X-Git-Url: http://drtracing.org/?a=blobdiff_plain;f=gdb%2Fsymfile.c;h=42d9e4f867eb4e466b988661e17276fb7f939cdd;hb=feb129926a8d12656f1ca4b7a8bb10268d3af4fb;hp=9aa9ee149b25d9bc32a5a82ea6fcf2c6055791a0;hpb=9d199712301d957dab5e5b98f7e555ef774d49bf;p=deliverable%2Fbinutils-gdb.git diff --git a/gdb/symfile.c b/gdb/symfile.c index 9aa9ee149b..42d9e4f867 100644 --- a/gdb/symfile.c +++ b/gdb/symfile.c @@ -1,130 +1,280 @@ /* Generic symbol file reading for the GNU debugger, GDB. - Copyright 1990, 1991 Free Software Foundation, Inc. + Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998 + Free Software Foundation, Inc. Contributed by Cygnus Support, using pieces from other GDB modules. -This file is part of GDB. + This file is part of GDB. -GDB is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 1, or (at your option) -any later version. + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. -GDB is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. -You should have received a copy of the GNU General Public License -along with GDB; see the file COPYING. If not, write to -the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ -#include #include "defs.h" #include "symtab.h" -#include "param.h" +#include "gdbtypes.h" #include "gdbcore.h" #include "frame.h" #include "target.h" #include "value.h" #include "symfile.h" +#include "objfiles.h" #include "gdbcmd.h" #include "breakpoint.h" +#include "language.h" +#include "complaints.h" +#include "demangle.h" +#include "inferior.h" /* for write_pc */ +#include "gdb-stabs.h" +#include "obstack.h" -#include #include - #include #include -#include -#include +#include "gdb_string.h" +#include "gdb_stat.h" +#include +#include +#ifdef HAVE_UNISTD_H +#include +#endif + +#ifndef O_BINARY +#define O_BINARY 0 +#endif + +#ifdef HPUXHPPA + +/* Some HP-UX related globals to clear when a new "main" + symbol file is loaded. HP-specific. */ + +extern int hp_som_som_object_present; +extern int hp_cxx_exception_support_initialized; +#define RESET_HP_UX_GLOBALS() do {\ + hp_som_som_object_present = 0; /* indicates HP-compiled code */ \ + hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \ + } while (0) +#endif + +int (*ui_load_progress_hook) PARAMS ((char *, unsigned long)); +void (*pre_add_symbol_hook) PARAMS ((char *)); +void (*post_add_symbol_hook) PARAMS ((void)); + +/* Global variables owned by this file */ +int readnow_symbol_files; /* Read full symbols immediately */ + +struct complaint oldsyms_complaint = +{ + "Replacing old symbols for `%s'", 0, 0 +}; + +struct complaint empty_symtab_complaint = +{ + "Empty symbol table found for `%s'", 0, 0 +}; + +/* External variables and functions referenced. */ extern int info_verbose; -extern int close (); -extern void qsort (); -extern char *getenv (); +extern void report_transfer_performance PARAMS ((unsigned long, + time_t, time_t)); /* Functions this file defines */ -static bfd *symfile_open(); -static struct sym_fns *symfile_init(); -static void clear_symtab_users_once(); -/* List of all available sym_fns. */ +#if 0 +static int simple_read_overlay_region_table PARAMS ((void)); +static void simple_free_overlay_region_table PARAMS ((void)); +#endif + +static void set_initial_language PARAMS ((void)); -struct sym_fns *symtab_fns = NULL; +static void load_command PARAMS ((char *, int)); -/* Saves the sym_fns of the current symbol table, so we can call - the right sym_discard function when we free it. */ +static void add_symbol_file_command PARAMS ((char *, int)); -static struct sym_fns *symfile_fns; +static void add_shared_symbol_files_command PARAMS ((char *, int)); -/* Allocate an obstack to hold objects that should be freed - when we load a new symbol table. - This includes the symbols made by dbxread - and the types that are not permanent. */ +static void cashier_psymtab PARAMS ((struct partial_symtab *)); -struct obstack obstack1; +static int compare_psymbols PARAMS ((const void *, const void *)); -struct obstack *symbol_obstack = &obstack1; +static int compare_symbols PARAMS ((const void *, const void *)); -/* This obstack will be used for partial_symbol objects. It can - probably actually be the same as the symbol_obstack above, but I'd - like to keep them seperate for now. If I want to later, I'll - replace one with the other. */ +bfd *symfile_bfd_open PARAMS ((char *)); -struct obstack obstack2; +static void find_sym_fns PARAMS ((struct objfile *)); -struct obstack *psymbol_obstack = &obstack2; +static void decrement_reading_symtab PARAMS ((void *)); -/* File name symbols were loaded from. */ +static void overlay_invalidate_all PARAMS ((void)); -char *symfile = 0; +static int overlay_is_mapped PARAMS ((struct obj_section *)); -/* The modification date of the file when they were loaded. */ +void list_overlays_command PARAMS ((char *, int)); -int symfile_mtime = 0; +void map_overlay_command PARAMS ((char *, int)); -/* Structures with which to manage partial symbol allocation. */ +void unmap_overlay_command PARAMS ((char *, int)); -struct psymbol_allocation_list global_psymbols = {0}, static_psymbols = {0}; +static void overlay_auto_command PARAMS ((char *, int)); -/* Structure to manage complaints about symbol file contents. */ +static void overlay_manual_command PARAMS ((char *, int)); -struct complaint complaint_root[1] = { - {(char *)0, 0, complaint_root}, -}; +static void overlay_off_command PARAMS ((char *, int)); + +static void overlay_load_command PARAMS ((char *, int)); + +static void overlay_command PARAMS ((char *, int)); + +static void simple_free_overlay_table PARAMS ((void)); + +static void read_target_long_array PARAMS ((CORE_ADDR, unsigned int *, int)); + +static int simple_read_overlay_table PARAMS ((void)); + +static int simple_overlay_update_1 PARAMS ((struct obj_section *)); + +static void add_filename_language PARAMS ((char *ext, enum language lang)); + +static void set_ext_lang_command PARAMS ((char *args, int from_tty)); + +static void info_ext_lang_command PARAMS ((char *args, int from_tty)); + +static void init_filename_language_table PARAMS ((void)); + +void _initialize_symfile PARAMS ((void)); + +/* List of all available sym_fns. On gdb startup, each object file reader + calls add_symtab_fns() to register information on each format it is + prepared to read. */ -/* Some actual complaints. */ +static struct sym_fns *symtab_fns = NULL; -struct complaint oldsyms_complaint = { - "Replacing old symbols for `%s'", 0, 0 }; +/* Flag for whether user will be reloading symbols multiple times. + Defaults to ON for VxWorks, otherwise OFF. */ -struct complaint empty_symtab_complaint = { - "Empty symbol table found for `%s'", 0, 0 }; +#ifdef SYMBOL_RELOADING_DEFAULT +int symbol_reloading = SYMBOL_RELOADING_DEFAULT; +#else +int symbol_reloading = 0; +#endif +/* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c), + this variable is interpreted as a threshhold. If adding a new + library's symbol table to those already known to the debugger would + exceed this threshhold, then the shlib's symbols are not added. + + If non-zero on other platforms, shared library symbols will be added + automatically when the inferior is created, new libraries are loaded, + or when attaching to the inferior. This is almost always what users + will want to have happen; but for very large programs, the startup + time will be excessive, and so if this is a problem, the user can + clear this flag and then add the shared library symbols as needed. + Note that there is a potential for confusion, since if the shared + library symbols are not loaded, commands like "info fun" will *not* + report all the functions that are actually present. + + Note that HP-UX interprets this variable to mean, "threshhold size + in megabytes, where zero means never add". Other platforms interpret + this variable to mean, "always add if non-zero, never add if zero." + */ + +int auto_solib_add = 1; -/* In the following sort, we always make sure that - register debug symbol declarations always come before regular - debug symbol declarations (as might happen when parameters are - then put into registers by the compiler). */ + +/* Since this function is called from within qsort, in an ANSI environment + it must conform to the prototype for qsort, which specifies that the + comparison function takes two "void *" pointers. */ + +static int +compare_symbols (s1p, s2p) + const PTR s1p; + const PTR s2p; +{ + register struct symbol **s1, **s2; + + s1 = (struct symbol **) s1p; + s2 = (struct symbol **) s2p; + + return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2))); +} + +/* + + LOCAL FUNCTION + + compare_psymbols -- compare two partial symbols by name + + DESCRIPTION + + Given pointers to pointers to two partial symbol table entries, + compare them by name and return -N, 0, or +N (ala strcmp). + Typically used by sorting routines like qsort(). + + NOTES + + Does direct compare of first two characters before punting + and passing to strcmp for longer compares. Note that the + original version had a bug whereby two null strings or two + identically named one character strings would return the + comparison of memory following the null byte. + + */ static int -compare_symbols (s1, s2) - struct symbol **s1, **s2; +compare_psymbols (s1p, s2p) + const PTR s1p; + const PTR s2p; { - register int namediff; + register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p); + register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p); - /* Compare the initial characters. */ - namediff = SYMBOL_NAME (*s1)[0] - SYMBOL_NAME (*s2)[0]; - if (namediff != 0) return namediff; + if ((st1[0] - st2[0]) || !st1[0]) + { + return (st1[0] - st2[0]); + } + else if ((st1[1] - st2[1]) || !st1[1]) + { + return (st1[1] - st2[1]); + } + else + { + /* Note: I replaced the STRCMP line (commented out below) + * with a simpler "strcmp()" which compares the 2 strings + * from the beginning. (STRCMP is a macro which first compares + * the initial characters, then falls back on strcmp). + * The reason is that the STRCMP line was tickling a C compiler + * bug on HP-UX 10.30, which is avoided with the simpler + * code. The performance gain from the more complicated code + * is negligible, given that we have already checked the + * initial 2 characters above. I reported the compiler bug, + * and once it is fixed the original line can be put back. RT + */ + /* return ( STRCMP (st1 + 2, st2 + 2)); */ + return (strcmp (st1, st2)); + } +} - /* If they match, compare the rest of the names. */ - namediff = strcmp (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)); - if (namediff != 0) return namediff; +void +sort_pst_symbols (pst) + struct partial_symtab *pst; +{ + /* Sort the global list; don't sort the static list */ - /* For symbols of the same name, registers should come first. */ - return ((SYMBOL_CLASS (*s2) == LOC_REGISTER) - - (SYMBOL_CLASS (*s1) == LOC_REGISTER)); + qsort (pst->objfile->global_psymbols.list + pst->globals_offset, + pst->n_global_syms, sizeof (struct partial_symbol *), + compare_psymbols); } /* Call sort_block_syms to sort alphabetically the symbols of one block. */ @@ -144,11 +294,15 @@ void sort_symtab_syms (s) register struct symtab *s; { - register struct blockvector *bv = BLOCKVECTOR (s); - int nbl = BLOCKVECTOR_NBLOCKS (bv); + register struct blockvector *bv; + int nbl; int i; register struct block *b; + if (s == 0) + return; + bv = BLOCKVECTOR (s); + nbl = BLOCKVECTOR_NBLOCKS (bv); for (i = 0; i < nbl; i++) { b = BLOCKVECTOR_BLOCK (bv, i); @@ -157,29 +311,21 @@ sort_symtab_syms (s) } } -void -sort_all_symtab_syms () -{ - register struct symtab *s; - - for (s = symtab_list; s; s = s->next) - { - sort_symtab_syms (s); - } -} - -/* Make a copy of the string at PTR with SIZE characters in the symbol obstack - (and add a null character at the end in the copy). - Returns the address of the copy. */ +/* Make a null terminated copy of the string at PTR with SIZE characters in + the obstack pointed to by OBSTACKP . Returns the address of the copy. + Note that the string at PTR does not have to be null terminated, I.E. it + may be part of a larger string and we are only saving a substring. */ char * -obsavestring (ptr, size) +obsavestring (ptr, size, obstackp) char *ptr; int size; + struct obstack *obstackp; { - register char *p = (char *) obstack_alloc (symbol_obstack, size + 1); - /* Open-coded bcopy--saves function call time. - These strings are usually short. */ + register char *p = (char *) obstack_alloc (obstackp, size + 1); + /* Open-coded memcpy--saves function call time. These strings are usually + short. FIXME: Is this really still true with a compiler that can + inline memcpy? */ { register char *p1 = ptr; register char *p2 = p; @@ -191,748 +337,2724 @@ obsavestring (ptr, size) return p; } -/* Concatenate strings S1, S2 and S3; return the new string. - Space is found in the symbol_obstack. */ +/* Concatenate strings S1, S2 and S3; return the new string. Space is found + in the obstack pointed to by OBSTACKP. */ char * -obconcat (s1, s2, s3) - char *s1, *s2, *s3; +obconcat (obstackp, s1, s2, s3) + struct obstack *obstackp; + const char *s1, *s2, *s3; { register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1; - register char *val = (char *) obstack_alloc (symbol_obstack, len); + register char *val = (char *) obstack_alloc (obstackp, len); strcpy (val, s1); strcat (val, s2); strcat (val, s3); return val; } - -/* Accumulate the misc functions in bunches of 127. - At the end, copy them all into one newly allocated structure. */ - -#define MISC_BUNCH_SIZE 127 - -struct misc_bunch -{ - struct misc_bunch *next; - struct misc_function contents[MISC_BUNCH_SIZE]; -}; - -/* Bunch currently being filled up. - The next field points to chain of filled bunches. */ - -static struct misc_bunch *misc_bunch; -/* Number of slots filled