X-Git-Url: http://drtracing.org/?a=blobdiff_plain;f=gdb%2Fsparc-tdep.c;h=1b7954b2da7bcbe40f4c4d38a524fbdf6164f1ee;hb=3fd3d7d29c5ea6ba2dff07fe353bac80fefce363;hp=b718e4c88833ab2085866c262f0422d5a55118ac;hpb=5259796be2dcfdbb88a281cab9030d3f37c3bacb;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/sparc-tdep.c b/gdb/sparc-tdep.c index b718e4c888..1b7954b2da 100644 --- a/gdb/sparc-tdep.c +++ b/gdb/sparc-tdep.c @@ -1,44 +1,191 @@ -/* Machine-dependent code which would otherwise be in inflow.c and core.c, - for GDB, the GNU debugger. - Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc. - This code is for the sparc cpu. +/* Target-dependent code for the SPARC for GDB, the GNU debugger. + Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, + 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. -This file is part of GDB. + This file is part of GDB. -This program is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2 of the License, or -(at your option) any later version. + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. -This program is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. -You should have received a copy of the GNU General Public License -along with this program; if not, write to the Free Software -Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ + +/* ??? Support for calling functions from gdb in sparc64 is unfinished. */ -#include #include "defs.h" -#include "param.h" +#include "arch-utils.h" #include "frame.h" #include "inferior.h" #include "obstack.h" -#include "signame.h" #include "target.h" -#include "ieee-float.h" +#include "value.h" +#include "bfd.h" +#include "gdb_string.h" +#include "regcache.h" -#include +#ifdef USE_PROC_FS +#include +/* Prototypes for supply_gregset etc. */ +#include "gregset.h" +#endif #include "gdbcore.h" +#include "symfile.h" /* for 'entry_point_address' */ + +/* + * Some local macros that have multi-arch and non-multi-arch versions: + */ + +#if (GDB_MULTI_ARCH > 0) + +/* Does the target have Floating Point registers? */ +#define SPARC_HAS_FPU (gdbarch_tdep (current_gdbarch)->has_fpu) +/* Number of bytes devoted to Floating Point registers: */ +#define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes) +/* Highest numbered Floating Point register. */ +#define FP_MAX_REGNUM (gdbarch_tdep (current_gdbarch)->fp_max_regnum) +/* Size of a general (integer) register: */ +#define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size) +/* Offset within the call dummy stack of the saved registers. */ +#define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset) + +#else /* non-multi-arch */ + + +/* Does the target have Floating Point registers? */ +#if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE) +#define SPARC_HAS_FPU 0 +#else +#define SPARC_HAS_FPU 1 +#endif + +/* Number of bytes devoted to Floating Point registers: */ +#if (GDB_TARGET_IS_SPARC64) +#define FP_REGISTER_BYTES (64 * 4) +#else +#if (SPARC_HAS_FPU) +#define FP_REGISTER_BYTES (32 * 4) +#else +#define FP_REGISTER_BYTES 0 +#endif +#endif + +/* Highest numbered Floating Point register. */ +#if (GDB_TARGET_IS_SPARC64) +#define FP_MAX_REGNUM (FP0_REGNUM + 48) +#else +#define FP_MAX_REGNUM (FP0_REGNUM + 32) +#endif + +/* Size of a general (integer) register: */ +#define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM)) + +/* Offset within the call dummy stack of the saved registers. */ +#if (GDB_TARGET_IS_SPARC64) +#define DUMMY_REG_SAVE_OFFSET (128 + 16) +#else +#define DUMMY_REG_SAVE_OFFSET 0x60 +#endif + +#endif /* GDB_MULTI_ARCH */ + +struct gdbarch_tdep + { + int has_fpu; + int fp_register_bytes; + int y_regnum; + int fp_max_regnum; + int intreg_size; + int reg_save_offset; + int call_dummy_call_offset; + int print_insn_mach; + }; + +/* Now make GDB_TARGET_IS_SPARC64 a runtime test. */ +/* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ... + * define GDB_TARGET_IS_SPARC64 \ + * (TARGET_ARCHITECTURE->arch == bfd_arch_sparc && \ + * (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \ + * TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a)) + */ + /* From infrun.c */ extern int stop_after_trap; +/* We don't store all registers immediately when requested, since they + get sent over in large chunks anyway. Instead, we accumulate most + of the changes and send them over once. "deferred_stores" keeps + track of which sets of registers we have locally-changed copies of, + so we only need send the groups that have changed. */ + +int deferred_stores = 0; /* Accumulated stores we want to do eventually. */ + + +/* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode + where instructions are big-endian and data are little-endian. + This flag is set when we detect that the target is of this type. */ + +int bi_endian = 0; + + +/* Fetch a single instruction. Even on bi-endian machines + such as sparc86x, instructions are always big-endian. */ + +static unsigned long +fetch_instruction (CORE_ADDR pc) +{ + unsigned long retval; + int i; + unsigned char buf[4]; + + read_memory (pc, buf, sizeof (buf)); + + /* Start at the most significant end of the integer, and work towards + the least significant. */ + retval = 0; + for (i = 0; i < sizeof (buf); ++i) + retval = (retval << 8) | buf[i]; + return retval; +} + + +/* Branches with prediction are treated like their non-predicting cousins. */ +/* FIXME: What about floating point branches? */ + +/* Macros to extract fields from sparc instructions. */ +#define X_OP(i) (((i) >> 30) & 0x3) +#define X_RD(i) (((i) >> 25) & 0x1f) +#define X_A(i) (((i) >> 29) & 1) +#define X_COND(i) (((i) >> 25) & 0xf) +#define X_OP2(i) (((i) >> 22) & 0x7) +#define X_IMM22(i) ((i) & 0x3fffff) +#define X_OP3(i) (((i) >> 19) & 0x3f) +#define X_RS1(i) (((i) >> 14) & 0x1f) +#define X_I(i) (((i) >> 13) & 1) +#define X_IMM13(i) ((i) & 0x1fff) +/* Sign extension macros. */ +#define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000) +#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000) +#define X_CC(i) (((i) >> 20) & 3) +#define X_P(i) (((i) >> 19) & 1) +#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000) +#define X_RCOND(i) (((i) >> 25) & 7) +#define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000) +#define X_FCN(i) (((i) >> 25) & 31) + typedef enum { - Error, not_branch, bicc, bicca, ba, baa, ticc, ta, + Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry } branch_type; /* Simulate single-step ptrace call for sun4. Code written by Gary @@ -51,12 +198,7 @@ static int brknpc4, brktrg; typedef char binsn_quantum[BREAKPOINT_MAX]; static binsn_quantum break_mem[3]; -/* Non-zero if we just simulated a single-step ptrace call. This is - needed because we cannot remove the breakpoints in the inferior - process until after the `wait' in `wait_for_inferior'. Used for - sun4. */ - -int one_stepped; +static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *); /* single_step() is called just before we want to resume the inferior, if we want to single-step it but there is no hardware or kernel single-step @@ -67,24 +209,25 @@ int one_stepped; set up a simulated single-step, we undo our damage. */ void -single_step () +sparc_software_single_step (enum target_signal ignore, /* pid, but we don't need it */ + int insert_breakpoints_p) { - branch_type br, isannulled(); + branch_type br; CORE_ADDR pc; long pc_instruction; - if (!one_stepped) + if (insert_breakpoints_p) { /* Always set breakpoint for NPC. */ next_pc = read_register (NPC_REGNUM); - npc4 = next_pc + 4; /* branch not taken */ + npc4 = next_pc + 4; /* branch not taken */ target_insert_breakpoint (next_pc, break_mem[0]); - /* printf ("set break at %x\n",next_pc); */ + /* printf_unfiltered ("set break at %x\n",next_pc); */ pc = read_register (PC_REGNUM); - pc_instruction = read_memory_integer (pc, sizeof(pc_instruction)); - br = isannulled (pc_instruction, pc, &target); + pc_instruction = fetch_instruction (pc); + br = isbranch (pc_instruction, pc, &target); brknpc4 = brktrg = 0; if (br == bicca) @@ -102,10 +245,11 @@ single_step () brktrg = 1; target_insert_breakpoint (target, break_mem[2]); } - - /* We are ready to let it go */ - one_stepped = 1; - return; + else if (GDB_TARGET_IS_SPARC64 && br == done_retry) + { + brktrg = 1; + target_insert_breakpoint (target, break_mem[2]); + } } else { @@ -117,177 +261,278 @@ single_step () if (brktrg) target_remove_breakpoint (target, break_mem[2]); - - one_stepped = 0; } } -CORE_ADDR -sparc_frame_chain (thisframe) - FRAME thisframe; +struct frame_extra_info { - CORE_ADDR retval; - int err; - err = target_read_memory - ((CORE_ADDR)&(((struct rwindow *)(thisframe->frame))->rw_in[6]), - &retval, - sizeof (CORE_ADDR)); - if (err) - return 0; - return retval; -} + CORE_ADDR bottom; + int in_prologue; + int flat; + /* Following fields only relevant for flat frames. */ + CORE_ADDR pc_addr; + CORE_ADDR fp_addr; + /* Add this to ->frame to get the value of the stack pointer at the + time of the register saves. */ + int sp_offset; +}; -CORE_ADDR -sparc_extract_struct_value_address (regbuf) - char regbuf[REGISTER_BYTES]; +/* Call this for each newly created frame. For SPARC, we need to + calculate the bottom of the frame, and do some extra work if the + prologue has been generated via the -mflat option to GCC. In + particular, we need to know where the previous fp and the pc have + been stashed, since their exact position within the frame may vary. */ + +void +sparc_init_extra_frame_info (int fromleaf, struct frame_info *fi) { - CORE_ADDR retval; - read_memory (((int *)(regbuf))[SP_REGNUM]+(16*4), - &retval, - sizeof (CORE_ADDR)); - return retval; + char *name; + CORE_ADDR prologue_start, prologue_end; + int insn; + + fi->extra_info = (struct frame_extra_info *) + frame_obstack_alloc (sizeof (struct frame_extra_info)); + frame_saved_regs_zalloc (fi); + + fi->extra_info->bottom = + (fi->next ? + (fi->frame == fi->next->frame ? fi->next->extra_info->bottom : + fi->next->frame) : read_sp ()); + + /* If fi->next is NULL, then we already set ->frame by passing read_fp() + to create_new_frame. */ + if (fi->next) + { + char *buf; + + buf = alloca (MAX_REGISTER_RAW_SIZE); + + /* Compute ->frame as if not flat. If it is flat, we'll change + it later. */ + if (fi->next->next != NULL + && (fi->next->next->signal_handler_caller + || frame_in_dummy (fi->next->next)) + && frameless_look_for_prologue (fi->next)) + { + /* A frameless function interrupted by a signal did not change + the frame pointer, fix up frame pointer accordingly. */ + fi->frame = FRAME_FP (fi->next); + fi->extra_info->bottom = fi->next->extra_info->bottom; + } + else + { + /* Should we adjust for stack bias here? */ + get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0); + fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM)); + + if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1)) + fi->frame += 2047; + } + } + + /* Decide whether this is a function with a ``flat register window'' + frame. For such functions, the frame pointer is actually in %i7. */ + fi->extra_info->flat = 0; + fi->extra_info->in_prologue = 0; + if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end)) + { + /* See if the function starts with an add (which will be of a + negative number if a flat frame) to the sp. FIXME: Does not + handle large frames which will need more than one instruction + to adjust the sp. */ + insn = fetch_instruction (prologue_start); + if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0 + && X_I (insn) && X_SIMM13 (insn) < 0) + { + int offset = X_SIMM13 (insn); + + /* Then look for a save of %i7 into the frame. */ + insn = fetch_instruction (prologue_start + 4); + if (X_OP (insn) == 3 + && X_RD (insn) == 31 + && X_OP3 (insn) == 4 + && X_RS1 (insn) == 14) + { + char *buf; + + buf = alloca (MAX_REGISTER_RAW_SIZE); + + /* We definitely have a flat frame now. */ + fi->extra_info->flat = 1; + + fi->extra_info->sp_offset = offset; + + /* Overwrite the frame's address with the value in %i7. */ + get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0); + fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)); + + if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1)) + fi->frame += 2047; + + /* Record where the fp got saved. */ + fi->extra_info->fp_addr = + fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn); + + /* Also try to collect where the pc got saved to. */ + fi->extra_info->pc_addr = 0; + insn = fetch_instruction (prologue_start + 12); + if (X_OP (insn) == 3 + && X_RD (insn) == 15 + && X_OP3 (insn) == 4 + && X_RS1 (insn) == 14) + fi->extra_info->pc_addr = + fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn); + } + } + else + { + /* Check if the PC is in the function prologue before a SAVE + instruction has been executed yet. If so, set the frame + to the current value of the stack pointer and set + the in_prologue flag. */ + CORE_ADDR addr; + struct symtab_and_line sal; + + sal = find_pc_line (prologue_start, 0); + if (sal.line == 0) /* no line info, use PC */ + prologue_end = fi->pc; + else if (sal.end < prologue_end) + prologue_end = sal.end; + if (fi->pc < prologue_end) + { + for (addr = prologue_start; addr < fi->pc; addr += 4) + { + insn = read_memory_integer (addr, 4); + if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c) + break; /* SAVE seen, stop searching */ + } + if (addr >= fi->pc) + { + fi->extra_info->in_prologue = 1; + fi->frame = read_register (SP_REGNUM); + } + } + } + } + if (fi->next && fi->frame == 0) + { + /* Kludge to cause init_prev_frame_info to destroy the new frame. */ + fi->frame = fi->next->frame; + fi->pc = fi->next->pc; + } } -/* - * Find the pc saved in frame FRAME. - */ CORE_ADDR -frame_saved_pc (frame) - FRAME frame; +sparc_frame_chain (struct frame_info *frame) { - CORE_ADDR prev_pc; - - /* If it's at the bottom, the return value's stored in i7/rp */ - if (get_current_frame () == frame) - read_memory ((CORE_ADDR)&((struct rwindow *) - (read_register (SP_REGNUM)))->rw_in[7], - &prev_pc, sizeof (CORE_ADDR)); - else - /* Wouldn't this always work? */ - read_memory ((CORE_ADDR)&((struct rwindow *)(frame->bottom))->rw_in[7], - &prev_pc, - sizeof (CORE_ADDR)); - - return PC_ADJUST (prev_pc); + /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain + value. If it really is zero, we detect it later in + sparc_init_prev_frame. */ + return (CORE_ADDR) 1; } -/* - * Since an individual frame in the frame cache is defined by two - * arguments (a frame pointer and a stack pointer), we need two - * arguments to get info for an arbitrary stack frame. This routine - * takes two arguments and makes the cached frames look as if these - * two arguments defined a frame on the cache. This allows the rest - * of info frame to extract the important arguments without - * difficulty. - */ -FRAME -setup_arbitrary_frame (frame, stack) - FRAME_ADDR frame, stack; +CORE_ADDR +sparc_extract_struct_value_address (char *regbuf) { - FRAME fid = create_new_frame (frame, 0); - - if (!fid) - fatal ("internal: create_new_frame returned invalid frame id"); - - fid->bottom = stack; - fid->pc = FRAME_SAVED_PC (fid); - return fid; + return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM), + REGISTER_RAW_SIZE (O0_REGNUM)); } -/* This code was written by Gary Beihl (beihl@mcc.com). - It was modified by Michael Tiemann (tiemann@corto.inria.fr). */ +/* Find the pc saved in frame FRAME. */ -/* - * This routine appears to be passed a size by which to increase the - * stack. It then executes a save instruction in the inferior to - * increase the stack by this amount. Only the register window system - * should be affected by this; the program counter & etc. will not be. - * - * This instructions used for this purpose are: - * - * sethi %hi(0x0),g1 * - * add g1,0x1ee0,g1 * - * save sp,g1,sp - * sethi %hi(0x0),g1 * - * add g1,0x1ee0,g1 * - * t g0,0x1,o0 - * sethi %hi(0x0),g0 (nop) - * - * I presume that these set g1 to be the negative of the size, do a - * save (putting the stack pointer at sp - size) and restore the - * original contents of g1. A * indicates that the actual value of - * the instruction is modified below. - */ -static int save_insn_opcodes[] = { - 0x03000000, 0x82007ee0, 0x9de38001, 0x03000000, - 0x82007ee0, 0x91d02001, 0x01000000 }; - -/* Neither do_save_insn or do_restore_insn save stack configuration - (current_frame, etc), - since the stack is in an indeterminate state through the call to - each of them. That responsibility of the routine which calls them. */ - -static void -do_save_insn (size) - int size; +CORE_ADDR +sparc_frame_saved_pc (struct frame_info *frame) { - int g1 = read_register (G1_REGNUM); - CORE_ADDR sp = read_register (SP_REGNUM); - CORE_ADDR pc = read_register (PC_REGNUM); - CORE_ADDR npc = read_register (NPC_REGNUM); - CORE_ADDR fake_pc = sp - sizeof (save_insn_opcodes); - struct inferior_status inf_status; + char *buf; + CORE_ADDR addr; - save_inferior_status (&inf_status, 0); /* Don't restore stack info */ - /* - * See above. - */ - save_insn_opcodes[0] = 0x03000000 | ((-size >> 10) & 0x3fffff); - save_insn_opcodes[1] = 0x82006000 | (-size & 0x3ff); - save_insn_opcodes[3] = 0x03000000 | ((g1 >> 10) & 0x3fffff); - save_insn_opcodes[4] = 0x82006000 | (g1 & 0x3ff); - write_memory (fake_pc, (char *)save_insn_opcodes, sizeof (save_insn_opcodes)); + buf = alloca (MAX_REGISTER_RAW_SIZE); + if (frame->signal_handler_caller) + { + /* This is the signal trampoline frame. + Get the saved PC from the sigcontext structure. */ + +#ifndef SIGCONTEXT_PC_OFFSET +#define SIGCONTEXT_PC_OFFSET 12 +#endif + + CORE_ADDR sigcontext_addr; + char *scbuf; + int saved_pc_offset = SIGCONTEXT_PC_OFFSET; + char *name = NULL; + + scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT); + + /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext + as the third parameter. The offset to the saved pc is 12. */ + find_pc_partial_function (frame->pc, &name, + (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); + if (name && STREQ (name, "ucbsigvechandler")) + saved_pc_offset = 12; + + /* The sigcontext address is contained in register O2. */ + get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL, + frame, O0_REGNUM + 2, (enum lval_type *) NULL); + sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2)); + + /* Don't cause a memory_error when accessing sigcontext in case the + stack layout has changed or the stack is corrupt. */ + target_read_memory (sigcontext_addr + saved_pc_offset, + scbuf, sizeof (scbuf)); + return extract_address (scbuf, sizeof (scbuf)); + } + else if (frame->extra_info->in_prologue || + (frame->next != NULL && + (frame->next->signal_handler_caller || + frame_in_dummy (frame->next)) && + frameless_look_for_prologue (frame))) + { + /* A frameless function interrupted by a signal did not save + the PC, it is still in %o7. */ + get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL, + frame, O7_REGNUM, (enum lval_type *) NULL); + return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); + } + if (frame->extra_info->flat) + addr = frame->extra_info->pc_addr; + else + addr = frame->extra_info->bottom + FRAME_SAVED_I0 + + SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM); - clear_proceed_status (); - stop_after_trap = 1; - proceed (fake_pc, 0, 0); + if (addr == 0) + /* A flat frame leaf function might not save the PC anywhere, + just leave it in %o7. */ + return PC_ADJUST (read_register (O7_REGNUM)); - write_register (PC_REGNUM, pc); - write_register (NPC_REGNUM, npc); - restore_inferior_status (&inf_status); + read_memory (addr, buf, SPARC_INTREG_SIZE); + return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); } -/* - * This routine takes a program counter value. It restores the - * register window system to the frame above the current one. - * THIS ROUTINE CLOBBERS PC AND NPC IN THE TARGET! - */ - -/* The following insns translate to: - - restore %g0,%g0,%g0 - t %g0,1 - sethi %hi(0),%g0 */ - -static int restore_insn_opcodes[] = { 0x81e80000, 0x91d02001, 0x01000000 }; +/* Since an individual frame in the frame cache is defined by two + arguments (a frame pointer and a stack pointer), we need two + arguments to get info for an arbitrary stack frame. This routine + takes two arguments and makes the cached frames look as if these + two arguments defined a frame on the cache. This allows the rest + of info frame to extract the important arguments without + difficulty. */ -static void -do_restore_insn () +struct frame_info * +setup_arbitrary_frame (int argc, CORE_ADDR *argv) { - CORE_ADDR sp = read_register (SP_REGNUM); - CORE_ADDR fake_pc = sp - sizeof (restore_insn_opcodes); - struct inferior_status inf_status; + struct frame_info *frame; - save_inferior_status (&inf_status, 0); /* Don't restore stack info */ + if (argc != 2) + error ("Sparc frame specifications require two arguments: fp and sp"); - write_memory (fake_pc, (char *)restore_insn_opcodes, - sizeof (restore_insn_opcodes)); + frame = create_new_frame (argv[0], 0); - clear_proceed_status (); - stop_after_trap = 1; - proceed (fake_pc, 0, 0); + if (!frame) + internal_error (__FILE__, __LINE__, + "create_new_frame returned invalid frame"); - restore_inferior_status (&inf_status); + frame->extra_info->bottom = argv[1]; + frame->pc = FRAME_SAVED_PC (frame); + return frame; } /* Given a pc value, skip it forward past the function prologue by @@ -298,43 +543,27 @@ do_restore_insn () This routine should be more specific in its actions; making sure that it uses the same register in the initial prologue section. */ -CORE_ADDR -skip_prologue (start_pc, frameless_p) - CORE_ADDR start_pc; - int frameless_p; -{ - union - { - unsigned long int code; - struct - { - unsigned int op:2; - unsigned int rd:5; - unsigned int op2:3; - unsigned int imm22:22; - } sethi; - struct - { - unsigned int op:2; - unsigned int rd:5; - unsigned int op3:6; - unsigned int rs1:5; - unsigned int i:1; - unsigned int simm13:13; - } add; - int i; - } x; + +static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *, + CORE_ADDR *); + +static CORE_ADDR +examine_prologue (CORE_ADDR start_pc, int frameless_p, struct frame_info *fi, + CORE_ADDR *saved_regs) +{ + int insn; int dest = -1; CORE_ADDR pc = start_pc; + int is_flat = 0; - x.i = read_memory_integer (pc, 4); + insn = fetch_instruction (pc); /* Recognize the `sethi' insn and record its destination. */ - if (x.sethi.op == 0 && x.sethi.op2 == 4) + if (X_OP (insn) == 0 && X_OP2 (insn) == 4) { - dest = x.sethi.rd; + dest = X_RD (insn); pc += 4; - x.i = read_memory_integer (pc, 4); + insn = fetch_instruction (pc); } /* Recognize an add immediate value to register to either %g1 or @@ -343,90 +572,457 @@ skip_prologue (start_pc, frameless_p) It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1" followed by "save %sp, %g1, %sp" is a valid prologue (Not that I imagine any compiler really does that, however). */ - if (x.add.op == 2 && x.add.i && (x.add.rd == 1 || x.add.rd == dest)) + if (X_OP (insn) == 2 + && X_I (insn) + && (X_RD (insn) == 1 || X_RD (insn) == dest)) { pc += 4; - x.i = read_memory_integer (pc, 4); + insn = fetch_instruction (pc); } - /* This recognizes any SAVE insn. But why do the XOR and then - the compare? That's identical to comparing against 60 (as long - as there isn't any sign extension). */ - if (x.add.op == 2 && (x.add.op3 ^ 32) == 28) + /* Recognize any SAVE insn. */ + if (X_OP (insn) == 2 && X_OP3 (insn) == 60) { pc += 4; - if (frameless_p) /* If the save is all we care about, */ - return pc; /* return before doing more work */ - x.i = read_memory_integer (pc, 4); + if (frameless_p) /* If the save is all we care about, */ + return pc; /* return before doing more work */ + insn = fetch_instruction (pc); } - else + /* Recognize add to %sp. */ + else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0) { - /* Without a save instruction, it's not a prologue. */ - return start_pc; + pc += 4; + if (frameless_p) /* If the add is all we care about, */ + return pc; /* return before doing more work */ + is_flat = 1; + insn = fetch_instruction (pc); + /* Recognize store of frame pointer (i7). */ + if (X_OP (insn) == 3 + && X_RD (insn) == 31 + && X_OP3 (insn) == 4 + && X_RS1 (insn) == 14) + { + pc += 4; + insn = fetch_instruction (pc); + + /* Recognize sub %sp, , %i7. */ + if (X_OP (insn) == 2 + && X_OP3 (insn) == 4 + && X_RS1 (insn) == 14 + && X_RD (insn) == 31) + { + pc += 4; + insn = fetch_instruction (pc); + } + else + return pc; + } + else + return pc; } + else + /* Without a save or add instruction, it's not a prologue. */ + return start_pc; - /* Now we need to recognize stores into the frame from the input - registers. This recognizes all non alternate stores of input - register, into a location offset from the frame pointer. */ - while (x.add.op == 3 - && (x.add.op3 & 0x3c) == 4 /* Store, non-alternate. */ - && (x.add.rd & 0x18) == 0x18 /* Input register. */ - && x.add.i /* Immediate mode. */ - && x.add.rs1 == 30 /* Off of frame pointer. */ - /* Into reserved stack space. */ - && x.add.simm13 >= 0x44 - && x.add.simm13 < 0x5b) + while (1) { + /* Recognize stores into the frame from the input registers. + This recognizes all non alternate stores of an input register, + into a location offset from the frame pointer between + +68 and +92. */ + + /* The above will fail for arguments that are promoted + (eg. shorts to ints or floats to doubles), because the compiler + will pass them in positive-offset frame space, but the prologue + will save them (after conversion) in negative frame space at an + unpredictable offset. Therefore I am going to remove the + restriction on the target-address of the save, on the theory + that any unbroken sequence of saves from input registers must + be part of the prologue. In un-optimized code (at least), I'm + fairly sure that the compiler would emit SOME other instruction + (eg. a move or add) before emitting another save that is actually + a part of the function body. + + Besides, the reserved stack space is different for SPARC64 anyway. + + MVS 4/23/2000 */ + + if (X_OP (insn) == 3 + && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */ + && (X_RD (insn) & 0x18) == 0x18 /* Input register. */ + && X_I (insn) /* Immediate mode. */ + && X_RS1 (insn) == 30) /* Off of frame pointer. */ + ; /* empty statement -- fall thru to end of loop */ + else if (GDB_TARGET_IS_SPARC64 + && X_OP (insn) == 3 + && (X_OP3 (insn) & 0x3c) == 12 /* store, extended (64-bit) */ + && (X_RD (insn) & 0x18) == 0x18 /* input register */ + && X_I (insn) /* immediate mode */ + && X_RS1 (insn) == 30) /* off of frame pointer */ + ; /* empty statement -- fall thru to end of loop */ + else if (X_OP (insn) == 3 + && (X_OP3 (insn) & 0x3c) == 36 /* store, floating-point */ + && X_I (insn) /* immediate mode */ + && X_RS1 (insn) == 30) /* off of frame pointer */ + ; /* empty statement -- fall thru to end of loop */ + else if (is_flat + && X_OP (insn) == 3 + && X_OP3 (insn) == 4 /* store? */ + && X_RS1 (insn) == 14) /* off of frame pointer */ + { + if (saved_regs && X_I (insn)) + saved_regs[X_RD (insn)] = + fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn); + } + else + break; pc += 4; - x.i = read_memory_integer (pc, 4); + insn = fetch_instruction (pc); } + return pc; } -/* Check instruction at ADDR to see if it is an annulled branch. - All other instructions will go to NPC or will trap. - Set *TARGET if we find a canidate branch; set to zero if not. */ - -branch_type -isannulled (instruction, addr, target) - long instruction; - CORE_ADDR addr, *target; +CORE_ADDR +sparc_skip_prologue (CORE_ADDR start_pc, int frameless_p) +{ + return examine_prologue (start_pc, frameless_p, NULL, NULL); +} + +/* Check instruction at ADDR to see if it is a branch. + All non-annulled instructions will go to NPC or will trap. + Set *TARGET if we find a candidate branch; set to zero if not. + + This isn't static as it's used by remote-sa.sparc.c. */ + +static branch_type +isbranch (long instruction, CORE_ADDR addr, CORE_ADDR *target) { branch_type val = not_branch; - long int offset; /* Must be signed for sign-extend. */ - union - { - unsigned long int code; - struct - { - unsigned int op:2; - unsigned int a:1; - unsigned int cond:4; - unsigned int op2:3; - unsigned int disp22:22; - } b; - } insn; + long int offset = 0; /* Must be signed for sign-extend. */ *target = 0; - insn.code = instruction; - if (insn.b.op == 0 - && (insn.b.op2 == 2 || insn.b.op2 == 6 || insn.b.op2 == 7)) + if (X_OP (instruction) == 0 + && (X_OP2 (instruction) == 2 + || X_OP2 (instruction) == 6 + || X_OP2 (instruction) == 1 + || X_OP2 (instruction) == 3 + || X_OP2 (instruction) == 5 + || (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7))) { - if (insn.b.cond == 8) - val = insn.b.a ? baa : ba; + if (X_COND (instruction) == 8) + val = X_A (instruction) ? baa : ba; else - val = insn.b.a ? bicca : bicc; - offset = 4 * ((int) (insn.b.disp22 << 10) >> 10); + val = X_A (instruction) ? bicca : bicc; + switch (X_OP2 (instruction)) + { + case 7: + if (!GDB_TARGET_IS_SPARC64) + break; + /* else fall thru */ + case 2: + case 6: + offset = 4 * X_DISP22 (instruction); + break; + case 1: + case 5: + offset = 4 * X_DISP19 (instruction); + break; + case 3: + offset = 4 * X_DISP16 (instruction); + break; + } *target = addr + offset; } + else if (GDB_TARGET_IS_SPARC64 + && X_OP (instruction) == 2 + && X_OP3 (instruction) == 62) + { + if (X_FCN (instruction) == 0) + { + /* done */ + *target = read_register (TNPC_REGNUM); + val = done_retry; + } + else if (X_FCN (instruction) == 1) + { + /* retry */ + *target = read_register (TPC_REGNUM); + val = done_retry; + } + } return val; } + +/* Find register number REGNUM relative to FRAME and put its + (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable + was optimized out (and thus can't be fetched). If the variable + was fetched from memory, set *ADDRP to where it was fetched from, + otherwise it was fetched from a register. + + The argument RAW_BUFFER must point to aligned memory. */ + +void +sparc_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp, + struct frame_info *frame, int regnum, + enum lval_type *lval) +{ + struct frame_info *frame1; + CORE_ADDR addr; + + if (!target_has_registers) + error ("No registers."); + + if (optimized) + *optimized = 0; + + addr = 0; + + /* FIXME This code extracted from infcmd.c; should put elsewhere! */ + if (frame == NULL) + { + /* error ("No selected frame."); */ + if (!target_has_registers) + error ("The program has no registers now."); + if (selected_frame == NULL) + error ("No selected frame."); + /* Try to use selected frame */ + frame = get_prev_frame (selected_frame); + if (frame == 0) + error ("Cmd not meaningful in the outermost frame."); + } + + + frame1 = frame->next; + + /* Get saved PC from the frame info if not in innermost frame. */ + if (regnum == PC_REGNUM && frame1 != NULL) + { + if (lval != NULL) + *lval = not_lval; + if (raw_buffer != NULL) + { + /* Put it back in target format. */ + store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc); + } + if (addrp != NULL) + *addrp = 0; + return; + } + + while (frame1 != NULL) + { + /* FIXME MVS: wrong test for dummy frame at entry. */ + + if (frame1->pc >= (frame1->extra_info->bottom ? + frame1->extra_info->bottom : read_sp ()) + && frame1->pc <= FRAME_FP (frame1)) + { + /* Dummy frame. All but the window regs are in there somewhere. + The window registers are saved on the stack, just like in a + normal frame. */ + if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7) + addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE + - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE); + else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) + addr = (frame1->prev->extra_info->bottom + + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_I0); + else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) + addr = (frame1->prev->extra_info->bottom + + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_L0); + else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) + addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE + - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE); + else if (SPARC_HAS_FPU && + regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32) + addr = frame1->frame + (regnum - FP0_REGNUM) * 4 + - (FP_REGISTER_BYTES); + else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU && + regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM) + addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8 + - (FP_REGISTER_BYTES); + else if (regnum >= Y_REGNUM && regnum < NUM_REGS) + addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE + - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE); + } + else if (frame1->extra_info->flat) + { + + if (regnum == RP_REGNUM) + addr = frame1->extra_info->pc_addr; + else if (regnum == I7_REGNUM) + addr = frame1->extra_info->fp_addr; + else + { + CORE_ADDR func_start; + CORE_ADDR *regs; + + regs = alloca (NUM_REGS * sizeof (CORE_ADDR)); + memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR)); + + find_pc_partial_function (frame1->pc, NULL, &func_start, NULL); + examine_prologue (func_start, 0, frame1, regs); + addr = regs[regnum]; + } + } + else + { + /* Normal frame. Local and In registers are saved on stack. */ + if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) + addr = (frame1->prev->extra_info->bottom + + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_I0); + else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) + addr = (frame1->prev->extra_info->bottom + + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_L0); + else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) + { + /* Outs become ins. */ + get_saved_register (raw_buffer, optimized, addrp, frame1, + (regnum - O0_REGNUM + I0_REGNUM), lval); + return; + } + } + if (addr != 0) + break; + frame1 = frame1->next; + } + if (addr != 0) + { + if (lval != NULL) + *lval = lval_memory; + if (regnum == SP_REGNUM) + { + if (raw_buffer != NULL) + { + /* Put it back in target format. */ + store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr); + } + if (addrp != NULL) + *addrp = 0; + return; + } + if (raw_buffer != NULL) + read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); + } + else + { + if (lval != NULL) + *lval = lval_register; + addr = REGISTER_BYTE (regnum); + if (raw_buffer != NULL) + read_register_gen (regnum, raw_buffer); + } + if (addrp != NULL) + *addrp = addr; +} + +/* Push an empty stack frame, and record in it the current PC, regs, etc. + + We save the non-windowed registers and the ins. The locals and outs + are new; they don't need to be saved. The i's and l's of + the last frame were already saved on the stack. */ + +/* Definitely see tm-sparc.h for more doc of the frame format here. */ + +/* See tm-sparc.h for how this is calculated. */ + +#define DUMMY_STACK_REG_BUF_SIZE \ + (((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES) +#define DUMMY_STACK_SIZE \ + (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET) + +void +sparc_push_dummy_frame (void) +{ + CORE_ADDR sp, old_sp; + char *register_temp; + + register_temp = alloca (DUMMY_STACK_SIZE); + + old_sp = sp = read_sp (); + + if (GDB_TARGET_IS_SPARC64) + { + /* PC, NPC, CCR, FSR, FPRS, Y, ASI */ + read_register_bytes (REGISTER_BYTE (PC_REGNUM), ®ister_temp[0], + REGISTER_RAW_SIZE (PC_REGNUM) * 7); + read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM), + ®ister_temp[7 * SPARC_INTREG_SIZE], + REGISTER_RAW_SIZE (PSTATE_REGNUM)); + /* FIXME: not sure what needs to be saved here. */ + } + else + { + /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */ + read_register_bytes (REGISTER_BYTE (Y_REGNUM), ®ister_temp[0], + REGISTER_RAW_SIZE (Y_REGNUM) * 8); + } + + read_register_bytes (REGISTER_BYTE (O0_REGNUM), + ®ister_temp[8 * SPARC_INTREG_SIZE], + SPARC_INTREG_SIZE * 8); + + read_register_bytes (REGISTER_BYTE (G0_REGNUM), + ®ister_temp[16 * SPARC_INTREG_SIZE], + SPARC_INTREG_SIZE * 8); + + if (SPARC_HAS_FPU) + read_register_bytes (REGISTER_BYTE (FP0_REGNUM), + ®ister_temp[24 * SPARC_INTREG_SIZE], + FP_REGISTER_BYTES); + + sp -= DUMMY_STACK_SIZE; -/* sparc_frame_find_saved_regs () + write_sp (sp); + + write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0], + DUMMY_STACK_REG_BUF_SIZE); + + if (strcmp (target_shortname, "sim") != 0) + { + write_fp (old_sp); + + /* Set return address register for the call dummy to the current PC. */ + write_register (I7_REGNUM, read_pc () - 8); + } + else + { + /* The call dummy will write this value to FP before executing + the 'save'. This ensures that register window flushes work + correctly in the simulator. */ + write_register (G0_REGNUM + 1, read_register (FP_REGNUM)); + + /* The call dummy will write this value to FP after executing + the 'save'. */ + write_register (G0_REGNUM + 2, old_sp); + + /* The call dummy will write this value to the return address (%i7) after + executing the 'save'. */ + write_register (G0_REGNUM + 3, read_pc () - 8); + + /* Set the FP that the call dummy will be using after the 'save'. + This makes backtraces from an inferior function call work properly. */ + write_register (FP_REGNUM, old_sp); + } +} - Stores, into a struct frame_saved_regs, +/* sparc_frame_find_saved_regs (). This function is here only because + pop_frame uses it. Note there is an interesting corner case which + I think few ports of GDB get right--if you are popping a frame + which does not save some register that *is* saved by a more inner + frame (such a frame will never be a dummy frame because dummy + frames save all registers). Rewriting pop_frame to use + get_saved_register would solve this problem and also get rid of the + ugly duplication between sparc_frame_find_saved_regs and + get_saved_register. + + Stores, into an array of CORE_ADDR, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: @@ -447,106 +1043,109 @@ isannulled (instruction, addr, target) is a return address minus 8.) sparc_pop_frame knows how to deal with that. Other routines might or might not. - See tm-sparc.h (PUSH_FRAME and friends) for CRITICAL information + See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information about how this works. */ -void -sparc_frame_find_saved_regs (fi, saved_regs_addr) - struct frame_info *fi; - struct frame_saved_regs *saved_regs_addr; +static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *); + +static void +sparc_frame_find_saved_regs (struct frame_info *fi, CORE_ADDR *saved_regs_addr) { register int regnum; - FRAME_ADDR frame = read_register (FP_REGNUM); - FRAME fid = FRAME_INFO_ID (fi); + CORE_ADDR frame_addr = FRAME_FP (fi); - if (!fid) - fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS"); + if (!fi) + internal_error (__FILE__, __LINE__, + "Bad frame info struct in FRAME_FIND_SAVED_REGS"); - bzero (saved_regs_addr, sizeof (*saved_regs_addr)); + memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR)); - /* Old test. - if (fi->pc >= frame - CALL_DUMMY_LENGTH - 0x140 - && fi->pc <= frame) */ - - if (fi->pc >= (fi->bottom ? fi->bottom : - read_register (SP_REGNUM)) - && fi->pc <= FRAME_FP(fi)) + if (fi->pc >= (fi->extra_info->bottom ? + fi->extra_info->bottom : read_sp ()) + && fi->pc <= FRAME_FP (fi)) { /* Dummy frame. All but the window regs are in there somewhere. */ - for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++) - saved_regs_addr->regs[regnum] = - frame + (regnum - G0_REGNUM) * 4 - 0xa0; - for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++) - saved_regs_addr->regs[regnum] = - frame + (regnum - I0_REGNUM) * 4 - 0xc0; - for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++) - saved_regs_addr->regs[regnum] = - frame + (regnum - FP0_REGNUM) * 4 - 0x80; - for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++) - saved_regs_addr->regs[regnum] = - frame + (regnum - Y_REGNUM) * 4 - 0xe0; - frame = fi->bottom ? - fi->bottom : read_register (SP_REGNUM); + for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++) + saved_regs_addr[regnum] = + frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE + - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE; + + for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++) + saved_regs_addr[regnum] = + frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE + - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE; + + if (SPARC_HAS_FPU) + for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++) + saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4 + - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE; + + if (GDB_TARGET_IS_SPARC64) + { + for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++) + { + saved_regs_addr[regnum] = + frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE + - DUMMY_STACK_REG_BUF_SIZE; + } + saved_regs_addr[PSTATE_REGNUM] = + frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE; + } + else + for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++) + saved_regs_addr[regnum] = + frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE + - DUMMY_STACK_REG_BUF_SIZE; + + frame_addr = fi->extra_info->bottom ? + fi->extra_info->bottom : read_sp (); + } + else if (fi->extra_info->flat) + { + CORE_ADDR func_start; + find_pc_partial_function (fi->pc, NULL, &func_start, NULL); + examine_prologue (func_start, 0, fi, saved_regs_addr); + + /* Flat register window frame. */ + saved_regs_addr[RP_REGNUM] = fi->extra_info->pc_addr; + saved_regs_addr[I7_REGNUM] = fi->extra_info->fp_addr; } else { /* Normal frame. Just Local and In registers */ - frame = fi->bottom ? - fi->bottom : read_register (SP_REGNUM); - for (regnum = L0_REGNUM; regnum < L0_REGNUM+16; regnum++) - saved_regs_addr->regs[regnum] = frame + (regnum-L0_REGNUM) * 4; + frame_addr = fi->extra_info->bottom ? + fi->extra_info->bottom : read_sp (); + for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++) + saved_regs_addr[regnum] = + (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_L0); + for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++) + saved_regs_addr[regnum] = + (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_I0); } if (fi->next) { - /* Pull off either the next frame pointer or the stack pointer */ - FRAME_ADDR next_next_frame = - (fi->next->bottom ? - fi->next->bottom : - read_register (SP_REGNUM)); - for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++) - saved_regs_addr->regs[regnum] = next_next_frame + regnum * 4; + if (fi->extra_info->flat) + { + saved_regs_addr[O7_REGNUM] = fi->extra_info->pc_addr; + } + else + { + /* Pull off either the next frame pointer or the stack pointer */ + CORE_ADDR next_next_frame_addr = + (fi->next->extra_info->bottom ? + fi->next->extra_info->bottom : read_sp ()); + for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++) + saved_regs_addr[regnum] = + (next_next_frame_addr + + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE + + FRAME_SAVED_I0); + } } /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */ - saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi); -} - -/* Push an empty stack frame, and record in it the current PC, regs, etc. - - Note that the write's are of registers in the context of the newly - pushed frame. Thus the the fp*'s, the g*'s, the i*'s, and - the randoms, of the new frame, are being saved. The locals and outs - are new; they don't need to be saved. The i's and l's of - the last frame were saved by the do_save_insn in the register - file (now on the stack, since a context switch happended imm after). - - The return pointer register %i7 does not have - the pc saved into it (return from this frame will be accomplished - by a POP_FRAME). In fact, we must leave it unclobbered, since we - must preserve it in the calling routine except across call instructions. */ - -/* Definitely see tm-sparc.h for more doc of the frame format here. */ - -void -sparc_push_dummy_frame () -{ - CORE_ADDR fp; - char register_temp[REGISTER_BYTES]; - - do_save_insn (0x140); /* FIXME where does this value come from? */ - fp = read_register (FP_REGNUM); - - read_register_bytes (REGISTER_BYTE (FP0_REGNUM), register_temp, 32 * 4); - write_memory (fp - 0x80, register_temp, 32 * 4); - - read_register_bytes (REGISTER_BYTE (G0_REGNUM), register_temp, 8 * 4); - write_memory (fp - 0xa0, register_temp, 8 * 4); - - read_register_bytes (REGISTER_BYTE (I0_REGNUM), register_temp, 8 * 4); - write_memory (fp - 0xc0, register_temp, 8 * 4); - - /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */ - read_register_bytes (REGISTER_BYTE (Y_REGNUM), register_temp, 8 * 4); - write_memory (fp - 0xe0, register_temp, 8 * 4); + /* FIXME -- should this adjust for the sparc64 offset? */ + saved_regs_addr[SP_REGNUM] = FRAME_FP (fi); } /* Discard from the stack the innermost frame, restoring all saved registers. @@ -564,61 +1163,2046 @@ sparc_push_dummy_frame () /* Definitely see tm-sparc.h for more doc of the frame format here. */ void -sparc_pop_frame () +sparc_pop_frame (void) { - register FRAME frame = get_current_frame (); + register struct frame_info *frame = get_current_frame (); register CORE_ADDR pc; - struct frame_saved_regs fsr; - struct frame_info *fi; - char raw_buffer[REGISTER_BYTES]; - - fi = get_frame_info (frame); - get_frame_saved_regs (fi, &fsr); - do_restore_insn (); - if (fsr.regs[FP0_REGNUM]) + CORE_ADDR *fsr; + char *raw_buffer; + int regnum; + + fsr = alloca (NUM_REGS * sizeof (CORE_ADDR)); + raw_buffer = alloca (REGISTER_BYTES); + sparc_frame_find_saved_regs (frame, &fsr[0]); + if (SPARC_HAS_FPU) + { + if (fsr[FP0_REGNUM]) + { + read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES); + write_register_bytes (REGISTER_BYTE (FP0_REGNUM), + raw_buffer, FP_REGISTER_BYTES); + } + if (!(GDB_TARGET_IS_SPARC64)) + { + if (fsr[FPS_REGNUM]) + { + read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE); + write_register_gen (FPS_REGNUM, raw_buffer); + } + if (fsr[CPS_REGNUM]) + { + read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE); + write_register_gen (CPS_REGNUM, raw_buffer); + } + } + } + if (fsr[G1_REGNUM]) { - read_memory (fsr.regs[FP0_REGNUM], raw_buffer, 32 * 4); - write_register_bytes (REGISTER_BYTE (FP0_REGNUM), raw_buffer, 32 * 4); + read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE); + write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, + 7 * SPARC_INTREG_SIZE); } - if (fsr.regs[G1_REGNUM]) + + if (frame->extra_info->flat) { - read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * 4); - write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, 7 * 4); + /* Each register might or might not have been saved, need to test + individually. */ + for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum) + if (fsr[regnum]) + write_register (regnum, read_memory_integer (fsr[regnum], + SPARC_INTREG_SIZE)); + for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum) + if (fsr[regnum]) + write_register (regnum, read_memory_integer (fsr[regnum], + SPARC_INTREG_SIZE)); + + /* Handle all outs except stack pointer (o0-o5; o7). */ + for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum) + if (fsr[regnum]) + write_register (regnum, read_memory_integer (fsr[regnum], + SPARC_INTREG_SIZE)); + if (fsr[O0_REGNUM + 7]) + write_register (O0_REGNUM + 7, + read_memory_integer (fsr[O0_REGNUM + 7], + SPARC_INTREG_SIZE)); + + write_sp (frame->frame); } - if (fsr.regs[I0_REGNUM]) + else if (fsr[I0_REGNUM]) { - read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * 4); - write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer, 8 * 4); + CORE_ADDR sp; + + char *reg_temp; + + reg_temp = alloca (REGISTER_BYTES); + + read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE); + + /* Get the ins and locals which we are about to restore. Just + moving the stack pointer is all that is really needed, except + store_inferior_registers is then going to write the ins and + locals from the registers array, so we need to muck with the + registers array. */ + sp = fsr[SP_REGNUM]; + + if (GDB_TARGET_IS_SPARC64 && (sp & 1)) + sp += 2047; + + read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16); + + /* Restore the out registers. + Among other things this writes the new stack pointer. */ + write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer, + SPARC_INTREG_SIZE * 8); + + write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp, + SPARC_INTREG_SIZE * 16); } - if (fsr.regs[PS_REGNUM]) - write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); - if (fsr.regs[Y_REGNUM]) - write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], 4)); - if (fsr.regs[PC_REGNUM]) + + if (!(GDB_TARGET_IS_SPARC64)) + if (fsr[PS_REGNUM]) + write_register (PS_REGNUM, + read_memory_integer (fsr[PS_REGNUM], + REGISTER_RAW_SIZE (PS_REGNUM))); + + if (fsr[Y_REGNUM]) + write_register (Y_REGNUM, + read_memory_integer (fsr[Y_REGNUM], + REGISTER_RAW_SIZE (Y_REGNUM))); + if (fsr[PC_REGNUM]) { /* Explicitly specified PC (and maybe NPC) -- just restore them. */ - write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM], 4)); - if (fsr.regs[NPC_REGNUM]) + write_register (PC_REGNUM, + read_memory_integer (fsr[PC_REGNUM], + REGISTER_RAW_SIZE (PC_REGNUM))); + if (fsr[NPC_REGNUM]) write_register (NPC_REGNUM, - read_memory_integer (fsr.regs[NPC_REGNUM], 4)); + read_memory_integer (fsr[NPC_REGNUM], + REGISTER_RAW_SIZE (NPC_REGNUM))); + } + else if (frame->extra_info->flat) + { + if (frame->extra_info->pc_addr) + pc = PC_ADJUST ((CORE_ADDR) + read_memory_integer (frame->extra_info->pc_addr, + REGISTER_RAW_SIZE (PC_REGNUM))); + else + { + /* I think this happens only in the innermost frame, if so then + it is a complicated way of saying + "pc = read_register (O7_REGNUM);". */ + char *buf; + + buf = alloca (MAX_REGISTER_RAW_SIZE); + get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0); + pc = PC_ADJUST (extract_address + (buf, REGISTER_RAW_SIZE (O7_REGNUM))); + } + + write_register (PC_REGNUM, pc); + write_register (NPC_REGNUM, pc + 4); } - else if (fsr.regs[I7_REGNUM]) + else if (fsr[I7_REGNUM]) { /* Return address in %i7 -- adjust it, then restore PC and NPC from it */ - pc = PC_ADJUST (read_memory_integer (fsr.regs[I7_REGNUM], 4)); - write_register (PC_REGNUM, pc); + pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM], + SPARC_INTREG_SIZE)); + write_register (PC_REGNUM, pc); write_register (NPC_REGNUM, pc + 4); } flush_cached_frames (); - set_current_frame ( create_new_frame (read_register (FP_REGNUM), - read_pc ())); } -/* Structure of SPARC extended floating point numbers. - This information is not currently used by GDB, since no current SPARC - implementations support extended float. */ +/* On the Sun 4 under SunOS, the compile will leave a fake insn which + encodes the structure size being returned. If we detect such + a fake insn, step past it. */ + +CORE_ADDR +sparc_pc_adjust (CORE_ADDR pc) +{ + unsigned long insn; + char buf[4]; + int err; + + err = target_read_memory (pc + 8, buf, 4); + insn = extract_unsigned_integer (buf, 4); + if ((err == 0) && (insn & 0xffc00000) == 0) + return pc + 12; + else + return pc + 8; +} + +/* If pc is in a shared library trampoline, return its target. + The SunOs 4.x linker rewrites the jump table entries for PIC + compiled modules in the main executable to bypass the dynamic linker + with jumps of the form + sethi %hi(addr),%g1 + jmp %g1+%lo(addr) + and removes the corresponding jump table relocation entry in the + dynamic relocations. + find_solib_trampoline_target relies on the presence of the jump + table relocation entry, so we have to detect these jump instructions + by hand. */ + +CORE_ADDR +sunos4_skip_trampoline_code (CORE_ADDR pc) +{ + unsigned long insn1; + char buf[4]; + int err; + + err = target_read_memory (pc, buf, 4); + insn1 = extract_unsigned_integer (buf, 4); + if (err == 0 && (insn1 & 0xffc00000) == 0x03000000) + { + unsigned long insn2; + + err = target_read_memory (pc + 4, buf, 4); + insn2 = extract_unsigned_integer (buf, 4); + if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000) + { + CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10; + int delta = insn2 & 0x1fff; + + /* Sign extend the displacement. */ + if (delta & 0x1000) + delta |= ~0x1fff; + return target_pc + delta; + } + } + return find_solib_trampoline_target (pc); +} + +#ifdef USE_PROC_FS /* Target dependent support for /proc */ +/* *INDENT-OFF* */ +/* The /proc interface divides the target machine's register set up into + two different sets, the general register set (gregset) and the floating + point register set (fpregset). For each set, there is an ioctl to get + the current register set and another ioctl to set the current values. + + The actual structure passed through the ioctl interface is, of course, + naturally machine dependent, and is different for each set of registers. + For the sparc for example, the general register set is typically defined + by: + + typedef int gregset_t[38]; + + #define R_G0 0 + ... + #define R_TBR 37 + + and the floating point set by: + + typedef struct prfpregset { + union { + u_long pr_regs[32]; + double pr_dregs[16]; + } pr_fr; + void * pr_filler; + u_long pr_fsr; + u_char pr_qcnt; + u_char pr_q_entrysize; + u_char pr_en; + u_long pr_q[64]; + } prfpregset_t; + + These routines provide the packing and unpacking of gregset_t and + fpregset_t formatted data. + + */ +/* *INDENT-ON* */ + +/* Given a pointer to a general register set in /proc format (gregset_t *), + unpack the register contents and supply them as gdb's idea of the current + register values. */ + +void +supply_gregset (gdb_gregset_t *gregsetp) +{ + prgreg_t *regp = (prgreg_t *) gregsetp; + int regi, offset = 0; + + /* If the host is 64-bit sparc, but the target is 32-bit sparc, + then the gregset may contain 64-bit ints while supply_register + is expecting 32-bit ints. Compensate. */ + if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4) + offset = 4; + + /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */ + /* FIXME MVS: assumes the order of the first 32 elements... */ + for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++) + { + supply_register (regi, ((char *) (regp + regi)) + offset); + } + + /* These require a bit more care. */ + supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset); + supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset); + supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset); + + if (GDB_TARGET_IS_SPARC64) + { +#ifdef R_CCR + supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset); +#else + supply_register (CCR_REGNUM, NULL); +#endif +#ifdef R_FPRS + supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset); +#else + supply_register (FPRS_REGNUM, NULL); +#endif +#ifdef R_ASI + supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset); +#else + supply_register (ASI_REGNUM, NULL); +#endif + } + else /* sparc32 */ + { +#ifdef R_PS + supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset); +#else + supply_register (PS_REGNUM, NULL); +#endif + + /* For 64-bit hosts, R_WIM and R_TBR may not be defined. + Steal R_ASI and R_FPRS, and hope for the best! */ + +#if !defined (R_WIM) && defined (R_ASI) +#define R_WIM R_ASI +#endif + +#if !defined (R_TBR) && defined (R_FPRS) +#define R_TBR R_FPRS +#endif + +#if defined (R_WIM) + supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset); +#else + supply_register (WIM_REGNUM, NULL); +#endif + +#if defined (R_TBR) + supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset); +#else + supply_register (TBR_REGNUM, NULL); +#endif + } + + /* Fill inaccessible registers with zero. */ + if (GDB_TARGET_IS_SPARC64) + { + /* + * don't know how to get value of any of the following: + */ + supply_register (VER_REGNUM, NULL); + supply_register (TICK_REGNUM, NULL); + supply_register (PIL_REGNUM, NULL); + supply_register (PSTATE_REGNUM, NULL); + supply_register (TSTATE_REGNUM, NULL); + supply_register (TBA_REGNUM, NULL); + supply_register (TL_REGNUM, NULL); + supply_register (TT_REGNUM, NULL); + supply_register (TPC_REGNUM, NULL); + supply_register (TNPC_REGNUM, NULL); + supply_register (WSTATE_REGNUM, NULL); + supply_register (CWP_REGNUM, NULL); + supply_register (CANSAVE_REGNUM, NULL); + supply_register (CANRESTORE_REGNUM, NULL); + supply_register (CLEANWIN_REGNUM, NULL); + supply_register (OTHERWIN_REGNUM, NULL); + supply_register (ASR16_REGNUM, NULL); + supply_register (ASR17_REGNUM, NULL); + supply_register (ASR18_REGNUM, NULL); + supply_register (ASR19_REGNUM, NULL); + supply_register (ASR20_REGNUM, NULL); + supply_register (ASR21_REGNUM, NULL); + supply_register (ASR22_REGNUM, NULL); + supply_register (ASR23_REGNUM, NULL); + supply_register (ASR24_REGNUM, NULL); + supply_register (ASR25_REGNUM, NULL); + supply_register (ASR26_REGNUM, NULL); + supply_register (ASR27_REGNUM, NULL); + supply_register (ASR28_REGNUM, NULL); + supply_register (ASR29_REGNUM, NULL); + supply_register (ASR30_REGNUM, NULL); + supply_register (ASR31_REGNUM, NULL); + supply_register (ICC_REGNUM, NULL); + supply_register (XCC_REGNUM, NULL); + } + else + { + supply_register (CPS_REGNUM, NULL); + } +} + +void +fill_gregset (gdb_gregset_t *gregsetp, int regno) +{ + prgreg_t *regp = (prgreg_t *) gregsetp; + int regi, offset = 0; + + /* If the host is 64-bit sparc, but the target is 32-bit sparc, + then the gregset may contain 64-bit ints while supply_register + is expecting 32-bit ints. Compensate. */ + if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4) + offset = 4; + + for (regi = 0; regi <= R_I7; regi++) + if ((regno == -1) || (regno == regi)) + read_register_gen (regi, (char *) (regp + regi) + offset); + + if ((regno == -1) || (regno == PC_REGNUM)) + read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset); + + if ((regno == -1) || (regno == NPC_REGNUM)) + read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset); + + if ((regno == -1) || (regno == Y_REGNUM)) + read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset); + + if (GDB_TARGET_IS_SPARC64) + { +#ifdef R_CCR + if (regno == -1 || regno == CCR_REGNUM) + read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset); +#endif +#ifdef R_FPRS + if (regno == -1 || regno == FPRS_REGNUM) + read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset); +#endif +#ifdef R_ASI + if (regno == -1 || regno == ASI_REGNUM) + read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset); +#endif + } + else /* sparc32 */ + { +#ifdef R_PS + if (regno == -1 || regno == PS_REGNUM) + read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset); +#endif + + /* For 64-bit hosts, R_WIM and R_TBR may not be defined. + Steal R_ASI and R_FPRS, and hope for the best! */ + +#if !defined (R_WIM) && defined (R_ASI) +#define R_WIM R_ASI +#endif + +#if !defined (R_TBR) && defined (R_FPRS) +#define R_TBR R_FPRS +#endif + +#if defined (R_WIM) + if (regno == -1 || regno == WIM_REGNUM) + read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset); +#else + if (regno == -1 || regno == WIM_REGNUM) + read_register_gen (WIM_REGNUM, NULL); +#endif + +#if defined (R_TBR) + if (regno == -1 || regno == TBR_REGNUM) + read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset); +#else + if (regno == -1 || regno == TBR_REGNUM) + read_register_gen (TBR_REGNUM, NULL); +#endif + } +} + +/* Given a pointer to a floating point register set in /proc format + (fpregset_t *), unpack the register contents and supply them as gdb's + idea of the current floating point register values. */ + +void +supply_fpregset (gdb_fpregset_t *fpregsetp) +{ + register int regi; + char *from; + + if (!SPARC_HAS_FPU) + return; + + for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++) + { + from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM]; + supply_register (regi, from); + } + + if (GDB_TARGET_IS_SPARC64) + { + /* + * don't know how to get value of the following. + */ + supply_register (FSR_REGNUM, NULL); /* zero it out for now */ + supply_register (FCC0_REGNUM, NULL); + supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */ + supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */ + supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */ + } + else + { + supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr)); + } +} + +/* Given a pointer to a floating point register set in /proc format + (fpregset_t *), update the register specified by REGNO from gdb's idea + of the current floating point register set. If REGNO is -1, update + them all. */ +/* This will probably need some changes for sparc64. */ + +void +fill_fpregset (gdb_fpregset_t *fpregsetp, int regno) +{ + int regi; + char *to; + char *from; + + if (!SPARC_HAS_FPU) + return; + + for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++) + { + if ((regno == -1) || (regno == regi)) + { + from = (char *) ®isters[REGISTER_BYTE (regi)]; + to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM]; + memcpy (to, from, REGISTER_RAW_SIZE (regi)); + } + } + + if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */ + if ((regno == -1) || (regno == FPS_REGNUM)) + { + from = (char *)®isters[REGISTER_BYTE (FPS_REGNUM)]; + to = (char *) &fpregsetp->pr_fsr; + memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM)); + } +} + +#endif /* USE_PROC_FS */ + + +#ifdef GET_LONGJMP_TARGET + +/* Figure out where the longjmp will land. We expect that we have just entered + longjmp and haven't yet setup the stack frame, so the args are still in the + output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we + extract the pc (JB_PC) that we will land at. The pc is copied into ADDR. + This routine returns true on success */ + +int +get_longjmp_target (CORE_ADDR *pc) +{ + CORE_ADDR jb_addr; +#define LONGJMP_TARGET_SIZE 4 + char buf[LONGJMP_TARGET_SIZE]; + + jb_addr = read_register (O0_REGNUM); + + if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, + LONGJMP_TARGET_SIZE)) + return 0; + + *pc = extract_address (buf, LONGJMP_TARGET_SIZE); + + return 1; +} +#endif /* GET_LONGJMP_TARGET */ + +#ifdef STATIC_TRANSFORM_NAME +/* SunPRO (3.0 at least), encodes the static variables. This is not + related to C++ mangling, it is done for C too. */ + +char * +sunpro_static_transform_name (char *name) +{ + char *p; + if (name[0] == '$') + { + /* For file-local statics there will be a dollar sign, a bunch + of junk (the contents of which match a string given in the + N_OPT), a period and the name. For function-local statics + there will be a bunch of junk (which seems to change the + second character from 'A' to 'B'), a period, the name of the + function, and the name. So just skip everything before the + last period. */ + p = strrchr (name, '.'); + if (p != NULL) + name = p + 1; + } + return name; +} +#endif /* STATIC_TRANSFORM_NAME */ + + +/* Utilities for printing registers. + Page numbers refer to the SPARC Architecture Manual. */ + +static void dump_ccreg (char *, int); + +static void +dump_ccreg (char *reg, int val) +{ + /* page 41 */ + printf_unfiltered ("%s:%s,%s,%s,%s", reg, + val & 8 ? "N" : "NN", + val & 4 ? "Z" : "NZ", + val & 2 ? "O" : "NO", + val & 1 ? "C" : "NC"); +} + +static char * +decode_asi (int val) +{ + /* page 72 */ + switch (val) + { + case 4: + return "ASI_NUCLEUS"; + case 0x0c: + return "ASI_NUCLEUS_LITTLE"; + case 0x10: + return "ASI_AS_IF_USER_PRIMARY"; + case 0x11: + return "ASI_AS_IF_USER_SECONDARY"; + case 0x18: + return "ASI_AS_IF_USER_PRIMARY_LITTLE"; + case 0x19: + return "ASI_AS_IF_USER_SECONDARY_LITTLE"; + case 0x80: + return "ASI_PRIMARY"; + case 0x81: + return "ASI_SECONDARY"; + case 0x82: + return "ASI_PRIMARY_NOFAULT"; + case 0x83: + return "ASI_SECONDARY_NOFAULT"; + case 0x88: + return "ASI_PRIMARY_LITTLE"; + case 0x89: + return "ASI_SECONDARY_LITTLE"; + case 0x8a: + return "ASI_PRIMARY_NOFAULT_LITTLE"; + case 0x8b: + return "ASI_SECONDARY_NOFAULT_LITTLE"; + default: + return NULL; + } +} + +/* PRINT_REGISTER_HOOK routine. + Pretty print various registers. */ +/* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */ + +void +sparc_print_register_hook (int regno) +{ + ULONGEST val; + + /* Handle double/quad versions of lower 32 fp regs. */ + if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32 + && (regno & 1) == 0) + { + char value[16]; + + if (!read_relative_register_raw_bytes (regno, value) + && !read_relative_register_raw_bytes (regno + 1, value + 4)) + { + printf_unfiltered ("\t"); + print_floating (value, builtin_type_double, gdb_stdout); + } +#if 0 /* FIXME: gdb doesn't handle long doubles */ + if ((regno & 3) == 0) + { + if (!read_relative_register_raw_bytes (regno + 2, value + 8) + && !read_relative_register_raw_bytes (regno + 3, value + 12)) + { + printf_unfiltered ("\t"); + print_floating (value, builtin_type_long_double, gdb_stdout); + } + } +#endif + return; + } + +#if 0 /* FIXME: gdb doesn't handle long doubles */ + /* Print upper fp regs as long double if appropriate. */ + if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM + /* We test for even numbered regs and not a multiple of 4 because + the upper fp regs are recorded as doubles. */ + && (regno & 1) == 0) + { + char value[16]; + + if (!read_relative_register_raw_bytes (regno, value) + && !read_relative_register_raw_bytes (regno + 1, value + 8)) + { + printf_unfiltered ("\t"); + print_floating (value, builtin_type_long_double, gdb_stdout); + } + return; + } +#endif + + /* FIXME: Some of these are priviledged registers. + Not sure how they should be handled. */ + +#define BITS(n, mask) ((int) (((val) >> (n)) & (mask))) + + val = read_register (regno); + + /* pages 40 - 60 */ + if (GDB_TARGET_IS_SPARC64) + switch (regno) + { + case CCR_REGNUM: + printf_unfiltered ("\t"); + dump_ccreg ("xcc", val >> 4); + printf_unfiltered (", "); + dump_ccreg ("icc", val & 15); + break; + case FPRS_REGNUM: + printf ("\tfef:%d, du:%d, dl:%d", + BITS (2, 1), BITS (1, 1), BITS (0, 1)); + break; + case FSR_REGNUM: + { + static char *fcc[4] = + {"=", "<", ">", "?"}; + static char *rd[4] = + {"N", "0", "+", "-"}; + /* Long, but I'd rather leave it as is and use a wide screen. */ + printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ", + fcc[BITS (10, 3)], fcc[BITS (32, 3)], + fcc[BITS (34, 3)], fcc[BITS (36, 3)], + rd[BITS (30, 3)], BITS (23, 31)); + printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d", + BITS (22, 1), BITS (17, 7), BITS (14, 7), + BITS (13, 1), BITS (5, 31), BITS (0, 31)); + break; + } + case ASI_REGNUM: + { + char *asi = decode_asi (val); + if (asi != NULL) + printf ("\t%s", asi); + break; + } + case VER_REGNUM: + printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d", + BITS (48, 0xffff), BITS (32, 0xffff), + BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31)); + break; + case PSTATE_REGNUM: + { + static char *mm[4] = + {"tso", "pso", "rso", "?"}; + printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ", + BITS (9, 1), BITS (8, 1), + mm[BITS (6, 3)], BITS (5, 1)); + printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d", + BITS (4, 1), BITS (3, 1), BITS (2, 1), + BITS (1, 1), BITS (0, 1)); + break; + } + case TSTATE_REGNUM: + /* FIXME: print all 4? */ + break; + case TT_REGNUM: + /* FIXME: print all 4? */ + break; + case TPC_REGNUM: + /* FIXME: print all 4? */ + break; + case TNPC_REGNUM: + /* FIXME: print all 4? */ + break; + case WSTATE_REGNUM: + printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7)); + break; + case CWP_REGNUM: + printf ("\t%d", BITS (0, 31)); + break; + case CANSAVE_REGNUM: + printf ("\t%-2d before spill", BITS (0, 31)); + break; + case CANRESTORE_REGNUM: + printf ("\t%-2d before fill", BITS (0, 31)); + break; + case CLEANWIN_REGNUM: + printf ("\t%-2d before clean", BITS (0, 31)); + break; + case OTHERWIN_REGNUM: + printf ("\t%d", BITS (0, 31)); + break; + } + else /* Sparc32 */ + switch (regno) + { + case PS_REGNUM: + printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d", + BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-', + BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-', + BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1), + BITS (0, 31)); + break; + case FPS_REGNUM: + { + static char *fcc[4] = + {"=", "<", ">", "?"