X-Git-Url: http://drtracing.org/?a=blobdiff_plain;f=gold%2Farm.cc;h=ad11c1bb007fd57102a36135c96867c41c67cbf8;hb=8df017996f662ce6ab23aea4abeb8f7ac1f62651;hp=420769f962eb04afa0c7e80d1c973a3eb3c001f7;hpb=e9bbb53879cdf1e21e8d37e11741a44a0f917f60;p=deliverable%2Fbinutils-gdb.git diff --git a/gold/arm.cc b/gold/arm.cc index 420769f962..ad11c1bb00 100644 --- a/gold/arm.cc +++ b/gold/arm.cc @@ -1,6 +1,6 @@ // arm.cc -- arm target support for gold. -// Copyright 2009 Free Software Foundation, Inc. +// Copyright (C) 2009-2020 Free Software Foundation, Inc. // Written by Doug Kwan based on the i386 code // by Ian Lance Taylor . // This file also contains borrowed and adapted code from @@ -30,6 +30,9 @@ #include #include #include +#include +#include +#include #include "elfcpp.h" #include "parameters.h" @@ -46,6 +49,9 @@ #include "tls.h" #include "defstd.h" #include "gc.h" +#include "attributes.h" +#include "arm-reloc-property.h" +#include "nacl.h" namespace { @@ -55,18 +61,38 @@ using namespace gold; template class Output_data_plt_arm; +template +class Output_data_plt_arm_short; + +template +class Output_data_plt_arm_long; + template class Stub_table; template class Arm_input_section; +class Arm_exidx_cantunwind; + +class Arm_exidx_merged_section; + +class Arm_exidx_fixup; + template class Arm_output_section; +class Arm_exidx_input_section; + template class Arm_relobj; +template +class Arm_relocate_functions; + +template +class Arm_output_data_got; + template class Target_arm; @@ -81,54 +107,34 @@ const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4); const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4); const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4); +// Thread Control Block size. +const size_t ARM_TCB_SIZE = 8; + // The arm target class. // // This is a very simple port of gold for ARM-EABI. It is intended for -// supporting Android only for the time being. Only these relocation types -// are supported. +// supporting Android only for the time being. // -// R_ARM_NONE -// R_ARM_ABS32 -// R_ARM_ABS32_NOI -// R_ARM_ABS16 -// R_ARM_ABS12 -// R_ARM_ABS8 -// R_ARM_THM_ABS5 -// R_ARM_BASE_ABS -// R_ARM_REL32 -// R_ARM_THM_CALL -// R_ARM_COPY -// R_ARM_GLOB_DAT -// R_ARM_BASE_PREL -// R_ARM_JUMP_SLOT -// R_ARM_RELATIVE -// R_ARM_GOTOFF32 -// R_ARM_GOT_BREL -// R_ARM_GOT_PREL -// R_ARM_PLT32 -// R_ARM_CALL -// R_ARM_JUMP24 -// R_ARM_TARGET1 -// R_ARM_PREL31 -// R_ARM_ABS8 -// R_ARM_MOVW_ABS_NC -// R_ARM_MOVT_ABS -// R_ARM_THM_MOVW_ABS_NC -// R_ARM_THM_MOVT_ABS -// R_ARM_MOVW_PREL_NC -// R_ARM_MOVT_PREL -// R_ARM_THM_MOVW_PREL_NC -// R_ARM_THM_MOVT_PREL -// // TODOs: -// - Generate various branch stubs. -// - Support interworking. -// - Define section symbols __exidx_start and __exidx_stop. -// - Support more relocation types as needed. +// - Implement all static relocation types documented in arm-reloc.def. // - Make PLTs more flexible for different architecture features like // Thumb-2 and BE8. // There are probably a lot more. +// Ideally we would like to avoid using global variables but this is used +// very in many places and sometimes in loops. If we use a function +// returning a static instance of Arm_reloc_property_table, it will be very +// slow in an threaded environment since the static instance needs to be +// locked. The pointer is below initialized in the +// Target::do_select_as_default_target() hook so that we do not spend time +// building the table if we are not linking ARM objects. +// +// An alternative is to process the information in arm-reloc.def in +// compilation time and generate a representation of it in PODs only. That +// way we can avoid initialization when the linker starts. + +Arm_reloc_property_table* arm_reloc_property_table = NULL; + // Instruction template class. This class is similar to the insn_sequence // struct in bfd/elf32-arm.c. @@ -139,33 +145,38 @@ class Insn_template enum Type { THUMB16_TYPE = 1, + // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction + // templates with class-specific semantics. Currently this is used + // only by the Cortex_a8_stub class for handling condition codes in + // conditional branches. + THUMB16_SPECIAL_TYPE, THUMB32_TYPE, ARM_TYPE, DATA_TYPE }; - // Factory methods to create instrunction templates in different formats. + // Factory methods to create instruction templates in different formats. static const Insn_template thumb16_insn(uint32_t data) - { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } + { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } - // A bit of a hack. A Thumb conditional branch, in which the proper - // condition is inserted when we build the stub. + // A Thumb conditional branch, in which the proper condition is inserted + // when we build the stub. static const Insn_template thumb16_bcond_insn(uint32_t data) - { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 1); } + { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } static const Insn_template thumb32_insn(uint32_t data) - { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } + { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } static const Insn_template thumb32_b_insn(uint32_t data, int reloc_addend) { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24, reloc_addend); - } + } static const Insn_template arm_insn(uint32_t data) @@ -177,7 +188,7 @@ class Insn_template static const Insn_template data_word(unsigned data, unsigned int r_type, int reloc_addend) - { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } + { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } // Accessors. This class is used for read-only objects so no modifiers // are provided. @@ -200,11 +211,11 @@ class Insn_template reloc_addend() const { return this->reloc_addend_; } - // Return size of instrunction template in bytes. + // Return size of instruction template in bytes. size_t size() const; - // Return byte-alignment of instrunction template. + // Return byte-alignment of instruction template. unsigned alignment() const; @@ -246,7 +257,8 @@ class Insn_template DEF_STUB(a8_veneer_b_cond) \ DEF_STUB(a8_veneer_b) \ DEF_STUB(a8_veneer_bl) \ - DEF_STUB(a8_veneer_blx) + DEF_STUB(a8_veneer_blx) \ + DEF_STUB(v4_veneer_bx) // Stub types. @@ -265,9 +277,9 @@ typedef enum arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond, // Last Cortex-A8 stub type. arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx, - + // Last stub type. - arm_stub_type_last = arm_stub_a8_veneer_blx + arm_stub_type_last = arm_stub_v4_veneer_bx } Stub_type; #undef DEF_STUB @@ -307,7 +319,7 @@ class Stub_template unsigned alignment() const { return this->alignment_; } - + // Return whether entry point is in thumb mode. bool entry_in_thumb_mode() const @@ -344,7 +356,7 @@ class Stub_template // as possible. Stub_template(const Stub_template&); Stub_template& operator=(const Stub_template&); - + // Stub type. Stub_type type_; // Points to an array of Insn_templates. @@ -359,7 +371,7 @@ class Stub_template bool entry_in_thumb_mode_; // A table of reloc instruction indices and offsets. We can find these by // looking at the instruction templates but we pre-compute and then stash - // them here for speed. + // them here for speed. std::vector relocs_; }; @@ -400,7 +412,7 @@ class Stub void set_offset(section_offset_type offset) { this->offset_ = offset; } - + // Return the relocation target address of the i-th relocation in the // stub. This must be defined in a child class. Arm_address @@ -412,16 +424,39 @@ class Stub write(unsigned char* view, section_size_type view_size, bool big_endian) { this->do_write(view, view_size, big_endian); } + // Return the instruction for THUMB16_SPECIAL_TYPE instruction template + // for the i-th instruction. + uint16_t + thumb16_special(size_t i) + { return this->do_thumb16_special(i); } + protected: // This must be defined in the child class. virtual Arm_address do_reloc_target(size_t) = 0; - // This must be defined in the child class. + // This may be overridden in the child class. virtual void - do_write(unsigned char*, section_size_type, bool) = 0; - + do_write(unsigned char* view, section_size_type view_size, bool big_endian) + { + if (big_endian) + this->do_fixed_endian_write(view, view_size); + else + this->do_fixed_endian_write(view, view_size); + } + + // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE + // instruction template. + virtual uint16_t + do_thumb16_special(size_t) + { gold_unreachable(); } + private: + // A template to implement do_write. + template + void inline + do_fixed_endian_write(unsigned char*, section_size_type); + // Its template. const Stub_template* stub_template_; // Offset within the section of containing this stub. @@ -522,7 +557,7 @@ class Reloc_stub : public Stub // Whether this equals to another key k. bool - eq(const Key& k) const + eq(const Key& k) const { return ((this->stub_type_ == k.stub_type_) && (this->r_sym_ == k.r_sym_) @@ -562,7 +597,7 @@ class Reloc_stub : public Stub // Name of key. This is mainly for debugging. std::string - name() const; + name() const ATTRIBUTE_UNUSED; private: // Stub type. @@ -570,11 +605,11 @@ class Reloc_stub : public Stub // If this is a local symbol, this is the index in the defining object. // Otherwise, it is invalid_index for a global symbol. unsigned int r_sym_; - // If r_sym_ is invalid index. This points to a global symbol. - // Otherwise, this points a relobj. We used the unsized and target - // independent Symbol and Relobj classes instead of Arm_symbol and - // Arm_relobj. This is done to avoid making the stub class a template - // as most of the stub machinery is endianity-neutral. However, it + // If r_sym_ is an invalid index, this points to a global symbol. + // Otherwise, it points to a relobj. We used the unsized and target + // independent Symbol and Relobj classes instead of Sized_symbol<32> and + // Arm_relobj, in order to avoid making the stub class a template + // as most of the stub machinery is endianness-neutral. However, it // may require a bit of casting done by users of this class. union { @@ -596,7 +631,6 @@ class Reloc_stub : public Stub friend class Stub_factory; - private: // Return the relocation target address of the i-th relocation in the // stub. Arm_address @@ -607,17 +641,173 @@ class Reloc_stub : public Stub return this->destination_address_; } - // A template to implement do_write below. - template - void inline - do_fixed_endian_write(unsigned char*, section_size_type); + private: + // Address of destination. + Arm_address destination_address_; +}; - // Write a stub. - void - do_write(unsigned char* view, section_size_type view_size, bool big_endian); +// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit +// THUMB branch that meets the following conditions: +// +// 1. The branch straddles across a page boundary. i.e. lower 12-bit of +// branch address is 0xffe. +// 2. The branch target address is in the same page as the first word of the +// branch. +// 3. The branch follows a 32-bit instruction which is not a branch. +// +// To do the fix up, we need to store the address of the branch instruction +// and its target at least. We also need to store the original branch +// instruction bits for the condition code in a conditional branch. The +// condition code is used in a special instruction template. We also want +// to identify input sections needing Cortex-A8 workaround quickly. We store +// extra information about object and section index of the code section +// containing a branch being fixed up. The information is used to mark +// the code section when we finalize the Cortex-A8 stubs. +// - // Address of destination. +class Cortex_a8_stub : public Stub +{ + public: + ~Cortex_a8_stub() + { } + + // Return the object of the code section containing the branch being fixed + // up. + Relobj* + relobj() const + { return this->relobj_; } + + // Return the section index of the code section containing the branch being + // fixed up. + unsigned int + shndx() const + { return this->shndx_; } + + // Return the source address of stub. This is the address of the original + // branch instruction. LSB is 1 always set to indicate that it is a THUMB + // instruction. + Arm_address + source_address() const + { return this->source_address_; } + + // Return the destination address of the stub. This is the branch taken + // address of the original branch instruction. LSB is 1 if it is a THUMB + // instruction address. + Arm_address + destination_address() const + { return this->destination_address_; } + + // Return the instruction being fixed up. + uint32_t + original_insn() const + { return this->original_insn_; } + + protected: + // Cortex_a8_stubs are created via a stub factory. So these are protected. + Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj, + unsigned int shndx, Arm_address source_address, + Arm_address destination_address, uint32_t original_insn) + : Stub(stub_template), relobj_(relobj), shndx_(shndx), + source_address_(source_address | 1U), + destination_address_(destination_address), + original_insn_(original_insn) + { } + + friend class Stub_factory; + + // Return the relocation target address of the i-th relocation in the + // stub. + Arm_address + do_reloc_target(size_t i) + { + if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond) + { + // The conditional branch veneer has two relocations. + gold_assert(i < 2); + return i == 0 ? this->source_address_ + 4 : this->destination_address_; + } + else + { + // All other Cortex-A8 stubs have only one relocation. + gold_assert(i == 0); + return this->destination_address_; + } + } + + // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template. + uint16_t + do_thumb16_special(size_t); + + private: + // Object of the code section containing the branch being fixed up. + Relobj* relobj_; + // Section index of the code section containing the branch begin fixed up. + unsigned int shndx_; + // Source address of original branch. + Arm_address source_address_; + // Destination address of the original branch. Arm_address destination_address_; + // Original branch instruction. This is needed for copying the condition + // code from a condition branch to its stub. + uint32_t original_insn_; +}; + +// ARMv4 BX Rx branch relocation stub class. +class Arm_v4bx_stub : public Stub +{ + public: + ~Arm_v4bx_stub() + { } + + // Return the associated register. + uint32_t + reg() const + { return this->reg_; } + + protected: + // Arm V4BX stubs are created via a stub factory. So these are protected. + Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg) + : Stub(stub_template), reg_(reg) + { } + + friend class Stub_factory; + + // Return the relocation target address of the i-th relocation in the + // stub. + Arm_address + do_reloc_target(size_t) + { gold_unreachable(); } + + // This may be overridden in the child class. + virtual void + do_write(unsigned char* view, section_size_type view_size, bool big_endian) + { + if (big_endian) + this->do_fixed_endian_v4bx_write(view, view_size); + else + this->do_fixed_endian_v4bx_write(view, view_size); + } + + private: + // A template to implement do_write. + template + void inline + do_fixed_endian_v4bx_write(unsigned char* view, section_size_type) + { + const Insn_template* insns = this->stub_template()->insns(); + elfcpp::Swap<32, big_endian>::writeval(view, + (insns[0].data() + + (this->reg_ << 16))); + view += insns[0].size(); + elfcpp::Swap<32, big_endian>::writeval(view, + (insns[1].data() + this->reg_)); + view += insns[1].size(); + elfcpp::Swap<32, big_endian>::writeval(view, + (insns[2].data() + this->reg_)); + } + + // A register index (r0-r14), which is associated with the stub. + uint32_t reg_; }; // Stub factory class. @@ -642,16 +832,38 @@ class Stub_factory return new Reloc_stub(this->stub_templates_[stub_type]); } + // Make a Cortex-A8 stub. + Cortex_a8_stub* + make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx, + Arm_address source, Arm_address destination, + uint32_t original_insn) const + { + gold_assert(stub_type >= arm_stub_cortex_a8_first + && stub_type <= arm_stub_cortex_a8_last); + return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx, + source, destination, original_insn); + } + + // Make an ARM V4BX relocation stub. + // This method creates a stub from the arm_stub_v4_veneer_bx template only. + Arm_v4bx_stub* + make_arm_v4bx_stub(uint32_t reg) const + { + gold_assert(reg < 0xf); + return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx], + reg); + } + private: // Constructor and destructor are protected since we only return a single // instance created in Stub_factory::get_instance(). - + Stub_factory(); // A Stub_factory may not be copied since it is a singleton. Stub_factory(const Stub_factory&); Stub_factory& operator=(Stub_factory&); - + // Stub templates. These are initialized in the constructor. const Stub_template* stub_templates_[arm_stub_type_last+1]; }; @@ -663,8 +875,9 @@ class Stub_table : public Output_data { public: Stub_table(Arm_input_section* owner) - : Output_data(), addralign_(1), owner_(owner), has_been_changed_(false), - reloc_stubs_() + : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0), + reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf), + prev_data_size_(0), prev_addralign_(1) { } ~Stub_table() @@ -678,27 +891,58 @@ class Stub_table : public Output_data // Whether this stub table is empty. bool empty() const - { return this->reloc_stubs_.empty(); } - - // Whether this has been changed. - bool - has_been_changed() const - { return this->has_been_changed_; } - - // Set the has-been-changed flag. - void - set_has_been_changed(bool value) - { this->has_been_changed_ = value; } + { + return (this->reloc_stubs_.empty() + && this->cortex_a8_stubs_.empty() + && this->arm_v4bx_stubs_.empty()); + } // Return the current data size. off_t current_data_size() const { return this->current_data_size_for_child(); } - // Add a STUB with using KEY. Caller is reponsible for avoid adding - // if already a STUB with the same key has been added. + // Add a STUB using KEY. The caller is responsible for avoiding addition + // if a STUB with the same key has already been added. + void + add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key) + { + const Stub_template* stub_template = stub->stub_template(); + gold_assert(stub_template->type() == key.stub_type()); + this->reloc_stubs_[key] = stub; + + // Assign stub offset early. We can do this because we never remove + // reloc stubs and they are in the beginning of the stub table. + uint64_t align = stub_template->alignment(); + this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align); + stub->set_offset(this->reloc_stubs_size_); + this->reloc_stubs_size_ += stub_template->size(); + this->reloc_stubs_addralign_ = + std::max(this->reloc_stubs_addralign_, align); + } + + // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS. + // The caller is responsible for avoiding addition if a STUB with the same + // address has already been added. + void + add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub) + { + std::pair value(address, stub); + this->cortex_a8_stubs_.insert(value); + } + + // Add an ARM V4BX relocation stub. A register index will be retrieved + // from the stub. + void + add_arm_v4bx_stub(Arm_v4bx_stub* stub) + { + gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL); + this->arm_v4bx_stubs_[stub->reg()] = stub; + } + + // Remove all Cortex-A8 stubs. void - add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key); + remove_all_cortex_a8_stubs(); // Look up a relocation stub using KEY. Return NULL if there is none. Reloc_stub* @@ -708,47 +952,197 @@ class Stub_table : public Output_data return (p != this->reloc_stubs_.end()) ? p->second : NULL; } + // Look up an arm v4bx relocation stub using the register index. + // Return NULL if there is none. + Arm_v4bx_stub* + find_arm_v4bx_stub(const uint32_t reg) const + { + gold_assert(reg < 0xf); + return this->arm_v4bx_stubs_[reg]; + } + // Relocate stubs in this stub table. void relocate_stubs(const Relocate_info<32, big_endian>*, Target_arm*, Output_section*, unsigned char*, Arm_address, section_size_type); + // Update data size and alignment at the end of a relaxation pass. Return + // true if either data size or alignment is different from that of the + // previous relaxation pass. + bool + update_data_size_and_addralign(); + + // Finalize stubs. Set the offsets of all stubs and mark input sections + // needing the Cortex-A8 workaround. + void + finalize_stubs(); + + // Apply Cortex-A8 workaround to an address range. + void + apply_cortex_a8_workaround_to_address_range(Target_arm*, + unsigned char*, Arm_address, + section_size_type); + protected: // Write out section contents. void do_write(Output_file*); - + // Return the required alignment. uint64_t do_addralign() const - { return this->addralign_; } + { return this->prev_addralign_; } - // Finalize data size. + // Reset address and file offset. void - set_final_data_size() - { this->set_data_size(this->current_data_size_for_child()); } + do_reset_address_and_file_offset() + { this->set_current_data_size_for_child(this->prev_data_size_); } - // Reset address and file offset. + // Set final data size. void - do_reset_address_and_file_offset(); + set_final_data_size() + { this->set_data_size(this->current_data_size()); } private: - // Unordered map of stubs. + // Relocate one stub. + void + relocate_stub(Stub*, const Relocate_info<32, big_endian>*, + Target_arm*, Output_section*, + unsigned char*, Arm_address, section_size_type); + + // Unordered map of relocation stubs. typedef Unordered_map Reloc_stub_map; - // Address alignment - uint64_t addralign_; + // List of Cortex-A8 stubs ordered by addresses of branches being + // fixed up in output. + typedef std::map Cortex_a8_stub_list; + // List of Arm V4BX relocation stubs ordered by associated registers. + typedef std::vector Arm_v4bx_stub_list; + // Owner of this stub table. Arm_input_section* owner_; - // This is set to true during relaxiong if the size of the stub table - // has been changed. - bool has_been_changed_; // The relocation stubs. Reloc_stub_map reloc_stubs_; + // Size of reloc stubs. + off_t reloc_stubs_size_; + // Maximum address alignment of reloc stubs. + uint64_t reloc_stubs_addralign_; + // The cortex_a8_stubs. + Cortex_a8_stub_list cortex_a8_stubs_; + // The Arm V4BX relocation stubs. + Arm_v4bx_stub_list arm_v4bx_stubs_; + // data size of this in the previous pass. + off_t prev_data_size_; + // address alignment of this in the previous pass. + uint64_t prev_addralign_; +}; + +// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry +// we add to the end of an EXIDX input section that goes into the output. + +class Arm_exidx_cantunwind : public Output_section_data +{ + public: + Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx) + : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx) + { } + + // Return the object containing the section pointed by this. + Relobj* + relobj() const + { return this->relobj_; } + + // Return the section index of the section pointed by this. + unsigned int + shndx() const + { return this->shndx_; } + + protected: + void + do_write(Output_file* of) + { + if (parameters->target().is_big_endian()) + this->do_fixed_endian_write(of); + else + this->do_fixed_endian_write(of); + } + + // Write to a map file. + void + do_print_to_mapfile(Mapfile* mapfile) const + { mapfile->print_output_data(this, _("** ARM cantunwind")); } + + private: + // Implement do_write for a given endianness. + template + void inline + do_fixed_endian_write(Output_file*); + + // The object containing the section pointed by this. + Relobj* relobj_; + // The section index of the section pointed by this. + unsigned int shndx_; +}; + +// During EXIDX coverage fix-up, we compact an EXIDX section. The +// Offset map is used to map input section offset within the EXIDX section +// to the output offset from the start of this EXIDX section. + +typedef std::map + Arm_exidx_section_offset_map; + +// Arm_exidx_merged_section class. This represents an EXIDX input section +// with some of its entries merged. + +class Arm_exidx_merged_section : public Output_relaxed_input_section +{ + public: + // Constructor for Arm_exidx_merged_section. + // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section. + // SECTION_OFFSET_MAP points to a section offset map describing how + // parts of the input section are mapped to output. DELETED_BYTES is + // the number of bytes deleted from the EXIDX input section. + Arm_exidx_merged_section( + const Arm_exidx_input_section& exidx_input_section, + const Arm_exidx_section_offset_map& section_offset_map, + uint32_t deleted_bytes); + + // Build output contents. + void + build_contents(const unsigned char*, section_size_type); + + // Return the original EXIDX input section. + const Arm_exidx_input_section& + exidx_input_section() const + { return this->exidx_input_section_; } + + // Return the section offset map. + const Arm_exidx_section_offset_map& + section_offset_map() const + { return this->section_offset_map_; } + + protected: + // Write merged section into file OF. + void + do_write(Output_file* of); + + bool + do_output_offset(const Relobj*, unsigned int, section_offset_type, + section_offset_type*) const; + + private: + // Original EXIDX input section. + const Arm_exidx_input_section& exidx_input_section_; + // Section offset map. + const Arm_exidx_section_offset_map& section_offset_map_; + // Merged section contents. We need to keep build the merged section + // and save it here to avoid accessing the original EXIDX section when + // we cannot lock the sections' object. + unsigned char* section_contents_; }; // A class to wrap an ordinary input section containing executable code. @@ -759,16 +1153,17 @@ class Arm_input_section : public Output_relaxed_input_section public: Arm_input_section(Relobj* relobj, unsigned int shndx) : Output_relaxed_input_section(relobj, shndx, 1), - original_addralign_(1), original_size_(0), stub_table_(NULL) + original_addralign_(1), original_size_(0), stub_table_(NULL), + original_contents_(NULL) { } ~Arm_input_section() - { } + { delete[] this->original_contents_; } // Initialize. void init(); - + // Whether this is a stub table owner. bool is_stub_table_owner() const @@ -790,6 +1185,11 @@ class Arm_input_section : public Output_relaxed_input_section as_arm_input_section(Output_relaxed_input_section* poris) { return static_cast*>(poris); } + // Return the original size of the section. + uint32_t + original_size() const + { return this->original_size_; } + protected: // Write data to output file. void @@ -801,7 +1201,7 @@ class Arm_input_section : public Output_relaxed_input_section { if (this->is_stub_table_owner()) return std::max(this->stub_table_->addralign(), - this->original_addralign_); + static_cast(this->original_addralign_)); else return this->original_addralign_; } @@ -818,13 +1218,13 @@ class Arm_input_section : public Output_relaxed_input_section bool do_output_offset(const Relobj* object, unsigned int shndx, section_offset_type offset, - section_offset_type* poutput) const + section_offset_type* poutput) const { if ((object == this->relobj()) && (shndx == this->shndx()) && (offset >= 0) - && (convert_types(offset) - <= this->original_size_)) + && (offset <= + convert_types(this->original_size_))) { *poutput = offset; return true; @@ -839,11 +1239,105 @@ class Arm_input_section : public Output_relaxed_input_section Arm_input_section& operator=(const Arm_input_section&); // Address alignment of the original input section. - uint64_t original_addralign_; + uint32_t original_addralign_; // Section size of the original input section. - uint64_t original_size_; + uint32_t original_size_; // Stub table. Stub_table* stub_table_; + // Original section contents. We have to make a copy here since the file + // containing the original section may not be locked when we need to access + // the contents. + unsigned char* original_contents_; +}; + +// Arm_exidx_fixup class. This is used to define a number of methods +// and keep states for fixing up EXIDX coverage. + +class Arm_exidx_fixup +{ + public: + Arm_exidx_fixup(Output_section* exidx_output_section, + bool merge_exidx_entries = true) + : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE), + last_inlined_entry_(0), last_input_section_(NULL), + section_offset_map_(NULL), first_output_text_section_(NULL), + merge_exidx_entries_(merge_exidx_entries) + { } + + ~Arm_exidx_fixup() + { delete this->section_offset_map_; } + + // Process an EXIDX section for entry merging. SECTION_CONTENTS points + // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return + // number of bytes to be deleted in output. If parts of the input EXIDX + // section are merged a heap allocated Arm_exidx_section_offset_map is store + // in the located PSECTION_OFFSET_MAP. The caller owns the map and is + // responsible for releasing it. + template + uint32_t + process_exidx_section(const Arm_exidx_input_section* exidx_input_section, + const unsigned char* section_contents, + section_size_type section_size, + Arm_exidx_section_offset_map** psection_offset_map); + + // Append an EXIDX_CANTUNWIND entry pointing at the end of the last + // input section, if there is not one already. + void + add_exidx_cantunwind_as_needed(); + + // Return the output section for the text section which is linked to the + // first exidx input in output. + Output_section* + first_output_text_section() const + { return this->first_output_text_section_; } + + private: + // Copying is not allowed. + Arm_exidx_fixup(const Arm_exidx_fixup&); + Arm_exidx_fixup& operator=(const Arm_exidx_fixup&); + + // Type of EXIDX unwind entry. + enum Unwind_type + { + // No type. + UT_NONE, + // EXIDX_CANTUNWIND. + UT_EXIDX_CANTUNWIND, + // Inlined entry. + UT_INLINED_ENTRY, + // Normal entry. + UT_NORMAL_ENTRY, + }; + + // Process an EXIDX entry. We only care about the second word of the + // entry. Return true if the entry can be deleted. + bool + process_exidx_entry(uint32_t second_word); + + // Update the current section offset map during EXIDX section fix-up. + // If there is no map, create one. INPUT_OFFSET is the offset of a + // reference point, DELETED_BYTES is the number of deleted by in the + // section so far. If DELETE_ENTRY is true, the reference point and + // all offsets after the previous reference point are discarded. + void + update_offset_map(section_offset_type input_offset, + section_size_type deleted_bytes, bool delete_entry); + + // EXIDX output section. + Output_section* exidx_output_section_; + // Unwind type of the last EXIDX entry processed. + Unwind_type last_unwind_type_; + // Last seen inlined EXIDX entry. + uint32_t last_inlined_entry_; + // Last processed EXIDX input section. + const Arm_exidx_input_section* last_input_section_; + // Section offset map created in process_exidx_section. + Arm_exidx_section_offset_map* section_offset_map_; + // Output section for the text section which is linked to the first exidx + // input in output. + Output_section* first_output_text_section_; + + bool merge_exidx_entries_; }; // Arm output section class. This is defined mainly to add a number of @@ -853,17 +1347,26 @@ template class Arm_output_section : public Output_section { public: + typedef std::vector > Text_section_list; + + // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section. Arm_output_section(const char* name, elfcpp::Elf_Word type, elfcpp::Elf_Xword flags) - : Output_section(name, type, flags) - { } + : Output_section(name, type, + (type == elfcpp::SHT_ARM_EXIDX + ? flags | elfcpp::SHF_LINK_ORDER + : flags)) + { + if (type == elfcpp::SHT_ARM_EXIDX) + this->set_always_keeps_input_sections(); + } ~Arm_output_section() { } - + // Group input sections for stub generation. void - group_sections(section_size_type, bool, Target_arm*); + group_sections(section_size_type, bool, Target_arm*, const Task*); // Downcast a base pointer to an Arm_output_section pointer. This is // not type-safe but we only use Arm_output_section not the base class. @@ -871,6 +1374,24 @@ class Arm_output_section : public Output_section as_arm_output_section(Output_section* os) { return static_cast*>(os); } + // Append all input text sections in this into LIST. + void + append_text_sections_to_list(Text_section_list* list); + + // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION + // is a list of text input sections sorted in ascending order of their + // output addresses. + void + fix_exidx_coverage(Layout* layout, + const Text_section_list& sorted_text_section, + Symbol_table* symtab, + bool merge_exidx_entries, + const Task* task); + + // Link an EXIDX section into its corresponding text section. + void + set_exidx_section_link(); + private: // For convenience. typedef Output_section::Input_section Input_section; @@ -881,51 +1402,133 @@ class Arm_output_section : public Output_section Input_section_list::const_iterator, Input_section_list::const_iterator, Target_arm*, - std::vector*); + std::vector*, + const Task* task); }; -// Arm_relobj class. +// Arm_exidx_input_section class. This represents an EXIDX input section. -template -class Arm_relobj : public Sized_relobj<32, big_endian> +class Arm_exidx_input_section { public: - static const Arm_address invalid_address = static_cast(-1); + static const section_offset_type invalid_offset = + static_cast(-1); - Arm_relobj(const std::string& name, Input_file* input_file, off_t offset, - const typename elfcpp::Ehdr<32, big_endian>& ehdr) - : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr), - stub_tables_(), local_symbol_is_thumb_function_() + Arm_exidx_input_section(Relobj* relobj, unsigned int shndx, + unsigned int link, uint32_t size, + uint32_t addralign, uint32_t text_size) + : relobj_(relobj), shndx_(shndx), link_(link), size_(size), + addralign_(addralign), text_size_(text_size), has_errors_(false) { } - ~Arm_relobj() + ~Arm_exidx_input_section() { } - - // Return the stub table of the SHNDX-th section if there is one. - Stub_table* - stub_table(unsigned int shndx) const - { - gold_assert(shndx < this->stub_tables_.size()); - return this->stub_tables_[shndx]; - } - // Set STUB_TABLE to be the stub_table of the SHNDX-th section. - void - set_stub_table(unsigned int shndx, Stub_table* stub_table) - { - gold_assert(shndx < this->stub_tables_.size()); - this->stub_tables_[shndx] = stub_table; - } + // Accessors: This is a read-only class. - // Whether a local symbol is a THUMB function. R_SYM is the symbol table - // index. This is only valid after do_count_local_symbol is called. + // Return the object containing this EXIDX input section. + Relobj* + relobj() const + { return this->relobj_; } + + // Return the section index of this EXIDX input section. + unsigned int + shndx() const + { return this->shndx_; } + + // Return the section index of linked text section in the same object. + unsigned int + link() const + { return this->link_; } + + // Return size of the EXIDX input section. + uint32_t + size() const + { return this->size_; } + + // Return address alignment of EXIDX input section. + uint32_t + addralign() const + { return this->addralign_; } + + // Return size of the associated text input section. + uint32_t + text_size() const + { return this->text_size_; } + + // Whether there are any errors in the EXIDX input section. + bool + has_errors() const + { return this->has_errors_; } + + // Set has-errors flag. + void + set_has_errors() + { this->has_errors_ = true; } + + private: + // Object containing this. + Relobj* relobj_; + // Section index of this. + unsigned int shndx_; + // text section linked to this in the same object. + unsigned int link_; + // Size of this. For ARM 32-bit is sufficient. + uint32_t size_; + // Address alignment of this. For ARM 32-bit is sufficient. + uint32_t addralign_; + // Size of associated text section. + uint32_t text_size_; + // Whether this has any errors. + bool has_errors_; +}; + +// Arm_relobj class. + +template +class Arm_relobj : public Sized_relobj_file<32, big_endian> +{ + public: + static const Arm_address invalid_address = static_cast(-1); + + Arm_relobj(const std::string& name, Input_file* input_file, off_t offset, + const typename elfcpp::Ehdr<32, big_endian>& ehdr) + : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr), + stub_tables_(), local_symbol_is_thumb_function_(), + attributes_section_data_(NULL), mapping_symbols_info_(), + section_has_cortex_a8_workaround_(NULL), exidx_section_map_(), + output_local_symbol_count_needs_update_(false), + merge_flags_and_attributes_(true) + { } + + ~Arm_relobj() + { delete this->attributes_section_data_; } + + // Return the stub table of the SHNDX-th section if there is one. + Stub_table* + stub_table(unsigned int shndx) const + { + gold_assert(shndx < this->stub_tables_.size()); + return this->stub_tables_[shndx]; + } + + // Set STUB_TABLE to be the stub_table of the SHNDX-th section. + void + set_stub_table(unsigned int shndx, Stub_table* stub_table) + { + gold_assert(shndx < this->stub_tables_.size()); + this->stub_tables_[shndx] = stub_table; + } + + // Whether a local symbol is a THUMB function. R_SYM is the symbol table + // index. This is only valid after do_count_local_symbol is called. bool local_symbol_is_thumb_function(unsigned int r_sym) const { gold_assert(r_sym < this->local_symbol_is_thumb_function_.size()); return this->local_symbol_is_thumb_function_[r_sym]; } - + // Scan all relocation sections for stub generation. void scan_sections_for_stubs(Target_arm*, const Symbol_table*, @@ -937,7 +1540,7 @@ class Arm_relobj : public Sized_relobj<32, big_endian> { // The stubs have relocations and we need to process them after writing // out the stubs. So relocation now must follow section write. - this->invalidate_section_offset(shndx); + this->set_section_offset(shndx, -1ULL); this->set_relocs_must_follow_section_writes(); } @@ -953,13 +1556,115 @@ class Arm_relobj : public Sized_relobj<32, big_endian> processor_specific_flags() const { return this->processor_specific_flags_; } + // Attribute section data This is the contents of the .ARM.attribute section + // if there is one. + const Attributes_section_data* + attributes_section_data() const + { return this->attributes_section_data_; } + + // Mapping symbol location. + typedef std::pair Mapping_symbol_position; + + // Functor for STL container. + struct Mapping_symbol_position_less + { + bool + operator()(const Mapping_symbol_position& p1, + const Mapping_symbol_position& p2) const + { + return (p1.first < p2.first + || (p1.first == p2.first && p1.second < p2.second)); + } + }; + + // We only care about the first character of a mapping symbol, so + // we only store that instead of the whole symbol name. + typedef std::map Mapping_symbols_info; + + // Whether a section contains any Cortex-A8 workaround. + bool + section_has_cortex_a8_workaround(unsigned int shndx) const + { + return (this->section_has_cortex_a8_workaround_ != NULL + && (*this->section_has_cortex_a8_workaround_)[shndx]); + } + + // Mark a section that has Cortex-A8 workaround. + void + mark_section_for_cortex_a8_workaround(unsigned int shndx) + { + if (this->section_has_cortex_a8_workaround_ == NULL) + this->section_has_cortex_a8_workaround_ = + new std::vector(this->shnum(), false); + (*this->section_has_cortex_a8_workaround_)[shndx] = true; + } + + // Return the EXIDX section of an text section with index SHNDX or NULL + // if the text section has no associated EXIDX section. + const Arm_exidx_input_section* + exidx_input_section_by_link(unsigned int shndx) const + { + Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx); + return ((p != this->exidx_section_map_.end() + && p->second->link() == shndx) + ? p->second + : NULL); + } + + // Return the EXIDX section with index SHNDX or NULL if there is none. + const Arm_exidx_input_section* + exidx_input_section_by_shndx(unsigned shndx) const + { + Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx); + return ((p != this->exidx_section_map_.end() + && p->second->shndx() == shndx) + ? p->second + : NULL); + } + + // Whether output local symbol count needs updating. + bool + output_local_symbol_count_needs_update() const + { return this->output_local_symbol_count_needs_update_; } + + // Set output_local_symbol_count_needs_update flag to be true. + void + set_output_local_symbol_count_needs_update() + { this->output_local_symbol_count_needs_update_ = true; } + + // Update output local symbol count at the end of relaxation. + void + update_output_local_symbol_count(); + + // Whether we want to merge processor-specific flags and attributes. + bool + merge_flags_and_attributes() const + { return this->merge_flags_and_attributes_; } + + // Export list of EXIDX section indices. + void + get_exidx_shndx_list(std::vector* list) const + { + list->clear(); + for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin(); + p != this->exidx_section_map_.end(); + ++p) + { + if (p->second->shndx() == p->first) + list->push_back(p->first); + } + // Sort list to make result independent of implementation of map. + std::sort(list->begin(), list->end()); + } + protected: // Post constructor setup. void do_setup() { // Call parent's setup method. - Sized_relobj<32, big_endian>::do_setup(); + Sized_relobj_file<32, big_endian>::do_setup(); // Initialize look-up tables. Stub_table_list empty_stub_table_list(this->shnum(), NULL); @@ -969,27 +1674,95 @@ class Arm_relobj : public Sized_relobj<32, big_endian> // Count the local symbols. void do_count_local_symbols(Stringpool_template*, - Stringpool_template*); + Stringpool_template*); void - do_relocate_sections(const General_options& options, - const Symbol_table* symtab, const Layout* layout, - const unsigned char* pshdrs, - typename Sized_relobj<32, big_endian>::Views* pivews); + do_relocate_sections( + const Symbol_table* symtab, const Layout* layout, + const unsigned char* pshdrs, Output_file* of, + typename Sized_relobj_file<32, big_endian>::Views* pivews); // Read the symbol information. void do_read_symbols(Read_symbols_data* sd); + // Process relocs for garbage collection. + void + do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*); + private: - // List of stub tables. + + // Whether a section needs to be scanned for relocation stubs. + bool + section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&, + const Relobj::Output_sections&, + const Symbol_table*, const unsigned char*); + + // Whether a section is a scannable text section. + bool + section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int, + const Output_section*, const Symbol_table*); + + // Whether a section needs to be scanned for the Cortex-A8 erratum. + bool + section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&, + unsigned int, Output_section*, + const Symbol_table*); + + // Scan a section for the Cortex-A8 erratum. + void + scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&, + unsigned int, Output_section*, + Target_arm*); + + // Find the linked text section of an EXIDX section by looking at the + // first relocation of the EXIDX section. PSHDR points to the section + // headers of a relocation section and PSYMS points to the local symbols. + // PSHNDX points to a location storing the text section index if found. + // Return whether we can find the linked section. + bool + find_linked_text_section(const unsigned char* pshdr, + const unsigned char* psyms, unsigned int* pshndx); + + // + // Make a new Arm_exidx_input_section object for EXIDX section with + // index SHNDX and section header SHDR. TEXT_SHNDX is the section + // index of the linked text section. + void + make_exidx_input_section(unsigned int shndx, + const elfcpp::Shdr<32, big_endian>& shdr, + unsigned int text_shndx, + const elfcpp::Shdr<32, big_endian>& text_shdr); + + // Return the output address of either a plain input section or a + // relaxed input section. SHNDX is the section index. + Arm_address + simple_input_section_output_address(unsigned int, Output_section*); + typedef std::vector*> Stub_table_list; + typedef Unordered_map + Exidx_section_map; + + // List of stub tables. Stub_table_list stub_tables_; // Bit vector to tell if a local symbol is a thumb function or not. // This is only valid after do_count_local_symbol is called. std::vector local_symbol_is_thumb_function_; // processor-specific flags in ELF file header. elfcpp::Elf_Word processor_specific_flags_; + // Object attributes if there is an .ARM.attributes section or NULL. + Attributes_section_data* attributes_section_data_; + // Mapping symbols information. + Mapping_symbols_info mapping_symbols_info_; + // Bitmap to