X-Git-Url: http://drtracing.org/?a=blobdiff_plain;f=gdb%2Fm88k-tdep.c;h=6514fe636028aafcd9dfe54503e99b59a3d47711;hb=e17a4113357102b55cfa5b80557d590a46a43300;hp=71407f3094906b779cab07109cb8e6a3801d54fa;hpb=d1630095c4fe445db61fa9e666a821548d49a9e4;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/m88k-tdep.c b/gdb/m88k-tdep.c index 71407f3094..6514fe6360 100644 --- a/gdb/m88k-tdep.c +++ b/gdb/m88k-tdep.c @@ -1,594 +1,883 @@ -/* Copyright (C) 1988, 1990 Free Software Foundation, Inc. +/* Target-dependent code for the Motorola 88000 series. -This file is part of GDB. + Copyright (C) 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc. -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. + This file is part of GDB. -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . */ -#include #include "defs.h" -#include "param.h" +#include "arch-utils.h" +#include "dis-asm.h" #include "frame.h" -#include "inferior.h" +#include "frame-base.h" +#include "frame-unwind.h" +#include "gdbcore.h" +#include "gdbtypes.h" +#include "regcache.h" +#include "regset.h" +#include "symtab.h" +#include "trad-frame.h" #include "value.h" -#ifdef USG -#include -#endif +#include "gdb_assert.h" +#include "gdb_string.h" -#include -#include -#include -#include "gdbcore.h" -#include -#ifndef USER /* added to support BCS ptrace_user */ +#include "m88k-tdep.h" -#define USER ptrace_user -#endif -#include -#include +/* Fetch the instruction at PC. */ -#include -#include +static unsigned long +m88k_fetch_instruction (CORE_ADDR pc, enum bfd_endian byte_order) +{ + return read_memory_unsigned_integer (pc, 4, byte_order); +} -#include "symtab.h" -#include "setjmp.h" -#include "value.h" +/* Register information. */ -int stack_error; -jmp_buf stack_jmp; +/* Return the name of register REGNUM. */ -void -tdesc_error_function (environment, continuable, message) -dc_word_t environment; -dc_boolean_t continuable; -char *message; +static const char * +m88k_register_name (struct gdbarch *gdbarch, int regnum) { - if (stack_error) longjmp (stack_jmp, 1); - if (!continuable) - { - printf("%s\n",message); - abort(); - } -} + static char *register_names[] = + { + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", + "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", + "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", + "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip" + }; + if (regnum >= 0 && regnum < ARRAY_SIZE (register_names)) + return register_names[regnum]; -void -tdesc_read_function (environment, memory, length, buffer) -dc_word_t environment; -dc_word_t memory; -int length; -char *buffer; -{ - int ptrace_code; - errno = 0; - if (memory < 2048) -#if 0 - /* This is a no-op! It sets buffer, but doesn't do anything to - what buffer points to. What does this function do anyway? - And this is wrong for cross-debugging. */ - buffer = ptrace (3, inferior_pid, memory, 0); -#else - return; -#endif - else - read_memory (memory, buffer, length); + return NULL; } -/* Map function for tdesc */ -void -tdesc_map_function (map_env, loc, map_info_in, map_info_out) -dc_word_t map_env; -dc_word_t loc; -dc_map_info_in_t map_info_in; -dc_map_info_out_t *map_info_out; -{ -int map_flags = DC_MIO_ENTRY_POINT | DC_MIO_IMPLICIT_PROLOGUE_END; -int entry_point = get_pc_function_start(loc); -map_info_out->flags = map_flags; -map_info_out->entry_point = entry_point; -} +/* Return the GDB type object for the "standard" data type of data in + register REGNUM. */ -dc_handle_t tdesc_handle; +static struct type * +m88k_register_type (struct gdbarch *gdbarch, int regnum) +{ + /* SXIP, SNIP, SFIP and R1 contain code addresses. */ + if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM) + || regnum == M88K_R1_REGNUM) + return builtin_type (gdbarch)->builtin_func_ptr; -extern int debug_info; + /* R30 and R31 typically contains data addresses. */ + if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM) + return builtin_type (gdbarch)->builtin_data_ptr; -void -init_tdesc () -{ - tdesc_handle = dc_initiate (debug_info, tdesc_error_function, - 0,tdesc_read_function,0,0,0,0,0,tdesc_map_function,0); -} -dc_dcontext_t current_context; - -/* setup current context, called from wait_for_inferior */ - -dc_dcontext_t -init_dcontext() -{ - dc_word_t reg_info[DC_NUM_REG]; - dc_word_t reg_flags[2] = {0,-1}; - dc_word_t aux_info[DC_NUM_AUX]; - dc_word_t aux_flags[2] = {0,-1}; - dc_exactness_t loc_exact = DC_NO; - dc_word_t psr_info; - dc_boolean_t psr_ind = 0; - dc_word_t psr_flags[2] = {0,-1}; - - bcopy (®isters, reg_info, DC_NUM_REG * 4); - aux_info[DC_AUX_LOC] = read_register(SXIP_REGNUM); - aux_info[DC_AUX_SXIP] = read_register(SXIP_REGNUM); - aux_info[DC_AUX_SNIP] = read_register(SNIP_REGNUM); - aux_info[DC_AUX_SFIP] = read_register(SFIP_REGNUM); - aux_info[DC_AUX_FPSR] = read_register(FPSR_REGNUM); - aux_info[DC_AUX_FPCR] = read_register(FPCR_REGNUM); - - psr_info = read_register(PSR_REGNUM); - - return