}; + static char *rd[4] = + {"N", "0", "+", "-"}; + /* Long, but I'd rather leave it as is and use a wide screen. */ + printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, " + "fcc:%s, aexc:%d, cexc:%d", + rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7), + BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31), + BITS (0, 31)); + break; + } + } + +#undef BITS +} + +int +gdb_print_insn_sparc (bfd_vma memaddr, disassemble_info *info) +{ + /* It's necessary to override mach again because print_insn messes it up. */ + info->mach = TARGET_ARCHITECTURE->mach; + return print_insn_sparc (memaddr, info); +} + +/* The SPARC passes the arguments on the stack; arguments smaller + than an int are promoted to an int. The first 6 words worth of + args are also passed in registers o0 - o5. */ + +CORE_ADDR +sparc32_push_arguments (int nargs, struct value **args, CORE_ADDR sp, + int struct_return, CORE_ADDR struct_addr) +{ + int i, j, oregnum; + int accumulate_size = 0; + struct sparc_arg + { + char *contents; + int len; + int offset; + }; + struct sparc_arg *sparc_args = + (struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg)); + struct sparc_arg *m_arg; + + /* Promote arguments if necessary, and calculate their stack offsets + and sizes. */ + for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++) + { + struct value *arg = args[i]; + struct type *arg_type = check_typedef (VALUE_TYPE (arg)); + /* Cast argument to long if necessary as the compiler does it too. */ + switch (TYPE_CODE (arg_type)) + { + case TYPE_CODE_INT: + case TYPE_CODE_BOOL: + case TYPE_CODE_CHAR: + case TYPE_CODE_RANGE: + case TYPE_CODE_ENUM: + if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long)) + { + arg_type = builtin_type_long; + arg = value_cast (arg_type, arg); + } + break; + default: + break; + } + m_arg->len = TYPE_LENGTH (arg_type); + m_arg->offset = accumulate_size; + accumulate_size = (accumulate_size + m_arg->len + 3) & ~3; + m_arg->contents = VALUE_CONTENTS (arg); + } + + /* Make room for the arguments on the stack. */ + accumulate_size += CALL_DUMMY_STACK_ADJUST; + sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST; + + /* `Push' arguments on the stack. */ + for (i = 0, oregnum = 0, m_arg = sparc_args; + i < nargs; + i++, m_arg++) + { + write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len); + for (j = 0; + j < m_arg->len && oregnum < 6; + j += SPARC_INTREG_SIZE, oregnum++) + write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j); + } + + return sp; +} + + +/* Extract from an array REGBUF containing the (raw) register state + a function return value of type TYPE, and copy that, in virtual format, + into VALBUF. */ + +void +sparc32_extract_return_value (struct type *type, char *regbuf, char *valbuf) +{ + int typelen = TYPE_LENGTH (type); + int regsize = REGISTER_RAW_SIZE (O0_REGNUM); + + if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) + memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen); + else + memcpy (valbuf, + ®buf[O0_REGNUM * regsize + + (typelen >= regsize + || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE ? 0 + : regsize - typelen)], + typelen); +} + + +/* Write into appropriate registers a function return value + of type TYPE, given in virtual format. On SPARCs with FPUs, + float values are returned in %f0 (and %f1). In all other cases, + values are returned in register %o0. */ + +void +sparc_store_return_value (struct type *type, char *valbuf) +{ + int regno; + char *buffer; + + buffer = alloca (MAX_REGISTER_RAW_SIZE); + + if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) + /* Floating-point values are returned in the register pair */ + /* formed by %f0 and %f1 (doubles are, anyway). */ + regno = FP0_REGNUM; + else + /* Other values are returned in register %o0. */ + regno = O0_REGNUM; + + /* Add leading zeros to the value. */ + if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno)) + { + memset (buffer, 0, REGISTER_RAW_SIZE (regno)); + memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf, + TYPE_LENGTH (type)); + write_register_gen (regno, buffer); + } + else + write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type)); +} + +extern void +sparclet_store_return_value (struct type *type, char *valbuf) +{ + /* Other values are returned in register %o0. */ + write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf, + TYPE_LENGTH (type)); +} + + +#ifndef CALL_DUMMY_CALL_OFFSET +#define CALL_DUMMY_CALL_OFFSET \ + (gdbarch_tdep (current_gdbarch)->call_dummy_call_offset) +#endif /* CALL_DUMMY_CALL_OFFSET */ + +/* Insert the function address into a call dummy instruction sequence + stored at DUMMY. + + For structs and unions, if the function was compiled with Sun cc, + it expects 'unimp' after the call. But gcc doesn't use that + (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY + can assume it is operating on a pristine CALL_DUMMY, not one that + has already been customized for a different function). */ + +void +sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, + struct type *value_type, int using_gcc) +{ + int i; + + /* Store the relative adddress of the target function into the + 'call' instruction. */ + store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4, + (0x40000000 + | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2) + & 0x3fffffff))); + + /* If the called function returns an aggregate value, fill in the UNIMP + instruction containing the size of the returned aggregate return value, + which follows the call instruction. + For details see the SPARC Architecture Manual Version 8, Appendix D.3. + + Adjust the call_dummy_breakpoint_offset for the bp_call_dummy breakpoint + to the proper address in the call dummy, so that `finish' after a stop + in a call dummy works. + Tweeking current_gdbarch is not an optimal solution, but the call to + sparc_fix_call_dummy is immediately followed by a call to run_stack_dummy, + which is the only function where dummy_breakpoint_offset is actually + used, if it is non-zero. */ + if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT + || TYPE_CODE (value_type) == TYPE_CODE_UNION) + { + store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4, + TYPE_LENGTH (value_type) & 0x1fff); + set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x30); + } + else + set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x2c); + + if (!(GDB_TARGET_IS_SPARC64)) + { + /* If this is not a simulator target, change the first four + instructions of the call dummy to NOPs. Those instructions + include a 'save' instruction and are designed to work around + problems with register window flushing in the simulator. */ + + if (strcmp (target_shortname, "sim") != 0) + { + for (i = 0; i < 4; i++) + store_unsigned_integer (dummy + (i * 4), 4, 0x01000000); + } + } + + /* If this is a bi-endian target, GDB has written the call dummy + in little-endian order. We must byte-swap it back to big-endian. */ + if (bi_endian) + { + for (i = 0; i < CALL_DUMMY_LENGTH; i += 4) + { + char tmp = dummy[i]; + dummy[i] = dummy[i + 3]; + dummy[i + 3] = tmp; + tmp = dummy[i + 1]; + dummy[i + 1] = dummy[i + 2]; + dummy[i + 2] = tmp; + } + } +} + + +/* Set target byte order based on machine type. */ + +static int +sparc_target_architecture_hook (const bfd_arch_info_type *ap) +{ + int i, j; + + if (ap->mach == bfd_mach_sparc_sparclite_le) + { + target_byte_order = BFD_ENDIAN_LITTLE; + bi_endian = 1; + } + else + bi_endian = 0; + return 1; +} + + +/* + * Module "constructor" function. + */ + +static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info, + struct gdbarch_list *arches); + +void +_initialize_sparc_tdep (void) +{ + /* Hook us into the gdbarch mechanism. */ + register_gdbarch_init (bfd_arch_sparc, sparc_gdbarch_init); + + tm_print_insn = gdb_print_insn_sparc; + tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */ + target_architecture_hook = sparc_target_architecture_hook; +} + +/* Compensate for stack bias. Note that we currently don't handle + mixed 32/64 bit code. */ + +CORE_ADDR +sparc64_read_sp (void) +{ + CORE_ADDR sp = read_register (SP_REGNUM); + + if (sp & 1) + sp += 2047; + return sp; +} + +CORE_ADDR +sparc64_read_fp (void) +{ + CORE_ADDR fp = read_register (FP_REGNUM); + + if (fp & 1) + fp += 2047; + return fp; +} + +void +sparc64_write_sp (CORE_ADDR val) +{ + CORE_ADDR oldsp = read_register (SP_REGNUM); + if (oldsp & 1) + write_register (SP_REGNUM, val - 2047); + else + write_register (SP_REGNUM, val); +} + +void +sparc64_write_fp (CORE_ADDR val) +{ + CORE_ADDR oldfp = read_register (FP_REGNUM); + if (oldfp & 1) + write_register (FP_REGNUM, val - 2047); + else + write_register (FP_REGNUM, val); +} + +/* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31, + and all other arguments in O0 to O5. They are also copied onto + the stack in the correct places. Apparently (empirically), + structs of less than 16 bytes are passed member-by-member in + separate registers, but I am unable to figure out the algorithm. + Some members go in floating point regs, but I don't know which. + + FIXME: Handle small structs (less than 16 bytes containing floats). + + The counting regimen for using both integer and FP registers + for argument passing is rather odd -- a single counter is used + for both; this means that if the arguments alternate between + int and float, we will waste every other register of both types. */ + +CORE_ADDR +sparc64_push_arguments (int nargs, struct value **args, CORE_ADDR sp, + int struct_return, CORE_ADDR struct_retaddr) +{ + int i, j, register_counter = 0; + CORE_ADDR tempsp; + struct type *sparc_intreg_type = + TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ? + builtin_type_long : builtin_type_long_long; + + sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL)); + + /* Figure out how much space we'll need. */ + for (i = nargs - 1; i >= 0; i--) + { + int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i]))); + struct value *copyarg = args[i]; + int copylen = len; + + if (copylen < SPARC_INTREG_SIZE) + { + copyarg = value_cast (sparc_intreg_type, copyarg); + copylen = SPARC_INTREG_SIZE; + } + sp -= copylen; + } + + /* Round down. */ + sp = sp & ~7; + tempsp = sp; + + /* if STRUCT_RETURN, then first argument is the struct return location. */ + if (struct_return) + write_register (O0_REGNUM + register_counter++, struct_retaddr); + + /* Now write the arguments onto the stack, while writing FP + arguments into the FP registers, and other arguments into the + first six 'O' registers. */ + + for (i = 0; i < nargs; i++) + { + int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i]))); + struct value *copyarg = args[i]; + enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i])); + int copylen = len; + + if (typecode == TYPE_CODE_INT || + typecode == TYPE_CODE_BOOL || + typecode == TYPE_CODE_CHAR || + typecode == TYPE_CODE_RANGE || + typecode == TYPE_CODE_ENUM) + if (len < SPARC_INTREG_SIZE) + { + /* Small ints will all take up the size of one intreg on + the stack. */ + copyarg = value_cast (sparc_intreg_type, copyarg); + copylen = SPARC_INTREG_SIZE; + } + + write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen); + tempsp += copylen; + + /* Corner case: Structs consisting of a single float member are floats. + * FIXME! I don't know about structs containing multiple floats! + * Structs containing mixed floats and ints are even more weird. + */ + + + + /* Separate float args from all other args. */ + if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU) + { + if (register_counter < 16) + { + /* This arg gets copied into a FP register. */ + int fpreg; + + switch (len) { + case 4: /* Single-precision (float) */ + fpreg = FP0_REGNUM + 2 * register_counter + 1; + register_counter += 1; + break; + case 8: /* Double-precision (double) */ + fpreg = FP0_REGNUM + 2 * register_counter; + register_counter += 1; + break; + case 16: /* Quad-precision (long double) */ + fpreg = FP0_REGNUM + 2 * register_counter; + register_counter += 2; + break; + default: + internal_error (__FILE__, __LINE__, "bad switch"); + } + write_register_bytes (REGISTER_BYTE (fpreg), + VALUE_CONTENTS (args[i]), + len); + } + } + else /* all other args go into the first six 'o' registers */ + { + for (j = 0; + j < len && register_counter < 6; + j += SPARC_INTREG_SIZE) + { + int oreg = O0_REGNUM + register_counter; + + write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j); + register_counter += 1; + } + } + } + return sp; +} + +/* Values <= 32 bytes are returned in o0-o3 (floating-point values are + returned in f0-f3). */ + +void +sp64_extract_return_value (struct type *type, char *regbuf, char *valbuf, + int bitoffset) +{ + int typelen = TYPE_LENGTH (type); + int regsize = REGISTER_RAW_SIZE (O0_REGNUM); + + if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) + { + memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen); + return; + } + + if (TYPE_CODE (type) != TYPE_CODE_STRUCT + || (TYPE_LENGTH (type) > 32)) + { + memcpy (valbuf, + ®buf[O0_REGNUM * regsize + + (typelen >= regsize ? 