indicate sections with Cortex-A8 workaround or NULL. + std::vector* section_has_cortex_a8_workaround_; + // Map a text section to its associated .ARM.exidx section, if there is one. + Exidx_section_map exidx_section_map_; + // Whether output local symbol count needs updating. + bool output_local_symbol_count_needs_update_; + // Whether we merge processor flags and attributes of this object to + // output. + bool merge_flags_and_attributes_; }; // Arm_dynobj class. @@ -1001,11 +1774,11 @@ class Arm_dynobj : public Sized_dynobj<32, big_endian> Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr) : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr), - processor_specific_flags_(0) + processor_specific_flags_(0), attributes_section_data_(NULL) { } - + ~Arm_dynobj() - { } + { delete this->attributes_section_data_; } // Downcast a base pointer to an Arm_relobj pointer. This is // not type-safe but we only use Arm_relobj not the base class. @@ -1019,6 +1792,11 @@ class Arm_dynobj : public Sized_dynobj<32, big_endian> processor_specific_flags() const { return this->processor_specific_flags_; } + // Attributes section data. + const Attributes_section_data* + attributes_section_data() const + { return this->attributes_section_data_; } + protected: // Read the symbol information. void @@ -1027,6 +1805,8 @@ class Arm_dynobj : public Sized_dynobj<32, big_endian> private: // processor-specific flags in ELF file header. elfcpp::Elf_Word processor_specific_flags_; + // Object attributes if there is an .ARM.attributes section or NULL. + Attributes_section_data* attributes_section_data_; }; // Functor to read reloc addends during stub generation. @@ -1042,8 +1822,7 @@ struct Stub_addend_reader unsigned int /* r_type */, const unsigned char* /* view */, const typename Reloc_types::Reloc& /* reloc */) const - { gold_unreachable(); } + 32, big_endian>::Reloc& /* reloc */) const; }; // Specialized Stub_addend_reader for SHT_REL type relocation sections. @@ -1071,66 +1850,264 @@ struct Stub_addend_reader unsigned int, const unsigned char*, const typename Reloc_types::Reloc& reloc) const; + big_endian>::Reloc& reloc) const + { return reloc.get_r_addend(); } }; -// Utilities for manipulating integers of up to 32-bits +// Cortex_a8_reloc class. We keep record of relocation that may need +// the Cortex-A8 erratum workaround. -namespace utils +class Cortex_a8_reloc { - // Sign extend an n-bit unsigned integer stored in an uint32_t into - // an int32_t. NO_BITS must be between 1 to 32. - template - static inline int32_t - sign_extend(uint32_t bits) + public: + Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type, + Arm_address destination) + : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination) + { } + + ~Cortex_a8_reloc() + { } + + // Accessors: This is a read-only class. + + // Return the relocation stub associated with this relocation if there is + // one. + const Reloc_stub* + reloc_stub() const + { return this->reloc_stub_; } + + // Return the relocation type. + unsigned int + r_type() const + { return this->r_type_; } + + // Return the destination address of the relocation. LSB stores the THUMB + // bit. + Arm_address + destination() const + { return this->destination_; } + + private: + // Associated relocation stub if there is one, or NULL. + const Reloc_stub* reloc_stub_; + // Relocation type. + unsigned int r_type_; + // Destination address of this relocation. LSB is used to distinguish + // ARM/THUMB mode. + Arm_address destination_; +}; + +// Arm_output_data_got class. We derive this from Output_data_got to add +// extra methods to handle TLS relocations in a static link. + +template +class Arm_output_data_got : public Output_data_got<32, big_endian> +{ + public: + Arm_output_data_got(Symbol_table* symtab, Layout* layout) + : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout) + { } + + // Add a static entry for the GOT entry at OFFSET. GSYM is a global + // symbol and R_TYPE is the code of a dynamic relocation that needs to be + // applied in a static link. + void + add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym) + { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); } + + // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object + // defining a local symbol with INDEX. R_TYPE is the code of a dynamic + // relocation that needs to be applied in a static link. + void + add_static_reloc(unsigned int got_offset, unsigned int r_type, + Sized_relobj_file<32, big_endian>* relobj, + unsigned int index) { - gold_assert(no_bits >= 0 && no_bits <= 32); - if (no_bits == 32) - return static_cast(bits); - uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits); - bits &= mask; - uint32_t top_bit = 1U << (no_bits - 1); - int32_t as_signed = static_cast(bits); - return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed; + this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj, + index)); } - // Detects overflow of an NO_BITS integer stored in a uint32_t. - template - static inline bool - has_overflow(uint32_t bits) + // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries. + // The first one is initialized to be 1, which is the module index for + // the main executable and the second one 0. A reloc of the type + // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will + // be applied by gold. GSYM is a global symbol. + void + add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym); + + // Same as the above but for a local symbol in OBJECT with INDEX. + void + add_tls_gd32_with_static_reloc(unsigned int got_type, + Sized_relobj_file<32, big_endian>* object, + unsigned int index); + + protected: + // Write out the GOT table. + void + do_write(Output_file*); + + private: + // This class represent dynamic relocations that need to be applied by + // gold because we are using TLS relocations in a static link. + class Static_reloc { - gold_assert(no_bits >= 0 && no_bits <= 32); - if (no_bits == 32) - return false; - int32_t max = (1 << (no_bits - 1)) - 1; - int32_t min = -(1 << (no_bits - 1)); - int32_t as_signed = static_cast(bits); - return as_signed > max || as_signed < min; - } + public: + Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym) + : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true) + { this->u_.global.symbol = gsym; } + + Static_reloc(unsigned int got_offset, unsigned int r_type, + Sized_relobj_file<32, big_endian>* relobj, unsigned int index) + : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false) + { + this->u_.local.relobj = relobj; + this->u_.local.index = index; + } + + // Return the GOT offset. + unsigned int + got_offset() const + { return this->got_offset_; } + + // Relocation type. + unsigned int + r_type() const + { return this->r_type_; } + + // Whether the symbol is global or not. + bool + symbol_is_global() const + { return this->symbol_is_global_; } + + // For a relocation against a global symbol, the global symbol. + Symbol* + symbol() const + { + gold_assert(this->symbol_is_global_); + return this->u_.global.symbol; + } + + // For a relocation against a local symbol, the defining object. + Sized_relobj_file<32, big_endian>* + relobj() const + { + gold_assert(!this->symbol_is_global_); + return this->u_.local.relobj; + } + + // For a relocation against a local symbol, the local symbol index. + unsigned int + index() const + { + gold_assert(!this->symbol_is_global_); + return this->u_.local.index; + } + + private: + // GOT offset of the entry to which this relocation is applied. + unsigned int got_offset_; + // Type of relocation. + unsigned int r_type_; + // Whether this relocation is against a global symbol. + bool symbol_is_global_; + // A global or local symbol. + union + { + struct + { + // For a global symbol, the symbol itself. + Symbol* symbol; + } global; + struct + { + // For a local symbol, the object defining object. + Sized_relobj_file<32, big_endian>* relobj; + // For a local symbol, the symbol index. + unsigned int index; + } local; + } u_; + }; + + // Symbol table of the output object. + Symbol_table* symbol_table_; + // Layout of the output object. + Layout* layout_; + // Static relocs to be applied to the GOT. + std::vector static_relocs_; +}; + +// The ARM target has many relocation types with odd-sizes or noncontiguous +// bits. The default handling of relocatable relocation cannot process these +// relocations. So we have to extend the default code. - // Detects overflow of an NO_BITS integer stored in a uint32_t when it - // fits in the given number of bits as either a signed or unsigned value. - // For example, has_signed_unsigned_overflow<8> would check - // -128 <= bits <= 255 - template - static inline bool - has_signed_unsigned_overflow(uint32_t bits) +template +class Arm_scan_relocatable_relocs : + public Default_scan_relocatable_relocs +{ + public: + // Return the strategy to use for a local symbol which is a section + // symbol, given the relocation type. + inline Relocatable_relocs::Reloc_strategy + local_section_strategy(unsigned int r_type, Relobj*) { - gold_assert(no_bits >= 2 && no_bits <= 32); - if (no_bits == 32) - return false; - int32_t max = static_cast((1U << no_bits) - 1); - int32_t min = -(1 << (no_bits - 1)); - int32_t as_signed = static_cast(bits); - return as_signed > max || as_signed < min; - } + if (Classify_reloc::sh_type == elfcpp::SHT_RELA) + return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA; + else + { + if (r_type == elfcpp::R_ARM_TARGET1 + || r_type == elfcpp::R_ARM_TARGET2) + { + const Target_arm* arm_target = + Target_arm::default_target(); + r_type = arm_target->get_real_reloc_type(r_type); + } - // Select bits from A and B using bits in MASK. For each n in [0..31], - // the n-th bit in the result is chosen from the n-th bits of A and B. - // A zero selects A and a one selects B. - static inline uint32_t - bit_select(uint32_t a, uint32_t b, uint32_t mask) - { return (a & ~mask) | (b & mask); } + switch(r_type) + { + // Relocations that write nothing. These exclude R_ARM_TARGET1 + // and R_ARM_TARGET2. + case elfcpp::R_ARM_NONE: + case elfcpp::R_ARM_V4BX: + case elfcpp::R_ARM_TLS_GOTDESC: + case elfcpp::R_ARM_TLS_CALL: + case elfcpp::R_ARM_TLS_DESCSEQ: + case elfcpp::R_ARM_THM_TLS_CALL: + case elfcpp::R_ARM_GOTRELAX: + case elfcpp::R_ARM_GNU_VTENTRY: + case elfcpp::R_ARM_GNU_VTINHERIT: + case elfcpp::R_ARM_THM_TLS_DESCSEQ16: + case elfcpp::R_ARM_THM_TLS_DESCSEQ32: + return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0; + // These should have been converted to something else above. + case elfcpp::R_ARM_TARGET1: + case elfcpp::R_ARM_TARGET2: + gold_unreachable(); + // Relocations that write full 32 bits and + // have alignment of 1. + case elfcpp::R_ARM_ABS32: + case elfcpp::R_ARM_REL32: + case elfcpp::R_ARM_SBREL32: + case elfcpp::R_ARM_GOTOFF32: + case elfcpp::R_ARM_BASE_PREL: + case elfcpp::R_ARM_GOT_BREL: + case elfcpp::R_ARM_BASE_ABS: + case elfcpp::R_ARM_ABS32_NOI: + case elfcpp::R_ARM_REL32_NOI: + case elfcpp::R_ARM_PLT32_ABS: + case elfcpp::R_ARM_GOT_ABS: + case elfcpp::R_ARM_GOT_PREL: + case elfcpp::R_ARM_TLS_GD32: + case elfcpp::R_ARM_TLS_LDM32: + case elfcpp::R_ARM_TLS_LDO32: + case elfcpp::R_ARM_TLS_IE32: + case elfcpp::R_ARM_TLS_LE32: + return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED; + default: + // For all other static relocations, return RELOC_SPECIAL. + return Relocatable_relocs::RELOC_SPECIAL; + } + } + } }; template @@ -1140,23 +2117,23 @@ class Target_arm : public Sized_target<32, big_endian> typedef Output_data_reloc Reloc_section; - Target_arm() - : Sized_target<32, big_endian>(&arm_info), - got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL), - copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), - may_use_blx_(true), should_force_pic_veneer_(false) + // When were are relocating a stub, we pass this as the relocation number. + static const size_t fake_relnum_for_stubs = static_cast(-1); + + Target_arm(const Target::Target_info* info = &arm_info) + : Sized_target<32, big_endian>(info), + got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL), + rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY), + got_mod_index_offset_(-1U), tls_base_symbol_defined_(false), + stub_tables_(), stub_factory_(Stub_factory::get_instance()), + should_force_pic_veneer_(false), + arm_input_section_map_(), attributes_section_data_(NULL), + fix_cortex_a8_(false), cortex_a8_relocs_info_(), + target1_reloc_(elfcpp::R_ARM_ABS32), + // This can be any reloc type but usually is R_ARM_GOT_PREL. + target2_reloc_(elfcpp::R_ARM_GOT_PREL) { } - // Whether we can use BLX. - bool - may_use_blx() const - { return this->may_use_blx_; } - - // Set use-BLX flag. - void - set_may_use_blx(bool value) - { this->may_use_blx_ = value; } - // Whether we force PCI branch veneers. bool should_force_pic_veneer() const @@ -1166,29 +2143,95 @@ class Target_arm : public Sized_target<32, big_endian> void set_should_force_pic_veneer(bool value) { this->should_force_pic_veneer_ = value; } - + // Whether we use THUMB-2 instructions. bool using_thumb2() const { - // FIXME: This should not hard-coded. - return false; + Object_attribute* attr = + this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); + int arch = attr->int_value(); + return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7; } // Whether we use THUMB/THUMB-2 instructions only. bool using_thumb_only() const { - // FIXME: This should not hard-coded. - return false; + Object_attribute* attr = + this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); + + if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M + || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M) + return true; + if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7 + && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M) + return false; + attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile); + return attr->int_value() == 'M'; + } + + // Whether we have an NOP instruction. If not, use mov r0, r0 instead. + bool + may_use_arm_nop() const + { + Object_attribute* attr = + this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); + int arch = attr->int_value(); + return (arch == elfcpp::TAG_CPU_ARCH_V6T2 + || arch == elfcpp::TAG_CPU_ARCH_V6K + || arch == elfcpp::TAG_CPU_ARCH_V7 + || arch == elfcpp::TAG_CPU_ARCH_V7E_M); + } + + // Whether we have THUMB-2 NOP.W instruction. + bool + may_use_thumb2_nop() const + { + Object_attribute* attr = + this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); + int arch = attr->int_value(); + return (arch == elfcpp::TAG_CPU_ARCH_V6T2 + || arch == elfcpp::TAG_CPU_ARCH_V7 + || arch == elfcpp::TAG_CPU_ARCH_V7E_M); + } + + // Whether we have v4T interworking instructions available. + bool + may_use_v4t_interworking() const + { + Object_attribute* attr = + this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); + int arch = attr->int_value(); + return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4 + && arch != elfcpp::TAG_CPU_ARCH_V4); + } + + // Whether we have v5T interworking instructions available. + bool + may_use_v5t_interworking() const + { + Object_attribute* attr = + this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); + int arch = attr->int_value(); + if (parameters->options().fix_arm1176()) + return (arch == elfcpp::TAG_CPU_ARCH_V6T2 + || arch == elfcpp::TAG_CPU_ARCH_V7 + || arch == elfcpp::TAG_CPU_ARCH_V6_M + || arch == elfcpp::TAG_CPU_ARCH_V6S_M + || arch == elfcpp::TAG_CPU_ARCH_V7E_M); + else + return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4 + && arch != elfcpp::TAG_CPU_ARCH_V4 + && arch != elfcpp::TAG_CPU_ARCH_V4T); } - // Process the relocations to determine unreferenced sections for + // Process the relocations to determine unreferenced sections for // garbage collection. void gc_process_relocs(Symbol_table* symtab, Layout* layout, - Sized_relobj<32, big_endian>* object, + Sized_relobj_file<32, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, @@ -1202,7 +2245,7 @@ class Target_arm : public Sized_target<32, big_endian> void scan_relocs(Symbol_table* symtab, Layout* layout, - Sized_relobj<32, big_endian>* object, + Sized_relobj_file<32, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, @@ -1214,13 +2257,25 @@ class Target_arm : public Sized_target<32, big_endian> // Finalize the sections. void - do_finalize_sections(Layout*, const Input_objects*); + do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); // Return the value to use for a dynamic symbol which requires special // treatment. uint64_t do_dynsym_value(const Symbol*) const; + // Return the plt address for globals. Since we have irelative plt entries, + // address calculation is not as straightforward as plt_address + plt_offset. + uint64_t + do_plt_address_for_global(const Symbol* gsym) const + { return this->plt_section()->address_for_global(gsym); } + + // Return the plt address for locals. Since we have irelative plt entries, + // address calculation is not as straightforward as plt_address + plt_offset. + uint64_t + do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const + { return this->plt_section()->address_for_local(relobj, symndx); } + // Relocate a section. void relocate_section(const Relocate_info<32, big_endian>*, @@ -1238,7 +2293,7 @@ class Target_arm : public Sized_target<32, big_endian> void scan_relocatable_relocs(Symbol_table* symtab, Layout* layout, - Sized_relobj<32, big_endian>* object, + Sized_relobj_file<32, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, @@ -1249,83 +2304,362 @@ class Target_arm : public Sized_target<32, big_endian> const unsigned char* plocal_symbols, Relocatable_relocs*); - // Relocate a section during a relocatable link. + // Scan the relocs for --emit-relocs. + void + emit_relocs_scan(Symbol_table* symtab, + Layout* layout, + Sized_relobj_file<32, big_endian>* object, + unsigned int data_shndx, + unsigned int sh_type, + const unsigned char* prelocs, + size_t reloc_count, + Output_section* output_section, + bool needs_special_offset_handling, + size_t local_symbol_count, + const unsigned char* plocal_syms, + Relocatable_relocs* rr); + + // Emit relocations for a section. + void + relocate_relocs(const Relocate_info<32, big_endian>*, + unsigned int sh_type, + const unsigned char* prelocs, + size_t reloc_count, + Output_section* output_section, + typename elfcpp::Elf_types<32>::Elf_Off + offset_in_output_section, + unsigned char* view, + Arm_address view_address, + section_size_type view_size, + unsigned char* reloc_view, + section_size_type reloc_view_size); + + // Perform target-specific processing in a relocatable link. This is + // only used if we use the relocation strategy RELOC_SPECIAL. void - relocate_for_relocatable(const Relocate_info<32, big_endian>*, - unsigned int sh_type, - const unsigned char* prelocs, - size_t reloc_count, - Output_section* output_section, - off_t offset_in_output_section, - const Relocatable_relocs*, - unsigned char* view, - Arm_address view_address, - section_size_type view_size, - unsigned char* reloc_view, - section_size_type reloc_view_size); + relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo, + unsigned int sh_type, + const unsigned char* preloc_in, + size_t relnum, + Output_section* output_section, + typename elfcpp::Elf_types<32>::Elf_Off + offset_in_output_section, + unsigned char* view, + typename elfcpp::Elf_types<32>::Elf_Addr + view_address, + section_size_type view_size, + unsigned char* preloc_out); // Return whether SYM is defined by the ABI. bool - do_is_defined_by_abi(Symbol* sym) const + do_is_defined_by_abi(const Symbol* sym) const { return strcmp(sym->name(), "__tls_get_addr") == 0; } + // Return whether there is a GOT section. + bool + has_got_section() const + { return this->got_ != NULL; } + // Return the size of the GOT section. section_size_type - got_size() + got_size() const { gold_assert(this->got_ != NULL); return this->got_->data_size(); } - // Map platform-specific reloc types - static unsigned int - get_real_reloc_type (unsigned int r_type); - - // Get the default ARM target. - static const Target_arm& - default_target() + // Return the number of entries in the GOT. + unsigned int + got_entry_count() const { - gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM - && parameters->target().is_big_endian() == big_endian); - return static_cast&>(parameters->target()); + if (!this->has_got_section()) + return 0; + return this->got_size() / 4; } - protected: - void - do_adjust_elf_header(unsigned char* view, int len) const; + // Return the number of entries in the PLT. + unsigned int + plt_entry_count() const; - private: - // The class which scans relocations. - class Scan - { - public: - Scan() - : issued_non_pic_error_(false) + // Return the offset of the first non-reserved PLT entry. + unsigned int + first_plt_entry_offset() const; + + // Return the size of each PLT entry. + unsigned int + plt_entry_size() const; + + // Get the section to use for IRELATIVE relocations, create it if necessary. + Reloc_section* + rel_irelative_section(Layout*); + + // Map platform-specific reloc types + unsigned int + get_real_reloc_type(unsigned int r_type) const; + + // + // Methods to support stub-generations. + // + + // Return the stub factory + const Stub_factory& + stub_factory() const + { return this->stub_factory_; } + + // Make a new Arm_input_section object. + Arm_input_section* + new_arm_input_section(Relobj*, unsigned int); + + // Find the Arm_input_section object corresponding to the SHNDX-th input + // section of RELOBJ. + Arm_input_section* + find_arm_input_section(Relobj* relobj, unsigned int shndx) const; + + // Make a new Stub_table + Stub_table* + new_stub_table(Arm_input_section*); + + // Scan a section for stub generation. + void + scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int, + const unsigned char*, size_t, Output_section*, + bool, const unsigned char*, Arm_address, + section_size_type); + + // Relocate a stub. + void + relocate_stub(Stub*, const Relocate_info<32, big_endian>*, + Output_section*, unsigned char*, Arm_address, + section_size_type); + + // Get the default ARM target. + static Target_arm* + default_target() + { + gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM + && parameters->target().is_big_endian() == big_endian); + return static_cast*>( + parameters->sized_target<32, big_endian>()); + } + + // Whether NAME belongs to a mapping symbol. + static bool + is_mapping_symbol_name(const char* name) + { + return (name + && name[0] == '$' + && (name[1] == 'a' || name[1] == 't' || name[1] == 'd') + && (name[2] == '\0' || name[2] == '.')); + } + + // Whether we work around the Cortex-A8 erratum. + bool + fix_cortex_a8() const + { return this->fix_cortex_a8_; } + + // Whether we merge exidx entries in debuginfo. + bool + merge_exidx_entries() const + { return parameters->options().merge_exidx_entries(); } + + // Whether we fix R_ARM_V4BX relocation. + // 0 - do not fix + // 1 - replace with MOV instruction (armv4 target) + // 2 - make interworking veneer (>= armv4t targets only) + General_options::Fix_v4bx + fix_v4bx() const + { return parameters->options().fix_v4bx(); } + + // Scan a span of THUMB code section for Cortex-A8 erratum. + void + scan_span_for_cortex_a8_erratum(Arm_relobj*, unsigned int, + section_size_type, section_size_type, + const unsigned char*, Arm_address); + + // Apply Cortex-A8 workaround to a branch. + void + apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address, + unsigned char*, Arm_address); + + protected: + // Make the PLT-generator object. + Output_data_plt_arm* + make_data_plt(Layout* layout, + Arm_output_data_got* got, + Output_data_space* got_plt, + Output_data_space* got_irelative) + { return this->do_make_data_plt(layout, got, got_plt, got_irelative); } + + // Make an ELF object. + Object* + do_make_elf_object(const std::string&, Input_file*, off_t, + const elfcpp::Ehdr<32, big_endian>& ehdr); + + Object* + do_make_elf_object(const std::string&, Input_file*, off_t, + const elfcpp::Ehdr<32, !big_endian>&) + { gold_unreachable(); } + + Object* + do_make_elf_object(const std::string&, Input_file*, off_t, + const elfcpp::Ehdr<64, false>&) + { gold_unreachable(); } + + Object* + do_make_elf_object(const std::string&, Input_file*, off_t, + const elfcpp::Ehdr<64, true>&) + { gold_unreachable(); } + + // Make an output section. + Output_section* + do_make_output_section(const char* name, elfcpp::Elf_Word type, + elfcpp::Elf_Xword flags) + { return new Arm_output_section(name, type, flags); } + + void + do_adjust_elf_header(unsigned char* view, int len); + + // We only need to generate stubs, and hence perform relaxation if we are + // not doing relocatable linking. + bool + do_may_relax() const + { return !parameters->options().relocatable(); } + + bool + do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*); + + // Determine whether an object attribute tag takes an integer, a + // string or both. + int + do_attribute_arg_type(int tag) const; + + // Reorder tags during output. + int + do_attributes_order(int num) const; + + // This is called when the target is selected as the default. + void + do_select_as_default_target() + { + // No locking is required since there should only be one default target. + // We cannot have both the big-endian and little-endian ARM targets + // as the default. + gold_assert(arm_reloc_property_table == NULL); + arm_reloc_property_table = new Arm_reloc_property_table(); + if (parameters->options().user_set_target1_rel()) + { + // FIXME: This is not strictly compatible with ld, which allows both + // --target1-abs and --target-rel to be given. + if (parameters->options().user_set_target1_abs()) + gold_error(_("Cannot use both --target1-abs and --target1-rel.")); + else + this->target1_reloc_ = elfcpp::R_ARM_REL32; + } + // We don't need to handle --target1-abs because target1_reloc_ is set + // to elfcpp::R_ARM_ABS32 in the member initializer list. + + if (parameters->options().user_set_target2()) + { + const char* target2 = parameters->options().target2(); + if (strcmp(target2, "rel") == 0) + this->target2_reloc_ = elfcpp::R_ARM_REL32; + else if (strcmp(target2, "abs") == 0) + this->target2_reloc_ = elfcpp::R_ARM_ABS32; + else if (strcmp(target2, "got-rel") == 0) + this->target2_reloc_ = elfcpp::R_ARM_GOT_PREL; + else + gold_unreachable(); + } + } + + // Virtual function which is set to return true by a target if + // it can use relocation types to determine if a function's + // pointer is taken. + virtual bool + do_can_check_for_function_pointers() const + { return true; } + + // Whether a section called SECTION_NAME may have function pointers to + // sections not eligible for safe ICF folding. + virtual bool + do_section_may_have_icf_unsafe_pointers(const char* section_name) const + { + return (!is_prefix_of(".ARM.exidx", section_name) + && !is_prefix_of(".ARM.extab", section_name) + && Target::do_section_may_have_icf_unsafe_pointers(section_name)); + } + + virtual void + do_define_standard_symbols(Symbol_table*, Layout*); + + virtual Output_data_plt_arm* + do_make_data_plt(Layout* layout, + Arm_output_data_got* got, + Output_data_space* got_plt, + Output_data_space* got_irelative) + { + gold_assert(got_plt != NULL && got_irelative != NULL); + if (parameters->options().long_plt()) + return new Output_data_plt_arm_long( + layout, got, got_plt, got_irelative); + else + return new Output_data_plt_arm_short( + layout, got, got_plt, got_irelative); + } + + private: + // The class which scans relocations. + class Scan + { + public: + Scan() + : issued_non_pic_error_(false) { } + static inline int + get_reference_flags(unsigned int r_type); + inline void local(Symbol_table* symtab, Layout* layout, Target_arm* target, - Sized_relobj<32, big_endian>* object, + Sized_relobj_file<32, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type, - const elfcpp::Sym<32, big_endian>& lsym); + const elfcpp::Sym<32, big_endian>& lsym, + bool is_discarded); inline void global(Symbol_table* symtab, Layout* layout, Target_arm* target, - Sized_relobj<32, big_endian>* object, + Sized_relobj_file<32, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type, Symbol* gsym); + inline bool + local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* , + Sized_relobj_file<32, big_endian>* , + unsigned int , + Output_section* , + const elfcpp::Rel<32, big_endian>& , + unsigned int , + const elfcpp::Sym<32, big_endian>&); + + inline bool + global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* , + Sized_relobj_file<32, big_endian>* , + unsigned int , + Output_section* , + const elfcpp::Rel<32, big_endian>& , + unsigned int , Symbol*); + private: static void - unsupported_reloc_local(Sized_relobj<32, big_endian>*, + unsupported_reloc_local(Sized_relobj_file<32, big_endian>*, unsigned int r_type); static void - unsupported_reloc_global(Sized_relobj<32, big_endian>*, + unsupported_reloc_global(Sized_relobj_file<32, big_endian>*, unsigned int r_type, Symbol*); void @@ -1340,6 +2674,9 @@ class Target_arm : public Sized_target<32, big_endian> if (sym->is_undefined() && !parameters->options().shared()) return false; + if (sym->type() == elfcpp::STT_GNU_IFUNC) + return true; + return (!parameters->doing_static_link() && (sym->type() == elfcpp::STT_FUNC || sym->type() == elfcpp::STT_ARM_TFUNC) @@ -1348,6 +2685,14 @@ class Target_arm : public Sized_target<32, big_endian> || sym->is_preemptible())); } + inline bool + possible_function_pointer_reloc(unsigned int r_type); + + // Whether a plt entry is needed for ifunc. + bool + reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*, + unsigned int r_type); + // Whether we have issued an error about a non-PIC compilation. bool issued_non_pic_error_; }; @@ -1365,56 +2710,92 @@ class Target_arm : public Sized_target<32, big_endian> // Return whether the static relocation needs to be applied. inline bool should_apply_static_reloc(const Sized_symbol<32>* gsym, - int ref_flags, + unsigned int r_type, bool is_32bit, Output_section* output_section); // Do a relocation. Return false if the caller should not issue // any warnings about this relocation. inline bool - relocate(const Relocate_info<32, big_endian>*, Target_arm*, - Output_section*, size_t relnum, - const elfcpp::Rel<32, big_endian>&, - unsigned int r_type, const Sized_symbol<32>*, - const Symbol_value<32>*, - unsigned char*, Arm_address, - section_size_type); + relocate(const Relocate_info<32, big_endian>*, unsigned int, + Target_arm*, Output_section*, size_t, const unsigned char*, + const Sized_symbol<32>*, const Symbol_value<32>*, + unsigned char*, Arm_address, section_size_type); // Return whether we want to pass flag NON_PIC_REF for this - // reloc. + // reloc. This means the relocation type accesses a symbol not via + // GOT or PLT. static inline bool - reloc_is_non_pic (unsigned int r_type) + reloc_is_non_pic(unsigned int r_type) { switch (r_type) { - case elfcpp::R_ARM_REL32: - case elfcpp::R_ARM_THM_CALL: + // These relocation types reference GOT or PLT entries explicitly. + case elfcpp::R_ARM_GOT_BREL: + case elfcpp::R_ARM_GOT_ABS: + case elfcpp::R_ARM_GOT_PREL: + case elfcpp::R_ARM_GOT_BREL12: + case elfcpp::R_ARM_PLT32_ABS: + case elfcpp::R_ARM_TLS_GD32: + case elfcpp::R_ARM_TLS_LDM32: + case elfcpp::R_ARM_TLS_IE32: + case elfcpp::R_ARM_TLS_IE12GP: + + // These relocate types may use PLT entries. case elfcpp::R_ARM_CALL: + case elfcpp::R_ARM_THM_CALL: case elfcpp::R_ARM_JUMP24: + case elfcpp::R_ARM_THM_JUMP24: + case elfcpp::R_ARM_THM_JUMP19: + case elfcpp::R_ARM_PLT32: + case elfcpp::R_ARM_THM_XPC22: case elfcpp::R_ARM_PREL31: - case elfcpp::R_ARM_THM_ABS5: - case elfcpp::R_ARM_ABS8: - case elfcpp::R_ARM_ABS12: - case elfcpp::R_ARM_ABS16: - case elfcpp::R_ARM_BASE_ABS: - return true; - default: + case elfcpp::R_ARM_SBREL31: return false; + + default: + return true; } } + + private: + // Do a TLS relocation. + inline typename Arm_relocate_functions::Status + relocate_tls(const Relocate_info<32, big_endian>*, Target_arm*, + size_t, const elfcpp::Rel<32, big_endian>&, unsigned int, + const Sized_symbol<32>*, const Symbol_value<32>*, + unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, + section_size_type); + }; - // A class which returns the size required for a relocation type, - // used while scanning relocs during a relocatable link. - class Relocatable_size_for_reloc + // A class for inquiring about properties of a relocation, + // used while scanning relocs during a relocatable link and + // garbage collection. + class Classify_reloc : + public gold::Default_classify_reloc { public: - unsigned int + typedef typename Reloc_types::Reloc + Reltype; + + // Return the explicit addend of the relocation (return 0 for SHT_REL). + static typename elfcpp::Elf_types<32>::Elf_Swxword + get_r_addend(const Reltype*) + { return 0; } + + // Return the size of the addend of the relocation (only used for SHT_REL). + static unsigned int get_size_for_reloc(unsigned int, Relobj*); }; + // Adjust TLS relocation type based on the options and whether this + // is a local symbol. + static tls::Tls_optimization + optimize_tls_reloc(bool is_final, int r_type); + // Get the GOT section, creating it if necessary. - Output_data_got<32, big_endian>* + Arm_output_data_got* got_section(Symbol_table*, Layout*); // Get the GOT PLT section. @@ -1425,10 +2806,29 @@ class Target_arm : public Sized_target<32, big_endian> return this->got_plt_; } + // Create the PLT section. + void + make_plt_section(Symbol_table* symtab, Layout* layout); + // Create a PLT entry for a global symbol. void make_plt_entry(Symbol_table*, Layout*, Symbol*); + // Create a PLT entry for a local STT_GNU_IFUNC symbol. + void + make_local_ifunc_plt_entry(Symbol_table*, Layout*, + Sized_relobj_file<32, big_endian>* relobj, + unsigned int local_sym_index); + + // Define the _TLS_MODULE_BASE_ symbol in the TLS segment. + void + define_tls_base_symbol(Symbol_table*, Layout*); + + // Create a GOT entry for the TLS module index. + unsigned int + got_mod_index_entry(Symbol_table* symtab, Layout* layout, + Sized_relobj_file<32, big_endian>* object); + // Get the PLT section. const Output_data_plt_arm* plt_section() const @@ -1441,6 +2841,10 @@ class Target_arm : public Sized_target<32, big_endian> Reloc_section* rel_dyn_section(Layout*); + // Get the section to use for TLS_DESC relocations. + Reloc_section* + rel_tls_desc_section(Layout*) const; + // Return true if the symbol may need a COPY relocation. // References from an executable object to non-function symbols // defined in a dynamic object may need a COPY relocation. @@ -1454,13 +2858,15 @@ class Target_arm : public Sized_target<32, big_endian> // Add a potential copy relocation. void copy_reloc(Symbol_table* symtab, Layout* layout, - Sized_relobj<32, big_endian>* object, + Sized_relobj_file<32, big_endian>* object, unsigned int shndx, Output_section* output_section, Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc) { + unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info()); this->copy_relocs_.copy_reloc(symtab, layout, symtab->get_sized_symbol<32>(sym), - object, shndx, output_section, reloc, + object, shndx, output_section, + r_type, reloc.get_r_offset(), 0, this->rel_dyn_section(layout)); } @@ -1473,51 +2879,161 @@ class Target_arm : public Sized_target<32, big_endian> void merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word); - Object* - do_make_elf_object(const std::string&, Input_file*, off_t, - const elfcpp::Ehdr<32, big_endian>& ehdr); + // Get the secondary compatible architecture. + static int + get_secondary_compatible_arch(const Attributes_section_data*); - Object* - do_make_elf_object(const std::string&, Input_file*, off_t, - const elfcpp::Ehdr<32, !big_endian>&) - { gold_unreachable(); } + // Set the secondary compatible architecture. + static void + set_secondary_compatible_arch(Attributes_section_data*, int); - Object* - do_make_elf_object(const std::string&, Input_file*, off_t, - const elfcpp::Ehdr<64, false>&) - { gold_unreachable(); } + static int + tag_cpu_arch_combine(const char*, int, int*, int, int); - Object* - do_make_elf_object(const std::string&, Input_file*, off_t, - const elfcpp::Ehdr<64, true>&) - { gold_unreachable(); } + // Helper to print AEABI enum tag value. + static std::string + aeabi_enum_name(unsigned int); + + // Return string value for TAG_CPU_name. + static std::string + tag_cpu_name_value(unsigned int); + + // Query attributes object to see if integer divide instructions may be + // present in an object. + static bool + attributes_accept_div(int arch, int profile, + const Object_attribute* div_attr); + + // Query attributes object to see if integer divide instructions are + // forbidden to be in the object. This is not the inverse of + // attributes_accept_div. + static bool + attributes_forbid_div(const Object_attribute* div_attr); + + // Merge object attributes from input object and those in the output. + void + merge_object_attributes(const char*, const Attributes_section_data*); + + // Helper to get an AEABI object attribute + Object_attribute* + get_aeabi_object_attribute(int tag) const + { + Attributes_section_data* pasd = this->attributes_section_data_; + gold_assert(pasd != NULL); + Object_attribute* attr = + pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag); + gold_assert(attr != NULL); + return attr; + } + + // + // Methods to support stub-generations. + // + + // Group input sections for stub generation. + void + group_sections(Layout*, section_size_type, bool, const Task*); + + // Scan a relocation for stub generation. + void + scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int, + const Sized_symbol<32>*, unsigned int, + const Symbol_value<32>*, + elfcpp::Elf_types<32>::Elf_Swxword, Arm_address); + + // Scan a relocation section for stub. + template + void + scan_reloc_section_for_stubs( + const Relocate_info<32, big_endian>* relinfo, + const unsigned char* prelocs, + size_t reloc_count, + Output_section* output_section, + bool needs_special_offset_handling, + const unsigned char* view, + elfcpp::Elf_types<32>::Elf_Addr view_address, + section_size_type); + + // Fix .ARM.exidx section coverage. + void + fix_exidx_coverage(Layout*, const Input_objects*, + Arm_output_section*, Symbol_table*, + const Task*); + + // Functors for STL set. + struct output_section_address_less_than + { + bool + operator()(const Output_section* s1, const Output_section* s2) const + { return s1->address() < s2->address(); } + }; // Information about this specific target which we pass to the // general Target structure. static const Target::Target_info arm_info; // The types of GOT entries needed for this platform. + // These values are exposed to the ABI in an incremental link. + // Do not renumber existing values without changing the version + // number of the .gnu_incremental_inputs section. enum Got_type { - GOT_TYPE_STANDARD = 0 // GOT entry for a regular symbol + GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol + GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset + GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset + GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair + GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair }; + typedef typename std::vector*> Stub_table_list; + + // Map input section to Arm_input_section. + typedef Unordered_map*, + Section_id_hash> + Arm_input_section_map; + + // Map output addresses to relocs for Cortex-A8 erratum. + typedef Unordered_map + Cortex_a8_relocs_info; + // The GOT section. - Output_data_got<32, big_endian>* got_; + Arm_output_data_got* got_; // The PLT section. Output_data_plt_arm* plt_; // The GOT PLT section. Output_data_space* got_plt_; + // The GOT section for IRELATIVE relocations. + Output_data_space* got_irelative_; // The dynamic reloc section. Reloc_section* rel_dyn_; + // The section to use for IRELATIVE relocs. + Reloc_section* rel_irelative_; // Relocs saved to avoid a COPY reloc. Copy_relocs copy_relocs_; - // Space for variables copied with a COPY reloc. - Output_data_space* dynbss_; - // Whether we can use BLX. - bool may_use_blx_; + // Offset of the GOT entry for the TLS module index. + unsigned int got_mod_index_offset_; + // True if the _TLS_MODULE_BASE_ symbol has been defined. + bool tls_base_symbol_defined_; + // Vector of Stub_tables created. + Stub_table_list stub_tables_; + // Stub factory. + const Stub_factory &stub_factory_; // Whether we force PIC branch veneers. bool should_force_pic_veneer_; + // Map for locating Arm_input_sections. + Arm_input_section_map arm_input_section_map_; + // Attributes section data in output. + Attributes_section_data* attributes_section_data_; + // Whether we want to fix code for Cortex-A8 erratum. + bool fix_cortex_a8_; + // Map addresses to relocs for Cortex-A8 erratum. + Cortex_a8_relocs_info cortex_a8_relocs_info_; + // What R_ARM_TARGET1 maps to. It can be R_ARM_REL32 or R_ARM_ABS32. + unsigned int target1_reloc_; + // What R_ARM_TARGET2 maps to. It should be one of R_ARM_REL32, R_ARM_ABS32 + // and R_ARM_GOT_PREL. + unsigned int target2_reloc_; }; template @@ -1530,15 +3046,23 @@ const Target::Target_info Target_arm::arm_info = false, // has_resolve false, // has_code_fill true, // is_default_stack_executable + false, // can_icf_inline_merge_sections '\0', // wrap_char "/usr/lib/libc.so.1", // dynamic_linker 0x8000, // default_text_segment_address 0x1000, // abi_pagesize (overridable by -z max-page-size) 0x1000, // common_pagesize (overridable by -z common-page-size) + false, // isolate_execinstr + 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags - 0 // large_common_section_flags + 0, // large_common_section_flags + ".ARM.attributes", // attributes_section + "aeabi", // attributes_vendor + "_start", // entry_symbol_name + 32, // hash_entry_size + elfcpp::SHT_PROGBITS, // unwind_section_type }; // Arm relocate functions class @@ -1551,7 +3075,7 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian> typedef enum { STATUS_OKAY, // No error during relocation. - STATUS_OVERFLOW, // Relocation oveflow. + STATUS_OVERFLOW, // Relocation overflow. STATUS_BAD_RELOC // Relocation cannot be applied. } Status; @@ -1559,33 +3083,12 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian> typedef Relocate_functions<32, big_endian> Base; typedef Arm_relocate_functions This; - // Get an symbol value of *PSYMVAL with an ADDEND. This is a wrapper - // to Symbol_value::value(). If HAS_THUMB_BIT is true, that LSB is used - // to distinguish ARM and THUMB functions and it is treated specially. - static inline Symbol_value<32>::Value - arm_symbol_value (const Sized_relobj<32, big_endian> *object, - const Symbol_value<32>* psymval, - Symbol_value<32>::Value addend, - bool has_thumb_bit) - { - typedef Symbol_value<32>::Value Valtype; - - if (has_thumb_bit) - { - Valtype raw = psymval->value(object, 0); - Valtype thumb_bit = raw & 1; - return ((raw & ~((Valtype) 1)) + addend) | thumb_bit; - } - else - return psymval->value(object, addend); - } - // Encoding of imm16 argument for movt and movw ARM instructions // from ARM ARM: - // + // // imm16 := imm4 | imm12 // - // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 + // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 // +-------+---------------+-------+-------+-----------------------+ // | | |imm4 | |imm12 | // +-------+---------------+-------+-------+-----------------------+ @@ -1598,7 +3101,7 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian> { // According to the Elf ABI for ARM Architecture the immediate // field is sign-extended to form the addend. - return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff)); + return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff)); } // Insert X into VAL based on the ARM instruction encoding described @@ -1616,10 +3119,10 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian> // Encoding of imm16 argument for movt and movw Thumb2 instructions // from ARM ARM: - // + // // imm16 := imm4 | i | imm3 | imm8 // - // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 + // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 // +---------+-+-----------+-------++-+-----+-------+---------------+ // | |i| |imm4 || |imm3 | |imm8 | // +---------+-+-----------+-------++-+-----+-------+---------------+ @@ -1632,10 +3135,10 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian> { // According to the Elf ABI for ARM Architecture the immediate // field is sign-extended to form the addend. - return utils::sign_extend<16>(((val >> 4) & 0xf000) - | ((val >> 15) & 0x0800) - | ((val >> 4) & 0x0700) - | (val & 0x00ff)); + return Bits<16>::sign_extend32(((val >> 4) & 0xf000) + | ((val >> 15) & 0x0800) + | ((val >> 4) & 0x0700) + | (val & 0x00ff)); } // Insert X into VAL based on the Thumb2 instruction encoding @@ -1653,94 +3156,187 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian> return val; } - // FIXME: This probably only works for Android on ARM v5te. We should - // following GNU ld for the general case. - template - static inline typename This::Status - arm_branch_common(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval, - Arm_address address, - bool has_thumb_bit) + // Calculate the smallest constant Kn for the specified residual. + // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32) + static uint32_t + calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual) { - typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; - Valtype* wv = reinterpret_cast(view); - Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); - - bool insn_is_b = (((val >> 28) & 0xf) <= 0xe) - && ((val & 0x0f000000UL) == 0x0a000000UL); - bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL; - bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe) - && ((val & 0x0f000000UL) == 0x0b000000UL); - bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL; - bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL; - - if (r_type == elfcpp::R_ARM_CALL) - { - if (!insn_is_uncond_bl && !insn_is_blx) - return This::STATUS_BAD_RELOC; - } - else if (r_type == elfcpp::R_ARM_JUMP24) - { - if (!insn_is_b && !insn_is_cond_bl) - return This::STATUS_BAD_RELOC; - } - else if (r_type == elfcpp::R_ARM_PLT32) + int32_t msb; + + if (residual == 0) + return 0; + // Determine the most significant bit in the residual and + // align the resulting value to a 2-bit boundary. + for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2) + ; + // The desired shift is now (msb - 6), or zero, whichever + // is the greater. + return (((msb - 6) < 0) ? 