dc_make_dcontext (tdesc_handle, reg_info, reg_flags, aux_info, - aux_flags, loc_exact, psr_info, psr_ind, psr_flags); + return builtin_type (gdbarch)->builtin_int32; } + - -dc_dcontext_t -get_prev_context (context) - dc_dcontext_t context; +static CORE_ADDR +m88k_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) { - return current_context = dc_previous_dcontext (context); + /* All instructures are 4-byte aligned. The lower 2 bits of SXIP, + SNIP and SFIP are used for special purposes: bit 0 is the + exception bit and bit 1 is the valid bit. */ + return addr & ~0x3; } - +/* Use the program counter to determine the contents and size of a + breakpoint instruction. Return a pointer to a string of bytes that + encode a breakpoint instruction, store the length of the string in + *LEN and optionally adjust *PC to point to the correct memory + location for inserting the breakpoint. */ + +static const gdb_byte * +m88k_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len) +{ + /* tb 0,r0,511 */ + static gdb_byte break_insn[] = { 0xf0, 0x00, 0xd1, 0xff }; + *len = sizeof (break_insn); + return break_insn; +} -/* Determine frame base for this file's frames. This will be either - the CFA or the old style FP_REGNUM; the symtab for the current pc's - file has the information */ +static CORE_ADDR +m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + CORE_ADDR pc; -CORE_ADDR -get_frame_base(pc) -CORE_ADDR pc; + pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM); + return m88k_addr_bits_remove (gdbarch, pc); +} + +static void +m88k_write_pc (struct regcache *regcache, CORE_ADDR pc) { - struct symtab *this_file = find_pc_symtab(pc); - int coffsem_frame_position; - - /* If this_file is null, there's a good chance the file was compiled - without -g. If that's the case, use CFA (canonical frame addr) - as the default frame pointer. */ + /* According to the MC88100 RISC Microprocessor User's Manual, + section 6.4.3.1.2: + + "... can be made to return to a particular instruction by placing + a valid instruction address in the SNIP and the next sequential + instruction address in the SFIP (with V bits set and E bits + clear). The rte resumes execution at the instruction pointed to + by the SNIP, then the SFIP." + + The E bit is the least significant bit (bit 0). The V (valid) + bit is bit 1. This is why we logical or 2 into the values we are + writing below. It turns out that SXIP plays no role when + returning from an exception so nothing special has to be done + with it. We could even (presumably) give it a totally bogus + value. */ + + regcache_cooked_write_unsigned (regcache, M88K_SXIP_REGNUM, pc); + regcache_cooked_write_unsigned (regcache, M88K_SNIP_REGNUM, pc | 2); + regcache_cooked_write_unsigned (regcache, M88K_SFIP_REGNUM, (pc + 4) | 2); +} + - if (this_file) +/* The functions on this page are intended to be used to classify + function arguments. */ + +/* Check whether TYPE is "Integral or Pointer". */ + +static int +m88k_integral_or_pointer_p (const struct type *type) +{ + switch (TYPE_CODE (type)) { - coffsem_frame_position = this_file->coffsem & 3; - if (coffsem_frame_position == 1) - return (CORE_ADDR) dc_general_register (current_context, FP_REGNUM); - else - /* default is CFA, as well as if coffsem==2 */ - return (CORE_ADDR) dc_frame_address (current_context); + case TYPE_CODE_INT: + case TYPE_CODE_BOOL: + case TYPE_CODE_CHAR: + case TYPE_CODE_ENUM: + case TYPE_CODE_RANGE: + { + /* We have byte, half-word, word and extended-word/doubleword + integral types. */ + int len = TYPE_LENGTH (type); + return (len == 1 || len == 2 || len == 4 || len == 8); + } + return 1; + case TYPE_CODE_PTR: + case TYPE_CODE_REF: + { + /* Allow only 32-bit pointers. */ + return (TYPE_LENGTH (type) == 4); + } + return 1; + default: + break; } - return (CORE_ADDR) dc_frame_address (current_context); + return 0; } -#if TARGET_BYTE_ORDER != HOST_BYTE_ORDER -you lose -#else /* Host and target byte order the same. */ -#define SINGLE_EXP_BITS 8 -#define DOUBLE_EXP_BITS 11 -int -IEEE_isNAN(fp, len) - int *fp, len; - /* fp points to a single precision OR double precision - * floating point value; len is the number of bytes, either 4 or 8. - * Returns 1 iff fp points to a valid IEEE floating point number. - * Returns 0 if fp points to a denormalized number or a NaN - */ -{ - int exponent; - if (len == 4) - { - exponent = *fp; - exponent = exponent << 1 >> (32 - SINGLE_EXP_BITS - 1); - return ((exponent == -1) || (! exponent && *fp)); - } - else if (len == 8) +/* Check whether TYPE is "Floating". */ + +static int +m88k_floating_p (const struct type *type) +{ + switch (TYPE_CODE (type)) { - exponent = *(fp+1); - exponent = exponent << 1 >> (32 - DOUBLE_EXP_BITS - 1); - return ((exponent == -1) || (! exponent && *fp * *(fp+1))); + case TYPE_CODE_FLT: + { + int len = TYPE_LENGTH (type); + return (len == 4 || len == 8); + } + default: + break; } - else