0 : regsize - typelen)], + typelen); + return; + } + else + { + char *o0 = ®buf[O0_REGNUM * regsize]; + char *f0 = ®buf[FP0_REGNUM * regsize]; + int x; + + for (x = 0; x < TYPE_NFIELDS (type); x++) + { + struct field *f = &TYPE_FIELDS (type)[x]; + /* FIXME: We may need to handle static fields here. */ + int whichreg = (f->loc.bitpos + bitoffset) / 32; + int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8; + int where = (f->loc.bitpos + bitoffset) / 8; + int size = TYPE_LENGTH (f->type); + int typecode = TYPE_CODE (f->type); + + if (typecode == TYPE_CODE_STRUCT) + { + sp64_extract_return_value (f->type, + regbuf, + valbuf, + bitoffset + f->loc.bitpos); + } + else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU) + { + memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size); + } + else + { + memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size); + } + } + } +} + +extern void +sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf) +{ + sp64_extract_return_value (type, regbuf, valbuf, 0); +} + +extern void +sparclet_extract_return_value (struct type *type, + char *regbuf, + char *valbuf) +{ + regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8; + if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM)) + regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type); + + memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type)); +} + + +extern CORE_ADDR +sparc32_stack_align (CORE_ADDR addr) +{ + return ((addr + 7) & -8); +} + +extern CORE_ADDR +sparc64_stack_align (CORE_ADDR addr) +{ + return ((addr + 15) & -16); +} + +extern void +sparc_print_extra_frame_info (struct frame_info *fi) +{ + if (fi && fi->extra_info && fi->extra_info->flat) + printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n", + paddr_nz (fi->extra_info->pc_addr), + paddr_nz (fi->extra_info->fp_addr)); +} + +/* MULTI_ARCH support */ + +static char * +sparc32_register_name (int regno) +{ + static char *register_names[] = + { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", + "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", + "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", + "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", + + "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", + "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", + "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", + "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", + + "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr" + }; + + if (regno < 0 || + regno >= (sizeof (register_names) / sizeof (register_names[0]))) + return NULL; + else + return register_names[regno]; +} + +static char * +sparc64_register_name (int regno) +{ + static char *register_names[] = + { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", + "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", + "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", + "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", + + "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", + "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", + "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", + "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", + "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", + "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62", + + "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver", + "tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc", + "tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin", + "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23", + "asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31", + /* These are here at the end to simplify removing them if we have to. */ + "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3" + }; + + if (regno < 0 || + regno >= (sizeof (register_names) / sizeof (register_names[0]))) + return NULL; + else + return register_names[regno]; +} + +static char * +sparclite_register_name (int regno) +{ + static char *register_names[] = + { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", + "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", + "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", + "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", + + "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", + "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", + "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", + "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", + + "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr", + "dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr" + }; + + if (regno < 0 || + regno >= (sizeof (register_names) / sizeof (register_names[0]))) + return NULL; + else + return register_names[regno]; +} + +static char * +sparclet_register_name (int regno) +{ + static char *register_names[] = + { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", + "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", + "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", + "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", + + "", "", "", "", "", "", "", "", /* no floating point registers */ + "", "", "", "", "", "", "", "", + "", "", "", "", "", "", "", "", + "", "", "", "", "", "", "", "", + + "y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */ + "ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "", + + /* ASR15 ASR19 (don't display them) */ + "asr1", "", "asr17", "asr18", "", "asr20", "asr21", "asr22" + /* None of the rest get displayed */ +#if 0 + "awr0", "awr1", "awr2", "awr3", "awr4", "awr5", "awr6", "awr7", + "awr8", "awr9", "awr10", "awr11", "awr12", "awr13", "awr14", "awr15", + "awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23", + "awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31", + "apsr" +#endif /* 0 */ + }; + + if (regno < 0 || + regno >= (sizeof (register_names) / sizeof (register_names[0]))) + return NULL; + else + return register_names[regno]; +} + +CORE_ADDR +sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp) +{ + if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) + { + /* The return PC of the dummy_frame is the former 'current' PC + (where we were before we made the target function call). + This is saved in %i7 by push_dummy_frame. + + We will save the 'call dummy location' (ie. the address + to which the target function will return) in %o7. + This address will actually be the program's entry point. + There will be a special call_dummy breakpoint there. */ + + write_register (O7_REGNUM, + CALL_DUMMY_ADDRESS () - 8); + } + + return sp; +} + +/* Should call_function allocate stack space for a struct return? */ + +static int +sparc64_use_struct_convention (int gcc_p, struct type *type) +{ + return (TYPE_LENGTH (type) > 32); +} + +/* Store the address of the place in which to copy the structure the + subroutine will return. This is called from call_function_by_hand. + The ultimate mystery is, tho, what is the value "16"? + + MVS: That's the offset from where the sp is now, to where the + subroutine is gonna expect to find the struct return address. */ + +static void +sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) +{ + char *val; + CORE_ADDR o7; + + val = alloca (SPARC_INTREG_SIZE); + store_unsigned_integer (val, SPARC_INTREG_SIZE, addr); + write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE); + + if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) + { + /* Now adjust the value of the link register, which was previously + stored by push_return_address. Functions that return structs are + peculiar in that they return to link register + 12, rather than + link register + 8. */ + + o7 = read_register (O7_REGNUM); + write_register (O7_REGNUM, o7 - 4); + } +} + +static void +sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) +{ + /* FIXME: V9 uses %o0 for this. */ + /* FIXME MVS: Only for small enough structs!!! */ + + target_write_memory (sp + (16 * SPARC_INTREG_SIZE), + (char *) &addr, SPARC_INTREG_SIZE); +#if 0 + if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) + { + /* Now adjust the value of the link register, which was previously + stored by push_return_address. Functions that return structs are + peculiar in that they return to link register + 12, rather than + link register + 8. */ + + write_register (O7_REGNUM, read_register (O7_REGNUM) - 4); + } +#endif +} + +/* Default target data type for register REGNO. */ + +static struct type * +sparc32_register_virtual_type (int regno) +{ + if (regno == PC_REGNUM || + regno == FP_REGNUM || + regno == SP_REGNUM) + return builtin_type_unsigned_int; + if (regno < 32) + return builtin_type_int; + if (regno < 64) + return builtin_type_float; + return builtin_type_int; +} + +static struct type * +sparc64_register_virtual_type (int regno) +{ + if (regno == PC_REGNUM || + regno == FP_REGNUM || + regno == SP_REGNUM) + return builtin_type_unsigned_long_long; + if (regno < 32) + return builtin_type_long_long; + if (regno < 64) + return builtin_type_float; + if (regno < 80) + return builtin_type_double; + return builtin_type_long_long; +} + +/* Number of bytes of storage in the actual machine representation for + register REGNO. */ + +static int +sparc32_register_size (int regno) +{ + return 4; +} + +static int +sparc64_register_size (int regno) +{ + return (regno < 32 ? 8 : regno < 64 ? 4 : 8); +} + +/* Index within the `registers' buffer of the first byte of the space + for register REGNO. */ + +static int +sparc32_register_byte (int regno) +{ + return (regno * 4); +} + +static int +sparc64_register_byte (int regno) +{ + if (regno < 32) + return regno * 8; + else if (regno < 64) + return 32 * 8 + (regno - 32) * 4; + else if (regno < 80) + return 32 * 8 + 32 * 4 + (regno - 64) * 8; + else + return 64 * 8 + (regno - 80) * 8; +} + +/* Advance PC across any function entry prologue instructions to reach + some "real" code. SKIP_PROLOGUE_FRAMELESS_P advances the PC past + some of the prologue, but stops as soon as it knows that the + function has a frame. Its result is equal to its input PC if the + function is frameless, unequal otherwise. */ + +static CORE_ADDR +sparc_gdbarch_skip_prologue (CORE_ADDR ip) +{ + return examine_prologue (ip, 0, NULL, NULL); +} + +/* Immediately after a function call, return the saved pc. + Can't go through the frames for this because on some machines + the new frame is not set up until the new function executes + some instructions. */ + +static CORE_ADDR +sparc_saved_pc_after_call (struct frame_info *fi) +{ + return sparc_pc_adjust (read_register (RP_REGNUM)); +} + +/* Convert registers between 'raw' and 'virtual' formats. + They are the same on sparc, so there's nothing to do. */ + +static void +sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to) +{ /* do nothing (should never be called) */ +} + +static void +sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to) +{ /* do nothing (should never be called) */ +} + +/* Init saved regs: nothing to do, just a place-holder function. */ + +static void +sparc_frame_init_saved_regs (struct frame_info *fi_ignored) +{ /* no-op */ +} + +/* gdbarch fix call dummy: + All this function does is rearrange the arguments before calling + sparc_fix_call_dummy (which does the real work). */ + +static void +sparc_gdbarch_fix_call_dummy (char *dummy, + CORE_ADDR pc, + CORE_ADDR fun, + int nargs, + struct value **args, + struct type *type, + int gcc_p) +{ + if (CALL_DUMMY_LOCATION == ON_STACK) + sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p); +} + +/* Coerce float to double: a no-op. */ + +static int +sparc_coerce_float_to_double (struct type *formal, struct type *actual) +{ + return 1; +} + +/* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy. */ + +static CORE_ADDR +sparc_call_dummy_address (void) +{ + return (CALL_DUMMY_START_OFFSET) + CALL_DUMMY_BREAKPOINT_OFFSET; +} + +/* Supply the Y register number to those that need it. */ + +int +sparc_y_regnum (void) +{ + return gdbarch_tdep (current_gdbarch)->y_regnum; +} + +int +sparc_reg_struct_has_addr (int gcc_p, struct type *type) +{ + if (GDB_TARGET_IS_SPARC64) + return (TYPE_LENGTH (type) > 32); + else + return (gcc_p != 1); +} + +int +sparc_intreg_size (void) +{ + return SPARC_INTREG_SIZE; +} + +static int +sparc_return_value_on_stack (struct type *type) +{ + if (TYPE_CODE (type) == TYPE_CODE_FLT && + TYPE_LENGTH (type) > 8) + return 1; + else + return 0; +} + +/* + * Gdbarch "constructor" function. + */ + +#define SPARC32_CALL_DUMMY_ON_STACK + +#define SPARC_SP_REGNUM 14 +#define SPARC_FP_REGNUM 30 +#define SPARC_FP0_REGNUM 32 +#define SPARC32_NPC_REGNUM 69 +#define SPARC32_PC_REGNUM 68 +#define SPARC32_Y_REGNUM 64 +#define SPARC64_PC_REGNUM 80 +#define SPARC64_NPC_REGNUM 81 +#define SPARC64_Y_REGNUM 85 + +static struct gdbarch * +sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) +{ + struct gdbarch *gdbarch; + struct gdbarch_tdep *tdep; + + static LONGEST call_dummy_32[] = + { 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003, + 0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c, + 0xd203a048, 0x40000000, 0xd003a044, 0x01000000, + 0x91d02001, 0x01000000 + }; + static LONGEST call_dummy_64[] = + { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL, + 0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL, + 0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL, + 0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL, + 0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL, + 0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL, + 0xf03fa73f01000000LL, 0x0100000001000000LL, + 0x0100000091580000LL, 0xd027a72b93500000LL, + 0xd027a72791480000LL, 0xd027a72391400000LL, + 