0 : (msb - 6)); + } + + // Calculate the final residual for the specified group index. + // If the passed group index is less than zero, the method will return + // the value of the specified residual without any change. + // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32) + static typename elfcpp::Swap<32, big_endian>::Valtype + calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual, + const int group) + { + for (int n = 0; n <= group; n++) { - if (!insn_is_any_branch) - return This::STATUS_BAD_RELOC; + // Calculate which part of the value to mask. + uint32_t shift = calc_grp_kn(residual); + // Calculate the residual for the next time around. + residual &= ~(residual & (0xff << shift)); } - else - gold_unreachable(); - Valtype addend = utils::sign_extend<26>(val << 2); - Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit) - - address); + return residual; + } + + // Calculate the value of Gn for the specified group index. + // We return it in the form of an encoded constant-and-rotation. + // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32) + static typename elfcpp::Swap<32, big_endian>::Valtype + calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual, + const int group) + { + typename elfcpp::Swap<32, big_endian>::Valtype gn = 0; + uint32_t shift = 0; - // If target has thumb bit set, we need to either turn the BL - // into a BLX (for ARMv5 or above) or generate a stub. - if (x & 1) + for (int n = 0; n <= group; n++) { - // Turn BL to BLX. - if (insn_is_uncond_bl) - val = (val & 0xffffff) | 0xfa000000 | ((x & 2) << 23); - else - return This::STATUS_BAD_RELOC; + // Calculate which part of the value to mask. + shift = calc_grp_kn(residual); + // Calculate Gn in 32-bit as well as encoded constant-and-rotation form. + gn = residual & (0xff << shift); + // Calculate the residual for the next time around. + residual &= ~gn; } - else - gold_assert(!insn_is_blx); - - val = utils::bit_select(val, (x >> 2), 0xffffffUL); - elfcpp::Swap<32, big_endian>::writeval(wv, val); - return (utils::has_overflow<26>(x) - ? This::STATUS_OVERFLOW : This::STATUS_OKAY); + // Return Gn in the form of an encoded constant-and-rotation. + return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8)); } public: + // Handle ARM long branches. + static typename This::Status + arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*, + unsigned char*, const Sized_symbol<32>*, + const Arm_relobj*, unsigned int, + const Symbol_value<32>*, Arm_address, Arm_address, bool); + + // Handle THUMB long branches. + static typename This::Status + thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*, + unsigned char*, const Sized_symbol<32>*, + const Arm_relobj*, unsigned int, + const Symbol_value<32>*, Arm_address, Arm_address, bool); + + + // Return the branch offset of a 32-bit THUMB branch. + static inline int32_t + thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn) + { + // We use the Thumb-2 encoding (backwards compatible with Thumb-1) + // involving the J1 and J2 bits. + uint32_t s = (upper_insn & (1U << 10)) >> 10; + uint32_t upper = upper_insn & 0x3ffU; + uint32_t lower = lower_insn & 0x7ffU; + uint32_t j1 = (lower_insn & (1U << 13)) >> 13; + uint32_t j2 = (lower_insn & (1U << 11)) >> 11; + uint32_t i1 = j1 ^ s ? 0 : 1; + uint32_t i2 = j2 ^ s ? 0 : 1; + + return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22) + | (upper << 12) | (lower << 1)); + } + + // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction. + // UPPER_INSN is the original upper instruction of the branch. Caller is + // responsible for overflow checking and BLX offset adjustment. + static inline uint16_t + thumb32_branch_upper(uint16_t upper_insn, int32_t offset) + { + uint32_t s = offset < 0 ? 1 : 0; + uint32_t bits = static_cast(offset); + return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10); + } + + // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction. + // LOWER_INSN is the original lower instruction of the branch. Caller is + // responsible for overflow checking and BLX offset adjustment. + static inline uint16_t + thumb32_branch_lower(uint16_t lower_insn, int32_t offset) + { + uint32_t s = offset < 0 ? 1 : 0; + uint32_t bits = static_cast(offset); + return ((lower_insn & ~0x2fffU) + | ((((bits >> 23) & 1) ^ !s) << 13) + | ((((bits >> 22) & 1) ^ !s) << 11) + | ((bits >> 1) & 0x7ffU)); + } + + // Return the branch offset of a 32-bit THUMB conditional branch. + static inline int32_t + thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn) + { + uint32_t s = (upper_insn & 0x0400U) >> 10; + uint32_t j1 = (lower_insn & 0x2000U) >> 13; + uint32_t j2 = (lower_insn & 0x0800U) >> 11; + uint32_t lower = (lower_insn & 0x07ffU); + uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU); + + return Bits<21>::sign_extend32((upper << 12) | (lower << 1)); + } + + // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper + // instruction. UPPER_INSN is the original upper instruction of the branch. + // Caller is responsible for overflow checking. + static inline uint16_t + thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset) + { + uint32_t s = offset < 0 ? 1 : 0; + uint32_t bits = static_cast(offset); + return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12); + } + + // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower + // instruction. LOWER_INSN is the original lower instruction of the branch. + // The caller is responsible for overflow checking. + static inline uint16_t + thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset) + { + uint32_t bits = static_cast(offset); + uint32_t j2 = (bits & 0x00080000U) >> 19; + uint32_t j1 = (bits & 0x00040000U) >> 18; + uint32_t lo = (bits & 0x00000ffeU) >> 1; + + return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo; + } // R_ARM_ABS8: S + A static inline typename This::Status - abs8(unsigned char *view, - const Sized_relobj<32, big_endian>* object, + abs8(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, const Symbol_value<32>* psymval) { typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype; - typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap<8, big_endian>::readval(wv); - Reltype addend = utils::sign_extend<8>(val); - Reltype x = This::arm_symbol_value(object, psymval, addend, false); - val = utils::bit_select(val, x, 0xffU); + int32_t addend = Bits<8>::sign_extend32(val); + Arm_address x = psymval->value(object, addend); + val = Bits<32>::bit_select32(val, x, 0xffU); elfcpp::Swap<8, big_endian>::writeval(wv, val); - return (utils::has_signed_unsigned_overflow<8>(x) + + // R_ARM_ABS8 permits signed or unsigned results. + return (Bits<8>::has_signed_unsigned_overflow32(x) ? This::STATUS_OVERFLOW : This::STATUS_OKAY); } // R_ARM_THM_ABS5: S + A static inline typename This::Status - thm_abs5(unsigned char *view, - const Sized_relobj<32, big_endian>* object, + thm_abs5(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, const Symbol_value<32>* psymval) { typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; @@ -1748,125 +3344,153 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian> Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); Reltype addend = (val & 0x7e0U) >> 6; - Reltype x = This::arm_symbol_value(object, psymval, addend, false); - val = utils::bit_select(val, x << 6, 0x7e0U); + Reltype x = psymval->value(object, addend); + val = Bits<32>::bit_select32(val, x << 6, 0x7e0U); elfcpp::Swap<16, big_endian>::writeval(wv, val); - return (utils::has_overflow<5>(x) + return (Bits<5>::has_overflow32(x) ? This::STATUS_OVERFLOW : This::STATUS_OKAY); } // R_ARM_ABS12: S + A static inline typename This::Status - abs12(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval) + abs12(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval) { typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); Reltype addend = val & 0x0fffU; - Reltype x = This::arm_symbol_value(object, psymval, addend, false); - val = utils::bit_select(val, x, 0x0fffU); + Reltype x = psymval->value(object, addend); + val = Bits<32>::bit_select32(val, x, 0x0fffU); elfcpp::Swap<32, big_endian>::writeval(wv, val); - return (utils::has_overflow<12>(x) + return (Bits<12>::has_overflow32(x) ? This::STATUS_OVERFLOW : This::STATUS_OKAY); } // R_ARM_ABS16: S + A static inline typename This::Status - abs16(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval) + abs16(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval) { - typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; - typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; - Valtype* wv = reinterpret_cast(view); - Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); - Reltype addend = utils::sign_extend<16>(val); - Reltype x = This::arm_symbol_value(object, psymval, addend, false); - val = utils::bit_select(val, x, 0xffffU); - elfcpp::Swap<16, big_endian>::writeval(wv, val); - return (utils::has_signed_unsigned_overflow<16>(x) + typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype; + Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view); + int32_t addend = Bits<16>::sign_extend32(val); + Arm_address x = psymval->value(object, addend); + val = Bits<32>::bit_select32(val, x, 0xffffU); + elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val); + + // R_ARM_ABS16 permits signed or unsigned results. + return (Bits<16>::has_signed_unsigned_overflow32(x) ? This::STATUS_OVERFLOW : This::STATUS_OKAY); } // R_ARM_ABS32: (S + A) | T static inline typename This::Status - abs32(unsigned char *view, - const Sized_relobj<32, big_endian>* object, + abs32(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, const Symbol_value<32>* psymval, - bool has_thumb_bit) + Arm_address thumb_bit) { - typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; - Valtype* wv = reinterpret_cast(view); - Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv); - Valtype x = This::arm_symbol_value(object, psymval, addend, has_thumb_bit); - elfcpp::Swap<32, big_endian>::writeval(wv, x); + typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype; + Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view); + Valtype x = psymval->value(object, addend) | thumb_bit; + elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x); return This::STATUS_OKAY; } // R_ARM_REL32: (S + A) | T - P static inline typename This::Status - rel32(unsigned char *view, - const Sized_relobj<32, big_endian>* object, + rel32(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, const Symbol_value<32>* psymval, Arm_address address, - bool has_thumb_bit) + Arm_address thumb_bit) { - typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; - Valtype* wv = reinterpret_cast(view); - Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv); - Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit) - - address); - elfcpp::Swap<32, big_endian>::writeval(wv, x); + typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype; + Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view); + Valtype x = (psymval->value(object, addend) | thumb_bit) - address; + elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x); return This::STATUS_OKAY; } - // R_ARM_THM_CALL: (S + A) | T - P + // R_ARM_THM_JUMP24: (S + A) | T - P + static typename This::Status + thm_jump19(unsigned char* view, const Arm_relobj* object, + const Symbol_value<32>* psymval, Arm_address address, + Arm_address thumb_bit); + + // R_ARM_THM_JUMP6: S + A - P static inline typename This::Status - thm_call(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval, - Arm_address address, - bool has_thumb_bit) + thm_jump6(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + Arm_address address) { - // A thumb call consists of two instructions. typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; - typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; + typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype; Valtype* wv = reinterpret_cast(view); - Valtype hi = elfcpp::Swap<16, big_endian>::readval(wv); - Valtype lo = elfcpp::Swap<16, big_endian>::readval(wv + 1); - // Must be a BL instruction. lo == 11111xxxxxxxxxxx. - gold_assert((lo & 0xf800) == 0xf800); - Reltype addend = utils::sign_extend<23>(((hi & 0x7ff) << 12) - | ((lo & 0x7ff) << 1)); - Reltype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit) - - address); - - // If target has no thumb bit set, we need to either turn the BL - // into a BLX (for ARMv5 or above) or generate a stub. - if ((x & 1) == 0) - { - // This only works for ARMv5 and above with interworking enabled. - lo &= 0xefff; - } - hi = utils::bit_select(hi, (x >> 12), 0x7ffU); - lo = utils::bit_select(lo, (x >> 1), 0x7ffU); - elfcpp::Swap<16, big_endian>::writeval(wv, hi); - elfcpp::Swap<16, big_endian>::writeval(wv + 1, lo); - return (utils::has_overflow<23>(x) + Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); + // bit[9]:bit[7:3]:'0' (mask: 0x02f8) + Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2)); + Reltype x = (psymval->value(object, addend) - address); + val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2); + elfcpp::Swap<16, big_endian>::writeval(wv, val); + // CZB does only forward jumps. + return ((x > 0x007e) ? This::STATUS_OVERFLOW : This::STATUS_OKAY); } - // R_ARM_BASE_PREL: B(S) + A - P + // R_ARM_THM_JUMP8: S + A - P static inline typename This::Status - base_prel(unsigned char* view, - Arm_address origin, + thm_jump8(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + Arm_address address) + { + typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; + Valtype* wv = reinterpret_cast(view); + Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); + int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1); + int32_t x = (psymval->value(object, addend) - address); + elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00) + | ((x & 0x01fe) >> 1))); + // We do a 9-bit overflow check because x is right-shifted by 1 bit. + return (Bits<9>::has_overflow32(x) + ? This::STATUS_OVERFLOW + : This::STATUS_OKAY); + } + + // R_ARM_THM_JUMP11: S + A - P + static inline typename This::Status + thm_jump11(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + Arm_address address) + { + typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; + Valtype* wv = reinterpret_cast(view); + Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); + int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1); + int32_t x = (psymval->value(object, addend) - address); + elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800) + | ((x & 0x0ffe) >> 1))); + // We do a 12-bit overflow check because x is right-shifted by 1 bit. + return (Bits<12>::has_overflow32(x) + ? This::STATUS_OVERFLOW + : This::STATUS_OKAY); + } + + // R_ARM_BASE_PREL: B(S) + A - P + static inline typename This::Status + base_prel(unsigned char* view, + Arm_address origin, Arm_address address) { Base::rel32(view, origin - address); @@ -1876,7 +3500,7 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian> // R_ARM_BASE_ABS: B(S) + A static inline typename This::Status base_abs(unsigned char* view, - Arm_address origin) + Arm_address origin) { Base::rel32(view, origin); return STATUS_OKAY; @@ -1891,265 +3515,855 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian> return This::STATUS_OKAY; } - // R_ARM_GOT_PREL: GOT(S) + A – P + // R_ARM_GOT_PREL: GOT(S) + A - P static inline typename This::Status got_prel(unsigned char* view, - typename elfcpp::Swap<32, big_endian>::Valtype got_offset, + Arm_address got_entry, Arm_address address) { - Base::rel32(view, got_offset - address); + Base::rel32(view, got_entry - address); return This::STATUS_OKAY; } - // R_ARM_PLT32: (S + A) | T - P - static inline typename This::Status - plt32(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval, - Arm_address address, - bool has_thumb_bit) - { - return arm_branch_common(view, object, psymval, - address, has_thumb_bit); - } - - // R_ARM_CALL: (S + A) | T - P - static inline typename This::Status - call(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval, - Arm_address address, - bool has_thumb_bit) - { - return arm_branch_common(view, object, psymval, - address, has_thumb_bit); - } - - // R_ARM_JUMP24: (S + A) | T - P - static inline typename This::Status - jump24(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval, - Arm_address address, - bool has_thumb_bit) - { - return arm_branch_common(view, object, psymval, - address, has_thumb_bit); - } - // R_ARM_PREL: (S + A) | T - P static inline typename This::Status - prel31(unsigned char *view, - const Sized_relobj<32, big_endian>* object, + prel31(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, const Symbol_value<32>* psymval, Arm_address address, - bool has_thumb_bit) + Arm_address thumb_bit) { - typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; - Valtype* wv = reinterpret_cast(view); - Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); - Valtype addend = utils::sign_extend<31>(val); - Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit) - - address); - val = utils::bit_select(val, x, 0x7fffffffU); - elfcpp::Swap<32, big_endian>::writeval(wv, val); - return (utils::has_overflow<31>(x) ? - This::STATUS_OVERFLOW : This::STATUS_OKAY); + typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype; + Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view); + Valtype addend = Bits<31>::sign_extend32(val); + Valtype x = (psymval->value(object, addend) | thumb_bit) - address; + val = Bits<32>::bit_select32(val, x, 0x7fffffffU); + elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val); + return (Bits<31>::has_overflow32(x) + ? This::STATUS_OVERFLOW + : This::STATUS_OKAY); } - // R_ARM_MOVW_ABS_NC: (S + A) | T - static inline typename This::Status - movw_abs_nc(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval, - bool has_thumb_bit) + // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is ) + // R_ARM_MOVW_PREL_NC: (S + A) | T - P + // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S) + // R_ARM_MOVW_BREL: ((S + A) | T) - B(S) + static inline typename This::Status + movw(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + Arm_address relative_address_base, + Arm_address thumb_bit, + bool check_overflow) { typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); - Valtype addend = This::extract_arm_movw_movt_addend(val); - Valtype x = This::arm_symbol_value(object, psymval, addend, has_thumb_bit); + Valtype addend = This::extract_arm_movw_movt_addend(val); + Valtype x = ((psymval->value(object, addend) | thumb_bit) + - relative_address_base); val = This::insert_val_arm_movw_movt(val, x); elfcpp::Swap<32, big_endian>::writeval(wv, val); - return This::STATUS_OKAY; + return ((check_overflow && Bits<16>::has_overflow32(x)) + ? This::STATUS_OVERFLOW + : This::STATUS_OKAY); } - // R_ARM_MOVT_ABS: S + A + // R_ARM_MOVT_ABS: S + A (relative address base is 0) + // R_ARM_MOVT_PREL: S + A - P + // R_ARM_MOVT_BREL: S + A - B(S) static inline typename This::Status - movt_abs(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval) + movt(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + Arm_address relative_address_base) { typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); Valtype addend = This::extract_arm_movw_movt_addend(val); - Valtype x = This::arm_symbol_value(object, psymval, addend, 0) >> 16; + Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16; val = This::insert_val_arm_movw_movt(val, x); elfcpp::Swap<32, big_endian>::writeval(wv, val); + // FIXME: IHI0044D says that we should check for overflow. return This::STATUS_OKAY; } - // R_ARM_THM_MOVW_ABS_NC: S + A | T - static inline typename This::Status - thm_movw_abs_nc(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval, - bool has_thumb_bit) + // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0) + // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P + // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S) + // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S) + static inline typename This::Status + thm_movw(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + Arm_address relative_address_base, + Arm_address thumb_bit, + bool check_overflow) { typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; Valtype* wv = reinterpret_cast(view); - Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16) - | elfcpp::Swap<16, big_endian>::readval(wv + 1)); - Reltype addend = extract_thumb_movw_movt_addend(val); - Reltype x = This::arm_symbol_value(object, psymval, addend, has_thumb_bit); + Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) + | elfcpp::Swap<16, big_endian>::readval(wv + 1); + Reltype addend = This::extract_thumb_movw_movt_addend(val); + Reltype x = + (psymval->value(object, addend) | thumb_bit) - relative_address_base; val = This::insert_val_thumb_movw_movt(val, x); elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16); elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff); - return This::STATUS_OKAY; + return ((check_overflow && Bits<16>::has_overflow32(x)) + ? This::STATUS_OVERFLOW + : This::STATUS_OKAY); } - // R_ARM_THM_MOVT_ABS: S + A - static inline typename This::Status - thm_movt_abs(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval) + // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0) + // R_ARM_THM_MOVT_PREL: S + A - P + // R_ARM_THM_MOVT_BREL: S + A - B(S) + static inline typename This::Status + thm_movt(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + Arm_address relative_address_base) { typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; Valtype* wv = reinterpret_cast(view); - Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16) - | elfcpp::Swap<16, big_endian>::readval(wv + 1)); + Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) + | elfcpp::Swap<16, big_endian>::readval(wv + 1); Reltype addend = This::extract_thumb_movw_movt_addend(val); - Reltype x = This::arm_symbol_value(object, psymval, addend, 0) >> 16; + Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16; val = This::insert_val_thumb_movw_movt(val, x); elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16); elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff); return This::STATUS_OKAY; } - // R_ARM_MOVW_PREL_NC: (S + A) | T - P + // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32) + static inline typename This::Status + thm_alu11(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + Arm_address address, + Arm_address thumb_bit) + { + typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; + typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; + Valtype* wv = reinterpret_cast(view); + Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) + | elfcpp::Swap<16, big_endian>::readval(wv + 1); + + // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0 + // ----------------------------------------------------------------------- + // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8 + // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8 + // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8 + // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8 + // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8 + // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8 + + // Determine a sign for the addend. + const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000 + || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1; + // Thumb2 addend encoding: + // imm12 := i | imm3 | imm8 + int32_t addend = (insn & 0xff) + | ((insn & 0x00007000) >> 4) + | ((insn & 0x04000000) >> 15); + // Apply a sign to the added. + addend *= sign; + + int32_t x = (psymval->value(object, addend) | thumb_bit) + - (address & 0xfffffffc); + Reltype val = abs(x); + // Mask out the value and a distinct part of the ADD/SUB opcode + // (bits 7:5 of opword). + insn = (insn & 0xfb0f8f00) + | (val & 0xff) + | ((val & 0x700) << 4) + | ((val & 0x800) << 15); + // Set the opcode according to whether the value to go in the + // place is negative. + if (x < 0) + insn |= 0x00a00000; + + elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16); + elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff); + return ((val > 0xfff) ? + This::STATUS_OVERFLOW : This::STATUS_OKAY); + } + + // R_ARM_THM_PC8: S + A - Pa (Thumb) + static inline typename This::Status + thm_pc8(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + Arm_address address) + { + typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; + typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype; + Valtype* wv = reinterpret_cast(view); + Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv); + Reltype addend = ((insn & 0x00ff) << 2); + int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc)); + Reltype val = abs(x); + insn = (insn & 0xff00) | ((val & 0x03fc) >> 2); + + elfcpp::Swap<16, big_endian>::writeval(wv, insn); + return ((val > 0x03fc) + ? This::STATUS_OVERFLOW + : This::STATUS_OKAY); + } + + // R_ARM_THM_PC12: S + A - Pa (Thumb32) + static inline typename This::Status + thm_pc12(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + Arm_address address) + { + typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; + typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; + Valtype* wv = reinterpret_cast(view); + Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) + | elfcpp::Swap<16, big_endian>::readval(wv + 1); + // Determine a sign for the addend (positive if the U bit is 1). + const int sign = (insn & 0x00800000) ? 1 : -1; + int32_t addend = (insn & 0xfff); + // Apply a sign to the added. + addend *= sign; + + int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc)); + Reltype val = abs(x); + // Mask out and apply the value and the U bit. + insn = (insn & 0xff7ff000) | (val & 0xfff); + // Set the U bit according to whether the value to go in the + // place is positive. + if (x >= 0) + insn |= 0x00800000; + + elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16); + elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff); + return ((val > 0xfff) ? + This::STATUS_OVERFLOW : This::STATUS_OKAY); + } + + // R_ARM_V4BX static inline typename This::Status - movw_prel_nc(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval, - Arm_address address, - bool has_thumb_bit) + v4bx(const Relocate_info<32, big_endian>* relinfo, + unsigned char* view, + const Arm_relobj* object, + const Arm_address address, + const bool is_interworking) { + typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); - Valtype addend = This::extract_arm_movw_movt_addend(val); - Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit) - - address); - val = This::insert_val_arm_movw_movt(val, x); + + // Ensure that we have a BX instruction. + gold_assert((val & 0x0ffffff0) == 0x012fff10); + const uint32_t reg = (val & 0xf); + if (is_interworking && reg != 0xf) + { + Stub_table* stub_table = + object->stub_table(relinfo->data_shndx); + gold_assert(stub_table != NULL); + + Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg); + gold_assert(stub != NULL); + + int32_t veneer_address = + stub_table->address() + stub->offset() - 8 - address; + gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET) + && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET)); + // Replace with a branch to veneer (B ) + val = (val & 0xf0000000) | 0x0a000000 + | ((veneer_address >> 2) & 0x00ffffff); + } + else + { + // Preserve Rm (lowest four bits) and the condition code + // (highest four bits). Other bits encode MOV PC,Rm. + val = (val & 0xf000000f) | 0x01a0f000; + } elfcpp::Swap<32, big_endian>::writeval(wv, val); return This::STATUS_OKAY; } - // R_ARM_MOVT_PREL: S + A - P + // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P + // R_ARM_ALU_PC_G0: ((S + A) | T) - P + // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P + // R_ARM_ALU_PC_G1: ((S + A) | T) - P + // R_ARM_ALU_PC_G2: ((S + A) | T) - P + // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S) + // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S) + // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S) + // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S) + // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S) static inline typename This::Status - movt_prel(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval, - Arm_address address) + arm_grp_alu(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + const int group, + Arm_address address, + Arm_address thumb_bit, + bool check_overflow) { + gold_assert(group >= 0 && group < 3); typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast(view); - Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); - Valtype addend = This::extract_arm_movw_movt_addend(val); - Valtype x = (This::arm_symbol_value(object, psymval, addend, 0) - - address) >> 16; - val = This::insert_val_arm_movw_movt(val, x); - elfcpp::Swap<32, big_endian>::writeval(wv, val); + Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); + + // ALU group relocations are allowed only for the ADD/SUB instructions. + // (0x00800000 - ADD, 0x00400000 - SUB) + const Valtype opcode = insn & 0x01e00000; + if (opcode != 0x00800000 && opcode != 0x00400000) + return This::STATUS_BAD_RELOC; + + // Determine a sign for the addend. + const int sign = (opcode == 0x00800000) ? 1 : -1; + // shifter = rotate_imm * 2 + const uint32_t shifter = (insn & 0xf00) >> 7; + // Initial addend value. + int32_t addend = insn & 0xff; + // Rotate addend right by shifter. + addend = (addend >> shifter) | (addend << (32 - shifter)); + // Apply a sign to the added. + addend *= sign; + + int32_t x = ((psymval->value(object, addend) | thumb_bit) - address); + Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group); + // Check for overflow if required + if (check_overflow + && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0)) + return This::STATUS_OVERFLOW; + + // Mask out the value and the ADD/SUB part of the opcode; take care + // not to destroy the S bit. + insn &= 0xff1ff000; + // Set the opcode according to whether the value to go in the + // place is negative. + insn |= ((x < 0) ? 0x00400000 : 0x00800000); + // Encode the offset (encoded Gn). + insn |= gn; + + elfcpp::Swap<32, big_endian>::writeval(wv, insn); return This::STATUS_OKAY; } - // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P + // R_ARM_LDR_PC_G0: S + A - P + // R_ARM_LDR_PC_G1: S + A - P + // R_ARM_LDR_PC_G2: S + A - P + // R_ARM_LDR_SB_G0: S + A - B(S) + // R_ARM_LDR_SB_G1: S + A - B(S) + // R_ARM_LDR_SB_G2: S + A - B(S) static inline typename This::Status - thm_movw_prel_nc(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval, - Arm_address address, - bool has_thumb_bit) + arm_grp_ldr(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + const int group, + Arm_address address) { - typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; - typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; + gold_assert(group >= 0 && group < 3); + typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast(view); - Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) - | elfcpp::Swap<16, big_endian>::readval(wv + 1); - Reltype addend = This::extract_thumb_movw_movt_addend(val); - Reltype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit) - - address); - val = This::insert_val_thumb_movw_movt(val, x); - elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16); - elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff); + Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); + + const int sign = (insn & 0x00800000) ? 1 : -1; + int32_t addend = (insn & 0xfff) * sign; + int32_t x = (psymval->value(object, addend) - address); + // Calculate the relevant G(n-1) value to obtain this stage residual. + Valtype residual = + Arm_relocate_functions::calc_grp_residual(abs(x), group - 1); + if (residual >= 0x1000) + return This::STATUS_OVERFLOW; + + // Mask out the value and U bit. + insn &= 0xff7ff000; + // Set the U bit for non-negative values. + if (x >= 0) + insn |= 0x00800000; + insn |= residual; + + elfcpp::Swap<32, big_endian>::writeval(wv, insn); return This::STATUS_OKAY; } - // R_ARM_THM_MOVT_PREL: S + A - P + // R_ARM_LDRS_PC_G0: S + A - P + // R_ARM_LDRS_PC_G1: S + A - P + // R_ARM_LDRS_PC_G2: S + A - P + // R_ARM_LDRS_SB_G0: S + A - B(S) + // R_ARM_LDRS_SB_G1: S + A - B(S) + // R_ARM_LDRS_SB_G2: S + A - B(S) static inline typename This::Status - thm_movt_prel(unsigned char *view, - const Sized_relobj<32, big_endian>* object, - const Symbol_value<32>* psymval, - Arm_address address) + arm_grp_ldrs(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + const int group, + Arm_address address) { - typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; - typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; + gold_assert(group >= 0 && group < 3); + typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast(view); - Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) - | elfcpp::Swap<16, big_endian>::readval(wv + 1); - Reltype addend = This::extract_thumb_movw_movt_addend(val); - Reltype x = (This::arm_symbol_value(object, psymval, addend, 0) - - address) >> 16; - val = This::insert_val_thumb_movw_movt(val, x); - elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16); - elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff); + Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); + + const int sign = (insn & 0x00800000) ? 1 : -1; + int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign; + int32_t x = (psymval->value(object, addend) - address); + // Calculate the relevant G(n-1) value to obtain this stage residual. + Valtype residual = + Arm_relocate_functions::calc_grp_residual(abs(x), group - 1); + if (residual >= 0x100) + return This::STATUS_OVERFLOW; + + // Mask out the value and U bit. + insn &= 0xff7ff0f0; + // Set the U bit for non-negative values. + if (x >= 0) + insn |= 0x00800000; + insn |= ((residual & 0xf0) << 4) | (residual & 0xf); + + elfcpp::Swap<32, big_endian>::writeval(wv, insn); + return This::STATUS_OKAY; + } + + // R_ARM_LDC_PC_G0: S + A - P + // R_ARM_LDC_PC_G1: S + A - P + // R_ARM_LDC_PC_G2: S + A - P + // R_ARM_LDC_SB_G0: S + A - B(S) + // R_ARM_LDC_SB_G1: S + A - B(S) + // R_ARM_LDC_SB_G2: S + A - B(S) + static inline typename This::Status + arm_grp_ldc(unsigned char* view, + const Sized_relobj_file<32, big_endian>* object, + const Symbol_value<32>* psymval, + const int group, + Arm_address address) + { + gold_assert(group >= 0 && group < 3); + typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; + Valtype* wv = reinterpret_cast(view); + Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); + + const int sign = (insn & 0x00800000) ? 1 : -1; + int32_t addend = ((insn & 0xff) << 2) * sign; + int32_t x = (psymval->value(object, addend) - address); + // Calculate the relevant G(n-1) value to obtain this stage residual. + Valtype residual = + Arm_relocate_functions::calc_grp_residual(abs(x), group - 1); + if ((residual & 0x3) != 0 || residual >= 0x400) + return This::STATUS_OVERFLOW; + + // Mask out the value and U bit. + insn &= 0xff7fff00; + // Set the U bit for non-negative values. + if (x >= 0) + insn |= 0x00800000; + insn |= (residual >> 2); + + elfcpp::Swap<32, big_endian>::writeval(wv, insn); return This::STATUS_OKAY; } }; +// Relocate ARM long branches. This handles relocation types +// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25. +// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly +// undefined and we do not use PLT in this relocation. In such a case, +// the branch is converted into an NOP. + +template +typename Arm_relocate_functions::Status +Arm_relocate_functions::arm_branch_common( + unsigned int r_type, + const Relocate_info<32, big_endian>* relinfo, + unsigned char* view, + const Sized_symbol<32>* gsym, + const Arm_relobj* object, + unsigned int r_sym, + const Symbol_value<32>* psymval, + Arm_address address, + Arm_address thumb_bit, + bool is_weakly_undefined_without_plt) +{ + typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; + Valtype* wv = reinterpret_cast(view); + Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); + + bool insn_is_b = (((val >> 28) & 0xf) <= 0xe) + && ((val & 0x0f000000UL) == 0x0a000000UL); + bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL; + bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe) + && ((val & 0x0f000000UL) == 0x0b000000UL); + bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL; + bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL; + + // Check that the instruction is valid. + if (r_type == elfcpp::R_ARM_CALL) + { + if (!insn_is_uncond_bl && !insn_is_blx) + return This::STATUS_BAD_RELOC; + } + else if (r_type == elfcpp::R_ARM_JUMP24) + { + if (!insn_is_b && !insn_is_cond_bl) + return This::STATUS_BAD_RELOC; + } + else if (r_type == elfcpp::R_ARM_PLT32) + { + if (!insn_is_any_branch) + return This::STATUS_BAD_RELOC; + } + else if (r_type == elfcpp::R_ARM_XPC25) + { + // FIXME: AAELF document IH0044C does not say much about it other + // than it being obsolete. + if (!insn_is_any_branch) + return This::STATUS_BAD_RELOC; + } + else + gold_unreachable(); + + // A branch to an undefined weak symbol is turned into a jump to + // the next instruction unless a PLT entry will be created. + // Do the same for local undefined symbols. + // The jump to the next instruction is optimized as a NOP depending + // on the architecture. + const Target_arm* arm_target = + Target_arm::default_target(); + if (is_weakly_undefined_without_plt) + { + gold_assert(!parameters->options().relocatable()); + Valtype cond = val & 0xf0000000U; + if (arm_target->may_use_arm_nop()) + val = cond | 0x0320f000; + else + val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0. + elfcpp::Swap<32, big_endian>::writeval(wv, val); + return This::STATUS_OKAY; + } + + Valtype addend = Bits<26>::sign_extend32(val << 2); + Valtype branch_target = psymval->value(object, addend); + int32_t branch_offset = branch_target - address; + + // We need a stub if the branch offset is too large or if we need + // to switch mode. + bool may_use_blx = arm_target->may_use_v5t_interworking(); + Reloc_stub* stub = NULL; + + if (!parameters->options().relocatable() + && (Bits<26>::has_overflow32(branch_offset) + || ((thumb_bit != 0) + && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))) + { + Valtype unadjusted_branch_target = psymval->value(object, 0); + + Stub_type stub_type = + Reloc_stub::stub_type_for_reloc(r_type, address, + unadjusted_branch_target, + (thumb_bit != 0)); + if (stub_type != arm_stub_none) + { + Stub_table* stub_table = + object->stub_table(relinfo->data_shndx); + gold_assert(stub_table != NULL); + + Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend); + stub = stub_table->find_reloc_stub(stub_key); + gold_assert(stub != NULL); + thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0; + branch_target = stub_table->address() + stub->offset() + addend; + branch_offset = branch_target - address; + gold_assert(!Bits<26>::has_overflow32(branch_offset)); + } + } + + // At this point, if we still need to switch mode, the instruction + // must either be a BLX or a BL that can be converted to a BLX. + if (thumb_bit != 0) + { + // Turn BL to BLX. + gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL); + val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23); + } + + val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL); + elfcpp::Swap<32, big_endian>::writeval(wv, val); + return (Bits<26>::has_overflow32(branch_offset) + ? This::STATUS_OVERFLOW + : This::STATUS_OKAY); +} + +// Relocate THUMB long branches. This handles relocation types +// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22. +// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly +// undefined and we do not use PLT in this relocation. In such a case, +// the branch is converted into an NOP. + +template +typename Arm_relocate_functions::Status +Arm_relocate_functions::thumb_branch_common( + unsigned int r_type, + const Relocate_info<32, big_endian>* relinfo, + unsigned char* view, + const Sized_symbol<32>* gsym, + const Arm_relobj* object, + unsigned int r_sym, + const Symbol_value<32>* psymval, + Arm_address address, + Arm_address thumb_bit, + bool is_weakly_undefined_without_plt) +{ + typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; + Valtype* wv = reinterpret_cast(view); + uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); + uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); + + // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference + // into account. + bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U; + bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U; + + // Check that the instruction is valid. + if (r_type == elfcpp::R_ARM_THM_CALL) + { + if (!is_bl_insn && !is_blx_insn) + return This::STATUS_BAD_RELOC; + } + else if (r_type == elfcpp::R_ARM_THM_JUMP24) + { + // This cannot be a BLX. + if (!is_bl_insn) + return This::STATUS_BAD_RELOC; + } + else if (r_type == elfcpp::R_ARM_THM_XPC22) + { + // Check for Thumb to Thumb call. + if (!is_blx_insn) + return This::STATUS_BAD_RELOC; + if (thumb_bit != 0) + { + gold_warning(_("%s: Thumb BLX instruction targets " + "thumb function '%s'."), + object->name().c_str(), + (gsym ? gsym->name() : "(local)")); + // Convert BLX to BL. + lower_insn |= 0x1000U; + } + } + else + gold_unreachable(); + + // A branch to an undefined weak symbol is turned into a jump to + // the next instruction unless a PLT entry will be created. + // The jump to the next instruction is optimized as a NOP.W for + // Thumb-2 enabled architectures. + const Target_arm* arm_target = + Target_arm::default_target(); + if (is_weakly_undefined_without_plt) + { + gold_assert(!parameters->options().relocatable()); + if (arm_target->may_use_thumb2_nop()) + { + elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af); + elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000); + } + else + { + elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000); + elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00); + } + return This::STATUS_OKAY; + } + + int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn); + Arm_address branch_target = psymval->value(object, addend); + + // For BLX, bit 1 of target address comes from bit 1 of base address. + bool may_use_blx = arm_target->may_use_v5t_interworking(); + if (thumb_bit == 0 && may_use_blx) + branch_target = Bits<32>::bit_select32(branch_target, address, 0x2); + + int32_t branch_offset = branch_target - address; + + // We need a stub if the branch offset is too large or if we need + // to switch mode. + bool thumb2 = arm_target->using_thumb2(); + if (!parameters->options().relocatable() + && ((!thumb2 && Bits<23>::has_overflow32(branch_offset)) + || (thumb2 && Bits<25>::has_overflow32(branch_offset)) + || ((thumb_bit == 0) + && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx) + || r_type == elfcpp::R_ARM_THM_JUMP24)))) + { + Arm_address unadjusted_branch_target = psymval->value(object, 0); + + Stub_type stub_type = + Reloc_stub::stub_type_for_reloc(r_type, address, + unadjusted_branch_target, + (thumb_bit != 0)); + + if (stub_type != arm_stub_none) + { + Stub_table* stub_table = + object->stub_table(relinfo->data_shndx); + gold_assert(stub_table != NULL); + + Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend); + Reloc_stub* stub = stub_table->find_reloc_stub(stub_key); + gold_assert(stub != NULL); + thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0; + branch_target = stub_table->address() + stub->offset() + addend; + if (thumb_bit == 0 && may_use_blx) + branch_target = Bits<32>::bit_select32(branch_target, address, 0x2); + branch_offset = branch_target - address; + } + } + + // At this point, if we still need to switch mode, the instruction + // must either be a BLX or a BL that can be converted to a BLX. + if (thumb_bit == 0) + { + gold_assert(may_use_blx + && (r_type == elfcpp::R_ARM_THM_CALL + || r_type == elfcpp::R_ARM_THM_XPC22)); + // Make sure this is a BLX. + lower_insn &= ~0x1000U; + } + else + { + // Make sure this is a BL. + lower_insn |= 0x1000U; + } + + // For a BLX instruction, make sure that the relocation is rounded up + // to a word boundary. This follows the semantics of the instruction + // which specifies that bit 1 of the target address will come from bit + // 1 of the base address. + if ((lower_insn & 0x5000U) == 0x4000U) + gold_assert((branch_offset & 3) == 0); + + // Put BRANCH_OFFSET back into the insn. Assumes two's complement. + // We use the Thumb-2 encoding, which is safe even if dealing with + // a Thumb-1 instruction by virtue of our overflow check above. */ + upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset); + lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset); + + elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn); + elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn); + + gold_assert(!Bits<25>::has_overflow32(branch_offset)); + + return ((thumb2 + ? Bits<25>::has_overflow32(branch_offset) + : Bits<23>::has_overflow32(branch_offset)) + ? This::STATUS_OVERFLOW + : This::STATUS_OKAY); +} + +// Relocate THUMB-2 long conditional branches. +// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly +// undefined and we do not use PLT in this relocation. In such a case, +// the branch is converted into an NOP. + +template +typename Arm_relocate_functions::Status +Arm_relocate_functions::thm_jump19( + unsigned char* view, + const Arm_relobj* object, + const Symbol_value<32>* psymval, + Arm_address address, + Arm_address thumb_bit) +{ + typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; + Valtype* wv = reinterpret_cast(view); + uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); + uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); + int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn); + + Arm_address branch_target = psymval->value(object, addend); + int32_t branch_offset = branch_target - address; + + // ??? Should handle interworking? GCC might someday try to + // use this for tail calls. + // FIXME: We do support thumb entry to PLT yet. + if (thumb_bit == 0) + { + gold_error(_("conditional branch to PLT in THUMB-2 not supported yet.")); + return This::STATUS_BAD_RELOC; + } + + // Put RELOCATION back into the insn. + upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset); + lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset); + + // Put the relocated value back in the object file: + elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn); + elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn); + + return (Bits<21>::has_overflow32(branch_offset) + ? This::STATUS_OVERFLOW + : This::STATUS_OKAY); +} + // Get the GOT section, creating it if necessary. template -Output_data_got<32, big_endian>* +Arm_output_data_got* Target_arm::got_section(Symbol_table* symtab, Layout* layout) { if (this->got_ == NULL) { gold_assert(symtab != NULL && layout != NULL); - this->got_ = new Output_data_got<32, big_endian>(); + // When using -z now, we can treat .got as a relro section. + // Without -z now, it is modified after program startup by lazy + // PLT relocations. + bool is_got_relro = parameters->options().now(); + Output_section_order got_order = (is_got_relro + ? ORDER_RELRO_LAST + : ORDER_DATA); + + // Unlike some targets (.e.g x86), ARM does not use separate .got and + // .got.plt sections in output. The output .got section contains both + // PLT and non-PLT GOT entries. + this->got_ = new Arm_output_data_got(symtab, layout); - Output_section* os; - os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, - (elfcpp::SHF_ALLOC - | elfcpp::SHF_WRITE), - this->got_); - os->set_is_relro(); + layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, + (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), + this->got_, got_order, is_got_relro); // The old GNU linker creates a .got.plt section. We just // create another set of data in the .got section. Note that we // always create a PLT if we create a GOT, although the PLT // might be empty. this->got_plt_ = new Output_data_space(4, "** GOT PLT"); - os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, - (elfcpp::SHF_ALLOC - | elfcpp::SHF_WRITE), - this->got_plt_); - os->set_is_relro(); + layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, + (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), + this->got_plt_, got_order, is_got_relro); // The first three entries are reserved. this->got_plt_->set_current_data_size(3 * 4); // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT. symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, + Symbol_table::PREDEFINED, this->got_plt_, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); + + // If there are any IRELATIVE relocations, they get GOT entries + // in .got.plt after the jump slot entries. + this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT"); + layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, + (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), + this->got_irelative_, + got_order, is_got_relro); + } return this->got_; } @@ -2163,13 +4377,43 @@ Target_arm::rel_dyn_section(Layout* layout) if (this->rel_dyn_ == NULL) { gold_assert(layout != NULL); + // Create both relocation sections in the same place, so as to ensure + // their relative order in the output section. this->rel_dyn_ = new Reloc_section(parameters->options().combreloc()); + this->rel_irelative_ = new Reloc_section(false); layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL, - elfcpp::SHF_ALLOC, this->rel_dyn_); + elfcpp::SHF_ALLOC, this->rel_dyn_, + ORDER_DYNAMIC_RELOCS, false); + layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL, + elfcpp::SHF_ALLOC, this->rel_irelative_, + ORDER_DYNAMIC_RELOCS, false); } return this->rel_dyn_; } + +// Get the section to use for IRELATIVE relocs, creating it if necessary. These +// go in .rela.dyn, but only after all other dynamic relocations. They need to +// follow the other dynamic relocations so that they can refer to global +// variables initialized by those relocs. + +template +typename Target_arm::Reloc_section* +Target_arm::rel_irelative_section(Layout* layout) +{ + if (this->rel_irelative_ == NULL) + { + // Delegate the creation to rel_dyn_section so as to ensure their order in + // the output section. + this->rel_dyn_section(layout); + gold_assert(this->rel_irelative_ != NULL + && (this->rel_dyn_->output_section() + == this->rel_irelative_->output_section())); + } + return this->rel_irelative_; +} + + // Insn_template methods. // Return byte size of an instruction template. @@ -2180,6 +4424,7 @@ Insn_template::size() const switch (this->type()) { case THUMB16_TYPE: + case THUMB16_SPECIAL_TYPE: return 2; case ARM_TYPE: case THUMB32_TYPE: @@ -2198,6 +4443,7 @@ Insn_template::alignment() const switch (this->type()) { case THUMB16_TYPE: + case THUMB16_SPECIAL_TYPE: case THUMB32_TYPE: return 2; case ARM_TYPE: @@ -2228,16 +4474,17 @@ Stub_template::Stub_template( switch (insns[i].type()) { case Insn_template::THUMB16_TYPE: + case Insn_template::THUMB16_SPECIAL_TYPE: if (i == 0) this->entry_in_thumb_mode_ = true; break; case Insn_template::THUMB32_TYPE: - if (insns[i].r_type() != elfcpp::R_ARM_NONE) + if (insns[i].r_type() != elfcpp::R_ARM_NONE) this->relocs_.push_back(Reloc(i, offset)); if (i == 0) this->entry_in_thumb_mode_ = true; - break; + break; case Insn_template::ARM_TYPE: // Handle cases where the target is encoded within the @@ -2255,11 +4502,75 @@ Stub_template::Stub_template( default: gold_unreachable(); } - offset += insn_size; + offset += insn_size; } this->size_ = offset; } +// Stub methods. + +// Template to implement do_write for a specific target endianness. + +template +void inline +Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size) +{ + const Stub_template* stub_template = this->stub_template(); + const Insn_template* insns = stub_template->insns(); + const bool enable_be8 = parameters->options().be8(); + + unsigned char* pov = view; + for (size_t i = 0; i < stub_template->insn_count(); i++) + { + switch (insns[i].type()) + { + case Insn_template::THUMB16_TYPE: + if (enable_be8) + elfcpp::Swap<16, false>::writeval(pov, insns[i].data() & 0xffff); + else + elfcpp::Swap<16, big_endian>::writeval(pov, + insns[i].data() & 0xffff); + break; + case Insn_template::THUMB16_SPECIAL_TYPE: + if (enable_be8) + elfcpp::Swap<16, false>::writeval(pov, this->thumb16_special(i)); + else + elfcpp::Swap<16, big_endian>::writeval(pov, + this->thumb16_special(i)); + break; + case Insn_template::THUMB32_TYPE: + { + uint32_t hi = (insns[i].data() >> 16) & 0xffff; + uint32_t lo = insns[i].data() & 0xffff; + if (enable_be8) + { + elfcpp::Swap<16, false>::writeval(pov, hi); + elfcpp::Swap<16, false>::writeval(pov + 2, lo); + } + else + { + elfcpp::Swap<16, big_endian>::writeval(pov, hi); + elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo); + } + } + break; + case Insn_template::ARM_TYPE: + if (enable_be8) + elfcpp::Swap<32, false>::writeval(pov, insns[i].data()); + else + elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data()); + break; + case Insn_template::DATA_TYPE: + elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data()); + break; + default: + gold_unreachable(); + } + pov += insns[i].size(); + } + gold_assert(static_cast(pov - view) == view_size); +} + // Reloc_stub::Key methods. // Dump a Key as a string for debugging. @@ -2300,7 +4611,7 @@ Reloc_stub::Key::name() const // Determine the type of stub needed, if any, for a relocation of R_TYPE at // LOCATION to DESTINATION. // This code is based on the arm_type_of_stub function in -// bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub +// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub // class simple. Stub_type @@ -2315,32 +4626,40 @@ Reloc_stub::stub_type_for_reloc( // This is a bit ugly but we want to avoid using a templated class for // big and little endianities. bool may_use_blx; - bool should_force_pic_veneer; + bool should_force_pic_veneer = parameters->options().pic_veneer(); bool thumb2; bool thumb_only; if (parameters->target().is_big_endian()) { - const Target_arm& big_endian_target = + const Target_arm* big_endian_target = Target_arm::default_target(); - may_use_blx = big_endian_target.may_use_blx(); - should_force_pic_veneer = big_endian_target.should_force_pic_veneer(); - thumb2 = big_endian_target.using_thumb2(); - thumb_only = big_endian_target.using_thumb_only(); + may_use_blx = big_endian_target->may_use_v5t_interworking(); + should_force_pic_veneer |= big_endian_target->should_force_pic_veneer(); + thumb2 = big_endian_target->using_thumb2(); + thumb_only = big_endian_target->using_thumb_only(); } else { - const Target_arm& little_endian_target = + const Target_arm* little_endian_target = Target_arm::default_target(); - may_use_blx = little_endian_target.may_use_blx(); - should_force_pic_veneer = little_endian_target.should_force_pic_veneer(); - thumb2 = little_endian_target.using_thumb2(); - thumb_only = little_endian_target.using_thumb_only(); + may_use_blx = little_endian_target->may_use_v5t_interworking(); + should_force_pic_veneer |= + little_endian_target->should_force_pic_veneer(); + thumb2 = little_endian_target->using_thumb2(); + thumb_only = little_endian_target->using_thumb_only(); } - int64_t branch_offset = (int64_t)destination - location; - + int64_t branch_offset; + bool output_is_position_independent = + parameters->options().output_is_position_independent(); if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24) { + // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the + // base address (instruction address + 4). + if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb) + destination = Bits<32>::bit_select32(destination, location, 0x2); + branch_offset = static_cast(destination) - location; + // Handle cases where: // - this call goes too far (different Thumb/Thumb2 max // distance) @@ -2361,7 +4680,8 @@ Reloc_stub::stub_type_for_reloc( // Thumb to thumb. if (!thumb_only) { - stub_type = (parameters->options().shared() | should_force_pic_veneer) + stub_type = (output_is_position_independent + || should_force_pic_veneer) // PIC stubs. ? ((may_use_blx && (r_type == elfcpp::R_ARM_THM_CALL)) @@ -2381,7 +4701,8 @@ Reloc_stub::stub_type_for_reloc( } else { - stub_type = (parameters->options().shared() | should_force_pic_veneer) + stub_type = (output_is_position_independent + || should_force_pic_veneer) ? arm_stub_long_branch_thumb_only_pic // PIC stub. : arm_stub_long_branch_thumb_only; // non-PIC stub. } @@ -2389,11 +4710,11 @@ Reloc_stub::stub_type_for_reloc( else { // Thumb to arm. - + // FIXME: We should check that the input section is from an // object that has interwork enabled. - stub_type = (parameters->options().shared() + stub_type = (output_is_position_independent || should_force_pic_veneer) // PIC stubs. ? ((may_use_blx @@ -2419,6 +4740,7 @@ Reloc_stub::stub_type_for_reloc( || r_type == elfcpp::R_ARM_JUMP24 || r_type == elfcpp::R_ARM_PLT32) { + branch_offset = static_cast(destination) - location; if (target_is_thumb) { // Arm to thumb. @@ -2434,7 +4756,7 @@ Reloc_stub::stub_type_for_reloc( || (r_type == elfcpp::R_ARM_JUMP24) || (r_type == elfcpp::R_ARM_PLT32)) { - stub_type = (parameters->options().shared() + stub_type = (output_is_position_independent || should_force_pic_veneer) // PIC stubs. ? (may_use_blx @@ -2453,7 +4775,7 @@ Reloc_stub::stub_type_for_reloc( if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)) { - stub_type = (parameters->options().shared() + stub_type = (output_is_position_independent || should_force_pic_veneer) ? arm_stub_long_branch_any_arm_pic // PIC stubs. : arm_stub_long_branch_any_any; /// non-PIC. @@ -2464,57 +4786,23 @@ Reloc_stub::stub_type_for_reloc( return stub_type; } -// Template to implement do_write for a specific target endianity. - -template -void inline -Reloc_stub::do_fixed_endian_write(unsigned char* view, - section_size_type view_size) -{ - const Stub_template* stub_template = this->stub_template(); - const Insn_template* insns = stub_template->insns(); - - // FIXME: We do not handle BE8 encoding yet. - unsigned char* pov = view; - for (size_t i = 0; i < stub_template->insn_count(); i++) - { - switch (insns[i].type()) - { - case Insn_template::THUMB16_TYPE: - // Non-zero reloc addends are only used in Cortex-A8 stubs. - gold_assert(insns[i].reloc_addend() == 0); - elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff); - break; - case Insn_template::THUMB32_TYPE: - { - uint32_t hi = (insns[i].data() >> 16) & 0xffff; - uint32_t lo = insns[i].data() & 0xffff; - elfcpp::Swap<16, big_endian>::writeval(pov, hi); - elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo); - } - break; - case Insn_template::ARM_TYPE: - case Insn_template::DATA_TYPE: - elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data()); - break; - default: - gold_unreachable(); - } - pov += insns[i].size(); - } - gold_assert(static_cast(pov - view) == view_size); -} +// Cortex_a8_stub methods. -// Write a reloc stub to VIEW with endianity specified by BIG_ENDIAN. +// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template. +// I is the position of the instruction template in the stub template. -void -Reloc_stub::do_write(unsigned char* view, section_size_type view_size, - bool big_endian) +uint16_t +Cortex_a8_stub::do_thumb16_special(size_t i) { - if (big_endian) - this->do_fixed_endian_write(view, view_size); - else - this->do_fixed_endian_write(view, view_size); + // The only use of this is to copy condition code from a conditional + // branch being worked around to the corresponding conditional branch in + // to the stub. + gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond + && i == 0); + uint16_t data = this->stub_template()->insns()[i].data(); + gold_assert((data & 0xff00U) == 0xd000U); + data |= ((this->original_insn_ >> 22) & 0xf) << 8; + return data; } // Stub_factory methods. @@ -2523,16 +4811,16 @@ Stub_factory::Stub_factory() { // The instruction template sequences are declared as static // objects and initialized first time the constructor runs. - + // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx // to reach the stub if necessary. static const Insn_template elf32_arm_stub_long_branch_any_any[] = { Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4] Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), - // dcd R_ARM_ABS32(X) + // dcd R_ARM_ABS32(X) }; - + // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not // available. static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] = @@ -2540,9 +4828,9 @@ Stub_factory::Stub_factory() Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0] Insn_template::arm_insn(0xe12fff1c), // bx ip Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), - // dcd R_ARM_ABS32(X) + // dcd R_ARM_ABS32(X) }; - + // Thumb -> Thumb long branch stub. Used on M-profile architectures. static const Insn_template elf32_arm_stub_long_branch_thumb_only[] = { @@ -2553,9 +4841,9 @@ Stub_factory::Stub_factory() Insn_template::thumb16_insn(0x4760), // bx ip Insn_template::thumb16_insn(0xbf00), // nop Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), - // dcd R_ARM_ABS32(X) + // dcd R_ARM_ABS32(X) }; - + // V4T Thumb -> Thumb long branch stub. Using the stack is not // allowed. static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] = @@ -2565,9 +4853,9 @@ Stub_factory::Stub_factory() Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0] Insn_template::arm_insn(0xe12fff1c), // bx ip Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), - // dcd R_ARM_ABS32(X) + // dcd R_ARM_ABS32(X) }; - + // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not // available. static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] = @@ -2576,9 +4864,9 @@ Stub_factory::Stub_factory() Insn_template::thumb16_insn(0x46c0), // nop Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4] Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), - // dcd R_ARM_ABS32(X) + // dcd R_ARM_ABS32(X) }; - + // V4T Thumb -> ARM short branch stub. Shorter variant of the above // one, when the destination is close enough. static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] = @@ -2587,7 +4875,7 @@ Stub_factory::Stub_factory() Insn_template::thumb16_insn(0x46c0), // nop Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8) }; - + // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use // blx to reach the stub if necessary. static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] = @@ -2595,9 +4883,9 @@ Stub_factory::Stub_factory() Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc] Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4), - // dcd R_ARM_REL32(X-4) + // dcd R_ARM_REL32(X-4) }; - + // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use // blx to reach the stub if necessary. We can not add into pc; // it is not guaranteed to mode switch (different in ARMv6 and @@ -2608,9 +4896,9 @@ Stub_factory::Stub_factory() Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip Insn_template::arm_insn(0xe12fff1c), // bx ip Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0), - // dcd R_ARM_REL32(X) + // dcd R_ARM_REL32(X) }; - + // V4T ARM -> ARM long branch stub, PIC. static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] = { @@ -2618,9 +4906,9 @@ Stub_factory::Stub_factory() Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip Insn_template::arm_insn(0xe12fff1c), // bx ip Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0), - // dcd R_ARM_REL32(X) + // dcd R_ARM_REL32(X) }; - + // V4T Thumb -> ARM long branch stub, PIC. static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] = { @@ -2629,9 +4917,9 @@ Stub_factory::Stub_factory() Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0] Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4), - // dcd R_ARM_REL32(X) + // dcd R_ARM_REL32(X) }; - + // Thumb -> Thumb long branch stub, PIC. Used on M-profile // architectures. static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] = @@ -2643,9 +4931,9 @@ Stub_factory::Stub_factory() Insn_template::thumb16_insn(0xbc01), // pop {r0} Insn_template::thumb16_insn(0x4760), // bx ip Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4), - // dcd R_ARM_REL32(X) + // dcd R_ARM_REL32(X) }; - + // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not // allowed. static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] = @@ -2656,14 +4944,14 @@ Stub_factory::Stub_factory() Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip Insn_template::arm_insn(0xe12fff1c), // bx ip Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0), - // dcd R_ARM_REL32(X) + // dcd R_ARM_REL32(X) }; - + // Cortex-A8 erratum-workaround stubs. - + // Stub used for conditional branches (which may be beyond +/-1MB away, // so we can't use a conditional branch to reach this stub). - + // original code: // // b X @@ -2674,29 +4962,38 @@ Stub_factory::Stub_factory() Insn_template::thumb16_bcond_insn(0xd001), // b.n true Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after Insn_template::thumb32_b_insn(0xf000b800, -4) // true: - // b.w X + // b.w X }; - + // Stub used for b.w and bl.w instructions. - + static const Insn_template elf32_arm_stub_a8_veneer_b[] = { Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest }; - + static const Insn_template elf32_arm_stub_a8_veneer_bl[] = { Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest }; - + // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w // instruction (which switches to ARM mode) to point to this stub. Jump to // the real destination using an ARM-mode branch. - const Insn_template elf32_arm_stub_a8_veneer_blx[] = + static const Insn_template elf32_arm_stub_a8_veneer_blx[] = { Insn_template::arm_rel_insn(0xea000000, -8) // b dest }; + // Stub used to provide an interworking for R_ARM_V4BX relocation + // (bx r[n] instruction). + static const Insn_template elf32_arm_stub_v4_veneer_bx[] = + { + Insn_template::arm_insn(0xe3100001), // tst r, #1 + Insn_template::arm_insn(0x01a0f000), // moveq pc, r + Insn_template::arm_insn(0xe12fff10) // bx r + }; + // Fill in the stub template look-up table. Stub templates are constructed // per instance of Stub_factory for fast look-up without locking // in a thread-enabled environment. @@ -2721,23 +5018,47 @@ Stub_factory::Stub_factory() // Stub_table methods. -// Add a STUB with using KEY. Caller is reponsible for avoid adding -// if already a STUB with the same key has been added. +// Remove all Cortex-A8 stub. + +template +void +Stub_table::remove_all_cortex_a8_stubs() +{ + for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin(); + p != this->cortex_a8_stubs_.end(); + ++p) + delete p->second; + this->cortex_a8_stubs_.clear(); +} + +// Relocate one stub. This is a helper for Stub_table::relocate_stubs(). template void -Stub_table::add_reloc_stub( - Reloc_stub* stub, - const Reloc_stub::Key& key) +Stub_table::relocate_stub( + Stub* stub, + const Relocate_info<32, big_endian>* relinfo, + Target_arm* arm_target, + Output_section* output_section, + unsigned char* view, + Arm_address address, + section_size_type view_size) { const Stub_template* stub_template = stub->stub_template(); - gold_assert(stub_template->type() == key.stub_type()); - this->reloc_stubs_[key] = stub; - if (this->addralign_ < stub_template->alignment()) - this->addralign_ = stub_template->alignment(); - this->has_been_changed_ = true; + if (stub_template->reloc_count() != 0) + { + // Adjust view to cover the stub only. + section_size_type offset = stub->offset(); + section_size_type stub_size = stub_template->size(); + gold_assert(offset + stub_size <= view_size); + + arm_target->relocate_stub(stub, relinfo, output_section, view + offset, + address + offset, stub_size); + } } +// Relocate all stubs in this stub table. + template void Stub_table::relocate_stubs( @@ -2754,50 +5075,29 @@ Stub_table::relocate_stubs( && (view_size == static_cast(this->data_size()))); + // Relocate all relocation stubs. for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin(); p != this->reloc_stubs_.end(); ++p) - { - Reloc_stub* stub = p->second; - const Stub_template* stub_template = stub->stub_template(); - if (stub_template->reloc_count() != 0) - { - // Adjust view to cover the stub only. - section_size_type offset = stub->offset(); - section_size_type stub_size = stub_template->size(); - gold_assert(offset + stub_size <= view_size); - - arm_target->relocate_stub(stub, relinfo, output_section, - view + offset, address + offset, - stub_size); - } - } -} + this->relocate_stub(p->second, relinfo, arm_target, output_section, view, + address, view_size); -// Reset address and file offset. + // Relocate all Cortex-A8 stubs. + for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin(); + p != this->cortex_a8_stubs_.end(); + ++p) + this->relocate_stub(p->second, relinfo, arm_target, output_section, view, + address, view_size); -template -void -Stub_table::do_reset_address_and_file_offset() -{ - off_t off = 0; - uint64_t max_addralign = 1; - for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin(); - p != this->reloc_stubs_.end(); - ++p) + // Relocate all ARM V4BX stubs. + for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin(); + p != this->arm_v4bx_stubs_.end(); + ++p) { - Reloc_stub* stub = p->second; - const Stub_template* stub_template = stub->stub_template(); - uint64_t stub_addralign = stub_template->alignment(); - max_addralign = std::max(max_addralign, stub_addralign); - off = align_address(off, stub_addralign); - stub->set_offset(off); - stub->reset_destination_address(); - off += stub_template->size(); + if (*p != NULL) + this->relocate_stub(*p, relinfo, arm_target, output_section, view, + address, view_size); } - - this->addralign_ = max_addralign; - this->set_current_data_size_for_child(off); } // Write out the stubs to file. @@ -2811,6 +5111,7 @@ Stub_table::do_write(Output_file* of) convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); + // Write relocation stubs. for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin(); p != this->reloc_stubs_.end(); ++p) @@ -2822,10 +5123,167 @@ Stub_table::do_write(Output_file* of) stub->stub_template()->alignment())); stub->write(oview + stub->offset(), stub->stub_template()->size(), big_endian); - } + } + + // Write Cortex-A8 stubs. + for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin(); + p != this->cortex_a8_stubs_.end(); + ++p) + { + Cortex_a8_stub* stub = p->second; + Arm_address address = this->address() + stub->offset(); + gold_assert(address + == align_address(address, + stub->stub_template()->alignment())); + stub->write(oview + stub->offset(), stub->stub_template()->size(), + big_endian); + } + + // Write ARM V4BX relocation stubs. + for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin(); + p != this->arm_v4bx_stubs_.end(); + ++p) + { + if (*p == NULL) + continue; + + Arm_address address = this->address() + (*p)->offset(); + gold_assert(address + == align_address(address, + (*p)->stub_template()->alignment())); + (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(), + big_endian); + } + of->write_output_view(this->offset(), oview_size, oview); } +// Update the data size and address alignment of the stub table at the end +// of a relaxation pass. Return true if either the data size or the +// alignment changed in this relaxation pass. + +template +bool +Stub_table::update_data_size_and_addralign() +{ + // Go over all stubs in table to compute data size and address alignment. + off_t size = this->reloc_stubs_size_; + unsigned addralign = this->reloc_stubs_addralign_; + + for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin(); + p != this->cortex_a8_stubs_.end(); + ++p) + { + const Stub_template* stub_template = p->second->stub_template(); + addralign = std::max(addralign, stub_template->alignment()); + size = (align_address(size, stub_template->alignment()) + + stub_template->size()); + } + + for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin(); + p != this->arm_v4bx_stubs_.end(); + ++p) + { + if (*p == NULL) + continue; + + const Stub_template* stub_template = (*p)->stub_template(); + addralign = std::max(addralign, stub_template->alignment()); + size = (align_address(size, stub_template->alignment()) + + stub_template->size()); + } + + // Check if either data size or alignment changed in this pass. + // Update prev_data_size_ and prev_addralign_. These will be used + // as the current data size and address alignment for the next pass. + bool changed = size != this->prev_data_size_; + this->prev_data_size_ = size; + + if (addralign != this->prev_addralign_) + changed = true; + this->prev_addralign_ = addralign; + + return changed; +} + +// Finalize the stubs. This sets the offsets of the stubs within the stub +// table. It also marks all input sections needing Cortex-A8 workaround. + +template +void +Stub_table::finalize_stubs() +{ + off_t off = this->reloc_stubs_size_; + for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin(); + p != this->cortex_a8_stubs_.end(); + ++p) + { + Cortex_a8_stub* stub = p->second; + const Stub_template* stub_template = stub->stub_template(); + uint64_t stub_addralign = stub_template->alignment(); + off = align_address(off, stub_addralign); + stub->set_offset(off); + off += stub_template->size(); + + // Mark input section so that we can determine later if a code section + // needs the Cortex-A8 workaround quickly. + Arm_relobj* arm_relobj = + Arm_relobj::as_arm_relobj(stub->relobj()); + arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx()); + } + + for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin(); + p != this->arm_v4bx_stubs_.end(); + ++p) + { + if (*p == NULL) + continue; + + const Stub_template* stub_template = (*p)->stub_template(); + uint64_t stub_addralign = stub_template->alignment(); + off = align_address(off, stub_addralign); + (*p)->set_offset(off); + off += stub_template->size(); + } + + gold_assert(off <= this->prev_data_size_); +} + +// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS +// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address +// of the address range seen by the linker. + +template +void +Stub_table::apply_cortex_a8_workaround_to_address_range( + Target_arm* arm_target, + unsigned char* view, + Arm_address view_address, + section_size_type view_size) +{ + // Cortex-A8 stubs are sorted by addresses of branches being fixed up. + for (Cortex_a8_stub_list::const_iterator p = + this->cortex_a8_stubs_.lower_bound(view_address); + ((p != this->cortex_a8_stubs_.end()) + && (p->first < (view_address + view_size))); + ++p) + { + // We do not store the THUMB bit in the LSB of either the branch address + // or the stub offset. There is no need to strip the LSB. + Arm_address branch_address = p->first; + const Cortex_a8_stub* stub = p->second; + Arm_address stub_address = this->address() + stub->offset(); + + // Offset of the branch instruction relative to this view. + section_size_type offset = + convert_to_section_size_type(branch_address - view_address); + gold_assert((offset + 4) <= view_size); + + arm_target->apply_cortex_a8_workaround(stub, stub_address, + view + offset, branch_address); + } +} + // Arm_input_section methods. // Initialize an Arm_input_section. @@ -2837,10 +5295,22 @@ Arm_input_section::init() Relobj* relobj = this->relobj(); unsigned int shndx = this->shndx(); - // Cache these to speed up size and alignment queries. It is too slow - // to call section_addraglin and section_size every time. - this->original_addralign_ = relobj->section_addralign(shndx); - this->original_size_ = relobj->section_size(shndx); + // We have to cache original size, alignment and contents to avoid locking + // the original file. + this->original_addralign_ = + convert_types(relobj->section_addralign(shndx)); + + // This is not efficient but we expect only a small number of relaxed + // input sections for stubs. + section_size_type section_size; + const unsigned char* section_contents = + relobj->section_contents(shndx, §ion_size, false); + this->original_size_ = + convert_types(relobj->section_size(shndx)); + + gold_assert(this->original_contents_ == NULL); + this->original_contents_ = new unsigned char[section_size]; + memcpy(this->original_contents_, section_contents, section_size); // We want to make this look like the original input section after // output sections are finalized. @@ -2859,10 +5329,9 @@ void Arm_input_section::do_write(Output_file* of) { // We have to write out the original section content. - section_size_type section_size; - const unsigned char* section_contents = - this->relobj()->section_contents(this->shndx(), §ion_size, false); - of->write(this->offset(), section_contents, section_size); + gold_assert(this->original_contents_ != NULL); + of->write(this->offset(), this->original_contents_, + this->original_size_); // If this owns a stub table and it is not empty, write it. if (this->is_stub_table_owner() && !this->stub_table_->empty()) @@ -2875,21 +5344,15 @@ template void Arm_input_section::set_final_data_size() { - // If this owns a stub table, finalize its data size as well. + off_t off = convert_types(this->original_size_); + if (this->is_stub_table_owner()) { - uint64_t address = this->address(); - - // The stub table comes after the original section contents. - address += this->original_size_; - address = align_address(address, this->stub_table_->addralign()); - off_t offset = this->offset() + (address - this->address()); - this->stub_table_->set_address_and_file_offset(address, offset); - address += this->stub_table_->data_size(); - gold_assert(address == this->address() + this->current_data_size()); + this->stub_table_->finalize_data_size(); + off = align_address(off, this->stub_table_->addralign()); + off += this->stub_table_->data_size(); } - - this->set_data_size(this->current_data_size()); + this->set_data_size(off); } // Reset address and file offset. @@ -2916,47 +5379,415 @@ Arm_input_section::do_reset_address_and_file_offset() this->set_current_data_size(off); } -// Arm_output_section methods. +// Arm_exidx_cantunwind methods. -// Create a stub group for input sections from BEGIN to END. OWNER -// points to the input section to be the owner a new stub table. +// Write this to Output file OF for a fixed endianness. template void -Arm_output_section::create_stub_group( - Input_section_list::const_iterator begin, - Input_section_list::const_iterator end, - Input_section_list::const_iterator owner, - Target_arm* target, - std::vector* new_relaxed_sections) +Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of) { - // Currently we convert ordinary input sections into relaxed sections only - // at this point but we may want to support creating relaxed input section - // very early. So we check here to see if owner is already a relaxed - // section. - - Arm_input_section* arm_input_section; - if (owner->is_relaxed_input_section()) + off_t offset = this->offset(); + const section_size_type oview_size = 8; + unsigned char* const oview = of->get_output_view(offset, oview_size); + + Output_section* os = this->relobj_->output_section(this->shndx_); + gold_assert(os != NULL); + + Arm_relobj* arm_relobj = + Arm_relobj::as_arm_relobj(this->relobj_); + Arm_address output_offset = + arm_relobj->get_output_section_offset(this->shndx_); + Arm_address section_start; + section_size_type section_size; + + // Find out the end of the text section referred by this. + if (output_offset != Arm_relobj::invalid_address) { - arm_input_section = - Arm_input_section::as_arm_input_section( - owner->relaxed_input_section()); + section_start = os->address() + output_offset; + const Arm_exidx_input_section* exidx_input_section = + arm_relobj->exidx_input_section_by_link(this->shndx_); + gold_assert(exidx_input_section != NULL); + section_size = + convert_to_section_size_type(exidx_input_section->text_size()); } else { - gold_assert(owner->is_input_section()); - // Create a new relaxed input section. - arm_input_section = - target->new_arm_input_section(owner->relobj(), owner->shndx()); - new_relaxed_sections->push_back(arm_input_section); + // Currently this only happens for a relaxed section. + const Output_relaxed_input_section* poris = + os->find_relaxed_input_section(this->relobj_, this->shndx_); + gold_assert(poris != NULL); + section_start = poris->address(); + section_size = convert_to_section_size_type(poris->data_size()); } - // Create a stub table. + // We always append this to the end of an EXIDX section. + Arm_address output_address = section_start + section_size; + + // Write out the entry. The first word either points to the beginning + // or after the end of a text section. The second word is the special + // EXIDX_CANTUNWIND value. + uint32_t prel31_offset = output_address - this->address(); + if (Bits<31>::has_overflow32(offset)) + gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry")); + elfcpp::Swap_unaligned<32, big_endian>::writeval(oview, + prel31_offset & 0x7fffffffU); + elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4, + elfcpp::EXIDX_CANTUNWIND); + + of->write_output_view(this->offset(), oview_size, oview); +} + +// Arm_exidx_merged_section methods. + +// Constructor for Arm_exidx_merged_section. +// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section. +// SECTION_OFFSET_MAP points to a section offset map describing how +// parts of the input section are mapped to output. DELETED_BYTES is +// the number of bytes deleted from the EXIDX input section. + +Arm_exidx_merged_section::Arm_exidx_merged_section( + const Arm_exidx_input_section& exidx_input_section, + const Arm_exidx_section_offset_map& section_offset_map, + uint32_t deleted_bytes) + : Output_relaxed_input_section(exidx_input_section.relobj(), + exidx_input_section.shndx(), + exidx_input_section.addralign()), + exidx_input_section_(exidx_input_section), + section_offset_map_(section_offset_map) +{ + // If we retain or discard the whole EXIDX input section, we would + // not be here. + gold_assert(deleted_bytes != 0 + && deleted_bytes != this->exidx_input_section_.size()); + + // Fix size here so that we do not need to implement set_final_data_size. + uint32_t size = exidx_input_section.size() - deleted_bytes; + this->set_data_size(size); + this->fix_data_size(); + + // Allocate buffer for section contents and build contents. + this->section_contents_ = new unsigned char[size]; +} + +// Build the contents of a merged EXIDX output section. + +void +Arm_exidx_merged_section::build_contents( + const unsigned char* original_contents, + section_size_type original_size) +{ + // Go over spans of input offsets and write only those that are not + // discarded. + section_offset_type in_start = 0; + section_offset_type out_start = 0; + section_offset_type in_max = + convert_types(original_size); + section_offset_type out_max = + convert_types(this->data_size()); + for (Arm_exidx_section_offset_map::const_iterator p = + this->section_offset_map_.begin(); + p != this->section_offset_map_.end(); + ++p) + { + section_offset_type in_end = p->first; + gold_assert(in_end >= in_start); + section_offset_type out_end = p->second; + size_t in_chunk_size = convert_types(in_end - in_start + 1); + if (out_end != -1) + { + size_t out_chunk_size = + convert_types(out_end - out_start + 1); + + gold_assert(out_chunk_size == in_chunk_size + && in_end < in_max && out_end < out_max); + + memcpy(this->section_contents_ + out_start, + original_contents + in_start, + out_chunk_size); + out_start += out_chunk_size; + } + in_start += in_chunk_size; + } +} + +// Given an input OBJECT, an input section index SHNDX within that +// object, and an OFFSET relative to the start of that input +// section, return whether or not the corresponding offset within +// the output section is known. If this function returns true, it +// sets *POUTPUT to the output offset. The value -1 indicates that +// this input offset is being discarded. + +bool +Arm_exidx_merged_section::do_output_offset( + const Relobj* relobj, + unsigned int shndx, + section_offset_type offset, + section_offset_type* poutput) const +{ + // We only handle offsets for the original EXIDX input section. + if (relobj != this->exidx_input_section_.relobj() + || shndx != this->exidx_input_section_.shndx()) + return false; + + section_offset_type section_size = + convert_types(this->exidx_input_section_.size()); + if (offset < 0 || offset >= section_size) + // Input offset is out of valid range. + *poutput = -1; + else + { + // We need to look up the section offset map to determine the output + // offset. Find the reference point in map that is first offset + // bigger than or equal to this offset. + Arm_exidx_section_offset_map::const_iterator p = + this->section_offset_map_.lower_bound(offset); + + // The section offset maps are build such that this should not happen if + // input offset is in the valid range. + gold_assert(p != this->section_offset_map_.end()); + + // We need to check if this is dropped. + section_offset_type ref = p->first; + section_offset_type mapped_ref = p->second; + + if (mapped_ref != Arm_exidx_input_section::invalid_offset) + // Offset is present in output. + *poutput = mapped_ref + (offset - ref); + else + // Offset is discarded owing to EXIDX entry merging. + *poutput = -1; + } + + return true; +} + +// Write this to output file OF. + +void +Arm_exidx_merged_section::do_write(Output_file* of) +{ + off_t offset = this->offset(); + const section_size_type oview_size = this->data_size(); + unsigned char* const oview = of->get_output_view(offset, oview_size); + + Output_section* os = this->relobj()->output_section(this->shndx()); + gold_assert(os != NULL); + + memcpy(oview, this->section_contents_, oview_size); + of->write_output_view(this->offset(), oview_size, oview); +} + +// Arm_exidx_fixup methods. + +// Append an EXIDX_CANTUNWIND in the current output section if the last entry +// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry +// points to the end of the last seen EXIDX section. + +void +Arm_exidx_fixup::add_exidx_cantunwind_as_needed() +{ + if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND + && this->last_input_section_ != NULL) + { + Relobj* relobj = this->last_input_section_->relobj(); + unsigned int text_shndx = this->last_input_section_->link(); + Arm_exidx_cantunwind* cantunwind = + new Arm_exidx_cantunwind(relobj, text_shndx); + this->exidx_output_section_->add_output_section_data(cantunwind); + this->last_unwind_type_ = UT_EXIDX_CANTUNWIND; + } +} + +// Process an EXIDX section entry in input. Return whether this entry +// can be deleted in the output. SECOND_WORD in the second word of the +// EXIDX entry. + +bool +Arm_exidx_fixup::process_exidx_entry(uint32_t second_word) +{ + bool delete_entry; + if (second_word == elfcpp::EXIDX_CANTUNWIND) + { + // Merge if previous entry is also an EXIDX_CANTUNWIND. + delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND; + this->last_unwind_type_ = UT_EXIDX_CANTUNWIND; + } + else if ((second_word & 0x80000000) != 0) + { + // Inlined unwinding data. Merge if equal to previous. + delete_entry = (merge_exidx_entries_ + && this->last_unwind_type_ == UT_INLINED_ENTRY + && this->last_inlined_entry_ == second_word); + this->last_unwind_type_ = UT_INLINED_ENTRY; + this->last_inlined_entry_ = second_word; + } + else + { + // Normal table entry. In theory we could merge these too, + // but duplicate entries are likely to be much less common. + delete_entry = false; + this->last_unwind_type_ = UT_NORMAL_ENTRY; + } + return delete_entry; +} + +// Update the