in current bunch. */ +/* True if we are nested inside psymtab_to_symtab. */ -static int misc_bunch_index; +int currently_reading_symtab = 0; -/* Total number of misc functions recorded so far. */ - -static int misc_count; - -void -init_misc_bunches () +static void +decrement_reading_symtab (dummy) + void *dummy; { - misc_count = 0; - misc_bunch = 0; - misc_bunch_index = MISC_BUNCH_SIZE; + currently_reading_symtab--; } -void -prim_record_misc_function (name, address, misc_type) - char *name; - CORE_ADDR address; - enum misc_function_type misc_type; +/* Get the symbol table that corresponds to a partial_symtab. + This is fast after the first time you do it. In fact, there + is an even faster macro PSYMTAB_TO_SYMTAB that does the fast + case inline. */ + +struct symtab * +psymtab_to_symtab (pst) + register struct partial_symtab *pst; { - register struct misc_bunch *new; + /* If it's been looked up before, return it. */ + if (pst->symtab) + return pst->symtab; - if (misc_bunch_index == MISC_BUNCH_SIZE) + /* If it has not yet been read in, read it. */ + if (!pst->readin) { - new = (struct misc_bunch *) xmalloc (sizeof (struct misc_bunch)); - misc_bunch_index = 0; - new->next = misc_bunch; - misc_bunch = new; + struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL); + currently_reading_symtab++; + (*pst->read_symtab) (pst); + do_cleanups (back_to); } - misc_bunch->contents[misc_bunch_index].name = name; - misc_bunch->contents[misc_bunch_index].address = address; - misc_bunch->contents[misc_bunch_index].type = misc_type; - misc_bunch->contents[misc_bunch_index].misc_info = 0; - misc_bunch_index++; - misc_count++; -} -static int -compare_misc_functions (fn1, fn2) - struct misc_function *fn1, *fn2; -{ - /* Return a signed result based on unsigned comparisons - so that we sort into unsigned numeric order. */ - if (fn1->address < fn2->address) - return -1; - if (fn1->address > fn2->address) - return 1; - return 0; + return pst->symtab; } -/* ARGSUSED */ -void -discard_misc_bunches (foo) - int foo; -{ - register struct misc_bunch *next; - - while (misc_bunch) - { - next = misc_bunch->next; - free (misc_bunch); - misc_bunch = next; - } -} +/* Initialize entry point information for this objfile. */ -/* INCLINK nonzero means bunches are from an incrementally-linked file. - Add them to the existing bunches. - Otherwise INCLINK is zero, and we start from scratch. */ void -condense_misc_bunches (inclink) - int inclink; +init_entry_point_info (objfile) + struct objfile *objfile; { - register int i, j; - register struct misc_bunch *bunch; + /* Save startup file's range of PC addresses to help blockframe.c + decide where the bottom of the stack is. */ - if (inclink) + if (bfd_get_file_flags (objfile->obfd) & EXEC_P) { - misc_function_vector - = (struct misc_function *) - xrealloc (misc_function_vector, (misc_count + misc_function_count) - * sizeof (struct misc_function)); - j = misc_function_count; + /* Executable file -- record its entry point so we'll recognize + the startup file because it contains the entry point. */ + objfile->ei.entry_point = bfd_get_start_address (objfile->obfd); } else { - misc_function_vector - = (struct misc_function *) - xmalloc (misc_count * sizeof (struct misc_function)); - j = 0; + /* Examination of non-executable.o files. Short-circuit this stuff. */ + objfile->ei.entry_point = INVALID_ENTRY_POINT; } + objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC; + objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC; + objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC; + objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC; + objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC; + objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC; +} - bunch = misc_bunch; - while (bunch) - { - for (i = 0; i < misc_bunch_index; i++, j++) - { - misc_function_vector[j] = bunch->contents[i]; -#ifdef NAMES_HAVE_UNDERSCORE - if (misc_function_vector[j].name[0] == '_') - misc_function_vector[j].name++; -#endif - } - bunch = bunch->next; - misc_bunch_index = MISC_BUNCH_SIZE; - } +/* Get current entry point address. */ - if (misc_function_count + misc_count != j) /* DEBUG */ - printf_filtered ("Function counts are off! %d + %d != %d\n", - misc_function_count, misc_count, j); +CORE_ADDR +entry_point_address () +{ + return symfile_objfile ? symfile_objfile->ei.entry_point : 0; +} - misc_function_count = j; +/* Remember the lowest-addressed loadable section we've seen. + This function is called via bfd_map_over_sections. - /* Sort the misc functions by address. */ + In case of equal vmas, the section with the largest size becomes the + lowest-addressed loadable section. - qsort (misc_function_vector, misc_function_count, - sizeof (struct misc_function), - compare_misc_functions); -} + If the vmas and sizes are equal, the last section is considered the + lowest-addressed loadable section. */ +void +find_lowest_section (abfd, sect, obj) + bfd *abfd; + asection *sect; + PTR obj; +{ + asection **lowest = (asection **) obj; -/* Get the symbol table that corresponds to a partial_symtab. - This is fast after the first time you do it. In fact, there - is an even faster macro PSYMTAB_TO_SYMTAB that does the fast - case inline. */ + if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD)) + return; + if (!*lowest) + *lowest = sect; /* First loadable section */ + else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect)) + *lowest = sect; /* A lower loadable section */ + else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect) + && (bfd_section_size (abfd, (*lowest)) + <= bfd_section_size (abfd, sect))) + *lowest = sect; +} -struct symtab * -psymtab_to_symtab (pst) - register struct partial_symtab *pst; -{ - register struct symtab *result; +/* Parse the user's idea of an offset for dynamic linking, into our idea + of how to represent it for fast symbol reading. This is the default + version of the sym_fns.sym_offsets function for symbol readers that + don't need to do anything special. It allocates a section_offsets table + for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */ - /* If it's been looked up before, return it. */ - if (pst->symtab) - return pst->symtab; +struct section_offsets * +default_symfile_offsets (objfile, addr) + struct objfile *objfile; + CORE_ADDR addr; +{ + struct section_offsets *section_offsets; + int i; - /* If it has not yet been read in, read it. */ - if (!pst->readin) - { - (*pst->read_symtab) (pst); - } + objfile->num_sections = SECT_OFF_MAX; + section_offsets = (struct section_offsets *) + obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS); + memset (section_offsets, 0, SIZEOF_SECTION_OFFSETS); - /* Search through list for correct name. */ - for (result = symtab_list; result; result = result->next) - if (!strcmp (result->filename, pst->filename)) - { - pst->symtab = result; /* Remember where it was. */ - return result; - } + for (i = 0; i < SECT_OFF_MAX; i++) + ANOFFSET (section_offsets, i) = addr; - return 0; + return section_offsets; } + /* Process a symbol file, as either the main file or as a dynamically loaded file. - NAME is the file name (which will be tilde-expanded and made absolute - herein). FROM_TTY says how verbose to be. MAINLINE specifies whether - this is the main symbol file, or whether it's an extra symbol file - such as dynamically loaded code. If !mainline, ADDR is the address - where the text segment was loaded. */ + NAME is the file name (which will be tilde-expanded and made + absolute herein) (but we don't free or modify NAME itself). + FROM_TTY says how verbose to be. MAINLINE specifies whether this + is the main symbol file, or whether it's an extra symbol file such + as dynamically loaded code. If !mainline, ADDR is the address + where the text segment was loaded. If VERBO, the caller has printed + a verbose message about the symbol reading (and complaints can be + more terse about it). */ void -symbol_file_add (name, from_tty, addr, mainline) - char *name; - int from_tty; +syms_from_objfile (objfile, addr, mainline, verbo) + struct objfile *objfile; CORE_ADDR addr; int mainline; + int verbo; { - bfd *sym_bfd; - asection *text_sect; - struct sym_fns *sf; - char *realname; + struct section_offsets *section_offsets; + asection *lowest_sect; + struct cleanup *old_chain; - sym_bfd = symfile_open (name); + init_entry_point_info (objfile); + find_sym_fns (objfile); - entry_point = bfd_get_start_address (sym_bfd); + /* Make sure that partially constructed symbol tables will be cleaned up + if an error occurs during symbol reading. */ + old_chain = make_cleanup ((make_cleanup_func) free_objfile, objfile); if (mainline) - symfile_mtime = bfd_get_mtime (sym_bfd); + { + /* We will modify the main symbol table, make sure that all its users + will be cleaned up if an error occurs during symbol reading. */ + make_cleanup ((make_cleanup_func) clear_symtab_users, 0); - /* There is a distinction between having no symbol table - (we refuse to read the file, leaving the old set of symbols around) - and having no debugging symbols in your symbol table (we read - the file and end up with a mostly empty symbol table). */ + /* Since no error yet, throw away the old symbol table. */ - if (!(bfd_get_file_flags (sym_bfd) & HAS_SYMS)) - { - error ("%s has no symbol-table", name); + if (symfile_objfile != NULL) + { + free_objfile (symfile_objfile); + symfile_objfile = NULL; + } + + /* Currently we keep symbols from the add-symbol-file command. + If the user wants to get rid of them, they should do "symbol-file" + without arguments first. Not sure this is the best behavior + (PR 2207). */ + + (*objfile->sf->sym_new_init) (objfile); } - if ((symtab_list || partial_symtab_list) - && mainline - && from_tty - && !query ("Load new symbol table from \"%s\"? ", name)) - error ("Not confirmed."); + /* Convert addr into an offset rather than an absolute address. + We find the lowest address of a loaded segment in the objfile, + and assume that is where that got loaded. Due to historical + precedent, we warn if that doesn't happen to be a text segment. */ - if (from_tty) + if (mainline) { - printf_filtered ("Reading symbol data from %s...", name); - wrap_here (""); - fflush (stdout); + addr = 0; /* No offset from objfile addresses. */ + } + else + { + lowest_sect = bfd_get_section_by_name (objfile->obfd, ".text"); + if (lowest_sect == NULL) + bfd_map_over_sections (objfile->obfd, find_lowest_section, + (PTR) & lowest_sect); + + if (lowest_sect == NULL) + warning ("no loadable sections found in added symbol-file %s", + objfile->name); + else if ((bfd_get_section_flags (objfile->obfd, lowest_sect) & SEC_CODE) + == 0) + /* FIXME-32x64--assumes bfd_vma fits in long. */ + warning ("Lowest section in %s is %s at 0x%lx", + objfile->name, + bfd_section_name (objfile->obfd, lowest_sect), + (unsigned long) bfd_section_vma (objfile->obfd, lowest_sect)); + + if (lowest_sect) + addr -= bfd_section_vma (objfile->obfd, lowest_sect); } - sf = symfile_init (sym_bfd); - realname = bfd_get_filename (sym_bfd); - realname = savestring (realname, strlen (realname)); - /* FIXME, this probably creates a storage leak... */ + /* Initialize symbol reading routines for this objfile, allow complaints to + appear for this new file, and record how verbose to be, then do the + initial symbol reading for this file. */ - if (mainline) - { - /* Since no error yet, throw away the old symbol table. */ + (*objfile->sf->sym_init) (objfile); + clear_complaints (1, verbo); + + section_offsets = (*objfile->sf->sym_offsets) (objfile, addr); + objfile->section_offsets = section_offsets; - if (symfile) - free (symfile); - symfile = 0; - free_all_symtabs (); - free_all_psymtabs (); +#ifndef IBM6000_TARGET + /* This is a SVR4/SunOS specific hack, I think. In any event, it + screws RS/6000. sym_offsets should be doing this sort of thing, + because it knows the mapping between bfd sections and + section_offsets. */ + /* This is a hack. As far as I can tell, section offsets are not + target dependent. They are all set to addr with a couple of + exceptions. The exceptions are sysvr4 shared libraries, whose + offsets are kept in solib structures anyway and rs6000 xcoff + which handles shared libraries in a completely unique way. - (*sf->sym_new_init) (); + Section offsets are built similarly, except that they are built + by adding addr in all cases because there is no clear mapping + from section_offsets into actual sections. Note that solib.c + has a different algorythm for finding section offsets. - /* For mainline, caller didn't know the specified address of the - text section. We fix that here. */ - text_sect = bfd_get_section_by_name (sym_bfd, ".text"); - addr = bfd_section_vma (sym_bfd, text_sect); + These should probably all be collapsed into some target + independent form of shared library support. FIXME. */ + + if (addr) + { + struct obj_section *s; + + for (s = objfile->sections; s < objfile->sections_end; ++s) + { + s->addr -= s->offset; + s->addr += addr; + s->endaddr -= s->offset; + s->endaddr += addr; + s->offset += addr; + } } +#endif /* not IBM6000_TARGET */ - clear_complaints(); /* Allow complaints to appear for this new file. */ + (*objfile->sf->sym_read) (objfile, section_offsets, mainline); - (*sf->sym_read) (sf, addr, mainline); + if (!have_partial_symbols () && !have_full_symbols ()) + { + wrap_here (""); + printf_filtered ("(no debugging symbols found)..."); + wrap_here (""); + } - /* Don't allow char * to have a typename (else would get caddr_t.) */ - /* Ditto void *. FIXME should do this for all the builtin types. */ + /* Don't allow char * to have a typename (else would get caddr_t). + Ditto void *. FIXME: Check whether this is now done by all the + symbol readers themselves (many of them now do), and if so remove + it from here. */ TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0; TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0; - if (mainline) - { - /* OK, make it the "real" symbol file. */ - symfile = realname; - symfile_fns = sf; - } + /* Mark the objfile has having had initial symbol read attempted. Note + that this does not mean we found any symbols... */ - /* If we have wiped out any old symbol tables, clean up. */ - clear_symtab_users_once (); + objfile->flags |= OBJF_SYMS; - if (from_tty) - { - printf_filtered ("done.