hppa32_hpux_in_solib_call_trampoline; + else + tdep->in_solib_call_trampoline = hppa64_hpux_in_solib_call_trampoline; + + tdep->unwind_adjust_stub = hppa_hpux_unwind_adjust_stub; + + set_gdbarch_in_solib_return_trampoline + (gdbarch, hppa_hpux_in_solib_return_trampoline); + set_gdbarch_skip_trampoline_code (gdbarch, hppa_hpux_skip_trampoline_code); + + set_gdbarch_push_dummy_code (gdbarch, hppa_hpux_push_dummy_code); + set_gdbarch_call_dummy_location (gdbarch, ON_STACK); + + set_gdbarch_read_pc (gdbarch, hppa_hpux_read_pc); + set_gdbarch_write_pc (gdbarch, hppa_hpux_write_pc); + set_gdbarch_unwind_pc (gdbarch, hppa_hpux_unwind_pc); + set_gdbarch_skip_permanent_breakpoint + (gdbarch, hppa_skip_permanent_breakpoint); + + set_gdbarch_regset_from_core_section + (gdbarch, hppa_hpux_regset_from_core_section); + + frame_unwind_append_unwinder (gdbarch, &hppa_hpux_sigtramp_frame_unwind); +} static void hppa_hpux_som_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + tdep->is_elf = 0; + + tdep->find_global_pointer = hppa32_hpux_find_global_pointer; + + hppa_hpux_init_abi (info, gdbarch); + som_solib_select (gdbarch); } static void hppa_hpux_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + tdep->is_elf = 1; + tdep->find_global_pointer = hppa64_hpux_find_global_pointer; + + hppa_hpux_init_abi (info, gdbarch); + pa64_solib_select (gdbarch); +} + +static enum gdb_osabi +hppa_hpux_core_osabi_sniffer (bfd *abfd) +{ + if (strcmp (bfd_get_target (abfd), "hpux-core") == 0) + return GDB_OSABI_HPUX_SOM; + else if (strcmp (bfd_get_target (abfd), "elf64-hppa") == 0) + { + asection *section; + + section = bfd_get_section_by_name (abfd, ".kernel"); + if (section) + { + bfd_size_type size; + char *contents; + + size = bfd_section_size (abfd, section); + contents = alloca (size); + if (bfd_get_section_contents (abfd, section, contents, + (file_ptr) 0, size) + && strcmp (contents, "HP-UX") == 0) + return GDB_OSABI_HPUX_ELF; + } + } + + return GDB_OSABI_UNKNOWN; } void _initialize_hppa_hpux_tdep (void) { + /* BFD doesn't set a flavour for HP-UX style core files. It doesn't + set the architecture either. */ + gdbarch_register_osabi_sniffer (bfd_arch_unknown, + bfd_target_unknown_flavour, + hppa_hpux_core_osabi_sniffer); + gdbarch_register_osabi_sniffer (bfd_arch_hppa, + bfd_target_elf_flavour, + hppa_hpux_core_osabi_sniffer); + gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_HPUX_SOM, hppa_hpux_som_init_abi); - gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_HPUX_ELF, + gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_HPUX_ELF, hppa_hpux_elf_init_abi); }