current section offset map during EXIDX section fix-up. +// If there is no map, create one. INPUT_OFFSET is the offset of a +// reference point, DELETED_BYTES is the number of deleted by in the +// section so far. If DELETE_ENTRY is true, the reference point and +// all offsets after the previous reference point are discarded. + +void +Arm_exidx_fixup::update_offset_map( + section_offset_type input_offset, + section_size_type deleted_bytes, + bool delete_entry) +{ + if (this->section_offset_map_ == NULL) + this->section_offset_map_ = new Arm_exidx_section_offset_map(); + section_offset_type output_offset; + if (delete_entry) + output_offset = Arm_exidx_input_section::invalid_offset; + else + output_offset = input_offset - deleted_bytes; + (*this->section_offset_map_)[input_offset] = output_offset; +} + +// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of +// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX +// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS. +// If some entries are merged, also store a pointer to a newly created +// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller +// owns the map and is responsible for releasing it after use. + +template +uint32_t +Arm_exidx_fixup::process_exidx_section( + const Arm_exidx_input_section* exidx_input_section, + const unsigned char* section_contents, + section_size_type section_size, + Arm_exidx_section_offset_map** psection_offset_map) +{ + Relobj* relobj = exidx_input_section->relobj(); + unsigned shndx = exidx_input_section->shndx(); + + if ((section_size % 8) != 0) + { + // Something is wrong with this section. Better not touch it. + gold_error(_("uneven .ARM.exidx section size in %s section %u"), + relobj->name().c_str(), shndx); + this->last_input_section_ = exidx_input_section; + this->last_unwind_type_ = UT_NONE; + return 0; + } + + uint32_t deleted_bytes = 0; + bool prev_delete_entry = false; + gold_assert(this->section_offset_map_ == NULL); + + for (section_size_type i = 0; i < section_size; i += 8) + { + typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; + const Valtype* wv = + reinterpret_cast(section_contents + i + 4); + uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv); + + bool delete_entry = this->process_exidx_entry(second_word); + + // Entry deletion causes changes in output offsets. We use a std::map + // to record these. And entry (x, y) means input offset x + // is mapped to output offset y. If y is invalid_offset, then x is + // dropped in the output. Because of the way std::map::lower_bound + // works, we record the last offset in a region w.r.t to keeping or + // dropping. If there is no entry (x0, y0) for an input offset x0, + // the output offset y0 of it is determined by the output offset y1 of + // the smallest input offset x1 > x0 that there is an (x1, y1) entry + // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1 + // y0 is also -1. + if (delete_entry != prev_delete_entry && i != 0) + this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry); + + // Update total deleted bytes for this entry. + if (delete_entry) + deleted_bytes += 8; + + prev_delete_entry = delete_entry; + } + + // If section offset map is not NULL, make an entry for the end of + // section. + if (this->section_offset_map_ != NULL) + update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry); + + *psection_offset_map = this->section_offset_map_; + this->section_offset_map_ = NULL; + this->last_input_section_ = exidx_input_section; + + // Set the first output text section so that we can link the EXIDX output + // section to it. Ignore any EXIDX input section that is completely merged. + if (this->first_output_text_section_ == NULL + && deleted_bytes != section_size) + { + unsigned int link = exidx_input_section->link(); + Output_section* os = relobj->output_section(link); + gold_assert(os != NULL); + this->first_output_text_section_ = os; + } + + return deleted_bytes; +} + +// Arm_output_section methods. + +// Create a stub group for input sections from BEGIN to END. OWNER +// points to the input section to be the owner a new stub table. + +template +void +Arm_output_section::create_stub_group( + Input_section_list::const_iterator begin, + Input_section_list::const_iterator end, + Input_section_list::const_iterator owner, + Target_arm* target, + std::vector* new_relaxed_sections, + const Task* task) +{ + // We use a different kind of relaxed section in an EXIDX section. + // The static casting from Output_relaxed_input_section to + // Arm_input_section is invalid in an EXIDX section. We are okay + // because we should not be calling this for an EXIDX section. + gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX); + + // Currently we convert ordinary input sections into relaxed sections only + // at this point but we may want to support creating relaxed input section + // very early. So we check here to see if owner is already a relaxed + // section. + + Arm_input_section* arm_input_section; + if (owner->is_relaxed_input_section()) + { + arm_input_section = + Arm_input_section::as_arm_input_section( + owner->relaxed_input_section()); + } + else + { + gold_assert(owner->is_input_section()); + // Create a new relaxed input section. We need to lock the original + // file. + Task_lock_obj tl(task, owner->relobj()); + arm_input_section = + target->new_arm_input_section(owner->relobj(), owner->shndx()); + new_relaxed_sections->push_back(arm_input_section); + } + + // Create a stub table. Stub_table* stub_table = target->new_stub_table(arm_input_section); arm_input_section->set_stub_table(stub_table); - + Input_section_list::const_iterator p = begin; Input_section_list::const_iterator prev_p; @@ -2981,7 +5812,7 @@ Arm_output_section::create_stub_group( // size is just below GROUP_SIZE. The last input section will be converted // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add // input section after the stub table, effectively double the group size. -// +// // This is similar to the group_sections() function in elf32-arm.c but is // implemented differently. @@ -2990,12 +5821,9 @@ void Arm_output_section::group_sections( section_size_type group_size, bool stubs_always_after_branch, - Target_arm* target) + Target_arm* target, + const Task* task) { - // We only care about sections containing code. - if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0) - return; - // States for grouping. typedef enum { @@ -3031,9 +5859,9 @@ Arm_output_section::group_sections( section_size_type section_begin_offset = align_address(off, p->addralign()); section_size_type section_end_offset = - section_begin_offset + p->data_size(); - - // Check to see if we should group the previously seens sections. + section_begin_offset + p->data_size(); + + // Check to see if we should group the previously seen sections. switch (state) { case NO_GROUP: @@ -3044,10 +5872,11 @@ Arm_output_section::group_sections( if (section_end_offset - group_begin_offset >= group_size) { if (stubs_always_after_branch) - { + { gold_assert(group_end != this->input_sections().end()); this->create_stub_group(group_begin, group_end, group_end, - target, &new_relaxed_sections); + target, &new_relaxed_sections, + task); state = NO_GROUP; } else @@ -3069,19 +5898,20 @@ Arm_output_section::group_sections( { gold_assert(group_end != this->input_sections().end()); this->create_stub_group(group_begin, group_end, stub_table, - target, &new_relaxed_sections); + target, &new_relaxed_sections, task); state = NO_GROUP; } break; default: gold_unreachable(); - } + } // If we see an input section and currently there is no group, start - // a new one. Skip any empty sections. + // a new one. Skip any empty sections. We look at the data size + // instead of calling p->relobj()->section_size() to avoid locking. if ((p->is_input_section() || p->is_relaxed_input_section()) - && (p->relobj()->section_size(p->shndx()) != 0)) + && (p->data_size() != 0)) { if (state == NO_GROUP) { @@ -3106,7 +5936,7 @@ Arm_output_section::group_sections( (state == FINDING_STUB_SECTION ? group_end : stub_table), - target, &new_relaxed_sections); + target, &new_relaxed_sections, task); } // Convert input section into relaxed input section in a batch. @@ -3125,180 +5955,639 @@ Arm_output_section::group_sections( } } -// Arm_relobj methods. - -// Scan relocations for stub generation. +// Append non empty text sections in this to LIST in ascending +// order of their position in this. template void -Arm_relobj::scan_sections_for_stubs( - Target_arm* arm_target, - const Symbol_table* symtab, - const Layout* layout) +Arm_output_section::append_text_sections_to_list( + Text_section_list* list) { - unsigned int shnum = this->shnum(); - const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size; - - // Read the section headers. - const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(), - shnum * shdr_size, - true, true); - - // To speed up processing, we set up hash tables for fast lookup of - // input offsets to output addresses. - this->initialize_input_to_output_maps(); - - const Relobj::Output_sections& out_sections(this->output_sections()); + gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0); - Relocate_info<32, big_endian> relinfo; - relinfo.symtab = symtab; - relinfo.layout = layout; - relinfo.object = this; + for (Input_section_list::const_iterator p = this->input_sections().begin(); + p != this->input_sections().end(); + ++p) + { + // We only care about plain or relaxed input sections. We also + // ignore any merged sections. + if (p->is_input_section() || p->is_relaxed_input_section()) + list->push_back(Text_section_list::value_type(p->relobj(), + p->shndx())); + } +} - const unsigned char* p = pshdrs + shdr_size; - for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) +template +void +Arm_output_section::fix_exidx_coverage( + Layout* layout, + const Text_section_list& sorted_text_sections, + Symbol_table* symtab, + bool merge_exidx_entries, + const Task* task) +{ + // We should only do this for the EXIDX output section. + gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX); + + // We don't want the relaxation loop to undo these changes, so we discard + // the current saved states and take another one after the fix-up. + this->discard_states(); + + // Remove all input sections. + uint64_t address = this->address(); + typedef std::list Input_section_list; + Input_section_list input_sections; + this->reset_address_and_file_offset(); + this->get_input_sections(address, std::string(""), &input_sections); + + if (!this->input_sections().empty()) + gold_error(_("Found non-EXIDX input sections in EXIDX output section")); + + // Go through all the known input sections and record them. + typedef Unordered_set Section_id_set; + typedef Unordered_map Text_to_exidx_map; + Text_to_exidx_map text_to_exidx_map; + for (Input_section_list::const_iterator p = input_sections.begin(); + p != input_sections.end(); + ++p) { - typename elfcpp::Shdr<32, big_endian> shdr(p); + // This should never happen. At this point, we should only see + // plain EXIDX input sections. + gold_assert(!p->is_relaxed_input_section()); + text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p); + } - unsigned int sh_type = shdr.get_sh_type(); - if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA) - continue; + Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries); - off_t sh_size = shdr.get_sh_size(); - if (sh_size == 0) - continue; + // Go over the sorted text sections. + typedef Unordered_set Section_id_set; + Section_id_set processed_input_sections; + for (Text_section_list::const_iterator p = sorted_text_sections.begin(); + p != sorted_text_sections.end(); + ++p) + { + Relobj* relobj = p->first; + unsigned int shndx = p->second; - unsigned int index = this->adjust_shndx(shdr.get_sh_info()); - if (index >= this->shnum()) + Arm_relobj* arm_relobj = + Arm_relobj::as_arm_relobj(relobj); + const Arm_exidx_input_section* exidx_input_section = + arm_relobj->exidx_input_section_by_link(shndx); + + // If this text section has no EXIDX section or if the EXIDX section + // has errors, force an EXIDX_CANTUNWIND entry pointing to the end + // of the last seen EXIDX section. + if (exidx_input_section == NULL || exidx_input_section->has_errors()) { - // Ignore reloc section with bad info. This error will be - // reported in the final link. + exidx_fixup.add_exidx_cantunwind_as_needed(); continue; } - Output_section* os = out_sections[index]; - if (os == NULL) + Relobj* exidx_relobj = exidx_input_section->relobj(); + unsigned int exidx_shndx = exidx_input_section->shndx(); + Section_id sid(exidx_relobj, exidx_shndx); + Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid); + if (iter == text_to_exidx_map.end()) { - // This relocation section is against a section which we - // discarded. - continue; - } - Arm_address output_offset = this->get_output_section_offset(index); + // This is odd. We have not seen this EXIDX input section before. + // We cannot do fix-up. If we saw a SECTIONS clause in a script, + // issue a warning instead. We assume the user knows what he + // or she is doing. Otherwise, this is an error. + if (layout->script_options()->saw_sections_clause()) + gold_warning(_("unwinding may not work because EXIDX input section" + " %u of %s is not in EXIDX output section"), + exidx_shndx, exidx_relobj->name().c_str()); + else + gold_error(_("unwinding may not work because EXIDX input section" + " %u of %s is not in EXIDX output section"), + exidx_shndx, exidx_relobj->name().c_str()); - if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx()) - { - // Ignore reloc section with unexpected symbol table. The - // error will be reported in the final link. + exidx_fixup.add_exidx_cantunwind_as_needed(); continue; } - const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(), - sh_size, true, false); - - unsigned int reloc_size; - if (sh_type == elfcpp::SHT_REL) - reloc_size = elfcpp::Elf_sizes<32>::rel_size; - else - reloc_size = elfcpp::Elf_sizes<32>::rela_size; + // We need to access the contents of the EXIDX section, lock the + // object here. + Task_lock_obj tl(task, exidx_relobj); + section_size_type exidx_size; + const unsigned char* exidx_contents = + exidx_relobj->section_contents(exidx_shndx, &exidx_size, false); + + // Fix up coverage and append input section to output data list. + Arm_exidx_section_offset_map* section_offset_map = NULL; + uint32_t deleted_bytes = + exidx_fixup.process_exidx_section(exidx_input_section, + exidx_contents, + exidx_size, + §ion_offset_map); + + if (deleted_bytes == exidx_input_section->size()) + { + // The whole EXIDX section got merged. Remove it from output. + gold_assert(section_offset_map == NULL); + exidx_relobj->set_output_section(exidx_shndx, NULL); - if (reloc_size != shdr.get_sh_entsize()) + // All local symbols defined in this input section will be dropped. + // We need to adjust output local symbol count. + arm_relobj->set_output_local_symbol_count_needs_update(); + } + else if (deleted_bytes > 0) { - // Ignore reloc section with unexpected entsize. The error - // will be reported in the final link. - continue; + // Some entries are merged. We need to convert this EXIDX input + // section into a relaxed section. + gold_assert(section_offset_map != NULL); + + Arm_exidx_merged_section* merged_section = + new Arm_exidx_merged_section(*exidx_input_section, + *section_offset_map, deleted_bytes); + merged_section->build_contents(exidx_contents, exidx_size); + + const std::string secname = exidx_relobj->section_name(exidx_shndx); + this->add_relaxed_input_section(layout, merged_section, secname); + arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx); + + // All local symbols defined in discarded portions of this input + // section will be dropped. We need to adjust output local symbol + // count. + arm_relobj->set_output_local_symbol_count_needs_update(); } - - size_t reloc_count = sh_size / reloc_size; - if (static_cast(reloc_count * reloc_size) != sh_size) + else { - // Ignore reloc section with uneven size. The error will be - // reported in the final link. - continue; + // Just add back the EXIDX input section. + gold_assert(section_offset_map == NULL); + const Output_section::Input_section* pis = iter->second; + gold_assert(pis->is_input_section()); + this->add_script_input_section(*pis); } - gold_assert(output_offset != invalid_address - || this->relocs_must_follow_section_writes()); + processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); + } + + // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary. + exidx_fixup.add_exidx_cantunwind_as_needed(); - // Get the section contents. This does work for the case in which - // we modify the contents of an input section. We need to pass the - // output view under such circumstances. - section_size_type input_view_size = 0; - const unsigned char* input_view = - this->section_contents(index, &input_view_size, false); + // Remove any known EXIDX input sections that are not processed. + for (Input_section_list::const_iterator p = input_sections.begin(); + p != input_sections.end(); + ++p) + { + if (processed_input_sections.find(Section_id(p->relobj(), p->shndx())) + == processed_input_sections.end()) + { + // We discard a known EXIDX section because its linked + // text section has been folded by ICF. We also discard an + // EXIDX section with error, the output does not matter in this + // case. We do this to avoid triggering asserts. + Arm_relobj* arm_relobj = + Arm_relobj::as_arm_relobj(p->relobj()); + const Arm_exidx_input_section* exidx_input_section = + arm_relobj->exidx_input_section_by_shndx(p->shndx()); + gold_assert(exidx_input_section != NULL); + if (!exidx_input_section->has_errors()) + { + unsigned int text_shndx = exidx_input_section->link(); + gold_assert(symtab->is_section_folded(p->relobj(), text_shndx)); + } - relinfo.reloc_shndx = i; - relinfo.data_shndx = index; - arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs, - reloc_count, os, - output_offset == invalid_address, - input_view, - os->address(), - input_view_size); + // Remove this from link. We also need to recount the + // local symbols. + p->relobj()->set_output_section(p->shndx(), NULL); + arm_relobj->set_output_local_symbol_count_needs_update(); + } } - // After we've done the relocations, we release the hash tables, - // since we no longer need them. - this->free_input_to_output_maps(); + // Link exidx output section to the first seen output section and + // set correct entry size. + this->set_link_section(exidx_fixup.first_output_text_section()); + this->set_entsize(8); + + // Make changes permanent. + this->save_states(); + this->set_section_offsets_need_adjustment(); } -// Count the local symbols. The ARM backend needs to know if a symbol -// is a THUMB function or not. For global symbols, it is easy because -// the Symbol object keeps the ELF symbol type. For local symbol it is -// harder because we cannot access this information. So we override the -// do_count_local_symbol in parent and scan local symbols to mark -// THUMB functions. This is not the most efficient way but I do not want to -// slow down other ports by calling a per symbol targer hook inside -// Sized_relobj::do_count_local_symbols. +// Link EXIDX output sections to text output sections. template void -Arm_relobj::do_count_local_symbols( - Stringpool_template* pool, - Stringpool_template* dynpool) +Arm_output_section::set_exidx_section_link() { - // We need to fix-up the values of any local symbols whose type are - // STT_ARM_TFUNC. - - // Ask parent to count the local symbols. - Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool); - const unsigned int loccount = this->local_symbol_count(); - if (loccount == 0) - return; + gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX); + if (!this->input_sections().empty()) + { + Input_section_list::const_iterator p = this->input_sections().begin(); + Arm_relobj* arm_relobj = + Arm_relobj::as_arm_relobj(p->relobj()); + unsigned exidx_shndx = p->shndx(); + const Arm_exidx_input_section* exidx_input_section = + arm_relobj->exidx_input_section_by_shndx(exidx_shndx); + gold_assert(exidx_input_section != NULL); + unsigned int text_shndx = exidx_input_section->link(); + Output_section* os = arm_relobj->output_section(text_shndx); + this->set_link_section(os); + } +} - // Intialize the thumb function bit-vector. - std::vector empty_vector(loccount, false); - this->local_symbol_is_thumb_function_.swap(empty_vector); +// Arm_relobj methods. - // Read the symbol table section header. - const unsigned int symtab_shndx = this->symtab_shndx(); - elfcpp::Shdr<32, big_endian> - symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); - gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); +// Determine if an input section is scannable for stub processing. SHDR is +// the header of the section and SHNDX is the section index. OS is the output +// section for the input section and SYMTAB is the global symbol table used to +// look up ICF information. - // Read the local symbols. - const int sym_size =elfcpp::Elf_sizes<32>::sym_size; - gold_assert(loccount == symtabshdr.get_sh_info()); - off_t locsize = loccount * sym_size; - const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), - locsize, true, true); +template +bool +Arm_relobj::section_is_scannable( + const elfcpp::Shdr<32, big_endian>& shdr, + unsigned int shndx, + const Output_section* os, + const Symbol_table* symtab) +{ + // Skip any empty sections, unallocated sections or sections whose + // type are not SHT_PROGBITS. + if (shdr.get_sh_size() == 0 + || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0 + || shdr.get_sh_type() != elfcpp::SHT_PROGBITS) + return false; - // Loop over the local symbols and mark any local symbols pointing - // to THUMB functions. + // Skip any discarded or ICF'ed sections. + if (os == NULL || symtab->is_section_folded(this, shndx)) + return false; - // Skip the first dummy symbol. - psyms += sym_size; - typename Sized_relobj<32, big_endian>::Local_values* plocal_values = - this->local_values(); - for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) + // If this requires special offset handling, check to see if it is + // a relaxed section. If this is not, then it is a merged section that + // we cannot handle. + if (this->is_output_section_offset_invalid(shndx)) { - elfcpp::Sym<32, big_endian> sym(psyms); - elfcpp::STT st_type = sym.get_st_type(); - Symbol_value<32>& lv((*plocal_values)[i]); - Arm_address input_value = lv.input_value(); + const Output_relaxed_input_section* poris = + os->find_relaxed_input_section(this, shndx); + if (poris == NULL) + return false; + } - if (st_type == elfcpp::STT_ARM_TFUNC - || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0))) - { + return true; +} + +// Determine if we want to scan the SHNDX-th section for relocation stubs. +// This is a helper for Arm_relobj::scan_sections_for_stubs() below. + +template +bool +Arm_relobj::section_needs_reloc_stub_scanning( + const elfcpp::Shdr<32, big_endian>& shdr, + const Relobj::Output_sections& out_sections, + const Symbol_table* symtab, + const unsigned char* pshdrs) +{ + unsigned int sh_type = shdr.get_sh_type(); + if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA) + return false; + + // Ignore empty section. + off_t sh_size = shdr.get_sh_size(); + if (sh_size == 0) + return false; + + // Ignore reloc section with unexpected symbol table. The + // error will be reported in the final link. + if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx()) + return false; + + unsigned int reloc_size; + if (sh_type == elfcpp::SHT_REL) + reloc_size = elfcpp::Elf_sizes<32>::rel_size; + else + reloc_size = elfcpp::Elf_sizes<32>::rela_size; + + // Ignore reloc section with unexpected entsize or uneven size. + // The error will be reported in the final link. + if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0) + return false; + + // Ignore reloc section with bad info. This error will be + // reported in the final link. + unsigned int index = this->adjust_shndx(shdr.get_sh_info()); + if (index >= this->shnum()) + return false; + + const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size; + const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size); + return this->section_is_scannable(text_shdr, index, + out_sections[index], symtab); +} + +// Return the output address of either a plain input section or a relaxed +// input section. SHNDX is the section index. We define and use this +// instead of calling Output_section::output_address because that is slow +// for large output. + +template +Arm_address +Arm_relobj::simple_input_section_output_address( + unsigned int shndx, + Output_section* os) +{ + if (this->is_output_section_offset_invalid(shndx)) + { + const Output_relaxed_input_section* poris = + os->find_relaxed_input_section(this, shndx); + // We do not handle merged sections here. + gold_assert(poris != NULL); + return poris->address(); + } + else + return os->address() + this->get_output_section_offset(shndx); +} + +// Determine if we want to scan the SHNDX-th section for non-relocation stubs. +// This is a helper for Arm_relobj::scan_sections_for_stubs() below. + +template +bool +Arm_relobj::section_needs_cortex_a8_stub_scanning( + const elfcpp::Shdr<32, big_endian>& shdr, + unsigned int shndx, + Output_section* os, + const Symbol_table* symtab) +{ + if (!this->section_is_scannable(shdr, shndx, os, symtab)) + return false; + + // If the section does not cross any 4K-boundaries, it does not need to + // be scanned. + Arm_address address = this->simple_input_section_output_address(shndx, os); + if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU)) + return false; + + return true; +} + +// Scan a section for Cortex-A8 workaround. + +template +void +Arm_relobj::scan_section_for_cortex_a8_erratum( + const elfcpp::Shdr<32, big_endian>& shdr, + unsigned int shndx, + Output_section* os, + Target_arm* arm_target) +{ + // Look for the first mapping symbol in this section. It should be + // at (shndx, 0). + Mapping_symbol_position section_start(shndx, 0); + typename Mapping_symbols_info::const_iterator p = + this->mapping_symbols_info_.lower_bound(section_start); + + // There are no mapping symbols for this section. Treat it as a data-only + // section. + if (p == this->mapping_symbols_info_.end() || p->first.first != shndx) + return; + + Arm_address output_address = + this->simple_input_section_output_address(shndx, os); + + // Get the section contents. + section_size_type input_view_size = 0; + const unsigned char* input_view = + this->section_contents(shndx, &input_view_size, false); + + // We need to go through the mapping symbols to determine what to + // scan. There are two reasons. First, we should look at THUMB code and + // THUMB code only. Second, we only want to look at the 4K-page boundary + // to speed up the scanning. + + while (p != this->mapping_symbols_info_.end() + && p->first.first == shndx) + { + typename Mapping_symbols_info::const_iterator next = + this->mapping_symbols_info_.upper_bound(p->first); + + // Only scan part of a section with THUMB code. + if (p->second == 't') + { + // Determine the end of this range. + section_size_type span_start = + convert_to_section_size_type(p->first.second); + section_size_type span_end; + if (next != this->mapping_symbols_info_.end() + && next->first.first == shndx) + span_end = convert_to_section_size_type(next->first.second); + else + span_end = convert_to_section_size_type(shdr.get_sh_size()); + + if (((span_start + output_address) & ~0xfffUL) + != ((span_end + output_address - 1) & ~0xfffUL)) + { + arm_target->scan_span_for_cortex_a8_erratum(this, shndx, + span_start, span_end, + input_view, + output_address); + } + } + + p = next; + } +} + +// Scan relocations for stub generation. + +template +void +Arm_relobj::scan_sections_for_stubs( + Target_arm* arm_target, + const Symbol_table* symtab, + const Layout* layout) +{ + unsigned int shnum = this->shnum(); + const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size; + + // Read the section headers. + const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(), + shnum * shdr_size, + true, true); + + // To speed up processing, we set up hash tables for fast lookup of + // input offsets to output addresses. + this->initialize_input_to_output_maps(); + + const Relobj::Output_sections& out_sections(this->output_sections()); + + Relocate_info<32, big_endian> relinfo; + relinfo.symtab = symtab; + relinfo.layout = layout; + relinfo.object = this; + + // Do relocation stubs scanning. + const unsigned char* p = pshdrs + shdr_size; + for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) + { + const elfcpp::Shdr<32, big_endian> shdr(p); + if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab, + pshdrs)) + { + unsigned int index = this->adjust_shndx(shdr.get_sh_info()); + Arm_address output_offset = this->get_output_section_offset(index); + Arm_address output_address; + if (output_offset != invalid_address) + output_address = out_sections[index]->address() + output_offset; + else + { + // Currently this only happens for a relaxed section. + const Output_relaxed_input_section* poris = + out_sections[index]->find_relaxed_input_section(this, index); + gold_assert(poris != NULL); + output_address = poris->address(); + } + + // Get the relocations. + const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(), + shdr.get_sh_size(), + true, false); + + // Get the section contents. This does work for the case in which + // we modify the contents of an input section. We need to pass the + // output view under such circumstances. + section_size_type input_view_size = 0; + const unsigned char* input_view = + this->section_contents(index, &input_view_size, false); + + relinfo.reloc_shndx = i; + relinfo.data_shndx = index; + unsigned int sh_type = shdr.get_sh_type(); + unsigned int reloc_size; + if (sh_type == elfcpp::SHT_REL) + reloc_size = elfcpp::Elf_sizes<32>::rel_size; + else + reloc_size = elfcpp::Elf_sizes<32>::rela_size; + + Output_section* os = out_sections[index]; + arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs, + shdr.get_sh_size() / reloc_size, + os, + output_offset == invalid_address, + input_view, output_address, + input_view_size); + } + } + + // Do Cortex-A8 erratum stubs scanning. This has to be done for a section + // after its relocation section, if there is one, is processed for + // relocation stubs. Merging this loop with the one above would have been + // complicated since we would have had to make sure that relocation stub + // scanning is done first. + if (arm_target->fix_cortex_a8()) + { + const unsigned char* p = pshdrs + shdr_size; + for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) + { + const elfcpp::Shdr<32, big_endian> shdr(p); + if (this->section_needs_cortex_a8_stub_scanning(shdr, i, + out_sections[i], + symtab)) + this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i], + arm_target); + } + } + + // After we've done the relocations, we release the hash tables, + // since we no longer need them. + this->free_input_to_output_maps(); +} + +// Count the local symbols. The ARM backend needs to know if a symbol +// is a THUMB function or not. For global symbols, it is easy because +// the Symbol object keeps the ELF symbol type. For local symbol it is +// harder because we cannot access this information. So we override the +// do_count_local_symbol in parent and scan local symbols to mark +// THUMB functions. This is not the most efficient way but I do not want to +// slow down other ports by calling a per symbol target hook inside +// Sized_relobj_file::do_count_local_symbols. + +template +void +Arm_relobj::do_count_local_symbols( + Stringpool_template* pool, + Stringpool_template* dynpool) +{ + // We need to fix-up the values of any local symbols whose type are + // STT_ARM_TFUNC. + + // Ask parent to count the local symbols. + Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool); + const unsigned int loccount = this->local_symbol_count(); + if (loccount == 0) + return; + + // Initialize the thumb function bit-vector. + std::vector empty_vector(loccount, false); + this->local_symbol_is_thumb_function_.swap(empty_vector); + + // Read the symbol table section header. + const unsigned int symtab_shndx = this->symtab_shndx(); + elfcpp::Shdr<32, big_endian> + symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); + gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); + + // Read the local symbols. + const int sym_size =elfcpp::Elf_sizes<32>::sym_size; + gold_assert(loccount == symtabshdr.get_sh_info()); + off_t locsize = loccount * sym_size; + const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), + locsize, true, true); + + // For mapping symbol processing, we need to read the symbol names. + unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link()); + if (strtab_shndx >= this->shnum()) + { + this->error(_("invalid symbol table name index: %u"), strtab_shndx); + return; + } + + elfcpp::Shdr<32, big_endian> + strtabshdr(this, this->elf_file()->section_header(strtab_shndx)); + if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) + { + this->error(_("symbol table name section has wrong type: %u"), + static_cast(strtabshdr.get_sh_type())); + return; + } + const char* pnames = + reinterpret_cast(this->get_view(strtabshdr.get_sh_offset(), + strtabshdr.get_sh_size(), + false, false)); + + // Loop over the local symbols and mark any local symbols pointing + // to THUMB functions. + + // Skip the first dummy symbol. + psyms += sym_size; + typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values = + this->local_values(); + for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) + { + elfcpp::Sym<32, big_endian> sym(psyms); + elfcpp::STT st_type = sym.get_st_type(); + Symbol_value<32>& lv((*plocal_values)[i]); + Arm_address input_value = lv.input_value(); + + // Check to see if this is a mapping symbol. + const char* sym_name = pnames + sym.get_st_name(); + if (Target_arm::is_mapping_symbol_name(sym_name)) + { + bool is_ordinary; + unsigned int input_shndx = + this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary); + gold_assert(is_ordinary); + + // Strip of LSB in case this is a THUMB symbol. + Mapping_symbol_position msp(input_shndx, input_value & ~1U); + this->mapping_symbols_info_[msp] = sym_name[1]; + } + + if (st_type == elfcpp::STT_ARM_TFUNC + || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0))) + { // This is a THUMB function. Mark this and canonicalize the // symbol value by setting LSB. this->local_symbol_is_thumb_function_[i] = true; @@ -3312,15 +6601,15 @@ Arm_relobj::do_count_local_symbols( template void Arm_relobj::do_relocate_sections( - const General_options& options, const Symbol_table* symtab, const Layout* layout, const unsigned char* pshdrs, - typename Sized_relobj<32, big_endian>::Views* pviews) + Output_file* of, + typename Sized_relobj_file<32, big_endian>::Views* pviews) { - // Call parent to relocate sections. - Sized_relobj<32, big_endian>::do_relocate_sections(options, symtab, layout, - pshdrs, pviews); + // Relocate the section data. + this->relocate_section_range(symtab, layout, pshdrs, of, pviews, + 1, this->shnum() - 1); // We do not generate stubs if doing a relocatable link. if (parameters->options().relocatable()) @@ -3333,7 +6622,6 @@ Arm_relobj::do_relocate_sections( Target_arm::default_target(); Relocate_info<32, big_endian> relinfo; - relinfo.options = &options; relinfo.symtab = symtab; relinfo.layout = layout; relinfo.object = this; @@ -3343,66 +6631,305 @@ Arm_relobj::do_relocate_sections( Arm_input_section* arm_input_section = arm_target->find_arm_input_section(this, i); - if (arm_input_section == NULL - || !arm_input_section->is_stub_table_owner() - || arm_input_section->stub_table()->empty()) - continue; + if (arm_input_section != NULL + && arm_input_section->is_stub_table_owner() + && !arm_input_section->stub_table()->empty()) + { + // We cannot discard a section if it owns a stub table. + Output_section* os = this->output_section(i); + gold_assert(os != NULL); + + relinfo.reloc_shndx = elfcpp::SHN_UNDEF; + relinfo.reloc_shdr = NULL; + relinfo.data_shndx = i; + relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size; + + gold_assert((*pviews)[i].view != NULL); + + // We are passed the output section view. Adjust it to cover the + // stub table only. + Stub_table* stub_table = arm_input_section->stub_table(); + gold_assert((stub_table->address() >= (*pviews)[i].address) + && ((stub_table->address() + stub_table->data_size()) + <= (*pviews)[i].address + (*pviews)[i].view_size)); + + off_t offset = stub_table->address() - (*pviews)[i].address; + unsigned char* view = (*pviews)[i].view + offset; + Arm_address address = stub_table->address(); + section_size_type view_size = stub_table->data_size(); + + stub_table->relocate_stubs(&relinfo, arm_target, os, view, address, + view_size); + } - // We cannot discard a section if it owns a stub table. - Output_section* os = this->output_section(i); - gold_assert(os != NULL); + // Apply Cortex A8 workaround if applicable. + if (this->section_has_cortex_a8_workaround(i)) + { + unsigned char* view = (*pviews)[i].view; + Arm_address view_address = (*pviews)[i].address; + section_size_type view_size = (*pviews)[i].view_size; + Stub_table* stub_table = this->stub_tables_[i]; + + // Adjust view to cover section. + Output_section* os = this->output_section(i); + gold_assert(os != NULL); + Arm_address section_address = + this->simple_input_section_output_address(i, os); + uint64_t section_size = this->section_size(i); + + gold_assert(section_address >= view_address + && ((section_address + section_size) + <= (view_address + view_size))); + + unsigned char* section_view = view + (section_address - view_address); + + // Apply the Cortex-A8 workaround to the output address range + // corresponding to this input section. + stub_table->apply_cortex_a8_workaround_to_address_range( + arm_target, + section_view, + section_address, + section_size); + } + // BE8 swapping + if (parameters->options().be8()) + { + section_size_type span_start, span_end; + elfcpp::Shdr<32, big_endian> + shdr(pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size); + Mapping_symbol_position section_start(i, 0); + typename Mapping_symbols_info::const_iterator p = + this->mapping_symbols_info_.lower_bound(section_start); + unsigned char* view = (*pviews)[i].view; + Arm_address view_address = (*pviews)[i].address; + section_size_type view_size = (*pviews)[i].view_size; + while (p != this->mapping_symbols_info_.end() + && p->first.first == i) + { + typename Mapping_symbols_info::const_iterator next = + this->mapping_symbols_info_.upper_bound(p->first); + + // Only swap arm or thumb code. + if ((p->second == 'a') || (p->second == 't')) + { + Output_section* os = this->output_section(i); + gold_assert(os != NULL); + Arm_address section_address = + this->simple_input_section_output_address(i, os); + span_start = convert_to_section_size_type(p->first.second); + if (next != this->mapping_symbols_info_.end() + && next->first.first == i) + span_end = + convert_to_section_size_type(next->first.second); + else + span_end = + convert_to_section_size_type(shdr.get_sh_size()); + unsigned char* section_view = + view + (section_address - view_address); + uint64_t section_size = this->section_size(i); + + gold_assert(section_address >= view_address + && ((section_address + section_size) + <= (view_address + view_size))); + + // Set Output view for swapping + unsigned char *oview = section_view + span_start; + unsigned int index = 0; + if (p->second == 'a') + { + while (index + 3 < (span_end - span_start)) + { + typedef typename elfcpp::Swap<32, big_endian> + ::Valtype Valtype; + Valtype* wv = + reinterpret_cast(oview+index); + uint32_t val = elfcpp::Swap<32, false>::readval(wv); + elfcpp::Swap<32, true>::writeval(wv, val); + index += 4; + } + } + else if (p->second == 't') + { + while (index + 1 < (span_end - span_start)) + { + typedef typename elfcpp::Swap<16, big_endian> + ::Valtype Valtype; + Valtype* wv = + reinterpret_cast(oview+index); + uint16_t val = elfcpp::Swap<16, false>::readval(wv); + elfcpp::Swap<16, true>::writeval(wv, val); + index += 2; + } + } + } + p = next; + } + } + } +} - relinfo.reloc_shndx = elfcpp::SHN_UNDEF; - relinfo.reloc_shdr = NULL; - relinfo.data_shndx = i; - relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size; +// Find the linked text section of an EXIDX section by looking at the first +// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section +// must be linked to its associated code section via the sh_link field of +// its section header. However, some tools are broken and the link is not +// always set. LD just drops such an EXIDX section silently, causing the +// associated code not unwindabled. Here we try a little bit harder to +// discover the linked code section. +// +// PSHDR points to the section header of a relocation section of an EXIDX +// section. If we can find a linked text section, return true and +// store the text section index in the location PSHNDX. Otherwise +// return false. + +template +bool +Arm_relobj::find_linked_text_section( + const unsigned char* pshdr, + const unsigned char* psyms, + unsigned int* pshndx) +{ + elfcpp::Shdr<32, big_endian> shdr(pshdr); + + // If there is no relocation, we cannot find the linked text section. + size_t reloc_size; + if (shdr.get_sh_type() == elfcpp::SHT_REL) + reloc_size = elfcpp::Elf_sizes<32>::rel_size; + else + reloc_size = elfcpp::Elf_sizes<32>::rela_size; + size_t reloc_count = shdr.get_sh_size() / reloc_size; + + // Get the relocations. + const unsigned char* prelocs = + this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); - gold_assert((*pviews)[i].view != NULL); + // Find the REL31 relocation for the first word of the first EXIDX entry. + for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) + { + Arm_address r_offset; + typename elfcpp::Elf_types<32>::Elf_WXword r_info; + if (shdr.get_sh_type() == elfcpp::SHT_REL) + { + typename elfcpp::Rel<32, big_endian> reloc(prelocs); + r_info = reloc.get_r_info(); + r_offset = reloc.get_r_offset(); + } + else + { + typename elfcpp::Rela<32, big_endian> reloc(prelocs); + r_info = reloc.get_r_info(); + r_offset = reloc.get_r_offset(); + } + + unsigned int r_type = elfcpp::elf_r_type<32>(r_info); + if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31) + continue; - // We are passed the output section view. Adjust it to cover the - // stub table only. - Stub_table* stub_table = arm_input_section->stub_table(); - gold_assert((stub_table->address() >= (*pviews)[i].address) - && ((stub_table->address() + stub_table->data_size()) - <= (*pviews)[i].address + (*pviews)[i].view_size)); + unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); + if (r_sym == 0 + || r_sym >= this->local_symbol_count() + || r_offset != 0) + continue; - off_t offset = stub_table->address() - (*pviews)[i].address; - unsigned char* view = (*pviews)[i].view + offset; - Arm_address address = stub_table->address(); - section_size_type view_size = stub_table->data_size(); - - stub_table->relocate_stubs(&relinfo, arm_target, os, view, address, - view_size); + // This is the relocation for the first word of the first EXIDX entry. + // We expect to see a local section symbol. + const int sym_size = elfcpp::Elf_sizes<32>::sym_size; + elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size); + if (sym.get_st_type() == elfcpp::STT_SECTION) + { + bool is_ordinary; + *pshndx = + this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary); + gold_assert(is_ordinary); + return true; + } + else + return false; } + + return false; } -// Read the symbol information. +// Make an EXIDX input section object for an EXIDX section whose index is +// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX +// is the section index of the linked text section. template void -Arm_relobj::do_read_symbols(Read_symbols_data* sd) +Arm_relobj::make_exidx_input_section( + unsigned int shndx, + const elfcpp::Shdr<32, big_endian>& shdr, + unsigned int text_shndx, + const elfcpp::Shdr<32, big_endian>& text_shdr) { - // Call parent class to read symbol information. - Sized_relobj<32, big_endian>::do_read_symbols(sd); + // Create an Arm_exidx_input_section object for this EXIDX section. + Arm_exidx_input_section* exidx_input_section = + new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(), + shdr.get_sh_addralign(), + text_shdr.get_sh_size()); - // Read processor-specific flags in ELF file