0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL, + 0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL, + 0x0100000091d02001LL, 0x0100000001000000LL + }; + static LONGEST call_dummy_nil[] = {0}; + + /* First see if there is already a gdbarch that can satisfy the request. */ + arches = gdbarch_list_lookup_by_info (arches, &info); + if (arches != NULL) + return arches->gdbarch; + + /* None found: is the request for a sparc architecture? */ + if (info.bfd_arch_info->arch != bfd_arch_sparc) + return NULL; /* No; then it's not for us. */ + + /* Yes: create a new gdbarch for the specified machine type. */ + tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); + gdbarch = gdbarch_alloc (&info, tdep); + + /* First set settings that are common for all sparc architectures. */ + set_gdbarch_believe_pcc_promotion (gdbarch, 1); + set_gdbarch_breakpoint_from_pc (gdbarch, memory_breakpoint_from_pc); + set_gdbarch_coerce_float_to_double (gdbarch, + sparc_coerce_float_to_double); + set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); + set_gdbarch_call_dummy_p (gdbarch, 1); + set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 1); + set_gdbarch_decr_pc_after_break (gdbarch, 0); + set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); + set_gdbarch_extract_struct_value_address (gdbarch, + sparc_extract_struct_value_address); + set_gdbarch_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy); + set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); + set_gdbarch_fp_regnum (gdbarch, SPARC_FP_REGNUM); + set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM); + set_gdbarch_frame_args_address (gdbarch, default_frame_address); + set_gdbarch_frame_chain (gdbarch, sparc_frame_chain); + set_gdbarch_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs); + set_gdbarch_frame_locals_address (gdbarch, default_frame_address); + set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); + set_gdbarch_frame_saved_pc (gdbarch, sparc_frame_saved_pc); + set_gdbarch_frameless_function_invocation (gdbarch, + frameless_look_for_prologue); + set_gdbarch_get_saved_register (gdbarch, sparc_get_saved_register); + set_gdbarch_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info); + set_gdbarch_inner_than (gdbarch, core_addr_lessthan); + set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); + set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); + set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); + set_gdbarch_max_register_raw_size (gdbarch, 8); + set_gdbarch_max_register_virtual_size (gdbarch, 8); + set_gdbarch_pop_frame (gdbarch, sparc_pop_frame); + set_gdbarch_push_return_address (gdbarch, sparc_push_return_address); + set_gdbarch_push_dummy_frame (gdbarch, sparc_push_dummy_frame); + set_gdbarch_read_pc (gdbarch, generic_target_read_pc); + set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw); + set_gdbarch_register_convert_to_virtual (gdbarch, + sparc_convert_to_virtual); + set_gdbarch_register_convertible (gdbarch, + generic_register_convertible_not); + set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr); + set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack); + set_gdbarch_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call); + set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); + set_gdbarch_skip_prologue (gdbarch, sparc_gdbarch_skip_prologue); + set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); + set_gdbarch_use_generic_dummy_frames (gdbarch, 0); + set_gdbarch_write_pc (gdbarch, generic_target_write_pc); + + /* + * Settings that depend only on 32/64 bit word size + */ + + switch (info.bfd_arch_info->mach) + { + case bfd_mach_sparc: + case bfd_mach_sparc_sparclet: + case bfd_mach_sparc_sparclite: + case bfd_mach_sparc_v8plus: + case bfd_mach_sparc_v8plusa: + case bfd_mach_sparc_sparclite_le: + /* 32-bit machine types: */ + +#ifdef SPARC32_CALL_DUMMY_ON_STACK + set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack); + set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address); + set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0x30); + set_gdbarch_call_dummy_length (gdbarch, 0x38); + set_gdbarch_call_dummy_location (gdbarch, ON_STACK); + set_gdbarch_call_dummy_words (gdbarch, call_dummy_32); +#else + set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point); + set_gdbarch_call_dummy_address (gdbarch, entry_point_address); + set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); + set_gdbarch_call_dummy_length (gdbarch, 0); + set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); + set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil); +#endif + set_gdbarch_call_dummy_stack_adjust (gdbarch, 68); + set_gdbarch_call_dummy_start_offset (gdbarch, 0); + set_gdbarch_frame_args_skip (gdbarch, 68); + set_gdbarch_function_start_offset (gdbarch, 0); + set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); + set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM); + set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); + set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); + set_gdbarch_push_arguments (gdbarch, sparc32_push_arguments); + set_gdbarch_read_fp (gdbarch, generic_target_read_fp); + set_gdbarch_read_sp (gdbarch, generic_target_read_sp); + + set_gdbarch_register_byte (gdbarch, sparc32_register_byte); + set_gdbarch_register_raw_size (gdbarch, sparc32_register_size); + set_gdbarch_register_size (gdbarch, 4); + set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size); + set_gdbarch_register_virtual_type (gdbarch, + sparc32_register_virtual_type); +#ifdef SPARC32_CALL_DUMMY_ON_STACK + set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32)); +#else + set_gdbarch_sizeof_call_dummy_words (gdbarch, 0); +#endif + set_gdbarch_stack_align (gdbarch, sparc32_stack_align); + set_gdbarch_store_struct_return (gdbarch, sparc32_store_struct_return); + set_gdbarch_use_struct_convention (gdbarch, + generic_use_struct_convention); + set_gdbarch_write_fp (gdbarch, generic_target_write_fp); + set_gdbarch_write_sp (gdbarch, generic_target_write_sp); + tdep->y_regnum = SPARC32_Y_REGNUM; + tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32; + tdep->intreg_size = 4; + tdep->reg_save_offset = 0x60; + tdep->call_dummy_call_offset = 0x24; + break; + + case bfd_mach_sparc_v9: + case bfd_mach_sparc_v9a: + /* 64-bit machine types: */ + default: /* Any new machine type is likely to be 64-bit. */ + +#ifdef SPARC64_CALL_DUMMY_ON_STACK + set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack); + set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address); + set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8 * 4); + set_gdbarch_call_dummy_length (gdbarch, 192); + set_gdbarch_call_dummy_location (gdbarch, ON_STACK); + set_gdbarch_call_dummy_start_offset (gdbarch, 148); + set_gdbarch_call_dummy_words (gdbarch, call_dummy_64); +#else + set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point); + set_gdbarch_call_dummy_address (gdbarch, entry_point_address); + set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); + set_gdbarch_call_dummy_length (gdbarch, 0); + set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); + set_gdbarch_call_dummy_start_offset (gdbarch, 0); + set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil); +#endif + set_gdbarch_call_dummy_stack_adjust (gdbarch, 128); + set_gdbarch_frame_args_skip (gdbarch, 136); + set_gdbarch_function_start_offset (gdbarch, 0); + set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); + set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM); + set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); + set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT); + set_gdbarch_push_arguments (gdbarch, sparc64_push_arguments); + /* NOTE different for at_entry */ + set_gdbarch_read_fp (gdbarch, sparc64_read_fp); + set_gdbarch_read_sp (gdbarch, sparc64_read_sp); + /* Some of the registers aren't 64 bits, but it's a lot simpler just + to assume they all are (since most of them are). */ + set_gdbarch_register_byte (gdbarch, sparc64_register_byte); + set_gdbarch_register_raw_size (gdbarch, sparc64_register_size); + set_gdbarch_register_size (gdbarch, 8); + set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size); + set_gdbarch_register_virtual_type (gdbarch, + sparc64_register_virtual_type); +#ifdef SPARC64_CALL_DUMMY_ON_STACK + set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64)); +#else + set_gdbarch_sizeof_call_dummy_words (gdbarch, 0); +#endif + set_gdbarch_stack_align (gdbarch, sparc64_stack_align); + set_gdbarch_store_struct_return (gdbarch, sparc64_store_struct_return); + set_gdbarch_use_struct_convention (gdbarch, + sparc64_use_struct_convention); + set_gdbarch_write_fp (gdbarch, sparc64_write_fp); + set_gdbarch_write_sp (gdbarch, sparc64_write_sp); + tdep->y_regnum = SPARC64_Y_REGNUM; + tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48; + tdep->intreg_size = 8; + tdep->reg_save_offset = 0x90; + tdep->call_dummy_call_offset = 148 + 4 * 5; + break; + } + + /* + * Settings that vary per-architecture: + */ + + switch (info.bfd_arch_info->mach) + { + case bfd_mach_sparc: + set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value); + set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); + set_gdbarch_num_regs (gdbarch, 72); + set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4); + set_gdbarch_register_name (gdbarch, sparc32_register_name); + set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); + tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ + tdep->fp_register_bytes = 32 * 4; + tdep->print_insn_mach = bfd_mach_sparc; + break; + case bfd_mach_sparc_sparclet: + set_gdbarch_extract_return_value (gdbarch, + sparclet_extract_return_value); + set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); + set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8); + set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4); + set_gdbarch_register_name (gdbarch, sparclet_register_name); + set_gdbarch_store_return_value (gdbarch, sparclet_store_return_value); + tdep->has_fpu = 0; /* (all but sparclet and sparclite) */ + tdep->fp_register_bytes = 0; + tdep->print_insn_mach = bfd_mach_sparc_sparclet; + break; + case bfd_mach_sparc_sparclite: + set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value); + set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid); + set_gdbarch_num_regs (gdbarch, 80); + set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4); + set_gdbarch_register_name (gdbarch, sparclite_register_name); + set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); + tdep->has_fpu = 0; /* (all but sparclet and sparclite) */ + tdep->fp_register_bytes = 0; + tdep->print_insn_mach = bfd_mach_sparc_sparclite; + break; + case bfd_mach_sparc_v8plus: + set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value); + set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); + set_gdbarch_num_regs (gdbarch, 72); + set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4); + set_gdbarch_register_name (gdbarch, sparc32_register_name); + set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); + tdep->print_insn_mach = bfd_mach_sparc; + tdep->fp_register_bytes = 32 * 4; + tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ + break; + case bfd_mach_sparc_v8plusa: + set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value); + set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); + set_gdbarch_num_regs (gdbarch, 72); + set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4); + set_gdbarch_register_name (gdbarch, sparc32_register_name); + set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); + tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ + tdep->fp_register_bytes = 32 * 4; + tdep->print_insn_mach = bfd_mach_sparc; + break; + case bfd_mach_sparc_sparclite_le: + set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value); + set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid); + set_gdbarch_num_regs (gdbarch, 80); + set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4); + set_gdbarch_register_name (gdbarch, sparclite_register_name); + set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); + tdep->has_fpu = 0; /* (all but sparclet and sparclite) */ + tdep->fp_register_bytes = 0; + tdep->print_insn_mach = bfd_mach_sparc_sparclite; + break; + case bfd_mach_sparc_v9: + set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value); + set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); + set_gdbarch_num_regs (gdbarch, 125); + set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8); + set_gdbarch_register_name (gdbarch, sparc64_register_name); + set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); + tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ + tdep->fp_register_bytes = 64 * 4; + tdep->print_insn_mach = bfd_mach_sparc_v9a; + break; + case bfd_mach_sparc_v9a: + set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value); + set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); + set_gdbarch_num_regs (gdbarch, 125); + set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8); + set_gdbarch_register_name (gdbarch, sparc64_register_name); + set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); + tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ + tdep->fp_register_bytes = 64 * 4; + tdep->print_insn_mach = bfd_mach_sparc_v9a; + break; + } + + return gdbarch; +} -const struct ext_format ext_format_sparc[] = { -/* tot sbyte smask expbyte manbyte */ - { 16, 0, 0x80, 0,1, 4,8 }, /* sparc */ -};