return 1; + + return 0; } -#endif /* Host and target byte order the same. */ -#define FIRST_PRESERVED_REGNUM 14 -#define LAST_PRESERVED_REGNUM 25 -#define FIRST_PARM_REGNUM 2 -#define LAST_PARM_REGNUM 9 +/* Check whether TYPE is "Structure or Union". */ -#define MAX_REG_PARMS (LAST_PARM_REGNUM - FIRST_PARM_REGNUM + 1) +static int +m88k_structure_or_union_p (const struct type *type) +{ + switch (TYPE_CODE (type)) + { + case TYPE_CODE_STRUCT: + case TYPE_CODE_UNION: + return 1; + default: + break; + } -void -frame_find_saved_regs (fi, fsr) - struct frame_info *fi; - struct frame_saved_regs *fsr; -{ - register int regnum; - - error ("Feature not implemented for the 88k yet."); - return; - -#if 0 - for (regnum = FIRST_PARM_REGNUM; regnum <= LAST_PARM_REGNUM; regnum++) - fsr->regs[regnum] - = (unsigned) fi->frame - ((regnum - FIRST_PARM_REGNUM) * 4); - - fsr->regs[SP_REGNUM] = 0; /* SP not saved in frames */ - fsr->regs[FP_REGNUM] = fi->frame; - fsr->regs[PC_REGNUM] = fi->frame + 4; -#endif + return 0; } +/* Check whether TYPE has 8-byte alignment. */ + static int -pushed_size (prev_words, v) - int prev_words; - struct value *v; +m88k_8_byte_align_p (struct type *type) { - switch (TYPE_CODE (VALUE_TYPE (v))) + if (m88k_structure_or_union_p (type)) { - case TYPE_CODE_VOID: /* Void type (values zero length) */ + int i; - return 0; /* That was easy! */ - - case TYPE_CODE_PTR: /* Pointer type */ - case TYPE_CODE_ENUM: /* Enumeration type */ - case TYPE_CODE_INT: /* Integer type */ - case TYPE_CODE_REF: /* C++ Reference types */ - case TYPE_CODE_ARRAY: /* Array type, lower bound zero */ + for (i = 0; i < TYPE_NFIELDS (type); i++) + { + struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i)); - return 1; + if (m88k_8_byte_align_p (subtype)) + return 1; + } + } - case TYPE_CODE_FLT: /* Floating type */ + if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type)) + return (TYPE_LENGTH (type) == 8); - if (TYPE_LENGTH (VALUE_TYPE (v)) == 4) - return 1; - else - /* Assume that it must be a double. */ - if (prev_words & 1) /* at an odd-word boundary */ - return 3; /* round to 8-byte boundary */ - else - return 2; + return 0; +} - case TYPE_CODE_STRUCT: /* C struct or Pascal record */ - case TYPE_CODE_UNION: /* C union or Pascal variant part */ +/* Check whether TYPE can be passed in a register. */ - return (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4); +static int +m88k_in_register_p (struct type *type) +{ + if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type)) + return 1; - case TYPE_CODE_FUNC: /* Function type */ - case TYPE_CODE_SET: /* Pascal sets */ - case TYPE_CODE_RANGE: /* Range (integers within bounds) */ - case TYPE_CODE_PASCAL_ARRAY: /* Array with explicit type of index */ - case TYPE_CODE_MEMBER: /* Member type */ - case TYPE_CODE_METHOD: /* Method type */ - /* Don't know how to pass these yet. */ + if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4) + return 1; - case TYPE_CODE_UNDEF: /* Not used; catches errors */ - default: - abort (); - } + return 0; } -static void -store_parm_word (address, val) - CORE_ADDR address; - int val; +static CORE_ADDR +m88k_store_arguments (struct regcache *regcache, int nargs, + struct value **args, CORE_ADDR sp) { - write_memory (address, &val, 4); -} + struct gdbarch *gdbarch = get_regcache_arch (regcache); + int num_register_words = 0; + int num_stack_words = 0; + int i; -static int -store_parm (prev_words, left_parm_addr, v) - unsigned int prev_words; - CORE_ADDR left_parm_addr; - struct value *v; -{ - CORE_ADDR start = left_parm_addr + (prev_words * 4); - int *val_addr = (int *)VALUE_CONTENTS(v); - - switch (TYPE_CODE (VALUE_TYPE (v))) + for (i = 0; i < nargs; i++) { - case TYPE_CODE_VOID: /* Void type (values zero length) */ + struct type *type = value_type (args[i]); + int len = TYPE_LENGTH (type); - return 0; + if (m88k_integral_or_pointer_p (type) && len < 4) + { + args[i] = value_cast (builtin_type (gdbarch)->builtin_int32, + args[i]); + type = value_type (args[i]); + len = TYPE_LENGTH (type); + } - case TYPE_CODE_PTR: /* Pointer type */ - case TYPE_CODE_ENUM: /* Enumeration type */ - case TYPE_CODE_INT: /* Integer type */ - case TYPE_CODE_ARRAY: /* Array type, lower bound zero */ - case TYPE_CODE_REF: /* C++ Reference types */ + if (m88k_in_register_p (type)) + { + int num_words = 0; - store_parm_word (start, *val_addr); - return 1; + if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type)) + num_words++; - case TYPE_CODE_FLT: /* Floating type */ + num_words += ((len + 3) / 4); + if (num_register_words + num_words <= 8) + { + num_register_words += num_words; + continue; + } - if (TYPE_LENGTH (VALUE_TYPE (v)) == 4) - { - store_parm_word (start, *val_addr); - return 1; - } - else - { - store_parm_word (start + ((prev_words & 1) * 4), val_addr[0]); - store_parm_word (start + ((prev_words & 1) * 4) + 4, val_addr[1]); - return 2 + (prev_words & 