header. - const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset, - elfcpp::Elf_sizes<32>::ehdr_size, - true, false); - elfcpp::Ehdr<32, big_endian> ehdr(pehdr); - this->processor_specific_flags_ = ehdr.get_e_flags(); -} + gold_assert(this->exidx_section_map_[shndx] == NULL); + this->exidx_section_map_[shndx] = exidx_input_section; -// Arm_dynobj methods. + if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum()) + { + gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"), + this->section_name(shndx).c_str(), shndx, text_shndx, + this->name().c_str()); + exidx_input_section->set_has_errors(); + } + else if (this->exidx_section_map_[text_shndx] != NULL) + { + unsigned other_exidx_shndx = + this->exidx_section_map_[text_shndx]->shndx(); + gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section" + "%s(%u) in %s"), + this->section_name(shndx).c_str(), shndx, + this->section_name(other_exidx_shndx).c_str(), + other_exidx_shndx, this->section_name(text_shndx).c_str(), + text_shndx, this->name().c_str()); + exidx_input_section->set_has_errors(); + } + else + this->exidx_section_map_[text_shndx] = exidx_input_section; + + // Check section flags of text section. + if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) + { + gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) " + " in %s"), + this->section_name(shndx).c_str(), shndx, + this->section_name(text_shndx).c_str(), text_shndx, + this->name().c_str()); + exidx_input_section->set_has_errors(); + } + else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0) + // I would like to make this an error but currently ld just ignores + // this. + gold_warning(_("EXIDX section %s(%u) links to non-executable section " + "%s(%u) in %s"), + this->section_name(shndx).c_str(), shndx, + this->section_name(text_shndx).c_str(), text_shndx, + this->name().c_str()); +} // Read the symbol information. template void -Arm_dynobj::do_read_symbols(Read_symbols_data* sd) +Arm_relobj::do_read_symbols(Read_symbols_data* sd) { // Call parent class to read symbol information. - Sized_dynobj<32, big_endian>::do_read_symbols(sd); + this->base_read_symbols(sd); + + // If this input file is a binary file, it has no processor + // specific flags and attributes section. + Input_file::Format format = this->input_file()->format(); + if (format != Input_file::FORMAT_ELF) + { + gold_assert(format == Input_file::FORMAT_BINARY); + this->merge_flags_and_attributes_ = false; + return; + } // Read processor-specific flags in ELF file header. const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset, @@ -3410,21 +6937,326 @@ Arm_dynobj::do_read_symbols(Read_symbols_data* sd) true, false); elfcpp::Ehdr<32, big_endian> ehdr(pehdr); this->processor_specific_flags_ = ehdr.get_e_flags(); -} -// Stub_addend_reader methods. + // Go over the section headers and look for .ARM.attributes and .ARM.exidx + // sections. + std::vector deferred_exidx_sections; + const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size; + const unsigned char* pshdrs = sd->section_headers->data(); + const unsigned char* ps = pshdrs + shdr_size; + bool must_merge_flags_and_attributes = false; + for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size) + { + elfcpp::Shdr<32, big_endian> shdr(ps); -// Read the addend of a REL relocation of type R_TYPE at VIEW. + // Sometimes an object has no contents except the section name string + // table and an empty symbol table with the undefined symbol. We + // don't want to merge processor-specific flags from such an object. + if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB) + { + // Symbol table is not empty. + const elfcpp::Elf_types<32>::Elf_WXword sym_size = + elfcpp::Elf_sizes<32>::sym_size; + if (shdr.get_sh_size() > sym_size) + must_merge_flags_and_attributes = true; + } + else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB) + // If this is neither an empty symbol table nor a string table, + // be conservative. + must_merge_flags_and_attributes = true; -template -elfcpp::Elf_types<32>::Elf_Swxword -Stub_addend_reader::operator()( - unsigned int r_type, - const unsigned char* view, - const typename Reloc_types::Reloc&) const -{ - switch (r_type) - { + if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES) + { + gold_assert(this->attributes_section_data_ == NULL); + section_offset_type section_offset = shdr.get_sh_offset(); + section_size_type section_size = + convert_to_section_size_type(shdr.get_sh_size()); + const unsigned char* view = + this->get_view(section_offset, section_size, true, false); + this->attributes_section_data_ = + new Attributes_section_data(view, section_size); + } + else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX) + { + unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link()); + if (text_shndx == elfcpp::SHN_UNDEF) + deferred_exidx_sections.push_back(i); + else + { + elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + + text_shndx * shdr_size); + this->make_exidx_input_section(i, shdr, text_shndx, text_shdr); + } + // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set. + if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0) + gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"), + this->section_name(i).c_str(), this->name().c_str()); + } + } + + // This is rare. + if (!must_merge_flags_and_attributes) + { + gold_assert(deferred_exidx_sections.empty()); + this->merge_flags_and_attributes_ = false; + return; + } + + // Some tools are broken and they do not set the link of EXIDX sections. + // We look at the first relocation to figure out the linked sections. + if (!deferred_exidx_sections.empty()) + { + // We need to go over the section headers again to find the mapping + // from sections being relocated to their relocation sections. This is + // a bit inefficient as we could do that in the loop above. However, + // we do not expect any deferred EXIDX sections normally. So we do not + // want to slow down the most common path. + typedef Unordered_map Reloc_map; + Reloc_map reloc_map; + ps = pshdrs + shdr_size; + for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size) + { + elfcpp::Shdr<32, big_endian> shdr(ps); + elfcpp::Elf_Word sh_type = shdr.get_sh_type(); + if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA) + { + unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info()); + if (info_shndx >= this->shnum()) + gold_error(_("relocation section %u has invalid info %u"), + i, info_shndx); + Reloc_map::value_type value(info_shndx, i); + std::pair result = + reloc_map.insert(value); + if (!result.second) + gold_error(_("section %u has multiple relocation sections " + "%u and %u"), + info_shndx, i, reloc_map[info_shndx]); + } + } + + // Read the symbol table section header. + const unsigned int symtab_shndx = this->symtab_shndx(); + elfcpp::Shdr<32, big_endian> + symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); + gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); + + // Read the local symbols. + const int sym_size =elfcpp::Elf_sizes<32>::sym_size; + const unsigned int loccount = this->local_symbol_count(); + gold_assert(loccount == symtabshdr.get_sh_info()); + off_t locsize = loccount * sym_size; + const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), + locsize, true, true); + + // Process the deferred EXIDX sections. + for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i) + { + unsigned int shndx = deferred_exidx_sections[i]; + elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size); + unsigned int text_shndx = elfcpp::SHN_UNDEF; + Reloc_map::const_iterator it = reloc_map.find(shndx); + if (it != reloc_map.end()) + find_linked_text_section(pshdrs + it->second * shdr_size, + psyms, &text_shndx); + elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + + text_shndx * shdr_size); + this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr); + } + } +} + +// Process relocations for garbage collection. The ARM target uses .ARM.exidx +// sections for unwinding. These sections are referenced implicitly by +// text sections linked in the section headers. If we ignore these implicit +// references, the .ARM.exidx sections and any .ARM.extab sections they use +// will be garbage-collected incorrectly. Hence we override the same function +// in the base class to handle these implicit references. + +template +void +Arm_relobj::do_gc_process_relocs(Symbol_table* symtab, + Layout* layout, + Read_relocs_data* rd) +{ + // First, call base class method to process relocations in this object. + Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd); + + // If --gc-sections is not specified, there is nothing more to do. + // This happens when --icf is used but --gc-sections is not. + if (!parameters->options().gc_sections()) + return; + + unsigned int shnum = this->shnum(); + const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size; + const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(), + shnum * shdr_size, + true, true); + + // Scan section headers for sections of type SHT_ARM_EXIDX. Add references + // to these from the linked text sections. + const unsigned char* ps = pshdrs + shdr_size; + for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size) + { + elfcpp::Shdr<32, big_endian> shdr(ps); + if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX) + { + // Found an .ARM.exidx section, add it to the set of reachable + // sections from its linked text section. + unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link()); + symtab->gc()->add_reference(this, text_shndx, this, i); + } + } +} + +// Update output local symbol count. Owing to EXIDX entry merging, some local +// symbols will be removed in output. Adjust output local symbol count +// accordingly. We can only changed the static output local symbol count. It +// is too late to change the dynamic symbols. + +template +void +Arm_relobj::update_output_local_symbol_count() +{ + // Caller should check that this needs updating. We want caller checking + // because output_local_symbol_count_needs_update() is most likely inlined. + gold_assert(this->output_local_symbol_count_needs_update_); + + gold_assert(this->symtab_shndx() != -1U); + if (this->symtab_shndx() == 0) + { + // This object has no symbols. Weird but legal. + return; + } + + // Read the symbol table section header. + const unsigned int symtab_shndx = this->symtab_shndx(); + elfcpp::Shdr<32, big_endian> + symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); + gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); + + // Read the local symbols. + const int sym_size = elfcpp::Elf_sizes<32>::sym_size; + const unsigned int loccount = this->local_symbol_count(); + gold_assert(loccount == symtabshdr.get_sh_info()); + off_t locsize = loccount * sym_size; + const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), + locsize, true, true); + + // Loop over the local symbols. + + typedef typename Sized_relobj_file<32, big_endian>::Output_sections + Output_sections; + const Output_sections& out_sections(this->output_sections()); + unsigned int shnum = this->shnum(); + unsigned int count = 0; + // Skip the first, dummy, symbol. + psyms += sym_size; + for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) + { + elfcpp::Sym<32, big_endian> sym(psyms); + + Symbol_value<32>& lv((*this->local_values())[i]); + + // This local symbol was already discarded by do_count_local_symbols. + if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry()) + continue; + + bool is_ordinary; + unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(), + &is_ordinary); + + if (shndx < shnum) + { + Output_section* os = out_sections[shndx]; + + // This local symbol no longer has an output section. Discard it. + if (os == NULL) + { + lv.set_no_output_symtab_entry(); + continue; + } + + // Currently we only discard parts of EXIDX input sections. + // We explicitly check for a merged EXIDX input section to avoid + // calling Output_section_data::output_offset unless necessary. + if ((this->get_output_section_offset(shndx) == invalid_address) + && (this->exidx_input_section_by_shndx(shndx) != NULL)) + { + section_offset_type output_offset = + os->output_offset(this, shndx, lv.input_value()); + if (output_offset == -1) + { + // This symbol is defined in a part of an EXIDX input section + // that is discarded due to entry merging. + lv.set_no_output_symtab_entry(); + continue; + } + } + } + + ++count; + } + + this->set_output_local_symbol_count(count); + this->output_local_symbol_count_needs_update_ = false; +} + +// Arm_dynobj methods. + +// Read the symbol information. + +template +void +Arm_dynobj::do_read_symbols(Read_symbols_data* sd) +{ + // Call parent class to read symbol information. + this->base_read_symbols(sd); + + // Read processor-specific flags in ELF file header. + const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset, + elfcpp::Elf_sizes<32>::ehdr_size, + true, false); + elfcpp::Ehdr<32, big_endian> ehdr(pehdr); + this->processor_specific_flags_ = ehdr.get_e_flags(); + + // Read the attributes section if there is one. + // We read from the end because gas seems to put it near the end of + // the section headers. + const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size; + const unsigned char* ps = + sd->section_headers->data() + shdr_size * (this->shnum() - 1); + for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size) + { + elfcpp::Shdr<32, big_endian> shdr(ps); + if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES) + { + section_offset_type section_offset = shdr.get_sh_offset(); + section_size_type section_size = + convert_to_section_size_type(shdr.get_sh_size()); + const unsigned char* view = + this->get_view(section_offset, section_size, true, false); + this->attributes_section_data_ = + new Attributes_section_data(view, section_size); + break; + } + } +} + +// Stub_addend_reader methods. + +// Read the addend of a REL relocation of type R_TYPE at VIEW. + +template +elfcpp::Elf_types<32>::Elf_Swxword +Stub_addend_reader::operator()( + unsigned int r_type, + const unsigned char* view, + const typename Reloc_types::Reloc&) const +{ + typedef class Arm_relocate_functions RelocFuncs; + + switch (r_type) + { case elfcpp::R_ARM_CALL: case elfcpp::R_ARM_JUMP24: case elfcpp::R_ARM_PLT32: @@ -3432,30 +7264,18 @@ Stub_addend_reader::operator()( typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; const Valtype* wv = reinterpret_cast(view); Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); - return utils::sign_extend<26>(val << 2); + return Bits<26>::sign_extend32(val << 2); } case elfcpp::R_ARM_THM_CALL: case elfcpp::R_ARM_THM_JUMP24: case elfcpp::R_ARM_THM_XPC22: { - // Fetch the addend. We use the Thumb-2 encoding (backwards - // compatible with Thumb-1) involving the J1 and J2 bits. typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; const Valtype* wv = reinterpret_cast(view); Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); - - uint32_t s = (upper_insn & (1 << 10)) >> 10; - uint32_t upper = upper_insn & 0x3ff; - uint32_t lower = lower_insn & 0x7ff; - uint32_t j1 = (lower_insn & (1 << 13)) >> 13; - uint32_t j2 = (lower_insn & (1 << 11)) >> 11; - uint32_t i1 = j1 ^ s ? 0 : 1; - uint32_t i2 = j2 ^ s ? 0 : 1; - - return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22) - | (upper << 12) | (lower << 1)); + return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn); } case elfcpp::R_ARM_THM_JUMP19: @@ -3464,16 +7284,7 @@ Stub_addend_reader::operator()( const Valtype* wv = reinterpret_cast(view); Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); - - // Reconstruct the top three bits and squish the two 11 bit pieces - // together. - uint32_t S = (upper_insn & 0x0400) >> 10; - uint32_t J1 = (lower_insn & 0x2000) >> 13; - uint32_t J2 = (lower_insn & 0x0800) >> 11; - uint32_t upper = - (S << 8) | (J2 << 7) | (J1 << 6) | (upper_insn & 0x003f); - uint32_t lower = (lower_insn & 0x07ff); - return utils::sign_extend<23>((upper << 12) | (lower << 1)); + return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn); } default: @@ -3481,27 +7292,298 @@ Stub_addend_reader::operator()( } } +// Arm_output_data_got methods. + +// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries. +// The first one is initialized to be 1, which is the module index for +// the main executable and the second one 0. A reloc of the type +// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will +// be applied by gold. GSYM is a global symbol. +// +template +void +Arm_output_data_got::add_tls_gd32_with_static_reloc( + unsigned int got_type, + Symbol* gsym) +{ + if (gsym->has_got_offset(got_type)) + return; + + // We are doing a static link. Just mark it as belong to module 1, + // the executable. + unsigned int got_offset = this->add_constant(1); + gsym->set_got_offset(got_type, got_offset); + got_offset = this->add_constant(0); + this->static_relocs_.push_back(Static_reloc(got_offset, + elfcpp::R_ARM_TLS_DTPOFF32, + gsym)); +} + +// Same as the above but for a local symbol. + +template +void +Arm_output_data_got::add_tls_gd32_with_static_reloc( + unsigned int got_type, + Sized_relobj_file<32, big_endian>* object, + unsigned int index) +{ + if (object->local_has_got_offset(index, got_type)) + return; + + // We are doing a static link. Just mark it as belong to module 1, + // the executable. + unsigned int got_offset = this->add_constant(1); + object->set_local_got_offset(index, got_type, got_offset); + got_offset = this->add_constant(0); + this->static_relocs_.push_back(Static_reloc(got_offset, + elfcpp::R_ARM_TLS_DTPOFF32, + object, index)); +} + +template +void +Arm_output_data_got::do_write(Output_file* of) +{ + // Call parent to write out GOT. + Output_data_got<32, big_endian>::do_write(of); + + // We are done if there is no fix up. + if (this->static_relocs_.empty()) + return; + + gold_assert(parameters->doing_static_link()); + + const off_t offset = this->offset(); + const section_size_type oview_size = + convert_to_section_size_type(this->data_size()); + unsigned char* const oview = of->get_output_view(offset, oview_size); + + Output_segment* tls_segment = this->layout_->tls_segment(); + gold_assert(tls_segment != NULL); + + // The thread pointer $tp points to the TCB, which is followed by the + // TLS. So we need to adjust $tp relative addressing by this amount. + Arm_address aligned_tcb_size = + align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment()); + + for (size_t i = 0; i < this->static_relocs_.size(); ++i) + { + Static_reloc& reloc(this->static_relocs_[i]); + + Arm_address value; + if (!reloc.symbol_is_global()) + { + Sized_relobj_file<32, big_endian>* object = reloc.relobj(); + const Symbol_value<32>* psymval = + reloc.relobj()->local_symbol(reloc.index()); + + // We are doing static linking. Issue an error and skip this + // relocation if the symbol is undefined or in a discarded_section. + bool is_ordinary; + unsigned int shndx = psymval->input_shndx(&is_ordinary); + if ((shndx == elfcpp::SHN_UNDEF) + || (is_ordinary + && shndx != elfcpp::SHN_UNDEF + && !object->is_section_included(shndx) + && !this->symbol_table_->is_section_folded(object, shndx))) + { + gold_error(_("undefined or discarded local symbol %u from " + " object %s in GOT"), + reloc.index(), reloc.relobj()->name().c_str()); + continue; + } + + value = psymval->value(object, 0); + } + else + { + const Symbol* gsym = reloc.symbol(); + gold_assert(gsym != NULL); + if (gsym->is_forwarder()) + gsym = this->symbol_table_->resolve_forwards(gsym); + + // We are doing static linking. Issue an error and skip this + // relocation if the symbol is undefined or in a discarded_section + // unless it is a weakly_undefined symbol. + if ((gsym->is_defined_in_discarded_section() + || gsym->is_undefined()) + && !gsym->is_weak_undefined()) + { + gold_error(_("undefined or discarded symbol %s in GOT"), + gsym->name()); + continue; + } + + if (!gsym->is_weak_undefined()) + { + const Sized_symbol<32>* sym = + static_cast*>(gsym); + value = sym->value(); + } + else + value = 0; + } + + unsigned got_offset = reloc.got_offset(); + gold_assert(got_offset < oview_size); + + typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; + Valtype* wv = reinterpret_cast(oview + got_offset); + Valtype x; + switch (reloc.r_type()) + { + case elfcpp::R_ARM_TLS_DTPOFF32: + x = value; + break; + case elfcpp::R_ARM_TLS_TPOFF32: + x = value + aligned_tcb_size; + break; + default: + gold_unreachable(); + } + elfcpp::Swap<32, big_endian>::writeval(wv, x); + } + + of->write_output_view(offset, oview_size, oview); +} + // A class to handle the PLT data. +// This is an abstract base class that handles most of the linker details +// but does not know the actual contents of PLT entries. The derived +// classes below fill in those details. template class Output_data_plt_arm : public Output_section_data { public: + // Unlike aarch64, which records symbol value in "addend" field of relocations + // and could be done at the same time an IRelative reloc is created for the + // symbol, arm puts the symbol value into "GOT" table, which, however, is + // issued later in Output_data_plt_arm::do_write(). So we have a struct here + // to keep necessary symbol information for later use in do_write. We usually + // have only a very limited number of ifuncs, so the extra data required here + // is also limited. + + struct IRelative_data + { + IRelative_data(Sized_symbol<32>* sized_symbol) + : symbol_is_global_(true) + { + u_.global = sized_symbol; + } + + IRelative_data(Sized_relobj_file<32, big_endian>* relobj, + unsigned int index) + : symbol_is_global_(false) + { + u_.local.relobj = relobj; + u_.local.index = index; + } + + union + { + Sized_symbol<32>* global; + + struct + { + Sized_relobj_file<32, big_endian>* relobj; + unsigned int index; + } local; + } u_; + + bool symbol_is_global_; + }; + typedef Output_data_reloc Reloc_section; - Output_data_plt_arm(Layout*, Output_data_space*); + Output_data_plt_arm(Layout* layout, uint64_t addralign, + Arm_output_data_got* got, + Output_data_space* got_plt, + Output_data_space* got_irelative); // Add an entry to the PLT. void - add_entry(Symbol* gsym); + add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym); + + // Add the relocation for a plt entry. + void + add_relocation(Symbol_table* symtab, Layout* layout, + Symbol* gsym, unsigned int got_offset); + + // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. + unsigned int + add_local_ifunc_entry(Symbol_table* symtab, Layout*, + Sized_relobj_file<32, big_endian>* relobj, + unsigned int local_sym_index); // Return the .rel.plt section data. const Reloc_section* rel_plt() const { return this->rel_; } + // Return the PLT relocation container for IRELATIVE. + Reloc_section* + rel_irelative(Symbol_table*, Layout*); + + // Return the number of PLT entries. + unsigned int + entry_count() const + { return this->count_ + this->irelative_count_; } + + // Return the offset of the first non-reserved PLT entry. + unsigned int + first_plt_entry_offset() const + { return this->do_first_plt_entry_offset(); } + + // Return the size of a PLT entry. + unsigned int + get_plt_entry_size() const + { return this->do_get_plt_entry_size(); } + + // Return the PLT address for globals. + uint32_t + address_for_global(const Symbol*) const; + + // Return the PLT address for locals. + uint32_t + address_for_local(const Relobj*, unsigned int symndx) const; + protected: + // Fill in the first PLT entry. + void + fill_first_plt_entry(unsigned char* pov, + Arm_address got_address, + Arm_address plt_address) + { this->do_fill_first_plt_entry(pov, got_address, plt_address); } + + void + fill_plt_entry(unsigned char* pov, + Arm_address got_address, + Arm_address plt_address, + unsigned int got_offset, + unsigned int plt_offset) + { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); } + + virtual unsigned int + do_first_plt_entry_offset() const = 0; + + virtual unsigned int + do_get_plt_entry_size() const = 0; + + virtual void + do_fill_first_plt_entry(unsigned char* pov, + Arm_address got_address, + Arm_address plt_address) = 0; + + virtual void + do_fill_plt_entry(unsigned char* pov, + Arm_address got_address, + Arm_address plt_address, + unsigned int got_offset, + unsigned int plt_offset) = 0; + void do_adjust_output_section(Output_section* os); @@ -3511,30 +7593,42 @@ class Output_data_plt_arm : public Output_section_data { mapfile->print_output_data(this, _("** PLT")); } private: - // Template for the first PLT entry. - static const uint32_t first_plt_entry[5]; - - // Template for subsequent PLT entries. - static const uint32_t plt_entry[3]; - // Set the final size. void set_final_data_size() { - this->set_data_size(sizeof(first_plt_entry) - + this->count_ * sizeof(plt_entry)); + this->set_data_size(this->first_plt_entry_offset() + + ((this->count_ + this->irelative_count_) + * this->get_plt_entry_size())); } // Write out the PLT data. void do_write(Output_file*); + // Record irelative symbol data. + void insert_irelative_data(const IRelative_data& idata) + { irelative_data_vec_.push_back(idata); } + // The reloc section. Reloc_section* rel_; + // The IRELATIVE relocs, if necessary. These must follow the + // regular PLT relocations. + Reloc_section* irelative_rel_; + // The .got section. + Arm_output_data_got* got_; // The .got.plt section. Output_data_space* got_plt_; + // The part of the .got.plt section used for IRELATIVE relocs. + Output_data_space* got_irelative_; // The number of PLT entries. unsigned int count_; + // Number of PLT entries with R_ARM_IRELATIVE relocs. These + // follow the regular PLT entries. + unsigned int irelative_count_; + // Vector for irelative data. + typedef std::vector IRelative_data_vec; + IRelative_data_vec irelative_data_vec_; }; // Create the PLT section. The ordinary .got section is an argument, @@ -3542,13 +7636,19 @@ class Output_data_plt_arm : public Output_section_data // section just for PLT entries. template -Output_data_plt_arm::Output_data_plt_arm(Layout* layout, - Output_data_space* got_plt) - : Output_section_data(4), got_plt_(got_plt), count_(0) +Output_data_plt_arm::Output_data_plt_arm( + Layout* layout, uint64_t addralign, + Arm_output_data_got* got, + Output_data_space* got_plt, + Output_data_space* got_irelative) + : Output_section_data(addralign), irelative_rel_(NULL), + got_(got), got_plt_(got_plt), got_irelative_(got_irelative), + count_(0), irelative_count_(0) { this->rel_ = new Reloc_section(false); layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL, - elfcpp::SHF_ALLOC, this->rel_); + elfcpp::SHF_ALLOC, this->rel_, + ORDER_DYNAMIC_PLT_RELOCS, false); } template @@ -3562,60 +7662,417 @@ Output_data_plt_arm::do_adjust_output_section(Output_section* os) template void -Output_data_plt_arm::add_entry(Symbol* gsym) +Output_data_plt_arm::add_entry(Symbol_table* symtab, + Layout* layout, + Symbol* gsym) { gold_assert(!gsym->has_plt_offset()); - // Note that when setting the PLT offset we skip the initial - // reserved PLT entry. - gsym->set_plt_offset((this->count_) * sizeof(plt_entry) - + sizeof(first_plt_entry)); + unsigned int* entry_count; + Output_section_data_build* got; + + // We have 2 different types of plt entry here, normal and ifunc. - ++this->count_; + // For normal plt, the offset begins with first_plt_entry_offset(20), and the + // 1st entry offset would be 20, the second 32, third 44 ... etc. - section_offset_type got_offset = this->got_plt_->current_data_size(); + // For ifunc plt, the offset begins with 0. So the first offset would 0, + // second 12, third 24 ... etc. + + // IFunc plt entries *always* come after *normal* plt entries. + + // Notice, when computing the plt address of a certain symbol, "plt_address + + // plt_offset" is no longer correct. Use target->plt_address_for_global() or + // target->plt_address_for_local() instead. + + int begin_offset = 0; + if (gsym->type() == elfcpp::STT_GNU_IFUNC + && gsym->can_use_relative_reloc(false)) + { + entry_count = &this->irelative_count_; + got = this->got_irelative_; + // For irelative plt entries, offset is relative to the end of normal plt + // entries, so it starts from 0. + begin_offset = 0; + // Record symbol information. + this->insert_irelative_data( + IRelative_data(symtab->get_sized_symbol<32>(gsym))); + } + else + { + entry_count = &this->count_; + got = this->got_plt_; + // Note that for normal plt entries, when setting the PLT offset we skip + // the initial reserved PLT entry. + begin_offset = this->first_plt_entry_offset(); + } + + gsym->set_plt_offset(begin_offset + + (*entry_count) * this->get_plt_entry_size()); + + ++(*entry_count); + + section_offset_type got_offset = got->current_data_size(); // Every PLT entry needs a GOT entry which points back to the PLT // entry (this will be changed by the dynamic linker, normally // lazily when the function is called). - this->got_plt_->set_current_data_size(got_offset + 4); + got->set_current_data_size(got_offset + 4); // Every PLT entry needs a reloc. - gsym->set_needs_dynsym_entry(); - this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_, - got_offset); + this->add_relocation(symtab, layout, gsym, got_offset); // Note that we don't need to save the symbol. The contents of the // PLT are independent of which symbols are used. The symbols only // appear in the relocations. } -// ARM PLTs. -// FIXME: This is not very flexible. Right now this has only been tested -// on armv5te. If we are to support additional architecture features like -// Thumb-2 or BE8, we need to make this more flexible like GNU ld. +// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return +// the PLT offset. -// The first entry in the PLT. template -const uint32_t Output_data_plt_arm::first_plt_entry[5] = +unsigned int +Output_data_plt_arm::add_local_ifunc_entry( + Symbol_table* symtab, + Layout* layout, + Sized_relobj_file<32, big_endian>* relobj, + unsigned int local_sym_index) +{ + this->insert_irelative_data(IRelative_data(relobj, local_sym_index)); + + // Notice, when computingthe plt entry address, "plt_address + plt_offset" is + // no longer correct. Use target->plt_address_for_local() instead. + unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size(); + ++this->irelative_count_; + + section_offset_type got_offset = this->got_irelative_->current_data_size(); + + // Every PLT entry needs a GOT entry which points back to the PLT + // entry. + this->got_irelative_->set_current_data_size(got_offset + 4); + + + // Every PLT entry needs a reloc. + Reloc_section* rel = this->rel_irelative(symtab, layout); + rel->add_symbolless_local_addend(relobj, local_sym_index, + elfcpp::R_ARM_IRELATIVE, + this->got_irelative_, got_offset); + return plt_offset; +} + + +// Add the relocation for a PLT entry. + +template +void +Output_data_plt_arm::add_relocation( + Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset) +{ + if (gsym->type() == elfcpp::STT_GNU_IFUNC + && gsym->can_use_relative_reloc(false)) + { + Reloc_section* rel = this->rel_irelative(symtab, layout); + rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE, + this->got_irelative_, got_offset); + } + else + { + gsym->set_needs_dynsym_entry(); + this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_, + got_offset); + } +} + + +// Create the irelative relocation data. + +template +typename Output_data_plt_arm::Reloc_section* +Output_data_plt_arm::rel_irelative(Symbol_table* symtab, + Layout* layout) +{ + if (this->irelative_rel_ == NULL) + { + // Since irelative relocations goes into 'rel.dyn', we delegate the + // creation of irelative_rel_ to where rel_dyn section gets created. + Target_arm* arm_target = + Target_arm::default_target(); + this->irelative_rel_ = arm_target->rel_irelative_section(layout); + + // Make sure we have a place for the TLSDESC relocations, in + // case we see any later on. + // this->rel_tlsdesc(layout); + if (parameters->doing_static_link()) + { + // A statically linked executable will only have a .rel.plt section to + // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library + // will use these symbols to locate the IRELATIVE relocs at program + // startup time. + symtab->define_in_output_data("__rel_iplt_start", NULL, + Symbol_table::PREDEFINED, + this->irelative_rel_, 0, 0, + elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, + elfcpp::STV_HIDDEN, 0, false, true); + symtab->define_in_output_data("__rel_iplt_end", NULL, + Symbol_table::PREDEFINED, + this->irelative_rel_, 0, 0, + elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, + elfcpp::STV_HIDDEN, 0, true, true); + } + } + return this->irelative_rel_; +} + + +// Return the PLT address for a global symbol. + +template +uint32_t +Output_data_plt_arm::address_for_global(const Symbol* gsym) const +{ + uint64_t begin_offset = 0; + if (gsym->type() == elfcpp::STT_GNU_IFUNC + && gsym->can_use_relative_reloc(false)) + { + begin_offset = (this->first_plt_entry_offset() + + this->count_ * this->get_plt_entry_size()); + } + return this->address() + begin_offset + gsym->plt_offset(); +} + + +// Return the PLT address for a local symbol. These are always +// IRELATIVE relocs. + +template +uint32_t +Output_data_plt_arm::address_for_local( + const Relobj* object, + unsigned int r_sym) const +{ + return (this->address() + + this->first_plt_entry_offset() + + this->count_ * this->get_plt_entry_size() + + object->local_plt_offset(r_sym)); +} + + +template +class Output_data_plt_arm_standard : public Output_data_plt_arm +{ + public: + Output_data_plt_arm_standard(Layout* layout, + Arm_output_data_got* got, + Output_data_space* got_plt, + Output_data_space* got_irelative) + : Output_data_plt_arm(layout, 4, got, got_plt, got_irelative) + { } + + protected: + // Return the offset of the first non-reserved PLT entry. + virtual unsigned int + do_first_plt_entry_offset() const + { return sizeof(first_plt_entry); } + + virtual void + do_fill_first_plt_entry(unsigned char* pov, + Arm_address got_address, + Arm_address plt_address); + + private: + // Template for the first PLT entry. + static const uint32_t first_plt_entry[5]; +}; + +// ARM PLTs. +// FIXME: This is not very flexible. Right now this has only been tested +// on armv5te. If we are to support additional architecture features like +// Thumb-2 or BE8, we need to make this more flexible like GNU ld. + +// The first entry in the PLT. +template +const uint32_t Output_data_plt_arm_standard::first_plt_entry[5] = { 0xe52de004, // str lr, [sp, #-4]! 0xe59fe004, // ldr lr, [pc, #4] - 0xe08fe00e, // add lr, pc, lr + 0xe08fe00e, // add lr, pc, lr 0xe5bef008, // ldr pc, [lr, #8]! 0x00000000, // &GOT[0] - . }; +template +void +Output_data_plt_arm_standard::do_fill_first_plt_entry( + unsigned char* pov, + Arm_address got_address, + Arm_address plt_address) +{ + // Write first PLT entry. All but the last word are constants. + const size_t num_first_plt_words = (sizeof(first_plt_entry) + / sizeof(first_plt_entry[0])); + for (size_t i = 0; i < num_first_plt_words - 1; i++) + { + if (parameters->options().be8()) + { + elfcpp::Swap<32, false>::writeval(pov + i * 4, + first_plt_entry[i]); + } + else + { + elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, + first_plt_entry[i]); + } + } + // Last word in first PLT entry is &GOT[0] - . + elfcpp::Swap<32, big_endian>::writeval(pov + 16, + got_address - (plt_address + 16)); +} + // Subsequent entries in the PLT. +// This class generates short (12-byte) entries, for displacements up to 2^28. + +template +class Output_data_plt_arm_short : public Output_data_plt_arm_standard +{ + public: + Output_data_plt_arm_short(Layout* layout, + Arm_output_data_got* got, + Output_data_space* got_plt, + Output_data_space* got_irelative) + : Output_data_plt_arm_standard(layout, got, got_plt, got_irelative) + { } + + protected: + // Return the size of a PLT entry. + virtual unsigned int + do_get_plt_entry_size() const + { return sizeof(plt_entry); } + + virtual void + do_fill_plt_entry(unsigned char* pov, + Arm_address got_address, + Arm_address plt_address, + unsigned int got_offset, + unsigned int plt_offset); + + private: + // Template for subsequent PLT entries. + static const uint32_t plt_entry[3]; +}; template -const uint32_t Output_data_plt_arm::plt_entry[3] = +const uint32_t Output_data_plt_arm_short::plt_entry[3] = { 0xe28fc600, // add ip, pc, #0xNN00000 0xe28cca00, // add ip, ip, #0xNN000 0xe5bcf000, // ldr pc, [ip, #0xNNN]! }; +template +void +Output_data_plt_arm_short::do_fill_plt_entry( + unsigned char* pov, + Arm_address got_address, + Arm_address plt_address, + unsigned int got_offset, + unsigned int plt_offset) +{ + int32_t offset = ((got_address + got_offset) + - (plt_address + plt_offset + 8)); + if (offset < 0 || offset > 0x0fffffff) + gold_error(_("PLT offset too large, try linking with --long-plt")); + + uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff); + uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff); + uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff); + + if (parameters->options().be8()) + { + elfcpp::Swap<32, false>::writeval(pov, plt_insn0); + elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1); + elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2); + } + else + { + elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0); + elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1); + elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2); + } +} + +// This class generates long (16-byte) entries, for arbitrary displacements. + +template +class Output_data_plt_arm_long : public Output_data_plt_arm_standard +{ + public: + Output_data_plt_arm_long(Layout* layout, + Arm_output_data_got* got, + Output_data_space* got_plt, + Output_data_space* got_irelative) + : Output_data_plt_arm_standard(layout, got, got_plt, got_irelative) + { } + + protected: + // Return the size of a PLT entry. + virtual unsigned int + do_get_plt_entry_size() const + { return sizeof(plt_entry); } + + virtual void + do_fill_plt_entry(unsigned char* pov, + Arm_address got_address, + Arm_address plt_address, + unsigned int got_offset, + unsigned int plt_offset); + + private: + // Template for subsequent PLT entries. + static const uint32_t plt_entry[4]; +}; + +template +const uint32_t Output_data_plt_arm_long::plt_entry[4] = +{ + 0xe28fc200, // add ip, pc, #0xN0000000 + 0xe28cc600, // add ip, ip, #0xNN00000 + 0xe28cca00, // add ip, ip, #0xNN000 + 0xe5bcf000, // ldr pc, [ip, #0xNNN]! +}; + +template +void +Output_data_plt_arm_long::do_fill_plt_entry( + unsigned char* pov, + Arm_address got_address, + Arm_address plt_address, + unsigned int got_offset, + unsigned int plt_offset) +{ + int32_t offset = ((got_address + got_offset) + - (plt_address + plt_offset + 8)); + + uint32_t plt_insn0 = plt_entry[0] | (offset >> 28); + uint32_t plt_insn1 = plt_entry[1] | ((offset >> 20) & 0xff); + uint32_t plt_insn2 = plt_entry[2] | ((offset >> 12) & 0xff); + uint32_t plt_insn3 = plt_entry[3] | (offset & 0xfff); + + if (parameters->options().be8()) + { + elfcpp::Swap<32, false>::writeval(pov, plt_insn0); + elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1); + elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2); + elfcpp::Swap<32, false>::writeval(pov + 12, plt_insn3); + } + else + { + elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0); + elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1); + elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2); + elfcpp::Swap<32, big_endian>::writeval(pov + 12, plt_insn3); + } +} + // Write out the PLT. This uses the hand-coded instructions above, // and adjusts them as needed. This is all specified by the arm ELF // Processor Supplement. @@ -3630,8 +8087,11 @@ Output_data_plt_arm::do_write(Output_file* of) unsigned char* const oview = of->get_output_view(offset, oview_size); const off_t got_file_offset = this->got_plt_->offset(); + gold_assert(got_file_offset + this->got_plt_->data_size() + == this->got_irelative_->offset()); const section_size_type got_size = - convert_to_section_size_type(this->got_plt_->data_size()); + convert_to_section_size_type(this->got_plt_->data_size() + + this->got_irelative_->data_size()); unsigned char* const got_view = of->get_output_view(got_file_offset, got_size); unsigned char* pov = oview; @@ -3639,49 +8099,58 @@ Output_data_plt_arm::do_write(Output_file* of) Arm_address plt_address = this->address(); Arm_address got_address = this->got_plt_->address(); - // Write first PLT entry. All but the last word are constants. - const size_t num_first_plt_words = (sizeof(first_plt_entry) - / sizeof(plt_entry[0])); - for (size_t i = 0; i < num_first_plt_words - 1; i++) - elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]); - // Last word in first PLT entry is &GOT[0] - . - elfcpp::Swap<32, big_endian>::writeval(pov + 16, - got_address - (plt_address + 16)); - pov += sizeof(first_plt_entry); + // Write first PLT entry. + this->fill_first_plt_entry(pov, got_address, plt_address); + pov += this->first_plt_entry_offset(); unsigned char* got_pov = got_view; memset(got_pov, 0, 12); got_pov += 12; - const int rel_size = elfcpp::Elf_sizes<32>::rel_size; - unsigned int plt_offset = sizeof(first_plt_entry); - unsigned int plt_rel_offset = 0; + unsigned int plt_offset = this->first_plt_entry_offset(); unsigned int got_offset = 12; - const unsigned int count = this->count_; + const unsigned int count = this->count_ + this->irelative_count_; + gold_assert(this->irelative_count_ == this->irelative_data_vec_.size()); for (unsigned int i = 0; i < count; ++i, - pov += sizeof(plt_entry), + pov += this->get_plt_entry_size(), got_pov += 4, - plt_offset += sizeof(plt_entry), - plt_rel_offset += rel_size, + plt_offset += this->get_plt_entry_size(), got_offset += 4) { // Set and adjust the PLT entry itself. - int32_t offset = ((got_address + got_offset) - - (plt_address + plt_offset + 8)); - - gold_assert(offset >= 0 && offset < 0x0fffffff); - uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff); - elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0); - uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff); - elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1); - uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff); - elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2); + this->fill_plt_entry(pov, got_address, plt_address, + got_offset, plt_offset); - // Set the entry in the GOT. - elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address); + Arm_address value; + if (i < this->count_) + { + // For non-irelative got entries, the value is the beginning of plt. + value = plt_address; + } + else + { + // For irelative got entries, the value is the (global/local) symbol + // address. + const IRelative_data& idata = + this->irelative_data_vec_[i - this->count_]; + if (idata.symbol_is_global_) + { + // Set the entry in the GOT for irelative symbols. The content is + // the address of the ifunc, not the address of plt start. + const Sized_symbol<32>* sized_symbol = idata.u_.global; + gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC); + value = sized_symbol->value(); + } + else + { + value = idata.u_.local.relobj->local_symbol_value( + idata.u_.local.index, 0); + } + } + elfcpp::Swap<32, big_endian>::writeval(got_pov, value); } gold_assert(static_cast(pov - oview) == oview_size); @@ -3691,6 +8160,7 @@ Output_data_plt_arm::do_write(Output_file* of) of->write_output_view(got_file_offset, got_size, got_view); } + // Create a PLT entry for a global symbol. template @@ -3701,155 +8171,556 @@ Target_arm::make_plt_entry(Symbol_table* symtab, Layout* layout, if (gsym->has_plt_offset()) return; + if (this->plt_ == NULL) + this->make_plt_section(symtab, layout); + + this->plt_->add_entry(symtab, layout, gsym); +} + + +// Create the PLT section. +template +void +Target_arm::make_plt_section( + Symbol_table* symtab, Layout* layout) +{ if (this->plt_ == NULL) { - // Create the GOT sections first. + // Create the GOT section first. this->got_section(symtab, layout); - this->plt_ = new Output_data_plt_arm(layout, this->got_plt_); + // GOT for irelatives is create along with got.plt. + gold_assert(this->got_ != NULL + && this->got_plt_ != NULL + && this->got_irelative_ != NULL); + this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_, + this->got_irelative_); + layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR), - this->plt_); + this->plt_, ORDER_PLT, false); + symtab->define_in_output_data("$a", NULL, + Symbol_table::PREDEFINED, + this->plt_, + 0, 0, elfcpp::STT_NOTYPE, + elfcpp::STB_LOCAL, + elfcpp::STV_DEFAULT, 0, + false, false); } - this->plt_->add_entry(gsym); } -// Report an unsupported relocation against a local symbol. + +// Make a PLT entry for a local STT_GNU_IFUNC symbol. template void -Target_arm::Scan::unsupported_reloc_local( - Sized_relobj<32, big_endian>* object, - unsigned int r_type) +Target_arm::make_local_ifunc_plt_entry( + Symbol_table* symtab, Layout* layout, + Sized_relobj_file<32, big_endian>* relobj, + unsigned int local_sym_index) { - gold_error(_("%s: unsupported reloc %u against local symbol"), - object->name().c_str(), r_type); + if (relobj->local_has_plt_offset(local_sym_index)) + return; + if (this->plt_ == NULL) + this->make_plt_section(symtab, layout); + unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout, + relobj, + local_sym_index); + relobj->set_local_plt_offset(local_sym_index, plt_offset); } -// We are about to emit a dynamic relocation of type R_TYPE. If the -// dynamic linker does not support it, issue an error. The GNU linker -// only issues a non-PIC error for an allocated read-only section. -// Here we know the section is allocated, but we don't know that it is -// read-only. But we check for all the relocation types which the -// glibc dynamic linker supports, so it seems appropriate to issue an -// error even if the section is not read-only. + +// Return the number of entries in the PLT. template -void -Target_arm::Scan::check_non_pic(Relobj* object, - unsigned int r_type) +unsigned int +Target_arm::plt_entry_count() const { - switch (r_type) - { - // These are the relocation types supported by glibc for ARM. - case elfcpp::R_ARM_RELATIVE: - case elfcpp::R_ARM_COPY: - case elfcpp::R_ARM_GLOB_DAT: - case elfcpp::R_ARM_JUMP_SLOT: - case elfcpp::R_ARM_ABS32: - case elfcpp::R_ARM_ABS32_NOI: - case elfcpp::R_ARM_PC24: - // FIXME: The following 3 types are not supported by Android's dynamic - // linker. - case elfcpp::R_ARM_TLS_DTPMOD32: - case elfcpp::R_ARM_TLS_DTPOFF32: - case elfcpp::R_ARM_TLS_TPOFF32: - return; + if (this->plt_ == NULL) + return 0; + return this->plt_->entry_count(); +} - default: - // This prevents us from issuing more than one error per reloc - // section. But we can still wind up issuing more than one - // error per object file. - if (this->issued_non_pic_error_) - return; - object->error(_("requires unsupported dynamic reloc; " - "recompile with -fPIC")); - this->issued_non_pic_error_ = true; - return; +// Return the offset of the first non-reserved PLT entry. - case elfcpp::R_ARM_NONE: - gold_unreachable(); - } +template +unsigned int +Target_arm::first_plt_entry_offset() const +{ + return this->plt_->first_plt_entry_offset(); } -// Scan a relocation for a local symbol. -// FIXME: This only handles a subset of relocation types used by Android -// on ARM v5te devices. +// Return the size of each PLT entry. template -inline void -Target_arm::Scan::local(Symbol_table* symtab, - Layout* layout, - Target_arm* target, - Sized_relobj<32, big_endian>* object, - unsigned int data_shndx, - Output_section* output_section, - const elfcpp::Rel<32, big_endian>& reloc, - unsigned int r_type, - const elfcpp::Sym<32, big_endian>&) +unsigned int +Target_arm::plt_entry_size() const { - r_type = get_real_reloc_type(r_type); - switch (r_type) - { - case elfcpp::R_ARM_NONE: - break; + return this->plt_->get_plt_entry_size(); +} - case elfcpp::R_ARM_ABS32: - case elfcpp::R_ARM_ABS32_NOI: - // If building a shared library (or a position-independent - // executable), we need to create a dynamic relocation for - // this location. The relocation applied at link time will - // apply the link-time value, so we flag the location with - // an R_ARM_RELATIVE relocation so the dynamic loader can - // relocate it easily. +// Get the section to use for TLS_DESC relocations. + +template +typename Target_arm::Reloc_section* +Target_arm::rel_tls_desc_section(Layout* layout) const +{ + return this->plt_section()->rel_tls_desc(layout); +} + +// Define the _TLS_MODULE_BASE_ symbol in the TLS segment. + +template +void +Target_arm::define_tls_base_symbol( + Symbol_table* symtab, + Layout* layout) +{ + if (this->tls_base_symbol_defined_) + return; + + Output_segment* tls_segment = layout->tls_segment(); + if (tls_segment != NULL) + { + bool is_exec = parameters->options().output_is_executable(); + symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL, + Symbol_table::PREDEFINED, + tls_segment, 0, 0, + elfcpp::STT_TLS, + elfcpp::STB_LOCAL, + elfcpp::STV_HIDDEN, 0, + (is_exec + ? Symbol::SEGMENT_END + : Symbol::SEGMENT_START), + true); + } + this->tls_base_symbol_defined_ = true; +} + +// Create a GOT entry for the TLS module index. + +template +unsigned int +Target_arm::got_mod_index_entry( + Symbol_table* symtab, + Layout* layout, + Sized_relobj_file<32, big_endian>* object) +{ + if (this->got_mod_index_offset_ == -1U) + { + gold_assert(symtab != NULL && layout != NULL && object != NULL); + Arm_output_data_got* got = this->got_section(symtab, layout); + unsigned int got_offset; + if (!parameters->doing_static_link()) + { + got_offset = got->add_constant(0); + Reloc_section* rel_dyn = this->rel_dyn_section(layout); + rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got, + got_offset); + } + else + { + // We are doing a static link. Just mark it as belong to module 1, + // the executable. + got_offset = got->add_constant(1); + } + + got->add_constant(0); + this->got_mod_index_offset_ = got_offset; + } + return this->got_mod_index_offset_; +} + +// Optimize the TLS relocation type based on what we know about the +// symbol. IS_FINAL is true if the final address of this symbol is +// known at link time. + +template +tls::Tls_optimization +Target_arm::optimize_tls_reloc(bool, int) +{ + // FIXME: Currently we do not do any TLS optimization. + return tls::TLSOPT_NONE; +} + +// Get the Reference_flags for a particular relocation. + +template +int +Target_arm::Scan::get_reference_flags(unsigned int r_type) +{ + switch (r_type) + { + case elfcpp::R_ARM_NONE: + case elfcpp::R_ARM_V4BX: + case elfcpp::R_ARM_GNU_VTENTRY: + case elfcpp::R_ARM_GNU_VTINHERIT: + // No symbol reference. + return 0; + + case elfcpp::R_ARM_ABS32: + case elfcpp::R_ARM_ABS16: + case elfcpp::R_ARM_ABS12: + case elfcpp::R_ARM_THM_ABS5: + case elfcpp::R_ARM_ABS8: + case elfcpp::R_ARM_BASE_ABS: + case elfcpp::R_ARM_MOVW_ABS_NC: + case elfcpp::R_ARM_MOVT_ABS: + case elfcpp::R_ARM_THM_MOVW_ABS_NC: + case elfcpp::R_ARM_THM_MOVT_ABS: + case elfcpp::R_ARM_ABS32_NOI: + return Symbol::ABSOLUTE_REF; + + case elfcpp::R_ARM_REL32: + case elfcpp::R_ARM_LDR_PC_G0: + case elfcpp::R_ARM_SBREL32: + case elfcpp::R_ARM_THM_PC8: + case elfcpp::R_ARM_BASE_PREL: + case elfcpp::R_ARM_MOVW_PREL_NC: + case elfcpp::R_ARM_MOVT_PREL: + case elfcpp::R_ARM_THM_MOVW_PREL_NC: + case elfcpp::R_ARM_THM_MOVT_PREL: + case elfcpp::R_ARM_THM_ALU_PREL_11_0: + case elfcpp::R_ARM_THM_PC12: + case elfcpp::R_ARM_REL32_NOI: + case elfcpp::R_ARM_ALU_PC_G0_NC: + case elfcpp::R_ARM_ALU_PC_G0: + case elfcpp::R_ARM_ALU_PC_G1_NC: + case elfcpp::R_ARM_ALU_PC_G1: + case elfcpp::R_ARM_ALU_PC_G2: + case elfcpp::R_ARM_LDR_PC_G1: + case elfcpp::R_ARM_LDR_PC_G2: + case elfcpp::R_ARM_LDRS_PC_G0: + case elfcpp::R_ARM_LDRS_PC_G1: + case elfcpp::R_ARM_LDRS_PC_G2: + case elfcpp::R_ARM_LDC_PC_G0: + case elfcpp::R_ARM_LDC_PC_G1: + case elfcpp::R_ARM_LDC_PC_G2: + case elfcpp::R_ARM_ALU_SB_G0_NC: + case elfcpp::R_ARM_ALU_SB_G0: + case elfcpp::R_ARM_ALU_SB_G1_NC: + case elfcpp::R_ARM_ALU_SB_G1: + case elfcpp::R_ARM_ALU_SB_G2: + case elfcpp::R_ARM_LDR_SB_G0: + case elfcpp::R_ARM_LDR_SB_G1: + case elfcpp::R_ARM_LDR_SB_G2: + case elfcpp::R_ARM_LDRS_SB_G0: + case elfcpp::R_ARM_LDRS_SB_G1: + case elfcpp::R_ARM_LDRS_SB_G2: + case elfcpp::R_ARM_LDC_SB_G0: + case elfcpp::R_ARM_LDC_SB_G1: + case elfcpp::R_ARM_LDC_SB_G2: + case elfcpp::R_ARM_MOVW_BREL_NC: + case elfcpp::R_ARM_MOVT_BREL: + case elfcpp::R_ARM_MOVW_BREL: + case elfcpp::R_ARM_THM_MOVW_BREL_NC: + case elfcpp::R_ARM_THM_MOVT_BREL: + case elfcpp::R_ARM_THM_MOVW_BREL: + case elfcpp::R_ARM_GOTOFF32: + case elfcpp::R_ARM_GOTOFF12: + case elfcpp::R_ARM_SBREL31: + return Symbol::RELATIVE_REF; + + case elfcpp::R_ARM_PLT32: + case elfcpp::R_ARM_CALL: + case elfcpp::R_ARM_JUMP24: + case elfcpp::R_ARM_THM_CALL: + case elfcpp::R_ARM_THM_JUMP24: + case elfcpp::R_ARM_THM_JUMP19: + case elfcpp::R_ARM_THM_JUMP6: + case elfcpp::R_ARM_THM_JUMP11: + case elfcpp::R_ARM_THM_JUMP8: + // R_ARM_PREL31 is not used to relocate call/jump instructions but + // in unwind tables. It may point to functions via PLTs. + // So we treat it like call/jump relocations above. + case elfcpp::R_ARM_PREL31: + return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF; + + case elfcpp::R_ARM_GOT_BREL: + case elfcpp::R_ARM_GOT_ABS: + case elfcpp::R_ARM_GOT_PREL: + // Absolute in GOT. + return Symbol::ABSOLUTE_REF; + + case elfcpp::R_ARM_TLS_GD32: // Global-dynamic + case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic + case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic + case elfcpp::R_ARM_TLS_IE32: // Initial-exec + case elfcpp::R_ARM_TLS_LE32: // Local-exec + return Symbol::TLS_REF; + + case elfcpp::R_ARM_TARGET1: + case elfcpp::R_ARM_TARGET2: + case elfcpp::R_ARM_COPY: + case elfcpp::R_ARM_GLOB_DAT: + case elfcpp::R_ARM_JUMP_SLOT: + case elfcpp::R_ARM_RELATIVE: + case elfcpp::R_ARM_PC24: + case elfcpp::R_ARM_LDR_SBREL_11_0_NC: + case elfcpp::R_ARM_ALU_SBREL_19_12_NC: + case elfcpp::R_ARM_ALU_SBREL_27_20_CK: + default: + // Not expected. We will give an error later. + return 0; + } +} + +// Report an unsupported relocation against a local symbol. + +template +void +Target_arm::Scan::unsupported_reloc_local( + Sized_relobj_file<32, big_endian>* object, + unsigned int r_type) +{ + gold_error(_("%s: unsupported reloc %u against local symbol"), + object->name().c_str(), r_type); +} + +// We are about to emit a dynamic relocation of type R_TYPE. If the +// dynamic linker does not support it, issue an error. The GNU linker +// only issues a non-PIC error for an allocated read-only section. +// Here we know the section is allocated, but we don't know that it is +// read-only. But we check for all the relocation types which the +// glibc dynamic linker supports, so it seems appropriate to issue an +// error even if the section is not read-only. + +template +void +Target_arm::Scan::check_non_pic(Relobj* object, + unsigned int r_type) +{ + switch (r_type) + { + // These are the relocation types supported by glibc for ARM. + case elfcpp::R_ARM_RELATIVE: + case elfcpp::R_ARM_COPY: + case elfcpp::R_ARM_GLOB_DAT: + case elfcpp::R_ARM_JUMP_SLOT: + case elfcpp::R_ARM_ABS32: + case elfcpp::R_ARM_ABS32_NOI: + case elfcpp::R_ARM_IRELATIVE: + case elfcpp::R_ARM_PC24: + // FIXME: The following 3 types are not supported by Android's dynamic + // linker. + case elfcpp::R_ARM_TLS_DTPMOD32: + case elfcpp::R_ARM_TLS_DTPOFF32: + case elfcpp::R_ARM_TLS_TPOFF32: + return; + + default: + { + // This prevents us from issuing more than one error per reloc + // section. But we can still wind up issuing more than one + // error per object file. + if (this->issued_non_pic_error_) + return; + const Arm_reloc_property* reloc_property = + arm_reloc_property_table->get_reloc_property(r_type); + gold_assert(reloc_property != NULL); + object->error(_("requires unsupported dynamic reloc %s; " + "recompile with -fPIC"), + reloc_property->name().c_str()); + this->issued_non_pic_error_ = true; + return; + } + + case elfcpp::R_ARM_NONE: + gold_unreachable(); + } +} + + +// Return whether we need to make a PLT entry for a relocation of the +// given type against a STT_GNU_IFUNC symbol. + +template +bool +Target_arm::Scan::reloc_needs_plt_for_ifunc( + Sized_relobj_file<32, big_endian>* object, + unsigned int r_type) +{ + int flags = Scan::get_reference_flags(r_type); + if (flags & Symbol::TLS_REF) + { + gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"), + object->name().c_str(), r_type); + return false; + } + return flags != 0; +} + + +// Scan a relocation for a local symbol. +// FIXME: This only handles a subset of relocation types used by Android +// on ARM v5te devices. + +template +inline void +Target_arm::Scan::local(Symbol_table* symtab, + Layout* layout, + Target_arm* target, + Sized_relobj_file<32, big_endian>* object, + unsigned int data_shndx, + Output_section* output_section, + const elfcpp::Rel<32, big_endian>& reloc, + unsigned int r_type, + const elfcpp::Sym<32, big_endian>& lsym, + bool is_discarded) +{ + if (is_discarded) + return; + + r_type = target->get_real_reloc_type(r_type); + + // A local STT_GNU_IFUNC symbol may require a PLT entry. + bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC; + if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type)) + { + unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); + target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym); + } + + switch (r_type) + { + case elfcpp::R_ARM_NONE: + case elfcpp::R_ARM_V4BX: + case elfcpp::R_ARM_GNU_VTENTRY: + case elfcpp::R_ARM_GNU_VTINHERIT: + break; + + case elfcpp::R_ARM_ABS32: + case elfcpp::R_ARM_ABS32_NOI: + // If building a shared library (or a position-independent + // executable), we need to create a dynamic relocation for + // this location. The relocation applied at link time will + // apply the link-time value, so we flag the location with + // an R_ARM_RELATIVE relocation so the dynamic loader can + // relocate it easily. if (parameters->options().output_is_position_independent()) { Reloc_section* rel_dyn = target->rel_dyn_section(layout); unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); - // If we are to add more other reloc types than R_ARM_ABS32, - // we need to add check_non_pic(object, r_type) here. + // If we are to add more other reloc types than R_ARM_ABS32, + // we need to add check_non_pic(object, r_type) here. rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE, output_section, data_shndx, - reloc.get_r_offset()); + reloc.get_r_offset(), is_ifunc); } break; - case elfcpp::R_ARM_REL32: - case elfcpp::R_ARM_THM_CALL: - case elfcpp::R_ARM_CALL: - case elfcpp::R_ARM_PREL31: - case elfcpp::R_ARM_JUMP24: - case elfcpp::R_ARM_PLT32: + case elfcpp::R_ARM_ABS16: + case elfcpp::R_ARM_ABS12: case elfcpp::R_ARM_THM_ABS5: case elfcpp::R_ARM_ABS8: - case elfcpp::R_ARM_ABS12: - case elfcpp::R_ARM_ABS16: case elfcpp::R_ARM_BASE_ABS: case elfcpp::R_ARM_MOVW_ABS_NC: case elfcpp::R_ARM_MOVT_ABS: case elfcpp::R_ARM_THM_MOVW_ABS_NC: case elfcpp::R_ARM_THM_MOVT_ABS: + // If building a shared library (or a position-independent + // executable), we need to create a dynamic relocation for + // this location. Because the addend needs to remain in the + // data section, we need to be careful not to apply this + // relocation statically. + if (parameters->options().output_is_position_independent()) + { + check_non_pic(object, r_type); + Reloc_section* rel_dyn = target->rel_dyn_section(layout); + unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); + if (lsym.get_st_type() != elfcpp::STT_SECTION) + rel_dyn->add_local(object, r_sym, r_type, output_section, + data_shndx, reloc.get_r_offset()); + else + { + gold_assert(lsym.get_st_value() == 0); + unsigned int shndx = lsym.get_st_shndx(); + bool is_ordinary; + shndx = object->adjust_sym_shndx(r_sym, shndx, + &is_ordinary); + if (!is_ordinary) + object->error(_("section symbol %u has bad shndx %u"), + r_sym, shndx); + else + rel_dyn->add_local_section(object, shndx, + r_type, output_section, + data_shndx, reloc.get_r_offset()); + } + } + break; + + case elfcpp::R_ARM_REL32: + case elfcpp::R_ARM_LDR_PC_G0: + case elfcpp::R_ARM_SBREL32: + case elfcpp::R_ARM_THM_CALL: + case elfcpp::R_ARM_THM_PC8: + case elfcpp::R_ARM_BASE_PREL: + case elfcpp::R_ARM_PLT32: + case elfcpp::R_ARM_CALL: + case elfcpp::R_ARM_JUMP24: + case elfcpp::R_ARM_THM_JUMP24: + case elfcpp::R_ARM_SBREL31: + case elfcpp::R_ARM_PREL31: case elfcpp::R_ARM_MOVW_PREL_NC: case elfcpp::R_ARM_MOVT_PREL: case elfcpp::R_ARM_THM_MOVW_PREL_NC: case elfcpp::R_ARM_THM_MOVT_PREL: + case elfcpp::R_ARM_THM_JUMP19: + case elfcpp::R_ARM_THM_JUMP6: + case elfcpp::R_ARM_THM_ALU_PREL_11_0: + case elfcpp::R_ARM_THM_PC12: + case elfcpp::R_ARM_REL32_NOI: + case elfcpp::R_ARM_ALU_PC_G0_NC: + case elfcpp::R_ARM_ALU_PC_G0: + case elfcpp::R_ARM_ALU_PC_G1_NC: + case elfcpp::R_ARM_ALU_PC_G1: + case elfcpp::R_ARM_ALU_PC_G2: + case elfcpp::R_ARM_LDR_PC_G1: + case elfcpp::R_ARM_LDR_PC_G2: + case elfcpp::R_ARM_LDRS_PC_G0: + case elfcpp::R_ARM_LDRS_PC_G1: + case elfcpp::R_ARM_LDRS_PC_G2: + case elfcpp::R_ARM_LDC_PC_G0: + case elfcpp::R_ARM_LDC_PC_G1: + case elfcpp::R_ARM_LDC_PC_G2: + case elfcpp::R_ARM_ALU_SB_G0_NC: + case elfcpp::R_ARM_ALU_SB_G0: + case elfcpp::R_ARM_ALU_SB_G1_NC: + case elfcpp::R_ARM_ALU_SB_G1: + case elfcpp::R_ARM_ALU_SB_G2: + case elfcpp::R_ARM_LDR_SB_G0: + case elfcpp::R_ARM_LDR_SB_G1: + case elfcpp::R_ARM_LDR_SB_G2: + case elfcpp::R_ARM_LDRS_SB_G0: + case elfcpp::R_ARM_LDRS_SB_G1: + case elfcpp::R_ARM_LDRS_SB_G2: + case elfcpp::R_ARM_LDC_SB_G0: + case elfcpp::R_ARM_LDC_SB_G1: + case elfcpp::R_ARM_LDC_SB_G2: + case elfcpp::R_ARM_MOVW_BREL_NC: + case elfcpp::R_ARM_MOVT_BREL: + case elfcpp::R_ARM_MOVW_BREL: + case elfcpp::R_ARM_THM_MOVW_BREL_NC: + case elfcpp::R_ARM_THM_MOVT_BREL: + case elfcpp::R_ARM_THM_MOVW_BREL: + case elfcpp::R_ARM_THM_JUMP11: + case elfcpp::R_ARM_THM_JUMP8: + // We don't need to do anything for a relative addressing relocation + // against a local symbol if it does not reference the GOT. break; case elfcpp::R_ARM_GOTOFF32: + case elfcpp::R_ARM_GOTOFF12: // We need a GOT section: target->got_section(symtab, layout); break; - case elfcpp::R_ARM_BASE_PREL: - // FIXME: What about this? - break; - case elfcpp::R_ARM_GOT_BREL: case elfcpp::R_ARM_GOT_PREL: { // The symbol requires a GOT entry. - Output_data_got<32, big_endian>* got = + Arm_output_data_got* got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); if (got->add_local(object, r_sym, GOT_TYPE_STANDARD)) @@ -3869,6 +8740,7 @@ Target_arm::Scan::local(Symbol_table* symtab, break; case elfcpp::R_ARM_TARGET1: + case elfcpp::R_ARM_TARGET2: // This should have been mapped to another type already. // Fall through. case elfcpp::R_ARM_COPY: @@ -3881,62 +8753,295 @@ Target_arm::Scan::local(Symbol_table* symtab, object->name().c_str(), r_type); break; - default: - unsupported_reloc_local(object, r_type); - break; - } -} -// Report an unsupported relocation against a global symbol. + // These are initial TLS relocs, which are expected when + // linking. + case elfcpp::R_ARM_TLS_GD32: // Global-dynamic + case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic + case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic + case elfcpp::R_ARM_TLS_IE32: // Initial-exec + case elfcpp::R_ARM_TLS_LE32: // Local-exec + { + bool output_is_shared = parameters->options().shared(); + const tls::Tls_optimization optimized_type + = Target_arm::optimize_tls_reloc(!output_is_shared, + r_type); + switch (r_type) + { + case elfcpp::R_ARM_TLS_GD32: // Global-dynamic + if (optimized_type == tls::TLSOPT_NONE) + { + // Create a pair of GOT entries for the module index and + // dtv-relative offset. + Arm_output_data_got* got + = target->got_section(symtab, layout); + unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); + unsigned int shndx = lsym.get_st_shndx(); + bool is_ordinary; + shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary); + if (!is_ordinary) + { + object->error(_("local symbol %u has bad shndx %u"), + r_sym, shndx); + break; + } + + if (!parameters->doing_static_link()) + got->add_local_pair_with_rel(object, r_sym, shndx, + GOT_TYPE_TLS_PAIR, + target->rel_dyn_section(layout), + elfcpp::R_ARM_TLS_DTPMOD32); + else + got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, + object, r_sym); + } + else + // FIXME: TLS optimization not supported yet. + gold_unreachable(); + break; -template -void -Target_arm::Scan::unsupported_reloc_global( - Sized_relobj<32, big_endian>* object, - unsigned int r_type, - Symbol* gsym) -{ - gold_error(_("%s: unsupported reloc %u against global symbol %s"), - object->name().c_str(), r_type, gsym->demangled_name().c_str()); -} + case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic + if (optimized_type == tls::TLSOPT_NONE) + { + // Create a GOT entry for the module index. + target->got_mod_index_entry(symtab, layout, object); + } + else + // FIXME: TLS optimization not supported yet. + gold_unreachable(); + break; -// Scan a relocation for a global symbol. -// FIXME: This only handles a subset of relocation types used by Android -// on ARM v5te devices. + case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic + break; -template -inline void + case elfcpp::R_ARM_TLS_IE32: // Initial-exec + layout->set_has_static_tls(); + if (optimized_type == tls::TLSOPT_NONE) + { + // Create a GOT entry for the tp-relative offset. + Arm_output_data_got* got + = target->got_section(symtab, layout); + unsigned int r_sym = + elfcpp::elf_r_sym<32>(reloc.get_r_info()); + if (!parameters->doing_static_link()) + got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET, + target->rel_dyn_section(layout), + elfcpp::R_ARM_TLS_TPOFF32); + else if (!object->local_has_got_offset(r_sym, + GOT_TYPE_TLS_OFFSET)) + { + got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET); + unsigned int got_offset = + object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET); + got->add_static_reloc(got_offset, + elfcpp::R_ARM_TLS_TPOFF32, object, + r_sym); + } + } + else + // FIXME: TLS optimization not supported yet. + gold_unreachable(); + break; + + case elfcpp::R_ARM_TLS_LE32: // Local-exec + layout->set_has_static_tls(); + if (output_is_shared) + { + // We need to create a dynamic relocation. + gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION); + unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); + Reloc_section* rel_dyn = target->rel_dyn_section(layout); + rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32, + output_section, data_shndx, + reloc.get_r_offset()); + } + break; + + default: + gold_unreachable(); + } + } + break; + + case elfcpp::R_ARM_PC24: + case elfcpp::R_ARM_LDR_SBREL_11_0_NC: + case elfcpp::R_ARM_ALU_SBREL_19_12_NC: + case elfcpp::R_ARM_ALU_SBREL_27_20_CK: + default: + unsupported_reloc_local(object, r_type); + break; + } +} + +// Report an unsupported relocation against a global symbol. + +template +void +Target_arm::Scan::unsupported_reloc_global( + Sized_relobj_file<32, big_endian>* object, + unsigned int r_type, + Symbol* gsym) +{ + gold_error(_("%s: unsupported reloc %u against global symbol %s"), + object->name().c_str(), r_type, gsym->demangled_name().c_str()); +} + +template +inline bool +Target_arm::Scan::possible_function_pointer_reloc( + unsigned int r_type) +{ + switch (r_type) + { + case elfcpp::R_ARM_PC24: + case elfcpp::R_ARM_THM_CALL: + case elfcpp::R_ARM_PLT32: + case elfcpp::R_ARM_CALL: + case elfcpp::R_ARM_JUMP24: + case elfcpp::R_ARM_THM_JUMP24: + case elfcpp::R_ARM_SBREL31: + case elfcpp::R_ARM_PREL31: + case elfcpp::R_ARM_THM_JUMP19: + case elfcpp::R_ARM_THM_JUMP6: + case elfcpp::R_ARM_THM_JUMP11: + case elfcpp::R_ARM_THM_JUMP8: + // All the relocations above are branches except SBREL31 and PREL31. + return false; + + default: + // Be conservative and assume this is a function pointer. + return true; + } +} + +template +inline bool +Target_arm::Scan::local_reloc_may_be_function_pointer( + Symbol_table*, + Layout*, + Target_arm* target, + Sized_relobj_file<32, big_endian>*, + unsigned int, + Output_section*, + const elfcpp::Rel<32, big_endian>&, + unsigned int r_type, + const elfcpp::Sym<32, big_endian>&) +{ + r_type = target->get_real_reloc_type(r_type); + return possible_function_pointer_reloc(r_type); +} + +template +inline bool +Target_arm::Scan::global_reloc_may_be_function_pointer( + Symbol_table*, + Layout*, + Target_arm* target, + Sized_relobj_file<32, big_endian>*, + unsigned int, + Output_section*, + const elfcpp::Rel<32, big_endian>&, + unsigned int r_type, + Symbol* gsym) +{ + // GOT is not a function. + if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0) + return false; + + r_type = target->get_real_reloc_type(r_type); + return possible_function_pointer_reloc(r_type); +} + +// Scan a relocation for a global symbol. + +template +inline void Target_arm::Scan::global(Symbol_table* symtab, Layout* layout, Target_arm* target, - Sized_relobj<32, big_endian>* object, + Sized_relobj_file<32, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type, Symbol* gsym) { - r_type = get_real_reloc_type(r_type); + // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got + // section. We check here to avoid creating a dynamic reloc against + // _GLOBAL_OFFSET_TABLE_. + if (!target->has_got_section() + && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0) + target->got_section(symtab, layout); + + // A STT_GNU_IFUNC symbol may require a PLT entry. + if (gsym->type() == elfcpp::STT_GNU_IFUNC + && this->reloc_needs_plt_for_ifunc(object, r_type)) + target->make_plt_entry(symtab, layout, gsym); + + r_type = target->get_real_reloc_type(r_type); switch (r_type) { case elfcpp::R_ARM_NONE: + case elfcpp::R_ARM_V4BX: + case elfcpp::R_ARM_GNU_VTENTRY: + case elfcpp::R_ARM_GNU_VTINHERIT: break; case elfcpp::R_ARM_ABS32: + case elfcpp::R_ARM_ABS16: + case elfcpp::R_ARM_ABS12: + case elfcpp::R_ARM_THM_ABS5: + case elfcpp::R_ARM_ABS8: + case elfcpp::R_ARM_BASE_ABS: + case elfcpp::R_ARM_MOVW_ABS_NC: + case elfcpp::R_ARM_MOVT_ABS: + case elfcpp::R_ARM_THM_MOVW_ABS_NC: + case elfcpp::R_ARM_THM_MOVT_ABS: case elfcpp::R_ARM_ABS32_NOI: + // Absolute addressing relocations. { + // Make a PLT entry if necessary. + if (this->symbol_needs_plt_entry(gsym)) + { + target->make_plt_entry(symtab, layout, gsym); + // Since this is not a PC-relative relocation, we may be + // taking the address of a function. In that case we need to + // set the entry in the dynamic symbol table to the address of + // the PLT entry. + if (gsym->is_from_dynobj() && !parameters->options().shared()) + gsym->set_needs_dynsym_value(); + } // Make a dynamic relocation if necessary. - if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF)) + if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) { - if (target->may_need_copy_reloc(gsym)) + if (!parameters->options().output_is_position_independent() + && gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); } - else if (gsym->can_use_relative_reloc(false)) + else if ((r_type == elfcpp::R_ARM_ABS32 + || r_type == elfcpp::R_ARM_ABS32_NOI) + && gsym->type() == elfcpp::STT_GNU_IFUNC + && gsym->can_use_relative_reloc(false) + && !gsym->is_from_dynobj() + && !gsym->is_undefined() + && !gsym->is_preemptible()) + { + // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC + // symbol. This makes a function address in a PIE executable + // match the address in a shared library that it links against. + Reloc_section* rel_irelative = + target->rel_irelative_section(layout); + unsigned int r_type = elfcpp::R_ARM_IRELATIVE; + rel_irelative->add_symbolless_global_addend( + gsym, r_type, output_section, object, + data_shndx, reloc.get_r_offset()); + } + else if ((r_type == elfcpp::R_ARM_ABS32 + || r_type == elfcpp::R_ARM_ABS32_NOI) + && gsym->can_use_relative_reloc(false)) { - // If we are to add more other reloc types than R_ARM_ABS32, - // we need to add check_non_pic(object, r_type) here. Reloc_section* rel_dyn = target->rel_dyn_section(layout); rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE, output_section, object, @@ -3944,8 +9049,7 @@ Target_arm::Scan::global(Symbol_table* symtab, } else { - // If we are to add more other reloc types than R_ARM_ABS32, - // we need to add check_non_pic(object, r_type) here. + check_non_pic(object, r_type); Reloc_section* rel_dyn = target->rel_dyn_section(layout); rel_dyn->add_global(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset()); @@ -3954,41 +9058,64 @@ Target_arm::Scan::global(Symbol_table* symtab, } break; - case elfcpp::R_ARM_MOVW_ABS_NC: - case elfcpp::R_ARM_MOVT_ABS: - case elfcpp::R_ARM_THM_MOVW_ABS_NC: - case elfcpp::R_ARM_THM_MOVT_ABS: + case elfcpp::R_ARM_GOTOFF32: + case elfcpp::R_ARM_GOTOFF12: + // We need a GOT section. + target->got_section(symtab, layout); + break; + + case elfcpp::R_ARM_REL32: + case elfcpp::R_ARM_LDR_PC_G0: + case elfcpp::R_ARM_SBREL32: + case elfcpp::R_ARM_THM_PC8: + case elfcpp::R_ARM_BASE_PREL: case elfcpp::R_ARM_MOVW_PREL_NC: case elfcpp::R_ARM_MOVT_PREL: case elfcpp::R_ARM_THM_MOVW_PREL_NC: case elfcpp::R_ARM_THM_MOVT_PREL: - break; - - case elfcpp::R_ARM_THM_ABS5: - case elfcpp::R_ARM_ABS8: - case elfcpp::R_ARM_ABS12: - case elfcpp::R_ARM_ABS16: - case elfcpp::R_ARM_BASE_ABS: - { - // No dynamic relocs of this kinds. - // Report the error in case of PIC. - int flags = Symbol::NON_PIC_REF; - if (gsym->type() == elfcpp::STT_FUNC - || gsym->type() == elfcpp::STT_ARM_TFUNC) - flags |= Symbol::FUNCTION_CALL; - if (gsym->needs_dynamic_reloc(flags)) - check_non_pic(object, r_type); - } - break; - - case elfcpp::R_ARM_REL32: - case elfcpp::R_ARM_PREL31: + case elfcpp::R_ARM_THM_ALU_PREL_11_0: + case elfcpp::R_ARM_THM_PC12: + case elfcpp::R_ARM_REL32_NOI: + case elfcpp::R_ARM_ALU_PC_G0_NC: + case elfcpp::R_ARM_ALU_PC_G0: + case elfcpp::R_ARM_ALU_PC_G1_NC: + case elfcpp::R_ARM_ALU_PC_G1: + case elfcpp::R_ARM_ALU_PC_G2: + case elfcpp::R_ARM_LDR_PC_G1: + case elfcpp::R_ARM_LDR_PC_G2: + case elfcpp::R_ARM_LDRS_PC_G0: + case elfcpp::R_ARM_LDRS_PC_G1: + case elfcpp::R_ARM_LDRS_PC_G2: + case elfcpp::R_ARM_LDC_PC_G0: + case elfcpp::R_ARM_LDC_PC_G1: + case elfcpp::R_ARM_LDC_PC_G2: + case elfcpp::R_ARM_ALU_SB_G0_NC: + case elfcpp::R_ARM_ALU_SB_G0: + case elfcpp::R_ARM_ALU_SB_G1_NC: + case elfcpp::R_ARM_ALU_SB_G1: + case elfcpp::R_ARM_ALU_SB_G2: + case elfcpp::R_ARM_LDR_SB_G0: + case elfcpp::R_ARM_LDR_SB_G1: + case elfcpp::R_ARM_LDR_SB_G2: + case elfcpp::R_ARM_LDRS_SB_G0: + case elfcpp::R_ARM_LDRS_SB_G1: + case elfcpp::R_ARM_LDRS_SB_G2: + case elfcpp::R_ARM_LDC_SB_G0: + case elfcpp::R_ARM_LDC_SB_G1: + case elfcpp::R_ARM_LDC_SB_G2: + case elfcpp::R_ARM_MOVW_BREL_NC: + case elfcpp::R_ARM_MOVT_BREL: + case elfcpp::R_ARM_MOVW_BREL: + case elfcpp::R_ARM_THM_MOVW_BREL_NC: + case elfcpp::R_ARM_THM_MOVT_BREL: + case elfcpp::R_ARM_THM_MOVW_BREL: + // Relative addressing relocations. { // Make a dynamic relocation if necessary. - int flags = Symbol::NON_PIC_REF; - if (gsym->needs_dynamic_reloc(flags)) + if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) { - if (target->may_need_copy_reloc(gsym)) + if (parameters->options().output_is_executable() + && target->may_need_copy_reloc(gsym)) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); @@ -4004,37 +9131,26 @@ Target_arm::Scan::global(Symbol_table* symtab, } break; - case elfcpp::R_ARM_JUMP24: case elfcpp::R_ARM_THM_CALL: + case elfcpp::R_ARM_PLT32: case elfcpp::R_ARM_CALL: - { - if (Target_arm::Scan::symbol_needs_plt_entry(gsym)) - target->make_plt_entry(symtab, layout, gsym); - // Make a dynamic relocation if necessary. - int flags = Symbol::NON_PIC_REF; - if (gsym->type() == elfcpp::STT_FUNC - || gsym->type() == elfcpp::STT_ARM_TFUNC) - flags |= Symbol::FUNCTION_CALL; - if (gsym->needs_dynamic_reloc(flags)) - { - if (target->may_need_copy_reloc(gsym)) - { - target->copy_reloc(symtab, layout, object, - data_shndx, output_section, gsym, - reloc); - } - else - { - check_non_pic(object, r_type); - Reloc_section* rel_dyn = target->rel_dyn_section(layout); - rel_dyn->add_global(gsym, r_type, output_section, object, - data_shndx, reloc.get_r_offset()); - } - } - } - break; + case elfcpp::R_ARM_JUMP24: + case elfcpp::R_ARM_THM_JUMP24: + case elfcpp::R_ARM_SBREL31: + case elfcpp::R_ARM_PREL31: + case elfcpp::R_ARM_THM_JUMP19: + case elfcpp::R_ARM_THM_JUMP6: + case elfcpp::R_ARM_THM_JUMP11: + case elfcpp::R_ARM_THM_JUMP8: + // All the relocation above are branches except for the PREL31 ones. + // A PREL31 relocation can point to a personality function in a shared + // library. In that case we want to use a PLT because we want to + // call the personality routine and the dynamic linkers we care about + // do not support dynamic PREL31 relocations. An REL31 relocation may + // point to a function whose unwinding behaviour is being described but + // we will not mistakenly generate a PLT for that because we should use + // a local section symbol. - case elfcpp::R_ARM_PLT32: // If the symbol is fully resolved, this is just a relative // local reloc. Otherwise we need a PLT entry. if (gsym->final_value_is_known()) @@ -4049,23 +9165,21 @@ Target_arm::Scan::global(Symbol_table* symtab, target->make_plt_entry(symtab, layout, gsym); break; - case elfcpp::R_ARM_GOTOFF32: - // We need a GOT section. - target->got_section(symtab, layout); - break; - - case elfcpp::R_ARM_BASE_PREL: - // FIXME: What about this? - break; - case elfcpp::R_ARM_GOT_BREL: + case elfcpp::R_ARM_GOT_ABS: case elfcpp::R_ARM_GOT_PREL: { // The symbol requires a GOT entry. - Output_data_got<32, big_endian>* got = + Arm_output_data_got* got = target->got_section(symtab, layout); if (gsym->final_value_is_known()) - got->add_global(gsym, GOT_TYPE_STANDARD); + { + // For a STT_GNU_IFUNC symbol we want the PLT address. + if (gsym->type() == elfcpp::STT_GNU_IFUNC) + got->add_global_plt(gsym, GOT_TYPE_STANDARD); + else + got->add_global(gsym, GOT_TYPE_STANDARD); + } else { // If this symbol is not fully resolved, we need to add a @@ -4073,12 +9187,31 @@ Target_arm::Scan::global(Symbol_table* symtab, Reloc_section* rel_dyn = target->rel_dyn_section(layout); if (gsym->is_from_dynobj() || gsym->is_undefined() - || gsym->is_preemptible()) + || gsym->is_preemptible() + || (gsym->visibility() == elfcpp::STV_PROTECTED + && parameters->options().shared()) + || (gsym->type() == elfcpp::STT_GNU_IFUNC + && parameters->options().output_is_position_independent())) got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rel_dyn, elfcpp::R_ARM_GLOB_DAT); else { - if (got->add_global(gsym, GOT_TYPE_STANDARD)) + // For a STT_GNU_IFUNC symbol we want to write the PLT + // offset into the GOT, so that function pointer + // comparisons work correctly. + bool is_new; + if (gsym->type() != elfcpp::STT_GNU_IFUNC) + is_new = got->add_global(gsym, GOT_TYPE_STANDARD); + else + { + is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD); + // Tell the dynamic linker to use the PLT address + // when resolving relocations. + if (gsym->is_from_dynobj() + && !parameters->options().shared()) + gsym->set_needs_dynsym_value(); + } + if (is_new) rel_dyn->add_global_relative( gsym, elfcpp::R_ARM_RELATIVE, got, gsym->got_offset(GOT_TYPE_STANDARD)); @@ -4088,7 +9221,8 @@ Target_arm::Scan::global(Symbol_table* symtab, break; case elfcpp::R_ARM_TARGET1: - // This should have been mapped to another type already. + case elfcpp::R_ARM_TARGET2: + // These should have been mapped to other types already. // Fall through. case elfcpp::R_ARM_COPY: case elfcpp::R_ARM_GLOB_DAT: @@ -4100,6 +9234,100 @@ Target_arm::Scan::global(Symbol_table* symtab, object->name().c_str(), r_type); break; + // These are initial tls relocs, which are expected when + // linking. + case elfcpp::R_ARM_TLS_GD32: // Global-dynamic + case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic + case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic + case elfcpp::R_ARM_TLS_IE32: // Initial-exec + case elfcpp::R_ARM_TLS_LE32: // Local-exec + { + const bool is_final = gsym->final_value_is_known(); + const tls::Tls_optimization optimized_type + = Target_arm::optimize_tls_reloc(is_final, r_type); + switch (r_type) + { + case elfcpp::R_ARM_TLS_GD32: // Global-dynamic + if (optimized_type == tls::TLSOPT_NONE) + { + // Create a pair of GOT entries for the module index and + // dtv-relative offset. + Arm_output_data_got* got + = target->got_section(symtab, layout); + if (!parameters->doing_static_link()) + got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR, + target->rel_dyn_section(layout), + elfcpp::R_ARM_TLS_DTPMOD32, + elfcpp::R_ARM_TLS_DTPOFF32); + else + got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym); + } + else + // FIXME: TLS optimization not supported yet. + gold_unreachable(); + break; + + case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic + if (optimized_type == tls::TLSOPT_NONE) + { + // Create a GOT entry for the module index. + target->got_mod_index_entry(symtab, layout, object); + } + else + // FIXME: TLS optimization not supported yet. + gold_unreachable(); + break; + + case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic + break; + + case elfcpp::R_ARM_TLS_IE32: // Initial-exec + layout->set_has_static_tls(); + if (optimized_type == tls::TLSOPT_NONE) + { + // Create a GOT entry for the tp-relative offset. + Arm_output_data_got* got + = target->got_section(symtab, layout); + if (!parameters->doing_static_link()) + got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET, + target->rel_dyn_section(layout), + elfcpp::R_ARM_TLS_TPOFF32); + else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET)) + { + got->add_global(gsym, GOT_TYPE_TLS_OFFSET); + unsigned int got_offset = + gsym->got_offset(GOT_TYPE_TLS_OFFSET); + got->add_static_reloc(got_offset, + elfcpp::R_ARM_TLS_TPOFF32, gsym); + } + } + else + // FIXME: TLS optimization not supported yet. + gold_unreachable(); + break; + + case elfcpp::R_ARM_TLS_LE32: // Local-exec + layout->set_has_static_tls(); + if (parameters->options().shared()) + { + // We need to create a dynamic relocation. + Reloc_section* rel_dyn = target->rel_dyn_section(layout); + rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32, + output_section, object, + data_shndx, reloc.get_r_offset()); + } + break; + + default: + gold_unreachable(); + } + } + break; + + case elfcpp::R_ARM_PC24: + case elfcpp::R_ARM_LDR_SBREL_11_0_NC: + case elfcpp::R_ARM_ALU_SBREL_19_12_NC: + case elfcpp::R_ARM_ALU_SBREL_27_20_CK: default: unsupported_reloc_global(object, r_type, gsym); break; @@ -4110,22 +9338,23 @@ Target_arm::Scan::global(Symbol_table* symtab, template void -Target_arm::gc_process_relocs(Symbol_table* symtab, - Layout* layout, - Sized_relobj<32, big_endian>* object, - unsigned int data_shndx, - unsigned int, - const unsigned char* prelocs, - size_t reloc_count, - Output_section* output_section, - bool needs_special_offset_handling, - size_t local_symbol_count, - const unsigned char* plocal_symbols) +Target_arm::gc_process_relocs( + Symbol_table* symtab, + Layout* layout, + Sized_relobj_file<32, big_endian>* object, + unsigned int data_shndx, + unsigned int, + const unsigned char* prelocs, + size_t reloc_count, + Output_section* output_section, + bool needs_special_offset_handling, + size_t local_symbol_count, + const unsigned char* plocal_symbols) { typedef Target_arm Arm; typedef typename Target_arm::Scan Scan; - gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>( + gold::gc_process_relocs<32, big_endian, Arm, Scan, Classify_reloc>( symtab, layout, this, @@ -4145,7 +9374,7 @@ template void Target_arm::scan_relocs(Symbol_table* symtab, Layout* layout, - Sized_relobj<32, big_endian>* object, + Sized_relobj_file<32, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, @@ -4155,7 +9384,6 @@ Target_arm::scan_relocs(Symbol_table* symtab, size_t local_symbol_count, const unsigned char* plocal_symbols) { - typedef typename Target_arm::Scan Scan; if (sh_type == elfcpp::SHT_RELA) { gold_error(_("%s: unsupported RELA reloc section"), @@ -4163,7 +9391,7 @@ Target_arm::scan_relocs(Symbol_table* symtab, return; } - gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>( + gold::scan_relocs<32, big_endian, Target_arm, Scan, Classify_reloc>( symtab, layout, this, @@ -4183,8 +9411,10 @@ template void Target_arm::do_finalize_sections( Layout* layout, - const Input_objects* input_objects) + const Input_objects* input_objects, + Symbol_table*) { + bool merged_any_attributes = false; // Merge processor-specific flags. for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); p != input_objects->relobj_end(); @@ -4192,10 +9422,16 @@ Target_arm::do_finalize_sections( { Arm_relobj* arm_relobj = Arm_relobj::as_arm_relobj(*p); - this->merge_processor_specific_flags( - arm_relobj->name(), - arm_relobj->processor_specific_flags()); - } + if (arm_relobj->merge_flags_and_attributes()) + { + this->merge_processor_specific_flags( + arm_relobj->name(), + arm_relobj->processor_specific_flags()); + this->merge_object_attributes(arm_relobj->name().c_str(), + arm_relobj->attributes_section_data()); + merged_any_attributes = true; + } + } for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin(); p != input_objects->dynobj_end(); @@ -4206,63 +9442,100 @@ Target_arm::do_finalize_sections( this->merge_processor_specific_flags( arm_dynobj->name(), arm_dynobj->processor_specific_flags()); + this->merge_object_attributes(arm_dynobj->name().c_str(), + arm_dynobj->attributes_section_data()); + merged_any_attributes = true; } - // Fill in some more dynamic tags. - Output_data_dynamic* const odyn = layout->dynamic_data(); - if (odyn != NULL) + // Create an empty uninitialized attribute section if we still don't have it + // at this moment. This happens if there is no attributes sections in all + // inputs. + if (this->attributes_section_data_ == NULL) + this->attributes_section_data_ = new Attributes_section_data(NULL, 0); + + const Object_attribute* cpu_arch_attr = + this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); + // Check if we need to use Cortex-A8 workaround. + if (parameters->options().user_set_fix_cortex_a8()) + this->fix_cortex_a8_ = parameters->options().fix_cortex_a8(); + else { - if (this->got_plt_ != NULL) - odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_); - - if (this->plt_ != NULL) - { - const Output_data* od = this->plt_->rel_plt(); - odyn->add_section_size(elfcpp::DT_PLTRELSZ, od); - odyn->add_section_address(elfcpp::DT_JMPREL, od); - odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL); - } + // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on + // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown + // profile. + const Object_attribute* cpu_arch_profile_attr = + this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile); + this->fix_cortex_a8_ = + (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7 + && (cpu_arch_profile_attr->int_value() == 'A' + || cpu_arch_profile_attr->int_value() == 0)); + } - if (this->rel_dyn_ != NULL) - { - const Output_data* od = this->rel_dyn_; - odyn->add_section_address(elfcpp::DT_REL, od); - odyn->add_section_size(elfcpp::DT_RELSZ, od); - odyn->add_constant(elfcpp::DT_RELENT, - elfcpp::Elf_sizes<32>::rel_size); - } + // Check if we can use V4BX interworking. + // The V4BX interworking stub contains BX instruction, + // which is not specified for some profiles. + if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING + && !this->may_use_v4t_interworking()) + gold_error(_("unable to provide V4BX reloc interworking fix up; " + "the target profile does not support BX instruction")); - if (!parameters->options().shared()) - { - // The value of the DT_DEBUG tag is filled in by the dynamic - // linker at run time, and used by the debugger. - odyn->add_constant(elfcpp::DT_DEBUG, 0); - } - } + // Fill in some more dynamic tags. + const Reloc_section* rel_plt = (this->plt_ == NULL + ? NULL + : this->plt_->rel_plt()); + layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt, + this->rel_dyn_, true, false); // Emit any relocs we saved in an attempt to avoid generating COPY // relocs. if (this->copy_relocs_.any_saved_relocs()) this->copy_relocs_.emit(this->rel_dyn_section(layout)); - // For the ARM target, we need to add a PT_ARM_EXIDX segment for - // the .ARM.exidx section. - if (!layout->script_options()->saw_phdrs_clause() - && !parameters->options().relocatable()) - { - Output_section* exidx_section = - layout->find_output_section(".ARM.exidx"); + // Handle the .ARM.exidx section. + Output_section* exidx_section = layout->find_output_section(".ARM.exidx"); + if (!parameters->options().relocatable()) + { if (exidx_section != NULL && exidx_section->type() == elfcpp::SHT_ARM_EXIDX) { - gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0) - == NULL); - Output_segment* exidx_segment = - layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R); - exidx_segment->add_output_section(exidx_section, elfcpp::PF_R); + // For the ARM target, we need to add a PT_ARM_EXIDX segment for + // the .ARM.exidx section. + if (!layout->script_options()->saw_phdrs_clause()) + { + gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, + 0) + == NULL); + Output_segment* exidx_segment = + layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R); + exidx_segment->add_output_section_to_nonload(exidx_section, + elfcpp::PF_R); + } } } + + // Create an .ARM.attributes section if we have merged any attributes + // from inputs. + if (merged_any_attributes) + { + Output_attributes_section_data* attributes_section = + new Output_attributes_section_data(*this->attributes_section_data_); + layout->add_output_section_data(".ARM.attributes", + elfcpp::SHT_ARM_ATTRIBUTES, 0, + attributes_section, ORDER_INVALID, + false); + } + + // Fix up links in section EXIDX headers. + for (Layout::Section_list::const_iterator p = layout->section_list().begin(); + p != layout->section_list().end(); + ++p) + if ((*p)->type() == elfcpp::SHT_ARM_EXIDX) + { + Arm_output_section* os = + Arm_output_section::as_arm_output_section(*p); + os->set_exidx_section_link(); + } } // Return whether a direct absolute static relocation needs to be applied. @@ -4275,7 +9548,7 @@ template inline bool Target_arm::Relocate::should_apply_static_reloc( const Sized_symbol<32>* gsym, - int ref_flags, + unsigned int r_type, bool is_32bit, Output_section* output_section) { @@ -4285,6 +9558,8 @@ Target_arm::Relocate::should_apply_static_reloc( if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0) return true; + int ref_flags = Scan::get_reference_flags(r_type); + // For local symbols, we will have created a non-RELATIVE dynamic // relocation only if (a) the output is position independent, // (b) the relocation is absolute (not pc- or segment-relative), and @@ -4311,186 +9586,321 @@ template inline bool Target_arm::Relocate::relocate( const Relocate_info<32, big_endian>* relinfo, + unsigned int, Target_arm* target, - Output_section *output_section, + Output_section* output_section, size_t relnum, - const elfcpp::Rel<32, big_endian>& rel, - unsigned int r_type, + const unsigned char* preloc, const Sized_symbol<32>* gsym, const Symbol_value<32>* psymval, unsigned char* view, Arm_address address, - section_size_type /* view_size */ ) + section_size_type view_size) { - typedef Arm_relocate_functions Arm_relocate_functions; - - r_type = get_real_reloc_type(r_type); + if (view == NULL) + return true; - // If this the symbol may be a Thumb function, set thumb bit to 1. - bool has_thumb_bit = ((gsym != NULL) - && (gsym->type() == elfcpp::STT_FUNC - || gsym->type() == elfcpp::STT_ARM_TFUNC)); + typedef Arm_relocate_functions Arm_relocate_functions; - // Pick the value to use for symbols defined in shared objects. - Symbol_value<32> symval; - if (gsym != NULL - && gsym->use_plt_offset(reloc_is_non_pic(r_type))) + const elfcpp::Rel<32, big_endian> rel(preloc); + unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info()); + r_type = target->get_real_reloc_type(r_type); + const Arm_reloc_property* reloc_property = + arm_reloc_property_table->get_implemented_static_reloc_property(r_type); + if (reloc_property == NULL) { - symval.set_output_value(target->plt_section()->address() - + gsym->plt_offset()); - psymval = &symval; - has_thumb_bit = 0; + std::string reloc_name = + arm_reloc_property_table->reloc_name_in_error_message(r_type); + gold_error_at_location(relinfo, relnum, rel.get_r_offset(), + _("cannot relocate %s in object file"), + reloc_name.c_str()); + return true; } - const Sized_relobj<32, big_endian>* object = relinfo->object; - - // Get the GOT offset if needed. - // The GOT pointer points to the end of the GOT section. - // We need to subtract the size of the GOT section to get - // the actual offset to use in the relocation. + const Arm_relobj* object = + Arm_relobj::as_arm_relobj(relinfo->object); + + // If the final branch target of a relocation is THUMB instruction, this + // is 1. Otherwise it is 0. + Arm_address thumb_bit = 0; + Symbol_value<32> symval; + bool is_weakly_undefined_without_plt = false; bool have_got_offset = false; unsigned int got_offset = 0; - switch (r_type) + + // If the relocation uses the GOT entry of a symbol instead of the symbol + // itself, we don't care about whether the symbol is defined or what kind + // of symbol it is. + if (reloc_property->uses_got_entry()) { - case elfcpp::R_ARM_GOT_BREL: - case elfcpp::R_ARM_GOT_PREL: - if (gsym != NULL) + // Get the GOT offset. + // The GOT pointer points to the end of the GOT section. + // We need to subtract the size of the GOT section to get + // the actual offset to use in the relocation. + // TODO: We should move GOT offset computing code in TLS relocations + // to here. + switch (r_type) { - gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD)); - got_offset = (gsym->got_offset(GOT_TYPE_STANDARD) - - target->got_size()); + case elfcpp::R_ARM_GOT_BREL: + case elfcpp::R_ARM_GOT_PREL: + if (gsym != NULL) + { + gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD)); + got_offset = (gsym->got_offset(GOT_TYPE_STANDARD) + - target->got_size()); + } + else + { + unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); + gold_assert(object->local_has_got_offset(r_sym, + GOT_TYPE_STANDARD)); + got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD) + - target->got_size()); + } + have_got_offset = true; + break; + + default: + break; } - else + } + else if (relnum != Target_arm::fake_relnum_for_stubs) + { + if (gsym != NULL) { - unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); - gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD)); - got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD) - - target->got_size()); + // This is a global symbol. Determine if we use PLT and if the + // final target is THUMB. + if (gsym->use_plt_offset(Scan::get_reference_flags(r_type))) + { + // This uses a PLT, change the symbol value. + symval.set_output_value(target->plt_address_for_global(gsym)); + psymval = &symval; + } + else if (gsym->is_weak_undefined()) + { + // This is a weakly undefined symbol and we do not use PLT + // for this relocation. A branch targeting this symbol will + // be converted into an NOP. + is_weakly_undefined_without_plt = true; + } + else if (gsym->is_undefined() && reloc_property->uses_symbol()) + { + // This relocation uses the symbol value but the symbol is + // undefined. Exit early and have the caller reporting an + // error. + return true; + } + else + { + // Set thumb bit if symbol: + // -Has type STT_ARM_TFUNC or + // -Has type STT_FUNC, is defined and with LSB in value set. + thumb_bit = + (((gsym->type() == elfcpp::STT_ARM_TFUNC) + || (gsym->type() == elfcpp::STT_FUNC + && !gsym->is_undefined() + && ((psymval->value(object, 0) & 1) != 0))) + ? 