\n"); - fflush (stdout); - } + /* Discard cleanups as symbol reading was successful. */ + + discard_cleanups (old_chain); + +/* Call this after reading in a new symbol table to give target dependant code + a crack at the new symbols. For instance, this could be used to update the + values of target-specific symbols GDB needs to keep track of (such as + _sigtramp, or whatever). */ + + TARGET_SYMFILE_POSTREAD (objfile); } -/* This is the symbol-file command. Read the file, analyze its symbols, - and add a struct symtab to symtab_list. */ +/* Perform required actions after either reading in the initial + symbols for a new objfile, or mapping in the symbols from a reusable + objfile. */ void -symbol_file_command (name, from_tty) - char *name; - int from_tty; +new_symfile_objfile (objfile, mainline, verbo) + struct objfile *objfile; + int mainline; + int verbo; { - dont_repeat (); + /* If this is the main symbol file we have to clean up all users of the + old main symbol file. Otherwise it is sufficient to fixup all the + breakpoints that may have been redefined by this symbol file. */ + if (mainline) + { + /* OK, make it the "real" symbol file. */ + symfile_objfile = objfile; - if (name == 0) + clear_symtab_users (); + } + else { - if ((symtab_list || partial_symtab_list) - && from_tty - && !query ("Discard symbol table from `%s'? ", symfile)) - error ("Not confirmed."); - if (symfile) - free (symfile); - symfile = 0; - free_all_symtabs (); - free_all_psymtabs (); - /* FIXME, this does not account for the main file and subsequent - files (shared libs, dynloads, etc) having different formats. - It only calls the cleanup routine for the main file's format. */ - if (symfile_fns) { - (*symfile_fns->sym_new_init) (); - free (symfile_fns); - symfile_fns = 0; - } - return; + breakpoint_re_set (); } - symbol_file_add (name, from_tty, (CORE_ADDR)0, 1); + /* We're done reading the symbol file; finish off complaints. */ + clear_complaints (0, verbo); } -/* Open NAME and hand it off to BFD for preliminary analysis. Result - is a BFD *, which includes a new copy of NAME dynamically allocated - (which will be freed by the cleanup chain). In case of trouble, - error() is called. */ +/* Process a symbol file, as either the main file or as a dynamically + loaded file. + + NAME is the file name (which will be tilde-expanded and made + absolute herein) (but we don't free or modify NAME itself). + FROM_TTY says how verbose to be. MAINLINE specifies whether this + is the main symbol file, or whether it's an extra symbol file such + as dynamically loaded code. If !mainline, ADDR is the address + where the text segment was loaded. + + USER_LOADED is TRUE if the add-symbol-file command was how this + symbol file came to be processed. -static bfd * -symfile_open (name) + IS_SOLIB is TRUE if this symbol file represents a solib, as discovered + by the target's implementation of the solib package. + + Upon success, returns a pointer to the objfile that was added. + Upon failure, jumps back to command level (never returns). */ + +struct objfile * +symbol_file_add (name, from_tty, addr, mainline, mapped, readnow, user_loaded, is_solib) char *name; + int from_tty; + CORE_ADDR addr; + int mainline; + int mapped; + int readnow; + int user_loaded; + int is_solib; { - bfd *sym_bfd; - int desc; - char *absolute_name; + struct objfile *objfile; + struct partial_symtab *psymtab; + bfd *abfd; - name = tilde_expand (name); - make_cleanup (free, name); + /* Open a bfd for the file, and give user a chance to burp if we'd be + interactively wiping out any existing symbols. */ - desc = openp (getenv ("PATH"), 1, name, O_RDONLY, 0, &absolute_name); - if (desc < 0) - perror_with_name (name); + abfd = symfile_bfd_open (name); + + if ((have_full_symbols () || have_partial_symbols ()) + && mainline + && from_tty + && !query ("Load new symbol table from \"%s\"? ", name)) + error ("Not confirmed."); + + objfile = allocate_objfile (abfd, mapped, user_loaded, is_solib); + + /* If the objfile uses a mapped symbol file, and we have a psymtab for + it, then skip reading any symbols at this time. */ + + if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS)) + { + /* We mapped in an existing symbol table file that already has had + initial symbol reading performed, so we can skip that part. Notify + the user that instead of reading the symbols, they have been mapped. + */ + if (from_tty || info_verbose) + { + printf_filtered ("Mapped symbols for %s...", name); + wrap_here (""); + gdb_flush (gdb_stdout); + } + init_entry_point_info (objfile); + find_sym_fns (objfile); + } else { - make_cleanup (free, absolute_name); - name = absolute_name; + /* We either created a new mapped symbol table, mapped an existing + symbol table file which has not had initial symbol reading + performed, or need to read an unmapped symbol table. */ + if (from_tty || info_verbose) + { + if (pre_add_symbol_hook) + pre_add_symbol_hook (name); + else + { + printf_filtered ("Reading symbols from %s...", name); + wrap_here (""); + gdb_flush (gdb_stdout); + } + } + syms_from_objfile (objfile, addr, mainline, from_tty); + } + + /* We now have at least a partial symbol table. Check to see if the + user requested that all symbols be read on initial access via either + the gdb startup command line or on a per symbol file basis. Expand + all partial symbol tables for this objfile if so. */ + + if (readnow || readnow_symbol_files) + { + if (from_tty || info_verbose) + { + printf_filtered ("expanding to full symbols..."); + wrap_here (""); + gdb_flush (gdb_stdout); + } + + for (psymtab = objfile->psymtabs; + psymtab != NULL; + psymtab = psymtab->next) + { + psymtab_to_symtab (psymtab); + } } - sym_bfd = bfd_fdopenr (name, NULL, desc); - if (!sym_bfd) + if (from_tty || info_verbose) { - close (desc); - error ("Could not open `%s' to read symbols: %s", - name, bfd_errmsg (bfd_error)); + if (post_add_symbol_hook) + post_add_symbol_hook (); + else + { + printf_filtered ("done.\n"); + gdb_flush (gdb_stdout); + } } - make_cleanup (bfd_close, sym_bfd); - if (!bfd_check_format (sym_bfd, bfd_object)) - error ("\"%s\": can't read symbols: %s.", - name, bfd_errmsg (bfd_error)); + new_symfile_objfile (objfile, mainline, from_tty); - return sym_bfd; + target_new_objfile (objfile); + + return (objfile); } -/* Link a new symtab_fns into the global symtab_fns list. - Called by various _initialize routines. */ +/* This is the symbol-file command. Read the file, analyze its + symbols, and add a struct symtab to a symtab list. The syntax of + the command is rather bizarre--(1) buildargv implements various + quoting conventions which are undocumented and have little or + nothing in common with the way things are quoted (or not quoted) + elsewhere in GDB, (2) options are used, which are not generally + used in GDB (perhaps "set mapped on", "set readnow on" would be + better), (3) the order of options matters, which is contrary to GNU + conventions (because it is confusing and inconvenient). */ void -add_symtab_fns (sf) - struct sym_fns *sf; +symbol_file_command (args, from_tty) + char *args; + int from_tty; { - sf->next = symtab_fns; - symtab_fns = sf; -} + char **argv; + char *name = NULL; + CORE_ADDR text_relocation = 0; /* text_relocation */ + struct cleanup *cleanups; + int mapped = 0; + int readnow = 0; + dont_repeat (); -/* Initialize to read symbols from the symbol file sym_bfd. It either - returns or calls error(). The result is a malloc'd struct sym_fns - that contains cached information about the symbol file. */ - -static struct sym_fns * -symfile_init (sym_bfd) - bfd *sym_bfd; -{ - struct sym_fns *sf, *sf2; - - for (sf = symtab_fns; sf != NULL; sf = sf->next) + if (args == NULL) { - if (!strncmp (bfd_get_target (sym_bfd), sf->sym_name, sf->sym_namelen)) - { - sf2 = (struct sym_fns *)xmalloc (sizeof (*sf2)); - /* FIXME, who frees this? */ - *sf2 = *sf; - sf2->sym_bfd = sym_bfd; - sf2->sym_private = 0; /* Not alloc'd yet */ - (*sf2->sym_init) (sf2); - return sf2; - } + if ((have_full_symbols () || have_partial_symbols ()) + && from_tty + && !query ("Discard symbol table from `%s'? ", + symfile_objfile->name)) + error ("Not confirmed."); + free_all_objfiles (); + + /* solib descriptors may have handles to objfiles. Since their + storage has just been released, we'd better wipe the solib + descriptors as well. + */ +#if defined(SOLIB_RESTART) + SOLIB_RESTART (); +#endif + + symfile_objfile = NULL; + if (from_tty) + { + printf_unfiltered ("No symbol file now.\n"); + } +#ifdef HPUXHPPA + RESET_HP_UX_GLOBALS (); +#endif + } + else + { + if ((argv = buildargv (args)) == NULL) + { + nomem (0); + } + cleanups = make_cleanup_freeargv (argv); + while (*argv != NULL) + { + if (STREQ (*argv, "-mapped")) + { + mapped = 1; + } + else if (STREQ (*argv, "-readnow")) + { + readnow = 1; + } + else if (**argv == '-') + { + error ("unknown option `%s'", *argv); + } + else + { + char *p; + + name = *argv; + + /* this is for rombug remote only, to get the text relocation by + using link command */ + p = strrchr (name, '/'); + if (p != NULL) + p++; + else + p = name; + + target_link (p, &text_relocation); + + if (text_relocation == (CORE_ADDR) 0) + return; + else if (text_relocation == (CORE_ADDR) -1) + { + symbol_file_add (name, from_tty, (CORE_ADDR) 0, + 1, mapped, readnow, 1, 0); +#ifdef HPUXHPPA + RESET_HP_UX_GLOBALS (); +#endif + } + else + symbol_file_add (name, from_tty, (CORE_ADDR) text_relocation, + 0, mapped, readnow, 1, 0); + + /* Getting new symbols may change our opinion about what is + frameless. */ + reinit_frame_cache (); + + set_initial_language (); + } + argv++; + } + + if (name == NULL) + { + error ("no symbol file name was specified"); + } + TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction)); + do_cleanups (cleanups); + } +} + +/* Set the initial language. + + A better solution would be to record the language in the psymtab when reading + partial symbols, and then use it (if known) to set the language. This would + be a win for formats that encode the language in an easily discoverable place, + such as DWARF. For stabs, we can jump through hoops looking for specially + named symbols or try to intuit the language from the specific type of stabs + we find, but we can't do that until later when we read in full symbols. + FIXME. */ + +static void +set_initial_language () +{ + struct partial_symtab *pst; + enum language lang = language_unknown; + + pst = find_main_psymtab (); + if (pst != NULL) + { + if (pst->filename != NULL) + { + lang = deduce_language_from_filename (pst->filename); + } + if (lang == language_unknown) + { + /* Make C the default language */ + lang = language_c; + } + set_language (lang); + expected_language = current_language; /* Don't warn the user */ + } +} + +/* Open file specified by NAME and hand it off to BFD for preliminary + analysis. Result is a newly initialized bfd *, which includes a newly + malloc'd` copy of NAME (tilde-expanded and made absolute). + In case of trouble, error() is called. */ + +bfd * +symfile_bfd_open (name) + char *name; +{ + bfd *sym_bfd; + int desc; + char *absolute_name; + + + + name = tilde_expand (name); /* Returns 1st new malloc'd copy */ + + /* Look down path for it, allocate 2nd new malloc'd copy. */ + desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name); +#if defined(__GO32__) || defined(_WIN32) + if (desc < 0) + { + char *exename = alloca (strlen (name) + 5); + strcat (strcpy (exename, name), ".exe"); + desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY, + 0, &absolute_name); + } +#endif + if (desc < 0) + { + make_cleanup (free, name); + perror_with_name (name); + } + free (name); /* Free 1st new malloc'd copy */ + name = absolute_name; /* Keep 2nd malloc'd copy in bfd */ + /* It'll be freed in free_objfile(). */ + + sym_bfd = bfd_fdopenr (name, gnutarget, desc); + if (!sym_bfd) + { + close (desc); + make_cleanup (free, name); + error ("\"%s\": can't open to read symbols: %s.", name, + bfd_errmsg (bfd_get_error ())); + } + sym_bfd->cacheable = true; + + if (!bfd_check_format (sym_bfd, bfd_object)) + { + /* FIXME: should be checking for errors from bfd_close (for one thing, + on error it does not free all the storage associated with the + bfd). */ + bfd_close (sym_bfd); /* This also closes desc */ + make_cleanup (free, name); + error ("\"%s\": can't read symbols: %s.", name, + bfd_errmsg (bfd_get_error ())); + } + return (sym_bfd); +} + +/* Link a new symtab_fns into the global symtab_fns list. Called on gdb + startup by the _initialize routine in each object file format reader, + to register information about each format the the reader is prepared + to handle. */ + +void +add_symtab_fns (sf) + struct sym_fns *sf; +{ + sf->next = symtab_fns; + symtab_fns = sf; +} + + +/* Initialize to read symbols from the symbol file sym_bfd. It either + returns or calls error(). The result is an initialized struct sym_fns + in the objfile structure, that contains cached information about the + symbol file. */ + +static void +find_sym_fns (objfile) + struct objfile *objfile; +{ + struct sym_fns *sf; + enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd); + char *our_target = bfd_get_target (objfile->obfd); + + /* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */ + if (STREQ (our_target, "aixcoff-rs6000") || + STREQ (our_target, "xcoff-powermac")) + our_flavour = (enum bfd_flavour) -1; + + /* Special kludge for apollo. See dstread.c. */ + if (STREQN (our_target, "apollo", 6)) + our_flavour = (enum bfd_flavour) -2; + + for (sf = symtab_fns; sf != NULL; sf = sf->next) + { + if (our_flavour == sf->sym_flavour) + { + objfile->sf = sf; + return; + } + } + error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.", + bfd_get_target (objfile->obfd)); +} + +/* This function runs the load command of our current target. */ + +static void +load_command (arg, from_tty) + char *arg; + int from_tty; +{ + if (arg == NULL) + arg = get_exec_file (1); + target_load (arg, from_tty); +} + +/* This version of "load" should be usable for any target. Currently + it is just used for remote targets, not inftarg.c or core files, + on the theory that only in that case is it useful. + + Avoiding xmodem and the like seems like a win (a) because we don't have + to worry about finding it, and (b) On VMS, fork() is very slow and so + we don't want to run a subprocess. On the other hand, I'm not sure how + performance compares. */ +#define GENERIC_LOAD_CHUNK 256 +#define VALIDATE_DOWNLOAD 0 +void +generic_load (filename, from_tty) + char *filename; + int from_tty; +{ + struct cleanup *old_cleanups; + asection *s; + bfd *loadfile_bfd; + time_t start_time, end_time; /* Start and end times of download */ + unsigned long data_count = 0; /* Number of bytes transferred to memory */ + int n; + unsigned long load_offset = 0; /* offset to add to vma for each section */ + char buf[GENERIC_LOAD_CHUNK + 8]; +#if VALIDATE_DOWNLOAD + char verify_buffer[GENERIC_LOAD_CHUNK + 8]; +#endif + + /* enable user to specify address for downloading as 2nd arg to load */ + n = sscanf (filename, "%s 0x%lx", buf, &load_offset); + if (n > 1) + filename = buf; + else + load_offset = 0; + + loadfile_bfd = bfd_openr (filename, gnutarget); + if (loadfile_bfd == NULL) + { + perror_with_name (filename); + return; + } + /* FIXME: should be checking for errors from bfd_close (for one thing, + on error it does not free all the storage associated with the + bfd). */ + old_cleanups = make_cleanup ((make_cleanup_func) bfd_close, loadfile_bfd); + + if (!bfd_check_format (loadfile_bfd, bfd_object)) + { + error ("\"%s\" is not an object file: %s", filename, + bfd_errmsg (bfd_get_error ())); + } + + start_time = time (NULL); + + for (s = loadfile_bfd->sections; s; s = s->next) + { + if (s->flags & SEC_LOAD) + { + bfd_size_type size; + + size = bfd_get_section_size_before_reloc (s); + if (size > 0) + { + char *buffer; + struct cleanup *old_chain; + bfd_vma lma; + unsigned long l = size; + int err; + char *sect; + unsigned long sent; + unsigned long len; + + l = l > GENERIC_LOAD_CHUNK ? GENERIC_LOAD_CHUNK : l; + + buffer = xmalloc (size); + old_chain = make_cleanup (free, buffer); + + lma = s->lma; + lma += load_offset; + + /* Is this really necessary? I guess it gives the user something + to look at during a long download. */ + printf_filtered ("Loading section %s, size 0x%lx lma ", + bfd_get_section_name (loadfile_bfd, s), + (unsigned long) size); + print_address_numeric (lma, 1, gdb_stdout); + printf_filtered ("\n"); + + bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size); + + sect = (char *) bfd_get_section_name (loadfile_bfd, s); + sent = 0; + do + { + len = (size - sent) < l ? (size - sent) : l; + sent += len; + err = target_write_memory (lma, buffer, len); + if (ui_load_progress_hook) + if (ui_load_progress_hook (sect, sent)) + error ("Canceled the download"); +#if VALIDATE_DOWNLOAD + /* Broken memories and broken monitors manifest themselves + here when bring new computers to life. + This doubles already slow downloads. + */ + if (err) + break; + { + target_read_memory (lma, verify_buffer, len); + if (0 != bcmp (buffer, verify_buffer, len)) + error ("Download verify failed at %08x", + (unsigned long) lma); + } + +#endif + data_count += len; + lma += len; + buffer += len; + } /* od */ + while (err == 0 && sent < size); + + if (err != 0) + error ("Memory access error while loading section %s.", + bfd_get_section_name (loadfile_bfd, s)); + + do_cleanups (old_chain); + } + } + } + + end_time = time (NULL); + { + unsigned long entry; + entry = bfd_get_start_address (loadfile_bfd); + printf_filtered ("Start address 0x%lx , load size %d\n", entry, data_count); + /* We were doing this in remote-mips.c, I suspect it is right + for other targets too. */ + write_pc (entry); + } + + /* FIXME: are we supposed to call symbol_file_add or not? According to + a comment from remote-mips.c (where a call to symbol_file_add was + commented out), making the call confuses GDB if more than one file is + loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c + does. */ + + report_transfer_performance (data_count, start_time, end_time); + + do_cleanups (old_cleanups); +} + +/* Report how fast the transfer went. */ + +void +report_transfer_performance (data_count, start_time, end_time) + unsigned long data_count; + time_t start_time, end_time; +{ + printf_filtered ("Transfer rate: "); + if (end_time != start_time) + printf_filtered ("%d bits/sec", + (data_count * 8) / (end_time - start_time)); + else + printf_filtered ("%d bits in <1 sec", (data_count * 8)); + printf_filtered (".\n"); +} + +/* This function allows the addition of incrementally linked object files. + It does not modify any state in the target, only in the debugger. */ + +/* ARGSUSED */ +static void +add_symbol_file_command (args, from_tty) + char *args; + int from_tty; +{ + char *name = NULL; + CORE_ADDR text_addr; + char *arg; + int readnow = 0; + int mapped = 0; + + dont_repeat (); + + if (args == NULL) + { + error ("add-symbol-file takes a file name and an address"); + } + + /* Make a copy of the string that we can safely write into. */ + + args = strdup (args); + make_cleanup (free, args); + + /* Pick off any -option args and the file name. */ + + while ((*args != '\000') && (name == NULL)) + { + while (isspace (*args)) + { + args++; + } + arg = args; + while ((*args != '\000') && !isspace (*args)) + { + args++; + } + if (*args != '\000') + { + *args++ = '\000'; + } + if (*arg != '-') + { + name = arg; + } + else if (STREQ (arg, "-mapped")) + { + mapped = 1; + } + else if (STREQ (arg, "-readnow")) + { + readnow = 1; + } + else + { + error ("unknown option `%s'", arg); + } + } + + /* After picking off any options and the file name, args should be + left pointing at the remainder of the command line, which should + be the address expression to evaluate. */ + + if (name == NULL) + { + error ("add-symbol-file takes a file name"); + } + name = tilde_expand (name); + make_cleanup (free, name); + + if (*args != '\000') + { + text_addr = parse_and_eval_address (args); + } + else + { + target_link (name, &text_addr); + if (text_addr == (CORE_ADDR) -1) + error ("Don't know how to get text start location for this file"); + } + + /* FIXME-32x64: Assumes text_addr fits in a long. */ + if ((from_tty) + && (!query ("add symbol table from file \"%s\" at text_addr = %s?\n", + name, local_hex_string ((unsigned long) text_addr)))) + error ("Not confirmed."); + + symbol_file_add (name, from_tty, text_addr, 0, mapped, readnow, + 1, /* user_loaded */ + 0); /* We'll guess it's ! is_solib */ + + /* Getting new symbols may change our opinion about what is + frameless. */ + reinit_frame_cache (); +} + +static void +add_shared_symbol_files_command (args, from_tty) + char *args; + int from_tty; +{ +#ifdef ADD_SHARED_SYMBOL_FILES + ADD_SHARED_SYMBOL_FILES (args, from_tty); +#else + error ("This command is not available in this configuration of GDB."); +#endif +} + +/* Re-read symbols if a symbol-file has changed. */ +void +reread_symbols () +{ + struct objfile *objfile; + long new_modtime; + int reread_one = 0; + struct stat new_statbuf; + int res; + + /* With the addition of shared libraries, this should be modified, + the load time should be saved in the partial symbol tables, since + different tables may come from different source files. FIXME. + This routine should then walk down each partial symbol table + and see if the symbol table that it originates from has been changed */ + + for (objfile = object_files; objfile; objfile = objfile->next) + { + if (objfile->obfd) + { +#ifdef IBM6000_TARGET + /* If this object is from a shared library, then you should + stat on the library name, not member name. */ + + if (objfile->obfd->my_archive) + res = stat (objfile->obfd->my_archive->filename, &new_statbuf); + else +#endif + res = stat (objfile->name, &new_statbuf); + if (res != 0) + { + /* FIXME, should use print_sys_errmsg but it's not filtered. */ + printf_filtered ("`%s' has disappeared; keeping its symbols.\n", + objfile->name); + continue; + } + new_modtime = new_statbuf.st_mtime; + if (new_modtime != objfile->mtime) + { + struct cleanup *old_cleanups; + struct section_offsets *offsets; + int num_offsets; + int section_offsets_size; + char *obfd_filename; + + printf_filtered ("`%s' has changed; re-reading symbols.\n", + objfile->name); + + /* There are various functions like symbol_file_add, + symfile_bfd_open, syms_from_objfile, etc., which might + appear to do what we want. But they have various other + effects which we *don't* want. So we just do stuff + ourselves. We don't worry about mapped files (for one thing, + any mapped file will be out of date). */ + + /* If we get an error, blow away this objfile (not sure if + that is the correct response for things like shared + libraries). */ + old_cleanups = make_cleanup ((make_cleanup_func) free_objfile, + objfile); + /* We need to do this whenever any symbols go away. */ + make_cleanup ((make_cleanup_func) clear_symtab_users, 0); + + /* Clean up any state BFD has sitting around. We don't need + to close the descriptor but BFD lacks a way of closing the + BFD without closing the descriptor. */ + obfd_filename = bfd_get_filename (objfile->obfd); + if (!bfd_close (objfile->obfd)) + error ("Can't close BFD for %s: %s", objfile->name, + bfd_errmsg (bfd_get_error ())); + objfile->obfd = bfd_openr (obfd_filename, gnutarget); + if (objfile->obfd == NULL) + error ("Can't open %s to read symbols.", objfile->name); + /* bfd_openr sets cacheable to true, which is what we want. */ + if (!bfd_check_format (objfile->obfd, bfd_object)) + error ("Can't read symbols from %s: %s.", objfile->name, + bfd_errmsg (bfd_get_error ())); + + /* Save the offsets, we will nuke them with the rest of the + psymbol_obstack. */ + num_offsets = objfile->num_sections; + section_offsets_size = + sizeof (struct section_offsets) + + sizeof (objfile->section_offsets->offsets) * num_offsets; + offsets = (struct section_offsets *) alloca (section_offsets_size); + memcpy (offsets, objfile->section_offsets, section_offsets_size); + + /* Nuke all the state that we will re-read. Much of the following + code which sets things to NULL really is necessary to tell + other parts of GDB that there is nothing currently there. */ + + /* FIXME: Do we have to free a whole linked list, or is this + enough? */ + if (objfile->global_psymbols.list) + mfree (objfile->md, objfile->global_psymbols.list); + memset (&objfile->global_psymbols, 0, + sizeof (objfile->global_psymbols)); + if (objfile->static_psymbols.list) + mfree (objfile->md, objfile->static_psymbols.list); + memset (&objfile->static_psymbols, 0, + sizeof (objfile->static_psymbols)); + + /* Free the obstacks for non-reusable objfiles */ + obstack_free (&objfile->psymbol_cache.cache, 0); + memset (&objfile->psymbol_cache, 0, + sizeof (objfile->psymbol_cache)); + obstack_free (&objfile->psymbol_obstack, 0); + obstack_free (&objfile->symbol_obstack, 0); + obstack_free (&objfile->type_obstack, 0); + objfile->sections = NULL; + objfile->symtabs = NULL; + objfile->psymtabs = NULL; + objfile->free_psymtabs = NULL; + objfile->msymbols = NULL; + objfile->minimal_symbol_count = 0; + objfile->fundamental_types = NULL; + if (objfile->sf != NULL) + { + (*objfile->sf->sym_finish) (objfile); + } + + /* We never make this a mapped file. */ + objfile->md = NULL; + /* obstack_specify_allocation also initializes the obstack so + it is empty. */ + obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0, + xmalloc, free); + obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, + xmalloc, free); + obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, + xmalloc, free); + obstack_specify_allocation (&objfile->type_obstack, 0, 0, + xmalloc, free); + if (build_objfile_section_table (objfile)) + { + error ("Can't find the file sections in `%s': %s", + objfile->name, bfd_errmsg (bfd_get_error ())); + } + + /* We use the same section offsets as from last time. I'm not + sure whether that is always correct for shared libraries. */ + objfile->section_offsets = (struct section_offsets *) + obstack_alloc (&objfile->psymbol_obstack, section_offsets_size); + memcpy (objfile->section_offsets, offsets, section_offsets_size); + objfile->num_sections = num_offsets; + + /* What the hell is sym_new_init for, anyway? The concept of + distinguishing between the main file and additional files + in this way seems rather dubious. */ + if (objfile == symfile_objfile) + { + (*objfile->sf->sym_new_init) (objfile); +#ifdef HPUXHPPA + RESET_HP_UX_GLOBALS (); +#endif + } + + (*objfile->sf->sym_init) (objfile); + clear_complaints (1, 1); + /* The "mainline" parameter is a hideous hack; I think leaving it + zero is OK since dbxread.c also does what it needs to do if + objfile->global_psymbols.size is 0. */ + (*objfile->sf->sym_read) (objfile, objfile->section_offsets, 0); + if (!have_partial_symbols () && !have_full_symbols ()) + { + wrap_here (""); + printf_filtered ("(no debugging symbols found)\n"); + wrap_here (""); + } + objfile->flags |= OBJF_SYMS; + + /* We're done reading