1); - } + /* We've run out of available registers. Pass the argument + on the stack. */ + } + + if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type)) + num_stack_words++; + + num_stack_words += ((len + 3) / 4); + } - case TYPE_CODE_STRUCT: /* C struct or Pascal record */ - case TYPE_CODE_UNION: /* C union or Pascal variant part */ + /* Allocate stack space. */ + sp = align_down (sp - 32 - num_stack_words * 4, 16); + num_stack_words = num_register_words = 0; + for (i = 0; i < nargs; i++) + { + const bfd_byte *valbuf = value_contents (args[i]); + struct type *type = value_type (args[i]); + int len = TYPE_LENGTH (type); + int stack_word = num_stack_words; + + if (m88k_in_register_p (type)) { - unsigned int words = (((TYPE_LENGTH (VALUE_TYPE (v)) + 3) / 4) * 4); - unsigned int word; + int register_word = num_register_words; + + if (register_word % 2 == 1 && m88k_8_byte_align_p (type)) + register_word++; + + gdb_assert (len == 4 || len == 8); - for (word = 0; word < words; word++) - store_parm_word (start + (word * 4), val_addr[word]); - return words; + if (register_word + len / 8 < 8) + { + int regnum = M88K_R2_REGNUM + register_word; + + regcache_raw_write (regcache, regnum, valbuf); + if (len > 4) + regcache_raw_write (regcache, regnum + 1, valbuf + 4); + + num_register_words = (register_word + len / 4); + continue; + } } - default: - abort (); + if (stack_word % 2 == -1 && m88k_8_byte_align_p (type)) + stack_word++; + + write_memory (sp + stack_word * 4, valbuf, len); + num_stack_words = (stack_word + (len + 3) / 4); } + + return sp; } - /* This routine sets up all of the parameter values needed to make a pseudo - call. The name "push_parameters" is a misnomer on some archs, - because (on the m88k) most parameters generally end up being passed in - registers rather than on the stack. In this routine however, we do - end up storing *all* parameter values onto the stack (even if we will - realize later that some of these stores were unnecessary). */ +static CORE_ADDR +m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function, + struct regcache *regcache, CORE_ADDR bp_addr, int nargs, + struct value **args, CORE_ADDR sp, int struct_return, + CORE_ADDR struct_addr) +{ + /* Set up the function arguments. */ + sp = m88k_store_arguments (regcache, nargs, args, sp); + gdb_assert (sp % 16 == 0); + + /* Store return value address. */ + if (struct_return) + regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr); -void -push_parameters (return_type, struct_conv, nargs, args) - struct type *return_type; - int struct_conv; - int nargs; - value *args; - { - int parm_num; - unsigned int p_words = 0; - CORE_ADDR left_parm_addr; - - /* Start out by creating a space for the return value (if need be). We - only need to do this if the return value is a struct or union. If we - do make a space for a struct or union return value, then we must also - arrange for the base address of that space to go into r12, which is the - standard place to pass the address of the return value area to the - callee. Note that only structs and unions are returned in this fashion. - Ints, enums, pointers, and floats are returned into r2. Doubles are - returned into the register pair {r2,r3}. Note also that the space - reserved for a struct or union return value only has to be word aligned - (not double-word) but it is double-word aligned here anyway (just in - case that becomes important someday). */ - - switch (TYPE_CODE (return_type)) - { - case TYPE_CODE_STRUCT: - case TYPE_CODE_UNION: - { - int return_bytes = ((TYPE_LENGTH (return_type) + 7) / 8) * 8; - CORE_ADDR rv_addr; - - rv_addr = read_register (SP_REGNUM) - return_bytes; - - write_register (SP_REGNUM, rv_addr); /* push space onto the stack */ - write_register (SRA_REGNUM, rv_addr);/* set return value register */ - } - } - - /* Here we make a pre-pass on the whole parameter list to figure out exactly - how many words worth of stuff we are going to pass. */ - - for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++) - p_words += pushed_size (p_words, value_arg_coerce (args[parm_num])); - - /* Now, check to see if we have to round up the number of parameter words - to get up to the next 8-bytes boundary. This may be necessary because - of the software convention to always keep the stack aligned on an 8-byte - boundary. */ - - if (p_words & 1) - p_words++; /* round to 8-byte boundary */ - - /* Now figure out the absolute address of the leftmost parameter, and update - the stack pointer to point at that address. */ - - left_parm_addr = read_register (SP_REGNUM) - (p_words * 4); - write_register (SP_REGNUM, left_parm_addr); - - /* Now we can go through all of the parameters (in left-to-right order) - and write them to their parameter stack slots. Note that we are not - really "pushing" the parameter values. The stack space for these values - was already allocated above. Now we are just filling it up. */ - - for (p_words = 0, parm_num = 0; parm_num < nargs; parm_num++) - p_words += - store_parm (p_words, left_parm_addr, value_arg_coerce (args[parm_num])); - - /* Now that we are all done storing the parameter values into the stack, we - must go back and load up the parameter registers with the values from the - corresponding stack slots. Note that in the two cases of (a) gaps in the - parameter word sequence causes by (otherwise) misaligned doubles, and (b) - slots correcponding to structs or unions, the work we do here in loading - some parameter registers may be unnecessary, but who cares? */ - - for (p_words = 0; p_words < 8; p_words++) - { - write_register (FIRST_PARM_REGNUM + p_words, - read_memory_integer (left_parm_addr + (p_words * 4), 4)); - } + /* Store the stack pointer and return address in the appropriate + registers. */ + regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp); + regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr); + + /* Return the stack pointer. */ + return sp; } -void -pop_frame () +static struct frame_id +m88k_dummy_id (struct gdbarch *arch, struct frame_info *this_frame) { - error ("Feature not implemented for the m88k yet."); - return; + CORE_ADDR sp; + + sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM); + return frame_id_build (sp, get_frame_pc (this_frame)); } + + +/* Determine, for architecture GDBARCH, how a return value of TYPE + should be returned. If it is supposed to be returned in registers, + and READBUF is non-zero, read the appropriate value from REGCACHE, + and copy it into READBUF. If WRITEBUF is non-zero, write the value + from WRITEBUF into REGCACHE. */ + +static enum return_value_convention +m88k_return_value (struct gdbarch *gdbarch, struct type *func_type, + struct type *type, struct regcache *regcache, + gdb_byte *readbuf, const gdb_byte *writebuf) +{ + int len = TYPE_LENGTH (type); + gdb_byte buf[8]; - void - collect_returned_value (rval, value_type, struct_return, nargs, args) - value *rval; - struct type *value_type; - int struct_return; - int nargs; - value *args; - { - char retbuf[REGISTER_BYTES]; - - bcopy (registers, retbuf, REGISTER_BYTES); - *rval = value_being_returned (value_type, retbuf, struct_return); - return; - } - -#if 0 -/* Now handled in a machine independent way with CALL_DUMMY_LOCATION. */ - /* Stuff a breakpoint instruction onto the stack (or elsewhere if the stack - is not a good place for it). Return the address at which the instruction - got stuffed, or zero if we were unable to stuff it anywhere. */ - - CORE_ADDR - push_breakpoint () - { - static char breakpoint_insn[] = BREAKPOINT; - extern CORE_ADDR text_end; /* of inferior */ - static char readback_buffer[] = BREAKPOINT; - int i; - - /* With a little bit of luck, we can just stash the breakpoint instruction - in the word just beyond the end of normal text space. For systems on - which the hardware will not allow us to execute out of the stack segment, - we have to hope that we *are* at least allowed to effectively extend the - text segment by one word. If the actual end of user's the text segment - happens to fall right at a page boundary this trick may fail. Note that - we check for this by reading after writing, and comparing in order to - be sure that the write worked. */ - - write_memory (text_end, &breakpoint_insn, 4); - - /* Fill the readback buffer with some garbage which is certain to be - unequal to the breakpoint insn. That way we can tell if the - following read doesn't actually succeed. */ - - for (i = 0; i < sizeof (readback_buffer); i++) - readback_buffer[i] = ~ readback_buffer[i]; /* Invert the bits */ - - /* Now check that the breakpoint insn was successfully installed. */ - - read_memory (text_end, readback_buffer, sizeof (readback_buffer)); - for (i = 0; i < sizeof (readback_buffer); i++) - if (readback_buffer[i] != breakpoint_insn[i]) - return 0; /* Failed to install! */ - - return text_end; - } -#endif - -/* Like dc_psr_register but takes an extra int arg. */ -static dc_word_t -psr_register (context, dummy) - dc_dcontext_t context; - int dummy; -{ - return dc_psr_register (context); + if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type)) + return RETURN_VALUE_STRUCT_CONVENTION; + + if (readbuf) + { + /* Read the contents of R2 and (if necessary) R3. */ + regcache_cooked_read (regcache, M88K_R2_REGNUM, buf); + if (len > 4) + { + regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4); + gdb_assert (len == 8); + memcpy (readbuf, buf, len); + } + else + { + /* Just stripping off any unused bytes should preserve the + signed-ness just fine. */ + memcpy (readbuf, buf + 4 - len, len); + } + } + + if (writebuf) + { + /* Read the contents to R2 and (if necessary) R3. */ + if (len > 4) + { + gdb_assert (len == 8); + memcpy (buf, writebuf, 8); + regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4); + } + else + { + /* ??? Do we need to do any