the symbol file; finish off complaints. */ + clear_complaints (0, 1); + + /* Getting new symbols may change our opinion about what is + frameless. */ + + reinit_frame_cache (); + + /* Discard cleanups as symbol reading was successful. */ + discard_cleanups (old_cleanups); + + /* If the mtime has changed between the time we set new_modtime + and now, we *want* this to be out of date, so don't call stat + again now. */ + objfile->mtime = new_modtime; + reread_one = 1; + + /* Call this after reading in a new symbol table to give target + dependant code a crack at the new symbols. For instance, this + could be used to update the values of target-specific symbols GDB + needs to keep track of (such as _sigtramp, or whatever). */ + + TARGET_SYMFILE_POSTREAD (objfile); + } + } + } + + if (reread_one) + clear_symtab_users (); +} + + + +typedef struct +{ + char *ext; + enum language lang; +} +filename_language; + +static filename_language *filename_language_table; +static int fl_table_size, fl_table_next; + +static void +add_filename_language (ext, lang) + char *ext; + enum language lang; +{ + if (fl_table_next >= fl_table_size) + { + fl_table_size += 10; + filename_language_table = realloc (filename_language_table, + fl_table_size); + } + + filename_language_table[fl_table_next].ext = strsave (ext); + filename_language_table[fl_table_next].lang = lang; + fl_table_next++; +} + +static char *ext_args; + +static void +set_ext_lang_command (args, from_tty) + char *args; + int from_tty; +{ + int i; + char *cp = ext_args; + enum language lang; + + /* First arg is filename extension, starting with '.' */ + if (*cp != '.') + error ("'%s': Filename extension must begin with '.'", ext_args); + + /* Find end of first arg. */ + while (*cp && !isspace (*cp)) + cp++; + + if (*cp == '\0') + error ("'%s': two arguments required -- filename extension and language", + ext_args); + + /* Null-terminate first arg */ + *cp++ = '\0'; + + /* Find beginning of second arg, which should be a source language. */ + while (*cp && isspace (*cp)) + cp++; + + if (*cp == '\0') + error ("'%s': two arguments required -- filename extension and language", + ext_args); + + /* Lookup the language from among those we know. */ + lang = language_enum (cp); + + /* Now lookup the filename extension: do we already know it? */ + for (i = 0; i < fl_table_next; i++) + if (0 == strcmp (ext_args, filename_language_table[i].ext)) + break; + + if (i >= fl_table_next) + { + /* new file extension */ + add_filename_language (ext_args, lang); + } + else + { + /* redefining a previously known filename extension */ + + /* if (from_tty) */ + /* query ("Really make files of type %s '%s'?", */ + /* ext_args, language_str (lang)); */ + + free (filename_language_table[i].ext); + filename_language_table[i].ext = strsave (ext_args); + filename_language_table[i].lang = lang; + } +} + +static void +info_ext_lang_command (args, from_tty) + char *args; + int from_tty; +{ + int i; + + printf_filtered ("Filename extensions and the languages they represent:"); + printf_filtered ("\n\n"); + for (i = 0; i < fl_table_next; i++) + printf_filtered ("\t%s\t- %s\n", + filename_language_table[i].ext, + language_str (filename_language_table[i].lang)); +} + +static void +init_filename_language_table () +{ + if (fl_table_size == 0) /* protect against repetition */ + { + fl_table_size = 20; + fl_table_next = 0; + filename_language_table = + xmalloc (fl_table_size * sizeof (*filename_language_table)); + add_filename_language (".c", language_c); + add_filename_language (".C", language_cplus); + add_filename_language (".cc", language_cplus); + add_filename_language (".cp", language_cplus); + add_filename_language (".cpp", language_cplus); + add_filename_language (".cxx", language_cplus); + add_filename_language (".c++", language_cplus); + add_filename_language (".java", language_java); + add_filename_language (".class", language_java); + add_filename_language (".ch", language_chill); + add_filename_language (".c186", language_chill); + add_filename_language (".c286", language_chill); + add_filename_language (".f", language_fortran); + add_filename_language (".F", language_fortran); + add_filename_language (".s", language_asm); + add_filename_language (".S", language_asm); + } +} + +enum language +deduce_language_from_filename (filename) + char *filename; +{ + int i; + char *cp; + + if (filename != NULL) + if ((cp = strrchr (filename, '.')) != NULL) + for (i = 0; i < fl_table_next; i++) + if (strcmp (cp, filename_language_table[i].ext) == 0) + return filename_language_table[i].lang; + + return language_unknown; +} + +/* allocate_symtab: + + Allocate and partly initialize a new symbol table. Return a pointer + to it. error() if no space. + + Caller must set these fields: + LINETABLE(symtab) + symtab->blockvector + symtab->dirname + symtab->free_code + symtab->free_ptr + possibly free_named_symtabs (symtab->filename); + */ + +struct symtab * +allocate_symtab (filename, objfile) + char *filename; + struct objfile *objfile; +{ + register struct symtab *symtab; + + symtab = (struct symtab *) + obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab)); + memset (symtab, 0, sizeof (*symtab)); + symtab->filename = obsavestring (filename, strlen (filename), + &objfile->symbol_obstack); + symtab->fullname = NULL; + symtab->language = deduce_language_from_filename (filename); + symtab->debugformat = obsavestring ("unknown", 7, + &objfile->symbol_obstack); + + /* Hook it to the objfile it comes from */ + + symtab->objfile = objfile; + symtab->next = objfile->symtabs; + objfile->symtabs = symtab; + + /* FIXME: This should go away. It is only defined for the Z8000, + and the Z8000 definition of this macro doesn't have anything to + do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just + here for convenience. */ +#ifdef INIT_EXTRA_SYMTAB_INFO + INIT_EXTRA_SYMTAB_INFO (symtab); +#endif + + return (symtab); +} + +struct partial_symtab * +allocate_psymtab (filename, objfile) + char *filename; + struct objfile *objfile; +{ + struct partial_symtab *psymtab; + + if (objfile->free_psymtabs) + { + psymtab = objfile->free_psymtabs; + objfile->free_psymtabs = psymtab->next; + } + else + psymtab = (struct partial_symtab *) + obstack_alloc (&objfile->psymbol_obstack, + sizeof (struct partial_symtab)); + + memset (psymtab, 0, sizeof (struct partial_symtab)); + psymtab->filename = obsavestring (filename, strlen (filename), + &objfile->psymbol_obstack); + psymtab->symtab = NULL; + + /* Prepend it to the psymtab list for the objfile it belongs to. + Psymtabs are searched in most recent inserted -> least recent + inserted order. */ + + psymtab->objfile = objfile; + psymtab->next = objfile->psymtabs; + objfile->psymtabs = psymtab; +#if 0 + { + struct partial_symtab **prev_pst; + psymtab->objfile = objfile; + psymtab->next = NULL; + prev_pst = &(objfile->psymtabs); + while ((*prev_pst) != NULL) + prev_pst = &((*prev_pst)->next); + (*prev_pst) = psymtab; + } +#endif + + return (psymtab); +} + +void +discard_psymtab (pst) + struct partial_symtab *pst; +{ + struct partial_symtab **prev_pst; + + /* From dbxread.c: + Empty psymtabs happen as a result of header files which don't + have any symbols in them. There can be a lot of them. But this + check is wrong, in that a psymtab with N_SLINE entries but + nothing else is not empty, but we don't realize that. Fixing + that without slowing things down might be tricky. */ + + /* First, snip it out of the psymtab chain */ + + prev_pst = &(pst->objfile->psymtabs); + while ((*prev_pst) != pst) + prev_pst = &((*prev_pst)->next); + (*prev_pst) = pst->next; + + /* Next, put it on a free list for recycling */ + + pst->next = pst->objfile->free_psymtabs; + pst->objfile->free_psymtabs = pst; +} + + +/* Reset all data structures in gdb which may contain references to symbol + table data. */ + +void +clear_symtab_users () +{ + /* Someday, we should do better than this, by only blowing away + the things that really need to be blown. */ + clear_value_history (); + clear_displays (); + clear_internalvars (); + breakpoint_re_set (); + set_default_breakpoint (0, 0, 0, 0); + current_source_symtab = 0; + current_source_line = 0; + clear_pc_function_cache (); + target_new_objfile (NULL); +} + +/* clear_symtab_users_once: + + This function is run after symbol reading, or from a cleanup. + If an old symbol table was obsoleted, the old symbol table + has been blown away, but the other GDB data structures that may + reference it have not yet been cleared or re-directed. (The old + symtab was zapped, and the cleanup queued, in free_named_symtab() + below.) + + This function can be queued N times as a cleanup, or called + directly; it will do all the work the first time, and then will be a + no-op until the next time it is queued. This works by bumping a + counter at queueing time. Much later when the cleanup is run, or at + the end of symbol processing (in case the cleanup is discarded), if + the queued count is greater than the "done-count", we do the work + and set the done-count to the queued count. If the queued count is + less than or equal to the done-count, we just ignore the call. This + is needed because reading a single .o file will often replace many + symtabs (one per .h file, for example), and we don't want to reset + the breakpoints N times in the user's face. + + The reason we both queue a cleanup, and call it directly after symbol + reading, is because the cleanup protects us in case of errors, but is + discarded if symbol reading is successful. */ + +#if 0 +/* FIXME: As free_named_symtabs is currently a big noop this function + is no longer needed. */ +static void +clear_symtab_users_once PARAMS ((void)); + +static int clear_symtab_users_queued; +static int clear_symtab_users_done; + +static void +clear_symtab_users_once () +{ + /* Enforce once-per-`do_cleanups'-semantics */ + if (clear_symtab_users_queued <= clear_symtab_users_done) + return; + clear_symtab_users_done = clear_symtab_users_queued; + + clear_symtab_users (); +} +#endif + +/* Delete the specified psymtab, and any others that reference it. */ + +static void +cashier_psymtab (pst) + struct partial_symtab *pst; +{ + struct partial_symtab *ps, *pprev = NULL; + int i; + + /* Find its previous psymtab in the chain */ + for (ps = pst->objfile->psymtabs; ps; ps = ps->next) + { + if (ps == pst) + break; + pprev = ps; + } + + if (ps) + { + /* Unhook it from the chain. */ + if (ps == pst->objfile->psymtabs) + pst->objfile->psymtabs = ps->next; + else + pprev->next = ps->next; + + /* FIXME, we can't conveniently deallocate the entries in the + partial_symbol lists (global_psymbols/static_psymbols) that + this psymtab points to. These just take up space until all + the psymtabs are reclaimed. Ditto the dependencies list and + filename, which are all in the psymbol_obstack. */ + + /* We need to cashier any psymtab that has this one as a dependency... */ + again: + for (ps = pst->objfile->psymtabs; ps; ps = ps->next) + { + for (i = 0; i < ps->number_of_dependencies; i++) + { + if (ps->dependencies[i] == pst) + { + cashier_psymtab (ps); + goto again; /* Must restart, chain has been munged. */ + } + } + } + } +} + +/* If a symtab or psymtab for filename NAME is found, free it along + with any dependent breakpoints, displays, etc. + Used when loading new versions of object modules with the "add-file" + command. This is only called on the top-level symtab or psymtab's name; + it is not called for subsidiary files such as .h files. + + Return value is 1 if we blew away the environment, 0 if not. + FIXME. The return valu appears to never be used. + + FIXME. I think this is not the best way to do this. We should + work on being gentler to the environment while still cleaning up + all stray pointers into the freed symtab. */ + +int +free_named_symtabs (name) + char *name; +{ +#if 0 + /* FIXME: With the new method of each objfile having it's own + psymtab list, this function needs serious rethinking. In particular, + why was it ever necessary to toss psymtabs with specific compilation + unit filenames, as opposed to all psymtabs from a particular symbol + file? -- fnf + Well, the answer is that some systems permit reloading of particular + compilation units. We want to blow away any old info about these + compilation units, regardless of which objfiles they arrived in. --gnu. */ + + register struct symtab *s; + register struct symtab *prev; + register struct partial_symtab *ps; + struct blockvector *bv; + int blewit = 0; + + /* We only wack things if the symbol-reload switch is set. */ + if (!symbol_reloading) + return 0; + + /* Some symbol formats have trouble providing file names... */ + if (name == 0 || *name == '\0') + return 0; + + /* Look for a psymtab with the specified name. */ + +again2: + for (ps = partial_symtab_list; ps; ps = ps->next) + { + if (STREQ (name, ps->filename)) + { + cashier_psymtab (ps); /* Blow it away...and its little dog, too. */ + goto again2; /* Must restart, chain has been munged */ + } + } + + /* Look for a symtab with the specified name. */ + + for (s = symtab_list; s; s = s->next) + { + if (STREQ (name, s->filename)) + break; + prev = s; + } + + if (s) + { + if (s == symtab_list) + symtab_list = s->next; + else + prev->next = s->next; + + /* For now, queue a delete for all breakpoints, displays, etc., whether + or not they depend on the symtab being freed. This should be + changed so that only those data structures affected are deleted. */ + + /* But don't delete anything if the symtab is empty. + This test is necessary due to a bug in "dbxread.c" that + causes empty symtabs to be created for N_SO symbols that + contain the pathname of the object file. (This problem + has been fixed in GDB 3.9x). */ + + bv = BLOCKVECTOR (s); + if (BLOCKVECTOR_NBLOCKS (bv) > 2 + || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)) + || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK))) + { + complain (&oldsyms_complaint, name); + + clear_symtab_users_queued++; + make_cleanup (clear_symtab_users_once, 0); + blewit = 1; + } + else + { + complain (&empty_symtab_complaint, name); + } + + free_symtab (s); + } + else + { + /* It is still possible that some breakpoints will be affected + even though no symtab was found, since the file might have + been compiled without debugging, and hence not be associated + with a symtab. In order to handle this correctly, we would need + to keep a list of text address ranges for undebuggable files. + For now, we do nothing, since this is a fairly obscure case. */ + ; + } + + /* FIXME, what about the minimal symbol table? */ + return blewit; +#else + return (0); +#endif +} + +/* Allocate and partially fill a partial symtab. It will be + completely filled at the end of the symbol list. + + SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR + is the address relative to which its symbols are (incremental) or 0 + (normal). */ + + +struct partial_symtab * +start_psymtab_common (objfile, section_offsets, + filename, textlow, global_syms, static_syms) + struct objfile *objfile; + struct section_offsets *section_offsets; + char *filename; + CORE_ADDR textlow; + struct partial_symbol **global_syms; + struct partial_symbol **static_syms; +{ + struct partial_symtab *psymtab; + + psymtab = allocate_psymtab (filename, objfile); + psymtab->section_offsets = section_offsets; + psymtab->textlow = textlow; + psymtab->texthigh = psymtab->textlow; /* default */ + psymtab->globals_offset = global_syms - objfile->global_psymbols.list; + psymtab->statics_offset = static_syms - objfile->static_psymbols.list; + return (psymtab); +} + +/* Add a symbol with a long value to a psymtab. + Since one arg is a struct, we pass in a ptr and deref it (sigh). */ + +void +add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr, + language, objfile) + char *name; + int namelength; + namespace_enum namespace; + enum address_class class; + struct psymbol_allocation_list *list; + long val; /* Value as a long */ + CORE_ADDR coreaddr; /* Value as a CORE_ADDR */ + enum language language; + struct objfile *objfile; +{ + register struct partial_symbol *psym; + char *buf = alloca (namelength + 1); + /* psymbol is static so that there will be no uninitialized gaps in the + structure which might contain random data, causing cache misses in + bcache. */ + static struct partial_symbol psymbol; + + /* Create local copy of the partial symbol */ + memcpy (buf, name, namelength); + buf[namelength] = '\0'; + SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache); + /* val and coreaddr are mutually exclusive, one of them *will* be zero */ + if (val != 0) + { + SYMBOL_VALUE (&psymbol) = val; + } + else + { + SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr; + } + SYMBOL_SECTION (&psymbol) = 0; + SYMBOL_LANGUAGE (&psymbol) = language; + PSYMBOL_NAMESPACE (&psymbol) = namespace; + PSYMBOL_CLASS (&psymbol) = class; + SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language); + + /* Stash the partial symbol away in the cache */ + psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache); + + /* Save pointer to partial symbol in psymtab, growing symtab if needed. */ + if (list->next >= list->list + list->size) + { + extend_psymbol_list (list, objfile); + } + *list->next++ = psym; + OBJSTAT (objfile, n_psyms++); +} + +/* Add a symbol with a long value to a psymtab. This differs from + * add_psymbol_to_list above in taking both a mangled and a demangled + * name. */ + +void +add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength, + namespace, class, list, val, coreaddr, language, objfile) + char *name; + int namelength; + char *dem_name; + int dem_namelength; + namespace_enum namespace; + enum address_class class; + struct psymbol_allocation_list *list; + long val; /* Value as a long */ + CORE_ADDR coreaddr; /* Value as a CORE_ADDR */ + enum language language; + struct objfile *objfile; +{ + register struct partial_symbol *psym; + char *buf = alloca (namelength + 1); + /* psymbol is static so that there will be no uninitialized gaps in the + structure which might contain random data, causing cache misses in + bcache. */ + static struct partial_symbol psymbol; + + /* Create local copy of the partial symbol */ + + memcpy (buf, name, namelength); + buf[namelength] = '\0'; + SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache); + + buf = alloca (dem_namelength + 1); + memcpy (buf, dem_name, dem_namelength); + buf[dem_namelength] = '\0'; + + switch (language) + { + case language_c: + case language_cplus: + SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) = + bcache (buf, dem_namelength + 1, &objfile->psymbol_cache); + break; + case language_chill: + SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) = + bcache (buf, dem_namelength + 1, &objfile->psymbol_cache); + + /* FIXME What should be done for the default case? Ignoring for now. */ + } + + /* val and coreaddr are mutually exclusive, one of them *will* be zero */ + if (val != 0) + { + SYMBOL_VALUE (&psymbol) = val; + } + else + { + SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr; + } + SYMBOL_SECTION (&psymbol) = 0; + SYMBOL_LANGUAGE (&psymbol) = language; + PSYMBOL_NAMESPACE (&psymbol) = namespace; + PSYMBOL_CLASS (&psymbol) = class; + SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language); + + /* Stash the partial symbol away in the cache */ + psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache); + + /* Save pointer to partial symbol in psymtab, growing symtab if needed. */ + if (list->next >= list->list + list->size) + { + extend_psymbol_list (list, objfile); + } + *list->next++ = psym; + OBJSTAT (objfile, n_psyms++); +} + +/* Initialize storage for partial symbols. */ + +void +init_psymbol_list (objfile, total_symbols) + struct objfile *objfile; + int total_symbols; +{ + /* Free any previously allocated psymbol lists. */ + + if (objfile->global_psymbols.list) + { + mfree (objfile->md, (PTR) objfile->global_psymbols.list); + } + if (objfile->static_psymbols.list) + { + mfree (objfile->md, (PTR) objfile->static_psymbols.list); + } + + /* Current best guess is that approximately a twentieth + of the total symbols (in a debugging file) are global or static + oriented symbols */ + + objfile->global_psymbols.size = total_symbols / 10; + objfile->static_psymbols.size = total_symbols / 10; + + if (objfile->global_psymbols.size > 0) + { + objfile->global_psymbols.next = + objfile->global_psymbols.list = (struct partial_symbol **) + xmmalloc (objfile->md, (objfile->global_psymbols.size + * sizeof (struct partial_symbol *))); + } + if (objfile->static_psymbols.size > 0) + { + objfile->static_psymbols.next = + objfile->static_psymbols.list = (struct partial_symbol **) + xmmalloc (objfile->md, (objfile->static_psymbols.size + * sizeof (struct partial_symbol *))); } - error ("I'm sorry, Dave, I can't do that. Symbol format unknown."); } - -/* This function runs the load command of our current target. */ -void -load_command (arg, from_tty) - char *arg; - int from_tty; +/* OVERLAYS: + The following code implements an abstraction for debugging overlay sections. + + The target model is as follows: + 1) The gnu linker will permit multiple sections to be mapped into the + same VMA, each with its own unique LMA (or load address). + 2) It is assumed that some runtime mechanism exists for mapping the + sections, one by one, from the load address into the VMA address. + 3) This code provides a mechanism for gdb to keep track of which + sections should be considered to be mapped from the VMA to the LMA. + This information is used for symbol lookup, and memory read/write. + For instance, if a section has been mapped then its contents + should be read from the VMA, otherwise from the LMA. + + Two levels of debugger support for overlays are available. One is + "manual", in which the debugger relies on the user to tell it which + overlays are currently mapped. This level of support is + implemented entirely in the core debugger, and the information about + whether a section is mapped is kept in the objfile->obj_section table. + + The second level of support is "automatic", and is only available if + the target-specific code provides functionality to read the target's + overlay mapping table, and translate its contents for the debugger + (by updating the mapped state information in the obj_section tables). + + The interface is as follows: + User commands: + overlay map -- tell gdb to consider this section mapped + overlay unmap -- tell gdb to consider this section unmapped + overlay list -- list the sections that GDB thinks are mapped + overlay read-target -- get the target's state of what's mapped + overlay off/manual/auto -- set overlay debugging state + Functional interface: + find_pc_mapped_section(pc): if the pc is in the range of a mapped + section, return that section. + find_pc_overlay(pc): find any overlay section that contains + the pc, either in its VMA or its LMA + overlay_is_mapped(sect): true if overlay is marked as mapped + section_is_overlay(sect): true if section's VMA != LMA + pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA + pc_in_unmapped_range(...): true if pc belongs to section's LMA + overlay_mapped_address(...): map an address from section's LMA to VMA + overlay_unmapped_address(...): map an address from section's VMA to LMA + symbol_overlayed_address(...): Return a "current" address for symbol: + either in VMA or LMA depending on whether + the symbol's section is currently mapped + */ + +/* Overlay debugging state: */ + +int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */ +int overlay_cache_invalid = 0; /* True if need to refresh mapped state */ + +/* Target vector for refreshing overlay mapped state */ +static void simple_overlay_update PARAMS ((struct obj_section *)); +void (*target_overlay_update) PARAMS ((struct obj_section *)) += simple_overlay_update; + +/* Function: section_is_overlay (SECTION) + Returns true if SECTION has VMA not equal to LMA, ie. + SECTION is loaded at an address different from where it will "run". */ + +int +section_is_overlay (section) + asection *section; +{ + if (overlay_debugging) + if (section && section->lma != 0 && + section->vma != section->lma) + return 1; + + return 0; +} + +/* Function: overlay_invalidate_all (void) + Invalidate the mapped state of all overlay sections (mark it as stale). */ + +static void +overlay_invalidate_all () +{ + struct objfile *objfile; + struct obj_section *sect; + + ALL_OBJSECTIONS (objfile, sect) + if (section_is_overlay (sect->the_bfd_section)) + sect->ovly_mapped = -1; +} + +/* Function: overlay_is_mapped (SECTION) + Returns true if section is an overlay, and is currently mapped. + Private: public access is thru function section_is_mapped. + + Access to the ovly_mapped flag is restricted to this function, so + that we can do automatic update. If the global flag + OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call + overlay_invalidate_all. If the mapped state of the particular + section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */ + +static int +overlay_is_mapped (osect) + struct obj_section *osect; { - target_load (arg, from_tty); + if (osect == 0 || !section_is_overlay (osect->the_bfd_section)) + return 0; + + switch (overlay_debugging) + { + default: + case 0: + return 0; /* overlay debugging off */ + case -1: /* overlay debugging automatic */ + /* Unles there is a target_overlay_update function, + there's really nothing useful to do here (can't really go auto) */ + if (target_overlay_update) + { + if (overlay_cache_invalid) + { + overlay_invalidate_all (); + overlay_cache_invalid = 0; + } + if (osect->ovly_mapped == -1) + (*target_overlay_update) (osect); + } + /* fall thru to manual case */ + case 1: /* overlay debugging manual */ + return osect->ovly_mapped == 1; + } } -/* This function runs the add_syms command of our current target. */ +/* Function: section_is_mapped + Returns true if section is an overlay, and is currently mapped. */ -void -add_syms_command (args, from_tty) - char *args; - int from_tty; +int +section_is_mapped (section) + asection *section; { - target_add_syms (args, from_tty); + struct objfile *objfile; + struct obj_section *osect; + + if (overlay_debugging) + if (section && section_is_overlay (section)) + ALL_OBJSECTIONS (objfile, osect) + if (osect->the_bfd_section == section) + return overlay_is_mapped (osect); + + return 0; } -/* This function allows the addition of incrementally linked object files. */ +/* Function: pc_in_unmapped_range + If PC falls into the lma range of SECTION, return true, else false. */ -void -add_syms_addr_command (arg_string, from_tty) - char* arg_string; - int from_tty; +CORE_ADDR +pc_in_unmapped_range (pc, section) + CORE_ADDR pc; + asection *section; { - char *name; - CORE_ADDR text_addr; - - if (arg_string == 0) - error ("add-syms takes a file name and an address"); + int size; - arg_string = tilde_expand (arg_string); - make_cleanup (free, arg_string); + if (overlay_debugging) + if (section && section_is_overlay (section)) + { + size = bfd_get_section_size_before_reloc (section); + if (section->lma <= pc && pc < section->lma + size) + return 1; + } + return 0; +} - for( ; *arg_string == ' '; arg_string++ ); - name = arg_string; - for( ; *arg_string && *arg_string != ' ' ; arg_string++ ); - *arg_string++ = (char) 0; +/* Function: pc_in_mapped_range + If PC falls into the vma range of SECTION, return true, else false. */ - if (name[0] == 0) - error ("add-syms takes a file name and an address"); +CORE_ADDR +pc_in_mapped_range (pc, section) + CORE_ADDR pc; + asection *section; +{ + int size; - text_addr = parse_and_eval_address (arg_string); + if (overlay_debugging) + if (section && section_is_overlay (section)) + { + size = bfd_get_section_size_before_reloc (section); + if (section->vma <= pc && pc < section->vma + size) + return 1; + } + return 0; +} - dont_repeat (); +/* Function: overlay_unmapped_address (PC, SECTION) + Returns the address corresponding to PC in the unmapped (load) range. + May be the same as PC. */ - if (!query ("add symbol table from file \"%s\" at text_addr = 0x%x\n", - name, text_addr)) - error ("Not confirmed."); +CORE_ADDR +overlay_unmapped_address (pc, section) + CORE_ADDR pc; + asection *section; +{ + if (overlay_debugging) + if (section && section_is_overlay (section) && + pc_in_mapped_range (pc, section)) + return pc + section->lma - section->vma; - symbol_file_add (name, 0, text_addr, 0); + return pc; } - -/* Re-read symbols if the symbol-file has changed. */ -void -reread_symbols () + +/* Function: overlay_mapped_address (PC, SECTION) + Returns the address corresponding to PC in the mapped (runtime) range. + May be the same as PC. */ + +CORE_ADDR +overlay_mapped_address (pc, section) + CORE_ADDR pc; + asection *section; { - struct stat symstat; + if (overlay_debugging) + if (section && section_is_overlay (section) && + pc_in_unmapped_range (pc, section)) + return pc + section->vma - section->lma; - /* With the addition of shared libraries, this should be modified, - the load time should be saved in the partial symbol tables, since - different tables may come from different source files. FIXME. - This routine should then walk down each partial symbol table - and see if the symbol table that it originates from has been changed - */ + return pc; +} - if (stat (symfile, &symstat) < 0) - /* Can't read symbol-file. Assume it is up to date. */ - return; - if (symstat.st_mtime > symfile_mtime) +/* Function: symbol_overlayed_address + Return one of two addresses (relative to the VMA or to the LMA), + depending on whether the section is mapped or not. */ + +CORE_ADDR +symbol_overlayed_address (address, section) + CORE_ADDR address; + asection *section; +{ + if (overlay_debugging) { - printf_filtered ("Symbol file has changed; re-reading symbols.\n"); - symbol_file_command (symfile, 0); - breakpoint_re_set (); + /* If the symbol has no section, just return its regular address. */ + if (section == 0) + return address; + /* If the symbol's section is not an overlay, just return its address */ + if (!section_is_overlay (section)) + return address; + /* If the symbol's section is mapped, just return its address */ + if (section_is_mapped (section)) + return address; + /* + * HOWEVER: if the symbol is in an overlay section which is NOT mapped, + * then return its LOADED address rather than its vma address!! + */ + return overlay_unmapped_address (address, section); } + return address; } +/* Function: find_pc_overlay (PC) + Return the best-match overlay section for PC: + If PC matches a mapped overlay section's VMA, return that section. + Else if PC matches an unmapped section's VMA, return that section. + Else if PC matches an unmapped section's LMA, return that section. */ -/* This function is really horrible, but to avoid it, there would need - to be more filling in of forward references. */ -int -fill_in_vptr_fieldno (type) - struct type *type; +asection * +find_pc_overlay (pc) + CORE_ADDR pc; { - check_stub_type (type); - if (TYPE_VPTR_FIELDNO (type) < 0) - TYPE_VPTR_FIELDNO (type) = - fill_in_vptr_fieldno (TYPE_BASECLASS (type, 1)); - return TYPE_VPTR_FIELDNO (type); + struct objfile *objfile; + struct obj_section *osect, *best_match = NULL; + + if (overlay_debugging) + ALL_OBJSECTIONS (objfile, osect) + if (section_is_overlay (osect->the_bfd_section)) + { + if (pc_in_mapped_range (pc, osect->the_bfd_section)) + { + if (overlay_is_mapped (osect)) + return osect->the_bfd_section; + else + best_match = osect; + } + else if (pc_in_unmapped_range (pc, osect->the_bfd_section)) + best_match = osect; + } + return best_match ? best_match->the_bfd_section : NULL; } - -/* Functions to handle complaints during symbol reading. */ -/* How many complaints about a particular thing should be printed before - we stop whining about it? */ +/* Function: find_pc_mapped_section (PC) + If PC falls into the VMA address range of an overlay section that is + currently marked as MAPPED, return that section. Else return NULL. */ -static unsigned stop_whining = 1; +asection * +find_pc_mapped_section (pc) + CORE_ADDR pc; +{ + struct objfile *objfile; + struct obj_section *osect; -/* Print a complaint about the input symbols, and link the complaint block - into a chain for later handling. Result is 1 if the complaint was - printed, 0 if it was suppressed. */ + if (overlay_debugging) + ALL_OBJSECTIONS (objfile, osect) + if (pc_in_mapped_range (pc, osect->the_bfd_section) && + overlay_is_mapped (osect)) + return osect->the_bfd_section; -int -complain (complaint, val) - struct complaint *complaint; - char *val; -{ - complaint->counter++; - if (complaint->next == 0) { - complaint->next = complaint_root->next; - complaint_root->next = complaint; - } - if (complaint->counter > stop_whining) - return 0; - wrap_here (""); - if (!info_verbose) { - puts_filtered ("During symbol reading..."); - } - printf_filtered (complaint->message, val); - puts_filtered ("..."); - wrap_here(""); - if (!info_verbose) - puts_filtered ("\n"); - return 1; + return NULL; } -/* Clear out all complaint counters that have ever been incremented. */ +/* Function: list_overlays_command + Print a list of mapped sections and their PC ranges */ void -clear_complaints () +list_overlays_command (args, from_tty) + char *args; + int from_tty; { - struct complaint *p; + int nmapped = 0; + struct objfile *objfile; + struct obj_section *osect; - for (p = complaint_root->next; p != complaint_root; p = p->next) - p->counter = 0; + if (overlay_debugging) + ALL_OBJSECTIONS (objfile, osect) + if (overlay_is_mapped (osect)) + { + const char *name; + bfd_vma lma, vma; + int size; + + vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section); + lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section); + size = bfd_get_section_size_before_reloc (osect->the_bfd_section); + name = bfd_section_name (objfile->obfd, osect->the_bfd_section); + + printf_filtered ("Section %s, loaded at ", name); + print_address_numeric (lma, 1, gdb_stdout); + puts_filtered (" - "); + print_address_numeric (lma + size, 1, gdb_stdout); + printf_filtered (", mapped at "); + print_address_numeric (vma, 1, gdb_stdout); + puts_filtered (" - "); + print_address_numeric (vma + size, 1, gdb_stdout); + puts_filtered ("\n"); + + nmapped++; + } + if (nmapped == 0) + printf_filtered ("No sections are mapped.\n"); } - -/* clear_symtab_users_once: - This function is run after symbol reading, or from a cleanup. - If an old symbol table was obsoleted, the old symbol table - has been blown away, but the other GDB data structures that may - reference it have not yet been cleared or re-directed. (The old - symtab was zapped, and the cleanup queued, in free_named_symtab() - below.) +/* Function: map_overlay_command + Mark the named section as mapped (ie. residing at its VMA address). */ - This function can be queued N times as a cleanup, or called - directly; it will do all the work the first time, and then will be a - no-op until the next time it is queued. This works by bumping a - counter at queueing time. Much later when the cleanup is run, or at - the end of symbol processing (in case the cleanup is discarded), if - the queued count is greater than the "done-count", we do the work - and set the done-count to the queued count. If the queued count is - less than or equal to the done-count, we just ignore the call. This - is needed because reading a single .o file will often replace many - symtabs (one per .h file, for example), and we don't want to reset - the breakpoints N times in the user's face. +void +map_overlay_command (args, from_tty) + char *args; + int from_tty; +{ + struct objfile *objfile, *objfile2; + struct obj_section *sec, *sec2; + asection *bfdsec; - The reason we both queue a cleanup, and call it directly after symbol - reading, is because the cleanup protects us in case of errors, but is - discarded if symbol reading is successful. */ + if (!overlay_debugging) + error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command."); -static int clear_symtab_users_queued; -static int clear_symtab_users_done; + if (args == 0 || *args == 0) + error ("Argument required: name of an overlay section"); + + /* First, find a section matching the user supplied argument */ + ALL_OBJSECTIONS (objfile, sec) + if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args)) + { + /* Now, check to see if the section is an overlay. */ + bfdsec = sec->the_bfd_section; + if (!section_is_overlay (bfdsec)) + continue; /* not an overlay section */ + + /* Mark the overlay as "mapped" */ + sec->ovly_mapped = 1; + + /* Next, make a pass and unmap any sections that are + overlapped by this new section: */ + ALL_OBJSECTIONS (objfile2, sec2) + if (sec2->ovly_mapped && + sec != sec2 && + sec->the_bfd_section != sec2->the_bfd_section && + (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) || + pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section))) + { + if (info_verbose) + printf_filtered ("Note: section %s unmapped by overlap\n", + bfd_section_name (objfile->obfd, + sec2->the_bfd_section)); + sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */ + } + return; + } + error ("No overlay section called %s", args); +} + +/* Function: unmap_overlay_command + Mark the overlay section as unmapped + (ie. resident in its LMA address range, rather than the VMA range). */ + +void +unmap_overlay_command (args, from_tty) + char *args; + int from_tty; +{ + struct objfile *objfile; + struct obj_section *sec; + + if (!overlay_debugging) + error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command."); + + if (args == 0 || *args == 0) + error ("Argument required: name of an overlay section"); + + /* First, find a section matching the user supplied argument */ + ALL_OBJSECTIONS (objfile, sec) + if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args)) + { + if (!sec->ovly_mapped) + error ("Section %s is not mapped", args); + sec->ovly_mapped = 0; + return; + } + error ("No overlay section called %s", args); +} + +/* Function: overlay_auto_command + A utility command to turn on overlay debugging. + Possibly this should be done via a set/show command. */ static void -clear_symtab_users_once () +overlay_auto_command (args, from_tty) + char *args; + int from_tty; { - /* Enforce once-per-`do_cleanups'-semantics */ - if (clear_symtab_users_queued <= clear_symtab_users_done) - return; - clear_symtab_users_done = clear_symtab_users_queued; + overlay_debugging = -1; + if (info_verbose) + printf_filtered ("Automatic overlay debugging enabled."); +} - printf ("Resetting debugger state after updating old symbol tables\n"); +/* Function: overlay_manual_command + A utility command to turn on overlay debugging. + Possibly this should be done via a set/show command. */ - /* Someday, we should do better than this, by only blowing away - the things that really need to be blown. */ - clear_value_history (); - clear_displays (); - clear_internalvars (); - breakpoint_re_set (); - set_default_breakpoint (0, 0, 0, 0); - current_source_symtab = 0; +static void +overlay_manual_command (args, from_tty) + char *args; + int from_tty; +{ + overlay_debugging = 1; + if (info_verbose) + printf_filtered ("Overlay debugging enabled."); } -/* Delete the specified psymtab, and any others that reference it. */ +/* Function: overlay_off_command + A utility command to turn on overlay debugging. + Possibly this should be done via a set/show command. */ -cashier_psymtab (pst) - struct partial_symtab *pst; +static void +overlay_off_command (args, from_tty) + char *args; + int from_tty; { - struct partial_symtab *ps, *pprev; - int i; + overlay_debugging = 0; + if (info_verbose) + printf_filtered ("Overlay debugging disabled."); +} - /* Find its previous psymtab in the chain */ - for (ps = partial_symtab_list; ps; ps = ps->next) { - if (ps == pst) - break; - pprev = ps; - } +static void +overlay_load_command (args, from_tty) + char *args; + int from_tty; +{ + if (target_overlay_update) + (*target_overlay_update) (NULL); + else + error ("This target does not know how to read its overlay state."); +} - if (ps) { - /* Unhook it from the chain. */ - if (ps == partial_symtab_list) - partial_symtab_list = ps->next; - else - pprev->next = ps->next; - - /* FIXME, we can't conveniently deallocate the entries in the - partial_symbol lists (global_psymbols/static_psymbols) that - this psymtab points to. These just take up space until all - the psymtabs are reclaimed. Ditto the dependencies list and - filename, which are all in the psymbol_obstack. */ - - /* We need to cashier any psymtab that has this one as a dependency... */ -again: - for (ps = partial_symtab_list; ps; ps = ps->next) { - for (i = 0; i < ps->number_of_dependencies; i++) { - if (ps->dependencies[i] == pst) { - cashier_psymtab (ps); - goto again; /* Must restart, chain has been munged. */ - } - } - } - } +/* Function: overlay_command + A place-holder for a mis-typed command */ + +/* Command list chain containing all defined "overlay" subcommands. */ +struct cmd_list_element *overlaylist; + +static void +overlay_command (args, from_tty) + char *args; + int from_tty; +{ + printf_unfiltered + ("\"overlay\" must be followed by the name of an overlay command.