sign-extension here? */ + memcpy (buf + 4 - len, writebuf, len); + } + regcache_cooked_write (regcache, M88K_R2_REGNUM, buf); + } + + return RETURN_VALUE_REGISTER_CONVENTION; } + +/* Default frame unwinder. */ -/* Same functionality as get_saved_register in findvar.c, but implemented - to use tdesc. */ -void -get_saved_register (raw_buffer, optim, addrp, frame, regnum, lvalp) - char *raw_buffer; - int *optim; - CORE_ADDR *addrp; - FRAME frame; - int regnum; - enum lval_type *lvalp; -{ - struct frame_info *fi = get_frame_info (frame); - - /* Functions to say whether a register is optimized out, and - if not, to get the value. Take as args a context and the - value of get_reg_arg. */ - int (*get_reg_state) (); - dc_word_t (*get_reg) (); - int get_reg_arg; - - /* Because tdesc doesn't tell us whether it got it from a register - or memory, always say we don't have an address for it. */ - if (addrp != NULL) - *addrp = 0; - - if (regnum < DC_NUM_REG) +struct m88k_frame_cache +{ + /* Base address. */ + CORE_ADDR base; + CORE_ADDR pc; + + int sp_offset; + int fp_offset; + + /* Table of saved registers. */ + struct trad_frame_saved_reg *saved_regs; +}; + +/* Prologue analysis. */ + +/* Macros for extracting fields from instructions. */ + +#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos)) +#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width)) +#define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF)) +#define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF)) +#define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5) +#define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF)) + +/* Possible actions to be taken by the prologue analyzer for the + instructions it encounters. */ + +enum m88k_prologue_insn_action +{ + M88K_PIA_SKIP, /* Ignore. */ + M88K_PIA_NOTE_ST, /* Note register store. */ + M88K_PIA_NOTE_STD, /* Note register pair store. */ + M88K_PIA_NOTE_SP_ADJUSTMENT, /* Note stack pointer adjustment. */ + M88K_PIA_NOTE_FP_ASSIGNMENT, /* Note frame pointer assignment. */ + M88K_PIA_NOTE_BRANCH, /* Note branch. */ + M88K_PIA_NOTE_PROLOGUE_END /* Note end of prologue. */ +}; + +/* Table of instructions that may comprise a function prologue. */ + +struct m88k_prologue_insn +{ + unsigned long insn; + unsigned long mask; + enum m88k_prologue_insn_action action; +}; + +struct m88k_prologue_insn m88k_prologue_insn_table[] = +{ + /* Various register move instructions. */ + { 0x58000000, 0xf800ffff, M88K_PIA_SKIP }, /* or/or.u with immed of 0 */ + { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP }, /* or rd,r0,rs */ + { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP }, /* or rd,rs,r0 */ + + /* Various other instructions. */ + { 0x58000000, 0xf8000000, M88K_PIA_SKIP }, /* or/or.u */ + + /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8. */ + { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT }, + + /* Frame pointer assignment: "addu r30,r31,n". */ + { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT }, + + /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n". */ + { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST }, /* st rx,sp,n */ + { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */ + + /* Instructions needed for setting up r25 for pic code. */ + { 0x5f200000, 0xffff0000, M88K_PIA_SKIP }, /* or.u r25,r0,offset_high */ + { 0xcc000002, 0xffffffff, M88K_PIA_SKIP }, /* bsr.n Lab */ + { 0x5b390000, 0xffff0000, M88K_PIA_SKIP }, /* or r25,r25,offset_low */ + { 0xf7396001, 0xffffffff, M88K_PIA_SKIP }, /* Lab: addu r25,r25,r1 */ + + /* Various branch or jump instructions which have a delay slot -- + these do not form part of the prologue, but the instruction in + the delay slot might be a store instruction which should be + noted. */ + { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH }, + /* br.n, bsr.n, bb0.n, or bb1.n */ + { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */ + { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */ + + /* Catch all. Ends prologue analysis. */ + { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END } +}; + +/* Do a full analysis of the function prologue at PC and update CACHE + accordingly. Bail out early if LIMIT is reached. Return the + address where the analysis stopped. If LIMIT points beyond the + function prologue, the return address should be the end of the + prologue. */ + +static CORE_ADDR +m88k_analyze_prologue (struct gdbarch *gdbarch, + CORE_ADDR pc, CORE_ADDR limit, + struct m88k_frame_cache *cache) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + CORE_ADDR end = limit; + + /* Provide a dummy cache if necessary. */ + if (cache == NULL) { - get_reg_state = dc_general_register_state; - get_reg = dc_general_register; - get_reg_arg = regnum; + size_t sizeof_saved_regs = + (M88K_R31_REGNUM + 1) * sizeof (struct trad_frame_saved_reg); + + cache = alloca (sizeof (struct m88k_frame_cache)); + cache->saved_regs = alloca (sizeof_saved_regs); + + /* We only initialize the members we care about. */ + cache->saved_regs[M88K_R1_REGNUM].addr = -1; + cache->fp_offset = -1; } - else + + while (pc < limit) { - get_reg_state = dc_auxiliary_register_state; - get_reg = dc_auxiliary_register; - switch (regnum) + struct m88k_prologue_insn *pi = m88k_prologue_insn_table; + unsigned long insn = m88k_fetch_instruction (pc, byte_order); + + while ((insn & pi->mask) != pi->insn) + pi++; + + switch (pi->action) { - case SXIP_REGNUM: - get_reg_arg = DC_AUX_SXIP; + case M88K_PIA_SKIP: + /* If we have a frame pointer, and R1 has been saved, + consider this instruction as not being part of the + prologue. */ + if (cache->fp_offset != -1 + && cache->saved_regs[M88K_R1_REGNUM].addr != -1) + return min (pc, end); break; - case SNIP_REGNUM: - get_reg_arg = DC_AUX_SNIP; + + case M88K_PIA_NOTE_ST: + case M88K_PIA_NOTE_STD: + /* If no frame has been allocated, the stores aren't part of + the prologue. */ + if (cache->sp_offset == 0) + return min (pc, end); + + /* Record location of saved registers. */ + { + int regnum = ST_SRC (insn) + M88K_R0_REGNUM; + ULONGEST offset = ST_OFFSET (insn); + + cache->saved_regs[regnum].addr = offset; + if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM) + cache->saved_regs[regnum + 1].addr = offset + 4; + } break; - case FPSR_REGNUM: - get_reg_arg = DC_AUX_FPSR; + + case M88K_PIA_NOTE_SP_ADJUSTMENT: + /* A second stack pointer adjustment isn't part of the + prologue. */ + if (cache->sp_offset != 0) + return min (pc, end); + + /* Store stack pointer adjustment. */ + cache->sp_offset = -SUBU_OFFSET (insn); break; - case FPCR_REGNUM: - get_reg_arg = DC_AUX_FPCR; + + case M88K_PIA_NOTE_FP_ASSIGNMENT: + /* A second frame pointer assignment isn't part of the + prologue. */ + if (cache->fp_offset != -1) + return min (pc, end); + + /* Record frame pointer assignment. */ + cache->fp_offset = ADDU_OFFSET (insn); break; - case PSR_REGNUM: - get_reg_state = dc_psr_register_bit_state; - get_reg = psr_register; - get_reg_arg = 0; + + case M88K_PIA_NOTE_BRANCH: + /* The branch instruction isn't part of the prologue, but + the instruction in the delay slot might be. Limit the + prologue analysis to the delay slot and record the branch + instruction as the end of the prologue. */ + limit = min (limit, pc + 2 * M88K_INSN_SIZE); + end = pc; break; - default: - if (optim != NULL) - *optim = 1; - return; + + case M88K_PIA_NOTE_PROLOGUE_END: + return min (pc, end); } + + pc += M88K_INSN_SIZE; } - if ((*get_reg_state) (fi->frame_context, get_reg_arg)) + return end; +} + +/* An upper limit to the size of the prologue. */ +const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE; + +/* Return the address of first real instruction of the function + starting at PC. */ + +static CORE_ADDR +m88k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) +{ + struct symtab_and_line sal; + CORE_ADDR func_start, func_end; + + /* This is the preferred method, find the end of the prologue by + using the debugging information. */ + if (find_pc_partial_function (pc, NULL, &func_start, &func_end)) + { + sal = find_pc_line (func_start, 0); + + if (sal.end < func_end && pc <= sal.end) + return sal.end; + } + + return m88k_analyze_prologue (gdbarch, pc, pc + m88k_max_prologue_size, + NULL); +} + +static struct m88k_frame_cache * +m88k_frame_cache (struct frame_info *this_frame, void **this_cache) +{ + struct gdbarch *gdbarch = get_frame_arch (this_frame); + struct m88k_frame_cache *cache; + CORE_ADDR frame_sp; + + if (*this_cache) + return *this_cache; + + cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache); + cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); + cache->fp_offset = -1; + + cache->pc = get_frame_func (this_frame); + if (cache->pc != 0) + m88k_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame), + cache); + + /* Calculate the stack pointer used in the prologue. */ + if (cache->fp_offset != -1) { - if (raw_buffer != NULL) - *(int *)raw_buffer = (*get_reg) (fi->frame_context, get_reg_arg); - if (optim != NULL) - *optim = 0; - return; + CORE_ADDR fp; + + fp = get_frame_register_unsigned (this_frame, M88K_R30_REGNUM); + frame_sp = fp - cache->fp_offset; } else { - if (optim != NULL) - *optim = 1; - return; + /* If we know where the return address is saved, we can take a + solid guess at what the frame pointer should be. */ + if (cache->saved_regs[M88K_R1_REGNUM].addr != -1) + cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4; + frame_sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM); + } + + /* Now that we know the stack pointer, adjust the location of the + saved registers. */ + { + int regnum; + + for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++) + if (cache->saved_regs[regnum].addr != -1) + cache->saved_regs[regnum].addr += frame_sp; + } + + /* Calculate the frame's base. */ + cache->base = frame_sp - cache->sp_offset; + trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base); + + /* Identify SXIP with the return address in R1. */ + cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM]; + + *this_cache = cache; + return cache; +} + +static void +m88k_frame_this_id (struct frame_info *this_frame, void **this_cache, + struct frame_id *this_id) +{ + struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache); + + /* This marks the outermost frame. */ + if (cache->base == 0) + return; + + (*this_id) = frame_id_build (cache->base, cache->pc); +} + +static struct value * +m88k_frame_prev_register (struct frame_info *this_frame, + void **this_cache, int regnum) +{ + struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache); + + if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM) + { + struct value *value; + CORE_ADDR pc; + + value = trad_frame_get_prev_register (this_frame, cache->saved_regs, + M88K_SXIP_REGNUM); + pc = value_as_long (value); + release_value (value); + value_free (value); + + if (regnum == M88K_SFIP_REGNUM) + pc += 4; + + return frame_unwind_got_constant (this_frame, regnum, pc + 4); + } + + return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum); +} + +static const struct frame_unwind m88k_frame_unwind = +{ + NORMAL_FRAME, + m88k_frame_this_id, + m88k_frame_prev_register, + NULL, + default_frame_sniffer +}; + + +static CORE_ADDR +m88k_frame_base_address (struct frame_info *this_frame, void **this_cache) +{ + struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache); + + if (cache->fp_offset != -1) + return cache->base + cache->sp_offset + cache->fp_offset; + + return 0; +} + +static const struct frame_base m88k_frame_base = +{ + &m88k_frame_unwind, + m88k_frame_base_address, + m88k_frame_base_address, + m88k_frame_base_address +}; + + +/* Core file support. */ + +/* Supply register REGNUM from the buffer specified by GREGS and LEN + in the general-purpose register set REGSET to register cache + REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ + +static void +m88k_supply_gregset (const struct regset *regset, + struct regcache *regcache, + int regnum, const void *gregs, size_t len) +{ + const gdb_byte *regs = gregs; + int i; + + for (i = 0; i < M88K_NUM_REGS; i++) + { + if (regnum == i || regnum == -1) + regcache_raw_supply (regcache, i, regs + i * 4); } +} + +/* Motorola 88000 register set. */ - /* Well, the caller can't treat it as a register or memory... */ - if (lvalp != NULL) - *lvalp = not_lval; +static struct regset m88k_gregset = +{ + NULL, + m88k_supply_gregset +}; + +/* Return the appropriate register set for the core section identified + by SECT_NAME and SECT_SIZE. */ + +static const struct regset * +m88k_regset_from_core_section (struct gdbarch *gdbarch, + const char *sect_name, size_t sect_size) +{ + if (strcmp (sect_name, ".reg") == 0 && sect_size >= M88K_NUM_REGS * 4) + return &m88k_gregset; + + return NULL; +} + + +static struct gdbarch * +m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) +{ + struct gdbarch *gdbarch; + + /* If there is already a candidate, use it. */ + arches = gdbarch_list_lookup_by_info (arches, &info); + if (arches != NULL) + return arches->gdbarch; + + /* Allocate space for the new architecture. */ + gdbarch = gdbarch_alloc (&info, NULL); + + /* There is no real `long double'. */ + set_gdbarch_long_double_bit (gdbarch, 64); + set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); + + set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS); + set_gdbarch_register_name (gdbarch, m88k_register_name); + set_gdbarch_register_type (gdbarch, m88k_register_type); + + /* Register numbers of various important registers. */ + set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM); + set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM); + + /* Core file support. */ + set_gdbarch_regset_from_core_section + (gdbarch, m88k_regset_from_core_section); + + set_gdbarch_print_insn (gdbarch, print_insn_m88k); + + set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue); + + /* Stack grows downward. */ + set_gdbarch_inner_than (gdbarch, core_addr_lessthan); + + /* Call dummy code. */ + set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call); + set_gdbarch_dummy_id (gdbarch, m88k_dummy_id); + + /* Return value info */ + set_gdbarch_return_value (gdbarch, m88k_return_value); + + set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove); + set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc); + set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc); + set_gdbarch_write_pc (gdbarch, m88k_write_pc); + + frame_base_set_default (gdbarch, &m88k_frame_base); + frame_unwind_append_unwinder (gdbarch, &m88k_frame_unwind); + + return gdbarch; +} + + +/* Provide a prototype to silence -Wmissing-prototypes. */ +void _initialize_m88k_tdep (void); + +void +_initialize_m88k_tdep (void) +{ + gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL); }