\n"); + help_list (overlaylist, "overlay ", -1, gdb_stdout); } -/* If a symtab or psymtab for filename NAME is found, free it along - with any dependent breakpoints, displays, etc. - Used when loading new versions of object modules with the "add-file" - command. This is only called on the top-level symtab or psymtab's name; - it is not called for subsidiary files such as .h files. - Return value is 1 if we blew away the environment, 0 if not. +/* Target Overlays for the "Simplest" overlay manager: + + This is GDB's default target overlay layer. It works with the + minimal overlay manager supplied as an example by Cygnus. The + entry point is via a function pointer "target_overlay_update", + so targets that use a different runtime overlay manager can + substitute their own overlay_update function and take over the + function pointer. + + The overlay_update function pokes around in the target's data structures + to see what overlays are mapped, and updates GDB's overlay mapping with + this information. + + In this simple implementation, the target data structures are as follows: + unsigned _novlys; /# number of overlay sections #/ + unsigned _ovly_table[_novlys][4] = { + {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/ + {..., ..., ..., ...}, + } + unsigned _novly_regions; /# number of overlay regions #/ + unsigned _ovly_region_table[_novly_regions][3] = { + {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/ + {..., ..., ...}, + } + These functions will attempt to update GDB's mappedness state in the + symbol section table, based on the target's mappedness state. + + To do this, we keep a cached copy of the target's _ovly_table, and + attempt to detect when the cached copy is invalidated. The main + entry point is "simple_overlay_update(SECT), which looks up SECT in + the cached table and re-reads only the entry for that section from + the target (whenever possible). + */ + +/* Cached, dynamically allocated copies of the target data structures: */ +static unsigned (*cache_ovly_table)[4] = 0; +#if 0 +static unsigned (*cache_ovly_region_table)[3] = 0; +#endif +static unsigned cache_novlys = 0; +#if 0 +static unsigned cache_novly_regions = 0; +#endif +static CORE_ADDR cache_ovly_table_base = 0; +#if 0 +static CORE_ADDR cache_ovly_region_table_base = 0; +#endif +enum ovly_index + { + VMA, SIZE, LMA, MAPPED + }; +#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT) - FIXME. I think this is not the best way to do this. We should - work on being gentler to the environment while still cleaning up - all stray pointers into the freed symtab. */ +/* Throw away the cached copy of _ovly_table */ +static void +simple_free_overlay_table () +{ + if (cache_ovly_table) + free (cache_ovly_table); + cache_novlys = 0; + cache_ovly_table = NULL; + cache_ovly_table_base = 0; +} -int -free_named_symtabs (name) - char *name; +#if 0 +/* Throw away the cached copy of _ovly_region_table */ +static void +simple_free_overlay_region_table () { - register struct symtab *s; - register struct symtab *prev; - register struct partial_symtab *ps; - register struct partial_symtab *pprev; - struct blockvector *bv; - int blewit = 0; + if (cache_ovly_region_table) + free (cache_ovly_region_table); + cache_novly_regions = 0; + cache_ovly_region_table = NULL; + cache_ovly_region_table_base = 0; +} +#endif - /* Look for a psymtab with the specified name. */ +/* Read an array of ints from the target into a local buffer. + Convert to host order. int LEN is number of ints */ +static void +read_target_long_array (memaddr, myaddr, len) + CORE_ADDR memaddr; + unsigned int *myaddr; + int len; +{ + char *buf = alloca (len * TARGET_LONG_BYTES); + int i; -again2: - for (ps = partial_symtab_list; ps; ps = ps->next) { - if (!strcmp (name, ps->filename)) { - cashier_psymtab (ps); /* Blow it away...and its little dog, too. */ - goto again2; /* Must restart, chain has been munged */ - } - } + read_memory (memaddr, buf, len * TARGET_LONG_BYTES); + for (i = 0; i < len; i++) + myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf, + TARGET_LONG_BYTES); +} - /* Look for a symtab with the specified name. */ +/* Find and grab a copy of the target _ovly_table + (and _novlys, which is needed for the table's size) */ +static int +simple_read_overlay_table () +{ + struct minimal_symbol *msym; - for (s = symtab_list; s; s = s->next) + simple_free_overlay_table (); + msym = lookup_minimal_symbol ("_novlys", 0, 0); + if (msym != NULL) + cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4); + else + return 0; /* failure */ + cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table)); + if (cache_ovly_table != NULL) { - if (!strcmp (name, s->filename)) - break; - prev = s; + msym = lookup_minimal_symbol ("_ovly_table", 0, 0); + if (msym != NULL) + { + cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym); + read_target_long_array (cache_ovly_table_base, + (int *) cache_ovly_table, + cache_novlys * 4); + } + else + return 0; /* failure */ } + else + return 0; /* failure */ + return 1; /* SUCCESS */ +} - if (s) +#if 0 +/* Find and grab a copy of the target _ovly_region_table + (and _novly_regions, which is needed for the table's size) */ +static int +simple_read_overlay_region_table () +{ + struct minimal_symbol *msym; + + simple_free_overlay_region_table (); + msym = lookup_minimal_symbol ("_novly_regions", 0, 0); + if (msym != NULL) + cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4); + else + return 0; /* failure */ + cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12); + if (cache_ovly_region_table != NULL) { - if (s == symtab_list) - symtab_list = s->next; + msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0); + if (msym != NULL) + { + cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym); + read_target_long_array (cache_ovly_region_table_base, + (int *) cache_ovly_region_table, + cache_novly_regions * 3); + } else - prev->next = s->next; + return 0; /* failure */ + } + else + return 0; /* failure */ + return 1; /* SUCCESS */ +} +#endif - /* For now, queue a delete for all breakpoints, displays, etc., whether - or not they depend on the symtab being freed. This should be - changed so that only those data structures affected are deleted. */ +/* Function: simple_overlay_update_1 + A helper function for simple_overlay_update. Assuming a cached copy + of _ovly_table exists, look through it to find an entry whose vma, + lma and size match those of OSECT. Re-read the entry and make sure + it still matches OSECT (else the table may no longer be valid). + Set OSECT's mapped state to match the entry. Return: 1 for + success, 0 for failure. */ - /* But don't delete anything if the symtab is empty. - This test is necessary due to a bug in "dbxread.c" that - causes empty symtabs to be created for N_SO symbols that - contain the pathname of the object file. (This problem - has been fixed in GDB 3.9x). */ +static int +simple_overlay_update_1 (osect) + struct obj_section *osect; +{ + int i, size; - bv = BLOCKLIST (s); - if (BLOCKLIST_NBLOCKS (bv) > 2 - || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)) - || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK))) - { - complain (&oldsyms_complaint, name); + size = bfd_get_section_size_before_reloc (osect->the_bfd_section); + for (i = 0; i < cache_novlys; i++) + if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma && + cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* && + cache_ovly_table[i][SIZE] == size */ ) + { + read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES, + (int *) cache_ovly_table[i], 4); + if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma && + cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* && + cache_ovly_table[i][SIZE] == size */ ) + { + osect->ovly_mapped = cache_ovly_table[i][MAPPED]; + return 1; + } + else /* Warning! Warning! Target's ovly table has changed! */ + return 0; + } + return 0; +} - clear_symtab_users_queued++; - make_cleanup (clear_symtab_users_once, 0); - blewit = 1; - } else { - complain (&empty_symtab_complaint, name); - } +/* Function: simple_overlay_update + If OSECT is NULL, then update all sections' mapped state + (after re-reading the entire target _ovly_table). + If OSECT is non-NULL, then try to find a matching entry in the + cached ovly_table and update only OSECT's mapped state. + If a cached entry can't be found or the cache isn't valid, then + re-read the entire cache, and go ahead and update all sections. */ - free_symtab (s); +static void +simple_overlay_update (osect) + struct obj_section *osect; +{ + struct objfile *objfile; + + /* Were we given an osect to look up? NULL means do all of them. */ + if (osect) + /* Have we got a cached copy of the target's overlay table? */ + if (cache_ovly_table != NULL) + /* Does its cached location match what's currently in the symtab? */ + if (cache_ovly_table_base == + SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0))) + /* Then go ahead and try to look up this single section in the cache */ + if (simple_overlay_update_1 (osect)) + /* Found it! We're done. */ + return; + + /* Cached table no good: need to read the entire table anew. + Or else we want all the sections, in which case it's actually + more efficient to read the whole table in one block anyway. */ + + if (simple_read_overlay_table () == 0) /* read failed? No table? */ + { + warning ("Failed to read the target overlay mapping table."); + return; + } + /* Now may as well update all sections, even if only one was requested. */ + ALL_OBJSECTIONS (objfile, osect) + if (section_is_overlay (osect->the_bfd_section)) + { + int i, size; + + size = bfd_get_section_size_before_reloc (osect->the_bfd_section); + for (i = 0; i < cache_novlys; i++) + if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma && + cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* && + cache_ovly_table[i][SIZE] == size */ ) + { /* obj_section matches i'th entry in ovly_table */ + osect->ovly_mapped = cache_ovly_table[i][MAPPED]; + break; /* finished with inner for loop: break out */ + } } - else - /* It is still possible that some breakpoints will be affected - even though no symtab was found, since the file might have - been compiled without debugging, and hence not be associated - with a symtab. In order to handle this correctly, we would need - to keep a list of text address ranges for undebuggable files. - For now, we do nothing, since this is a fairly obscure case. */ - ; - - /* FIXME, what about the misc function vector? */ - return blewit; } - + + void _initialize_symfile () { + struct cmd_list_element *c; - add_com ("symbol-file", class_files, symbol_file_command, - "Load symbol table from executable file FILE.\n\ + c = add_cmd ("symbol-file", class_files, symbol_file_command, + "Load symbol table from executable file FILE.\n\ The `file' command can also load symbol tables, as well as setting the file\n\ -to execute."); - - add_com ("add-syms", class_files, add_syms_command, - "Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\ -The second argument provides the starting address of the file's text."); - - add_com ("load", class_files, load_command, - "Dynamically load FILE into the running program, and record its symbols\n\ -for access from GDB."); +to execute.", &cmdlist); + c->completer = filename_completer; + + c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, + "Usage: add-symbol-file FILE ADDR\n\ +Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\ +ADDR is the starting address of the file's text.", + &cmdlist); + c->completer = filename_completer; + + c = add_cmd ("add-shared-symbol-files", class_files, + add_shared_symbol_files_command, + "Load the symbols from shared objects in the dynamic linker's link map.", + &cmdlist); + c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1, + &cmdlist); + + c = add_cmd ("load", class_files, load_command, + "Dynamically load FILE into the running program, and record its symbols\n\ +for access from GDB.", &cmdlist); + c->completer = filename_completer; add_show_from_set - (add_set_cmd ("complaints", class_support, var_uinteger, - (char *)&stop_whining, - "Set max number of complaints about incorrect symbols.", + (add_set_cmd ("symbol-reloading", class_support, var_boolean, + (char *) &symbol_reloading, + "Set dynamic symbol table reloading multiple times in one run.", &setlist), &showlist); - obstack_init (symbol_obstack); - obstack_init (psymbol_obstack); + add_prefix_cmd ("overlay", class_support, overlay_command, + "Commands for debugging overlays.", &overlaylist, + "overlay ", 0, &cmdlist); + + add_com_alias ("ovly", "overlay", class_alias, 1); + add_com_alias ("ov", "overlay", class_alias, 1); + + add_cmd ("map-overlay", class_support, map_overlay_command, + "Assert that an overlay section is mapped.", &overlaylist); + + add_cmd ("unmap-overlay", class_support, unmap_overlay_command, + "Assert that an overlay section is unmapped.", &overlaylist); + + add_cmd ("list-overlays", class_support, list_overlays_command, + "List mappings of overlay sections.", &overlaylist); + + add_cmd ("manual", class_support, overlay_manual_command, + "Enable overlay debugging.", &overlaylist); + add_cmd ("off", class_support, overlay_off_command, + "Disable overlay debugging.", &overlaylist); + add_cmd ("auto", class_support, overlay_auto_command, + "Enable automatic overlay debugging.", &overlaylist); + add_cmd ("load-target", class_support, overlay_load_command, + "Read the overlay mapping state from the target.", &overlaylist); + + /* Filename extension to source language lookup table: */ + init_filename_language_table (); + c = add_set_cmd ("extension-language", class_files, var_string_noescape, + (char *) &ext_args, + "Set mapping between filename extension and source language.\n\ +Usage: set extension-language .foo bar", + &setlist); + c->function.cfunc = set_ext_lang_command; + + add_info ("extensions", info_ext_lang_command, + "All filename extensions associated with a source language."); }