1 + : 0); + } } - have_got_offset = true; - break; + else + { + // This is a local symbol. Determine if the final target is THUMB. + // We saved this information when all the local symbols were read. + elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info(); + unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); + thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0; - default: + if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym)) + { + symval.set_output_value( + target->plt_address_for_local(object, r_sym)); + psymval = &symval; + } + } + } + else + { + // This is a fake relocation synthesized for a stub. It does not have + // a real symbol. We just look at the LSB of the symbol value to + // determine if the target is THUMB or not. + thumb_bit = ((psymval->value(object, 0) & 1) != 0); + } + + // Strip LSB if this points to a THUMB target. + if (thumb_bit != 0 + && reloc_property->uses_thumb_bit() + && ((psymval->value(object, 0) & 1) != 0)) + { + Arm_address stripped_value = + psymval->value(object, 0) & ~static_cast(1); + symval.set_output_value(stripped_value); + psymval = &symval; + } + + // To look up relocation stubs, we need to pass the symbol table index of + // a local symbol. + unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); + + // Get the addressing origin of the output segment defining the + // symbol gsym if needed (AAELF 4.6.1.2 Relocation types). + Arm_address sym_origin = 0; + if (reloc_property->uses_symbol_base()) + { + if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL) + // R_ARM_BASE_ABS with the NULL symbol will give the + // absolute address of the GOT origin (GOT_ORG) (see ARM IHI + // 0044C (AAELF): 4.6.1.8 Proxy generating relocations). + sym_origin = target->got_plt_section()->address(); + else if (gsym == NULL) + sym_origin = 0; + else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT) + sym_origin = gsym->output_segment()->vaddr(); + else if (gsym->source() == Symbol::IN_OUTPUT_DATA) + sym_origin = gsym->output_data()->address(); + + // TODO: Assumes the segment base to be zero for the global symbols + // till the proper support for the segment-base-relative addressing + // will be implemented. This is consistent with GNU ld. + } + + // For relative addressing relocation, find out the relative address base. + Arm_address relative_address_base = 0; + switch(reloc_property->relative_address_base()) + { + case Arm_reloc_property::RAB_NONE: + // Relocations with relative address bases RAB_TLS and RAB_tp are + // handled by relocate_tls. So we do not need to do anything here. + case Arm_reloc_property::RAB_TLS: + case Arm_reloc_property::RAB_tp: break; + case Arm_reloc_property::RAB_B_S: + relative_address_base = sym_origin; + break; + case Arm_reloc_property::RAB_GOT_ORG: + relative_address_base = target->got_plt_section()->address(); + break; + case Arm_reloc_property::RAB_P: + relative_address_base = address; + break; + case Arm_reloc_property::RAB_Pa: + relative_address_base = address & 0xfffffffcU; + break; + default: + gold_unreachable(); } typename Arm_relocate_functions::Status reloc_status = Arm_relocate_functions::STATUS_OKAY; + bool check_overflow = reloc_property->checks_overflow(); switch (r_type) { case elfcpp::R_ARM_NONE: break; case elfcpp::R_ARM_ABS8: - if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false, - output_section)) + if (should_apply_static_reloc(gsym, r_type, false, output_section)) reloc_status = Arm_relocate_functions::abs8(view, object, psymval); break; case elfcpp::R_ARM_ABS12: - if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false, - output_section)) + if (should_apply_static_reloc(gsym, r_type, false, output_section)) reloc_status = Arm_relocate_functions::abs12(view, object, psymval); break; case elfcpp::R_ARM_ABS16: - if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false, - output_section)) + if (should_apply_static_reloc(gsym, r_type, false, output_section)) reloc_status = Arm_relocate_functions::abs16(view, object, psymval); break; case elfcpp::R_ARM_ABS32: - if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true, - output_section)) + if (should_apply_static_reloc(gsym, r_type, true, output_section)) reloc_status = Arm_relocate_functions::abs32(view, object, psymval, - has_thumb_bit); + thumb_bit); break; case elfcpp::R_ARM_ABS32_NOI: - if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true, - output_section)) + if (should_apply_static_reloc(gsym, r_type, true, output_section)) // No thumb bit for this relocation: (S + A) reloc_status = Arm_relocate_functions::abs32(view, object, psymval, - false); + 0); break; case elfcpp::R_ARM_MOVW_ABS_NC: - if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true, - output_section)) - reloc_status = Arm_relocate_functions::movw_abs_nc(view, object, - psymval, - has_thumb_bit); - else - gold_error(_("relocation R_ARM_MOVW_ABS_NC cannot be used when making" - "a shared object; recompile with -fPIC")); + if (should_apply_static_reloc(gsym, r_type, false, output_section)) + reloc_status = Arm_relocate_functions::movw(view, object, psymval, + 0, thumb_bit, + check_overflow); break; case elfcpp::R_ARM_MOVT_ABS: - if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true, - output_section)) - reloc_status = Arm_relocate_functions::movt_abs(view, object, psymval); - else - gold_error(_("relocation R_ARM_MOVT_ABS cannot be used when making" - "a shared object; recompile with -fPIC")); + if (should_apply_static_reloc(gsym, r_type, false, output_section)) + reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0); break; case elfcpp::R_ARM_THM_MOVW_ABS_NC: - if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true, - output_section)) - reloc_status = Arm_relocate_functions::thm_movw_abs_nc(view, object, - psymval, - has_thumb_bit); - else - gold_error(_("relocation R_ARM_THM_MOVW_ABS_NC cannot be used when" - "making a shared object; recompile with -fPIC")); + if (should_apply_static_reloc(gsym, r_type, false, output_section)) + reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval, + 0, thumb_bit, false); break; case elfcpp::R_ARM_THM_MOVT_ABS: - if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true, - output_section)) - reloc_status = Arm_relocate_functions::thm_movt_abs(view, object, - psymval); - else - gold_error(_("relocation R_ARM_THM_MOVT_ABS cannot be used when" - "making a shared object; recompile with -fPIC")); + if (should_apply_static_reloc(gsym, r_type, false, output_section)) + reloc_status = Arm_relocate_functions::thm_movt(view, object, + psymval, 0); break; case elfcpp::R_ARM_MOVW_PREL_NC: - reloc_status = Arm_relocate_functions::movw_prel_nc(view, object, - psymval, address, - has_thumb_bit); + case elfcpp::R_ARM_MOVW_BREL_NC: + case elfcpp::R_ARM_MOVW_BREL: + reloc_status = + Arm_relocate_functions::movw(view, object, psymval, + relative_address_base, thumb_bit, + check_overflow); break; case elfcpp::R_ARM_MOVT_PREL: - reloc_status = Arm_relocate_functions::movt_prel(view, object, - psymval, address); + case elfcpp::R_ARM_MOVT_BREL: + reloc_status = + Arm_relocate_functions::movt(view, object, psymval, + relative_address_base); break; case elfcpp::R_ARM_THM_MOVW_PREL_NC: - reloc_status = Arm_relocate_functions::thm_movw_prel_nc(view, object, - psymval, address, - has_thumb_bit); + case elfcpp::R_ARM_THM_MOVW_BREL_NC: + case elfcpp::R_ARM_THM_MOVW_BREL: + reloc_status = + Arm_relocate_functions::thm_movw(view, object, psymval, + relative_address_base, + thumb_bit, check_overflow); break; case elfcpp::R_ARM_THM_MOVT_PREL: - reloc_status = Arm_relocate_functions::thm_movt_prel(view, object, - psymval, address); + case elfcpp::R_ARM_THM_MOVT_BREL: + reloc_status = + Arm_relocate_functions::thm_movt(view, object, psymval, + relative_address_base); break; - + case elfcpp::R_ARM_REL32: reloc_status = Arm_relocate_functions::rel32(view, object, psymval, - address, has_thumb_bit); + address, thumb_bit); break; case elfcpp::R_ARM_THM_ABS5: - if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false, - output_section)) + if (should_apply_static_reloc(gsym, r_type, false, output_section)) reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval); break; + // Thumb long branches. case elfcpp::R_ARM_THM_CALL: - reloc_status = Arm_relocate_functions::thm_call(view, object, psymval, - address, has_thumb_bit); + case elfcpp::R_ARM_THM_XPC22: + case elfcpp::R_ARM_THM_JUMP24: + reloc_status = + Arm_relocate_functions::thumb_branch_common( + r_type, relinfo, view, gsym, object, r_sym, psymval, address, + thumb_bit, is_weakly_undefined_without_plt); break; case elfcpp::R_ARM_GOTOFF32: @@ -4498,57 +9908,19 @@ Target_arm::Relocate::relocate( Arm_address got_origin; got_origin = target->got_plt_section()->address(); reloc_status = Arm_relocate_functions::rel32(view, object, psymval, - got_origin, has_thumb_bit); + got_origin, thumb_bit); } break; case elfcpp::R_ARM_BASE_PREL: - { - uint32_t origin; - // Get the addressing origin of the output segment defining the - // symbol gsym (AAELF 4.6.1.2 Relocation types) - gold_assert(gsym != NULL); - if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT) - origin = gsym->output_segment()->vaddr(); - else if (gsym->source () == Symbol::IN_OUTPUT_DATA) - origin = gsym->output_data()->address(); - else - { - gold_error_at_location(relinfo, relnum, rel.get_r_offset(), - _("cannot find origin of R_ARM_BASE_PREL")); - return true; - } - reloc_status = Arm_relocate_functions::base_prel(view, origin, address); - } + gold_assert(gsym != NULL); + reloc_status = + Arm_relocate_functions::base_prel(view, sym_origin, address); break; case elfcpp::R_ARM_BASE_ABS: - { - if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true, - output_section)) - break; - - uint32_t origin; - // Get the addressing origin of the output segment defining - // the symbol gsym (AAELF 4.6.1.2 Relocation types). - if (gsym == NULL) - // R_ARM_BASE_ABS with the NULL symbol will give the - // absolute address of the GOT origin (GOT_ORG) (see ARM IHI - // 0044C (AAELF): 4.6.1.8 Proxy generating relocations). - origin = target->got_plt_section()->address(); - else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT) - origin = gsym->output_segment()->vaddr(); - else if (gsym->source () == Symbol::IN_OUTPUT_DATA) - origin = gsym->output_data()->address(); - else - { - gold_error_at_location(relinfo, relnum, rel.get_r_offset(), - _("cannot find origin of R_ARM_BASE_ABS")); - return true; - } - - reloc_status = Arm_relocate_functions::base_abs(view, origin); - } + if (should_apply_static_reloc(gsym, r_type, false, output_section)) + reloc_status = Arm_relocate_functions::base_abs(view, sym_origin); break; case elfcpp::R_ARM_GOT_BREL: @@ -4569,49 +9941,147 @@ Target_arm::Relocate::relocate( break; case elfcpp::R_ARM_PLT32: + case elfcpp::R_ARM_CALL: + case elfcpp::R_ARM_JUMP24: + case elfcpp::R_ARM_XPC25: gold_assert(gsym == NULL || gsym->has_plt_offset() || gsym->final_value_is_known() || (gsym->is_defined() && !gsym->is_from_dynobj() && !gsym->is_preemptible())); - reloc_status = Arm_relocate_functions::plt32(view, object, psymval, - address, has_thumb_bit); + reloc_status = + Arm_relocate_functions::arm_branch_common( + r_type, relinfo, view, gsym, object, r_sym, psymval, address, + thumb_bit, is_weakly_undefined_without_plt); break; - case elfcpp::R_ARM_CALL: - reloc_status = Arm_relocate_functions::call(view, object, psymval, - address, has_thumb_bit); + case elfcpp::R_ARM_THM_JUMP19: + reloc_status = + Arm_relocate_functions::thm_jump19(view, object, psymval, address, + thumb_bit); break; - case elfcpp::R_ARM_JUMP24: - reloc_status = Arm_relocate_functions::jump24(view, object, psymval, - address, has_thumb_bit); + case elfcpp::R_ARM_THM_JUMP6: + reloc_status = + Arm_relocate_functions::thm_jump6(view, object, psymval, address); + break; + + case elfcpp::R_ARM_THM_JUMP8: + reloc_status = + Arm_relocate_functions::thm_jump8(view, object, psymval, address); + break; + + case elfcpp::R_ARM_THM_JUMP11: + reloc_status = + Arm_relocate_functions::thm_jump11(view, object, psymval, address); break; case elfcpp::R_ARM_PREL31: reloc_status = Arm_relocate_functions::prel31(view, object, psymval, - address, has_thumb_bit); + address, thumb_bit); break; - case elfcpp::R_ARM_TARGET1: - // This should have been mapped to another type already. - // Fall through. - case elfcpp::R_ARM_COPY: - case elfcpp::R_ARM_GLOB_DAT: - case elfcpp::R_ARM_JUMP_SLOT: - case elfcpp::R_ARM_RELATIVE: - // These are relocations which should only be seen by the - // dynamic linker, and should never be seen here. - gold_error_at_location(relinfo, relnum, rel.get_r_offset(), - _("unexpected reloc %u in object file"), - r_type); + case elfcpp::R_ARM_V4BX: + if (target->fix_v4bx() > General_options::FIX_V4BX_NONE) + { + const bool is_v4bx_interworking = + (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING); + reloc_status = + Arm_relocate_functions::v4bx(relinfo, view, object, address, + is_v4bx_interworking); + } + break; + + case elfcpp::R_ARM_THM_PC8: + reloc_status = + Arm_relocate_functions::thm_pc8(view, object, psymval, address); + break; + + case elfcpp::R_ARM_THM_PC12: + reloc_status = + Arm_relocate_functions::thm_pc12(view, object, psymval, address); + break; + + case elfcpp::R_ARM_THM_ALU_PREL_11_0: + reloc_status = + Arm_relocate_functions::thm_alu11(view, object, psymval, address, + thumb_bit); + break; + + case elfcpp::R_ARM_ALU_PC_G0_NC: + case elfcpp::R_ARM_ALU_PC_G0: + case elfcpp::R_ARM_ALU_PC_G1_NC: + case elfcpp::R_ARM_ALU_PC_G1: + case elfcpp::R_ARM_ALU_PC_G2: + case elfcpp::R_ARM_ALU_SB_G0_NC: + case elfcpp::R_ARM_ALU_SB_G0: + case elfcpp::R_ARM_ALU_SB_G1_NC: + case elfcpp::R_ARM_ALU_SB_G1: + case elfcpp::R_ARM_ALU_SB_G2: + reloc_status = + Arm_relocate_functions::arm_grp_alu(view, object, psymval, + reloc_property->group_index(), + relative_address_base, + thumb_bit, check_overflow); + break; + + case elfcpp::R_ARM_LDR_PC_G0: + case elfcpp::R_ARM_LDR_PC_G1: + case elfcpp::R_ARM_LDR_PC_G2: + case elfcpp::R_ARM_LDR_SB_G0: + case elfcpp::R_ARM_LDR_SB_G1: + case elfcpp::R_ARM_LDR_SB_G2: + reloc_status = + Arm_relocate_functions::arm_grp_ldr(view, object, psymval, + reloc_property->group_index(), + relative_address_base); + break; + + case elfcpp::R_ARM_LDRS_PC_G0: + case elfcpp::R_ARM_LDRS_PC_G1: + case elfcpp::R_ARM_LDRS_PC_G2: + case elfcpp::R_ARM_LDRS_SB_G0: + case elfcpp::R_ARM_LDRS_SB_G1: + case elfcpp::R_ARM_LDRS_SB_G2: + reloc_status = + Arm_relocate_functions::arm_grp_ldrs(view, object, psymval, + reloc_property->group_index(), + relative_address_base); + break; + + case elfcpp::R_ARM_LDC_PC_G0: + case elfcpp::R_ARM_LDC_PC_G1: + case elfcpp::R_ARM_LDC_PC_G2: + case elfcpp::R_ARM_LDC_SB_G0: + case elfcpp::R_ARM_LDC_SB_G1: + case elfcpp::R_ARM_LDC_SB_G2: + reloc_status = + Arm_relocate_functions::arm_grp_ldc(view, object, psymval, + reloc_property->group_index(), + relative_address_base); + break; + + // These are initial tls relocs, which are expected when + // linking. + case elfcpp::R_ARM_TLS_GD32: // Global-dynamic + case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic + case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic + case elfcpp::R_ARM_TLS_IE32: // Initial-exec + case elfcpp::R_ARM_TLS_LE32: // Local-exec + reloc_status = + this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval, + view, address, view_size); break; + // The known and unknown unsupported and/or deprecated relocations. + case elfcpp::R_ARM_PC24: + case elfcpp::R_ARM_LDR_SBREL_11_0_NC: + case elfcpp::R_ARM_ALU_SBREL_19_12_NC: + case elfcpp::R_ARM_ALU_SBREL_27_20_CK: default: - gold_error_at_location(relinfo, relnum, rel.get_r_offset(), - _("unsupported reloc %u"), - r_type); + // Just silently leave the method. We should get an appropriate error + // message in the scan methods. break; } @@ -4622,16 +10092,16 @@ Target_arm::Relocate::relocate( break; case Arm_relocate_functions::STATUS_OVERFLOW: gold_error_at_location(relinfo, relnum, rel.get_r_offset(), - _("relocation overflow in relocation %u"), - r_type); + _("relocation overflow in %s"), + reloc_property->name().c_str()); break; case Arm_relocate_functions::STATUS_BAD_RELOC: gold_error_at_location( relinfo, relnum, rel.get_r_offset(), - _("unexpected opcode while processing relocation %u"), - r_type); + _("unexpected opcode while processing relocation %s"), + reloc_property->name().c_str()); break; default: gold_unreachable(); @@ -4640,6 +10110,145 @@ Target_arm::Relocate::relocate( return true; } +// Perform a TLS relocation. + +template +inline typename Arm_relocate_functions::Status +Target_arm::Relocate::relocate_tls( + const Relocate_info<32, big_endian>* relinfo, + Target_arm* target, + size_t relnum, + const elfcpp::Rel<32, big_endian>& rel, + unsigned int r_type, + const Sized_symbol<32>* gsym, + const Symbol_value<32>* psymval, + unsigned char* view, + elfcpp::Elf_types<32>::Elf_Addr address, + section_size_type /*view_size*/ ) +{ + typedef Arm_relocate_functions ArmRelocFuncs; + typedef Relocate_functions<32, big_endian> RelocFuncs; + Output_segment* tls_segment = relinfo->layout->tls_segment(); + + const Sized_relobj_file<32, big_endian>* object = relinfo->object; + + elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0); + + const bool is_final = (gsym == NULL + ? !parameters->options().shared() + : gsym->final_value_is_known()); + const tls::Tls_optimization optimized_type + = Target_arm::optimize_tls_reloc(is_final, r_type); + switch (r_type) + { + case elfcpp::R_ARM_TLS_GD32: // Global-dynamic + { + unsigned int got_type = GOT_TYPE_TLS_PAIR; + unsigned int got_offset; + if (gsym != NULL) + { + gold_assert(gsym->has_got_offset(got_type)); + got_offset = gsym->got_offset(got_type) - target->got_size(); + } + else + { + unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); + gold_assert(object->local_has_got_offset(r_sym, got_type)); + got_offset = (object->local_got_offset(r_sym, got_type) + - target->got_size()); + } + if (optimized_type == tls::TLSOPT_NONE) + { + Arm_address got_entry = + target->got_plt_section()->address() + got_offset; + + // Relocate the field with the PC relative offset of the pair of + // GOT entries. + RelocFuncs::pcrel32_unaligned(view, got_entry, address); + return ArmRelocFuncs::STATUS_OKAY; + } + } + break; + + case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic + if (optimized_type == tls::TLSOPT_NONE) + { + // Relocate the field with the offset of the GOT entry for + // the module index. + unsigned int got_offset; + got_offset = (target->got_mod_index_entry(NULL, NULL, NULL) + - target->got_size()); + Arm_address got_entry = + target->got_plt_section()->address() + got_offset; + + // Relocate the field with the PC relative offset of the pair of + // GOT entries. + RelocFuncs::pcrel32_unaligned(view, got_entry, address); + return ArmRelocFuncs::STATUS_OKAY; + } + break; + + case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic + RelocFuncs::rel32_unaligned(view, value); + return ArmRelocFuncs::STATUS_OKAY; + + case elfcpp::R_ARM_TLS_IE32: // Initial-exec + if (optimized_type == tls::TLSOPT_NONE) + { + // Relocate the field with the offset of the GOT entry for + // the tp-relative offset of the symbol. + unsigned int got_type = GOT_TYPE_TLS_OFFSET; + unsigned int got_offset; + if (gsym != NULL) + { + gold_assert(gsym->has_got_offset(got_type)); + got_offset = gsym->got_offset(got_type); + } + else + { + unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); + gold_assert(object->local_has_got_offset(r_sym, got_type)); + got_offset = object->local_got_offset(r_sym, got_type); + } + + // All GOT offsets are relative to the end of the GOT. + got_offset -= target->got_size(); + + Arm_address got_entry = + target->got_plt_section()->address() + got_offset; + + // Relocate the field with the PC relative offset of the GOT entry. + RelocFuncs::pcrel32_unaligned(view, got_entry, address); + return ArmRelocFuncs::STATUS_OKAY; + } + break; + + case elfcpp::R_ARM_TLS_LE32: // Local-exec + // If we're creating a shared library, a dynamic relocation will + // have been created for this location, so do not apply it now. + if (!parameters->options().shared()) + { + gold_assert(tls_segment != NULL); + + // $tp points to the TCB, which is followed by the TLS, so we + // need to add TCB size to the offset. + Arm_address aligned_tcb_size = + align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment()); + RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size); + + } + return ArmRelocFuncs::STATUS_OKAY; + + default: + gold_unreachable(); + } + + gold_error_at_location(relinfo, relnum, rel.get_r_offset(), + _("unsupported reloc %u"), + r_type); + return ArmRelocFuncs::STATUS_BAD_RELOC; +} + // Relocate section data. template @@ -4659,8 +10268,31 @@ Target_arm::relocate_section( typedef typename Target_arm::Relocate Arm_relocate; gold_assert(sh_type == elfcpp::SHT_REL); - gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL, - Arm_relocate>( + // See if we are relocating a relaxed input section. If so, the view + // covers the whole output section and we need to adjust accordingly. + if (needs_special_offset_handling) + { + const Output_relaxed_input_section* poris = + output_section->find_relaxed_input_section(relinfo->object, + relinfo->data_shndx); + if (poris != NULL) + { + Arm_address section_address = poris->address(); + section_size_type section_size = poris->data_size(); + + gold_assert((section_address >= address) + && ((section_address + section_size) + <= (address + view_size))); + + off_t offset = section_address - address; + view += offset; + address += offset; + view_size = section_size; + } + } + + gold::relocate_section<32, big_endian, Target_arm, Arm_relocate, + gold::Default_comdat_behavior, Classify_reloc>( relinfo, this, prelocs, @@ -4678,62 +10310,23 @@ Target_arm::relocate_section( template unsigned int -Target_arm::Relocatable_size_for_reloc::get_size_for_reloc( +Target_arm::Classify_reloc::get_size_for_reloc( unsigned int r_type, Relobj* object) { - r_type = get_real_reloc_type(r_type); - switch (r_type) + Target_arm* arm_target = + Target_arm::default_target(); + r_type = arm_target->get_real_reloc_type(r_type); + const Arm_reloc_property* arp = + arm_reloc_property_table->get_implemented_static_reloc_property(r_type); + if (arp != NULL) + return arp->size(); + else { - case elfcpp::R_ARM_NONE: - return 0; - - case elfcpp::R_ARM_ABS8: - return 1; - - case elfcpp::R_ARM_ABS16: - case elfcpp::R_ARM_THM_ABS5: - return 2; - - case elfcpp::R_ARM_ABS32: - case elfcpp::R_ARM_ABS32_NOI: - case elfcpp::R_ARM_ABS12: - case elfcpp::R_ARM_BASE_ABS: - case elfcpp::R_ARM_REL32: - case elfcpp::R_ARM_THM_CALL: - case elfcpp::R_ARM_GOTOFF32: - case elfcpp::R_ARM_BASE_PREL: - case elfcpp::R_ARM_GOT_BREL: - case elfcpp::R_ARM_GOT_PREL: - case elfcpp::R_ARM_PLT32: - case elfcpp::R_ARM_CALL: - case elfcpp::R_ARM_JUMP24: - case elfcpp::R_ARM_PREL31: - case elfcpp::R_ARM_MOVW_ABS_NC: - case elfcpp::R_ARM_MOVT_ABS: - case elfcpp::R_ARM_THM_MOVW_ABS_NC: - case elfcpp::R_ARM_THM_MOVT_ABS: - case elfcpp::R_ARM_MOVW_PREL_NC: - case elfcpp::R_ARM_MOVT_PREL: - case elfcpp::R_ARM_THM_MOVW_PREL_NC: - case elfcpp::R_ARM_THM_MOVT_PREL: - return 4; - - case elfcpp::R_ARM_TARGET1: - // This should have been mapped to another type already. - // Fall through. - case elfcpp::R_ARM_COPY: - case elfcpp::R_ARM_GLOB_DAT: - case elfcpp::R_ARM_JUMP_SLOT: - case elfcpp::R_ARM_RELATIVE: - // These are relocations which should only be seen by the - // dynamic linker, and should never be seen here. - gold_error(_("%s: unexpected reloc %u in object file"), - object->name().c_str(), r_type); - return 0; - - default: - object->error(_("unsupported reloc %u in object file"), r_type); + std::string reloc_name = + arm_reloc_property_table->reloc_name_in_error_message(r_type); + gold_error(_("%s: unexpected %s in object file"), + object->name().c_str(), reloc_name.c_str()); return 0; } } @@ -4745,7 +10338,7 @@ void Target_arm::scan_relocatable_relocs( Symbol_table* symtab, Layout* layout, - Sized_relobj<32, big_endian>* object, + Sized_relobj_file<32, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, @@ -4756,13 +10349,12 @@ Target_arm::scan_relocatable_relocs( const unsigned char* plocal_symbols, Relocatable_relocs* rr) { - gold_assert(sh_type == elfcpp::SHT_REL); + typedef Arm_scan_relocatable_relocs + Scan_relocatable_relocs; - typedef gold::Default_scan_relocatable_relocs Scan_relocatable_relocs; + gold_assert(sh_type == elfcpp::SHT_REL); - gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL, - Scan_relocatable_relocs>( + gold::scan_relocatable_relocs<32, big_endian, Scan_relocatable_relocs>( symtab, layout, object, @@ -4776,18 +10368,55 @@ Target_arm::scan_relocatable_relocs( rr); } -// Relocate a section during a relocatable link. +// Scan the relocs for --emit-relocs. + +template +void +Target_arm::emit_relocs_scan(Symbol_table* symtab, + Layout* layout, + Sized_relobj_file<32, big_endian>* object, + unsigned int data_shndx, + unsigned int sh_type, + const unsigned char* prelocs, + size_t reloc_count, + Output_section* output_section, + bool needs_special_offset_handling, + size_t local_symbol_count, + const unsigned char* plocal_syms, + Relocatable_relocs* rr) +{ + typedef gold::Default_classify_reloc + Classify_reloc; + typedef gold::Default_emit_relocs_strategy + Emit_relocs_strategy; + + gold_assert(sh_type == elfcpp::SHT_REL); + + gold::scan_relocatable_relocs<32, big_endian, Emit_relocs_strategy>( + symtab, + layout, + object, + data_shndx, + prelocs, + reloc_count, + output_section, + needs_special_offset_handling, + local_symbol_count, + plocal_syms, + rr); +} + +// Emit relocations for a section. template void -Target_arm::relocate_for_relocatable( +Target_arm::relocate_relocs( const Relocate_info<32, big_endian>* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, - off_t offset_in_output_section, - const Relocatable_relocs* rr, + typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section, unsigned char* view, Arm_address view_address, section_size_type view_size, @@ -4796,13 +10425,12 @@ Target_arm::relocate_for_relocatable( { gold_assert(sh_type == elfcpp::SHT_REL); - gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>( + gold::relocate_relocs<32, big_endian, Classify_reloc>( relinfo, prelocs, reloc_count, output_section, offset_in_output_section, - rr, view, view_address, view_size, @@ -4810,34 +10438,317 @@ Target_arm::relocate_for_relocatable( reloc_view_size); } -// Return the value to use for a dynamic symbol which requires special -// treatment. This is how we support equality comparisons of function -// pointers across shared library boundaries, as described in the -// processor specific ABI supplement. +// Perform target-specific processing in a relocatable link. This is +// only used if we use the relocation strategy RELOC_SPECIAL. template -uint64_t -Target_arm::do_dynsym_value(const Symbol* gsym) const +void +Target_arm::relocate_special_relocatable( + const Relocate_info<32, big_endian>* relinfo, + unsigned int sh_type, + const unsigned char* preloc_in, + size_t relnum, + Output_section* output_section, + typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section, + unsigned char* view, + elfcpp::Elf_types<32>::Elf_Addr view_address, + section_size_type, + unsigned char* preloc_out) { - gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset()); - return this->plt_section()->address() + gsym->plt_offset(); -} + // We can only handle REL type relocation sections. + gold_assert(sh_type == elfcpp::SHT_REL); + + typedef typename Reloc_types::Reloc Reltype; + typedef typename Reloc_types::Reloc_write + Reltype_write; + const Arm_address invalid_address = static_cast(0) - 1; + + const Arm_relobj* object = + Arm_relobj::as_arm_relobj(relinfo->object); + const unsigned int local_count = object->local_symbol_count(); + + Reltype reloc(preloc_in); + Reltype_write reloc_write(preloc_out); + + elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info(); + const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); + const unsigned int r_type = elfcpp::elf_r_type<32>(r_info); + + const Arm_reloc_property* arp = + arm_reloc_property_table->get_implemented_static_reloc_property(r_type); + gold_assert(arp != NULL); + + // Get the new symbol index. + // We only use RELOC_SPECIAL strategy in local relocations. + gold_assert(r_sym < local_count); + + // We are adjusting a section symbol. We need to find + // the symbol table index of the section symbol for + // the output section corresponding to input section + // in which this symbol is defined. + bool is_ordinary; + unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary); + gold_assert(is_ordinary); + Output_section* os = object->output_section(shndx); + gold_assert(os != NULL); + gold_assert(os->needs_symtab_index()); + unsigned int new_symndx = os->symtab_index(); + + // Get the new offset--the location in the output section where + // this relocation should be applied. + + Arm_address offset = reloc.get_r_offset(); + Arm_address new_offset; + if (offset_in_output_section != invalid_address) + new_offset = offset + offset_in_output_section; + else + { + section_offset_type sot_offset = + convert_types(offset); + section_offset_type new_sot_offset = + output_section->output_offset(object, relinfo->data_shndx, + sot_offset); + gold_assert(new_sot_offset != -1); + new_offset = new_sot_offset; + } + + // In an object file, r_offset is an offset within the section. + // In an executable or dynamic object, generated by + // --emit-relocs, r_offset is an absolute address. + if (!parameters->options().relocatable()) + { + new_offset += view_address; + if (offset_in_output_section != invalid_address) + new_offset -= offset_in_output_section; + } + + reloc_write.put_r_offset(new_offset); + reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type)); + + // Handle the reloc addend. + // The relocation uses a section symbol in the input file. + // We are adjusting it to use a section symbol in the output + // file. The input section symbol refers to some address in + // the input section. We need the relocation in the output + // file to refer to that same address. This adjustment to + // the addend is the same calculation we use for a simple + // absolute relocation for the input section symbol. + + const Symbol_value<32>* psymval = object->local_symbol(r_sym); + + // Handle THUMB bit. + Symbol_value<32> symval; + Arm_address thumb_bit = + object->local_symbol_is_thumb_function(r_sym) ? 1 : 0; + if (thumb_bit != 0 + && arp->uses_thumb_bit() + && ((psymval->value(object, 0) & 1) != 0)) + { + Arm_address stripped_value = + psymval->value(object, 0) & ~static_cast(1); + symval.set_output_value(stripped_value); + psymval = &symval; + } + + unsigned char* paddend = view + offset; + typename Arm_relocate_functions::Status reloc_status = + Arm_relocate_functions::STATUS_OKAY; + switch (r_type) + { + case elfcpp::R_ARM_ABS8: + reloc_status = Arm_relocate_functions::abs8(paddend, object, + psymval); + break; + + case elfcpp::R_ARM_ABS12: + reloc_status = Arm_relocate_functions::abs12(paddend, object, + psymval); + break; + + case elfcpp::R_ARM_ABS16: + reloc_status = Arm_relocate_functions::abs16(paddend, object, + psymval); + break; + + case elfcpp::R_ARM_THM_ABS5: + reloc_status = Arm_relocate_functions::thm_abs5(paddend, + object, + psymval); + break; + + case elfcpp::R_ARM_MOVW_ABS_NC: + case elfcpp::R_ARM_MOVW_PREL_NC: + case elfcpp::R_ARM_MOVW_BREL_NC: + case elfcpp::R_ARM_MOVW_BREL: + reloc_status = Arm_relocate_functions::movw( + paddend, object, psymval, 0, thumb_bit, arp->checks_overflow()); + break; + + case elfcpp::R_ARM_THM_MOVW_ABS_NC: + case elfcpp::R_ARM_THM_MOVW_PREL_NC: + case elfcpp::R_ARM_THM_MOVW_BREL_NC: + case elfcpp::R_ARM_THM_MOVW_BREL: + reloc_status = Arm_relocate_functions::thm_movw( + paddend, object, psymval, 0, thumb_bit, arp->checks_overflow()); + break; + + case elfcpp::R_ARM_THM_CALL: + case elfcpp::R_ARM_THM_XPC22: + case elfcpp::R_ARM_THM_JUMP24: + reloc_status = + Arm_relocate_functions::thumb_branch_common( + r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit, + false); + break; + + case elfcpp::R_ARM_PLT32: + case elfcpp::R_ARM_CALL: + case elfcpp::R_ARM_JUMP24: + case elfcpp::R_ARM_XPC25: + reloc_status = + Arm_relocate_functions::arm_branch_common( + r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit, + false); + break; + + case elfcpp::R_ARM_THM_JUMP19: + reloc_status = + Arm_relocate_functions::thm_jump19(paddend, object, + psymval, 0, thumb_bit); + break; + + case elfcpp::R_ARM_THM_JUMP6: + reloc_status = + Arm_relocate_functions::thm_jump6(paddend, object, psymval, + 0); + break; + + case elfcpp::R_ARM_THM_JUMP8: + reloc_status = + Arm_relocate_functions::thm_jump8(paddend, object, psymval, + 0); + break; + + case elfcpp::R_ARM_THM_JUMP11: + reloc_status = + Arm_relocate_functions::thm_jump11(paddend, object, psymval, + 0); + break; + + case elfcpp::R_ARM_PREL31: + reloc_status = + Arm_relocate_functions::prel31(paddend, object, psymval, 0, + thumb_bit); + break; + + case elfcpp::R_ARM_THM_PC8: + reloc_status = + Arm_relocate_functions::thm_pc8(paddend, object, psymval, + 0); + break; + + case elfcpp::R_ARM_THM_PC12: + reloc_status = + Arm_relocate_functions::thm_pc12(paddend, object, psymval, + 0); + break; + + case elfcpp::R_ARM_THM_ALU_PREL_11_0: + reloc_status = + Arm_relocate_functions::thm_alu11(paddend, object, psymval, + 0, thumb_bit); + break; + + // These relocation truncate relocation results so we cannot handle them + // in a relocatable link. + case elfcpp::R_ARM_MOVT_ABS: + case elfcpp::R_ARM_THM_MOVT_ABS: + case elfcpp::R_ARM_MOVT_PREL: + case elfcpp::R_ARM_MOVT_BREL: + case elfcpp::R_ARM_THM_MOVT_PREL: + case elfcpp::R_ARM_THM_MOVT_BREL: + case elfcpp::R_ARM_ALU_PC_G0_NC: + case elfcpp::R_ARM_ALU_PC_G0: + case elfcpp::R_ARM_ALU_PC_G1_NC: + case elfcpp::R_ARM_ALU_PC_G1: + case elfcpp::R_ARM_ALU_PC_G2: + case elfcpp::R_ARM_ALU_SB_G0_NC: + case elfcpp::R_ARM_ALU_SB_G0: + case elfcpp::R_ARM_ALU_SB_G1_NC: + case elfcpp::R_ARM_ALU_SB_G1: + case elfcpp::R_ARM_ALU_SB_G2: + case elfcpp::R_ARM_LDR_PC_G0: + case elfcpp::R_ARM_LDR_PC_G1: + case elfcpp::R_ARM_LDR_PC_G2: + case elfcpp::R_ARM_LDR_SB_G0: + case elfcpp::R_ARM_LDR_SB_G1: + case elfcpp::R_ARM_LDR_SB_G2: + case elfcpp::R_ARM_LDRS_PC_G0: + case elfcpp::R_ARM_LDRS_PC_G1: + case elfcpp::R_ARM_LDRS_PC_G2: + case elfcpp::R_ARM_LDRS_SB_G0: + case elfcpp::R_ARM_LDRS_SB_G1: + case elfcpp::R_ARM_LDRS_SB_G2: + case elfcpp::R_ARM_LDC_PC_G0: + case elfcpp::R_ARM_LDC_PC_G1: + case elfcpp::R_ARM_LDC_PC_G2: + case elfcpp::R_ARM_LDC_SB_G0: + case elfcpp::R_ARM_LDC_SB_G1: + case elfcpp::R_ARM_LDC_SB_G2: + gold_error(_("cannot handle %s in a relocatable link"), + arp->name().c_str()); + break; + + default: + gold_unreachable(); + } + + // Report any errors. + switch (reloc_status) + { + case Arm_relocate_functions::STATUS_OKAY: + break; + case Arm_relocate_functions::STATUS_OVERFLOW: + gold_error_at_location(relinfo, relnum, reloc.get_r_offset(), + _("relocation overflow in %s"), + arp->name().c_str()); + break; + case Arm_relocate_functions::STATUS_BAD_RELOC: + gold_error_at_location(relinfo, relnum, reloc.get_r_offset(), + _("unexpected opcode while processing relocation %s"), + arp->name().c_str()); + break; + default: + gold_unreachable(); + } +} + +// Return the value to use for a dynamic symbol which requires special +// treatment. This is how we support equality comparisons of function +// pointers across shared library boundaries, as described in the +// processor specific ABI supplement. + +template +uint64_t +Target_arm::do_dynsym_value(const Symbol* gsym) const +{ + gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset()); + return this->plt_address_for_global(gsym); +} // Map platform-specific relocs to real relocs // template unsigned int -Target_arm::get_real_reloc_type (unsigned int r_type) +Target_arm::get_real_reloc_type(unsigned int r_type) const { switch (r_type) { case elfcpp::R_ARM_TARGET1: - // This is either R_ARM_ABS32 or R_ARM_REL32; - return elfcpp::R_ARM_ABS32; + return this->target1_reloc_; case elfcpp::R_ARM_TARGET2: - // This can be any reloc type but ususally is R_ARM_GOT_PREL - return elfcpp::R_ARM_GOT_PREL; + return this->target2_reloc_; default: return r_type; @@ -4854,7 +10765,8 @@ Target_arm::are_eabi_versions_compatible( { // v4 and v5 are the same spec before and after it was released, // so allow mixing them. - if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5) + if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN) + || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5) || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4)) return true; @@ -4883,7 +10795,8 @@ Target_arm::merge_processor_specific_flags( // Complain about various flag mismatches. elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags); elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags); - if (!this->are_eabi_versions_compatible(version1, version2)) + if (!this->are_eabi_versions_compatible(version1, version2) + && parameters->options().warn_mismatch()) gold_error(_("Source object %s has EABI version %d but output has " "EABI version %d."), name.c_str(), @@ -4912,31 +10825,55 @@ template void Target_arm::do_adjust_elf_header( unsigned char* view, - int len) const + int len) { gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size); elfcpp::Ehdr<32, big_endian> ehdr(view); + elfcpp::Elf_Word flags = this->processor_specific_flags(); unsigned char e_ident[elfcpp::EI_NIDENT]; memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT); - if (elfcpp::arm_eabi_version(this->processor_specific_flags()) + if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_UNKNOWN) e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM; else e_ident[elfcpp::EI_OSABI] = 0; e_ident[elfcpp::EI_ABIVERSION] = 0; - // FIXME: Do EF_ARM_BE8 adjustment. + // Do EF_ARM_BE8 adjustment. + if (parameters->options().be8() && !big_endian) + gold_error("BE8 images only valid in big-endian mode."); + if (parameters->options().be8()) + { + flags |= elfcpp::EF_ARM_BE8; + this->set_processor_specific_flags(flags); + } + // If we're working in EABI_VER5, set the hard/soft float ABI flags + // as appropriate. + if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5) + { + elfcpp::Elf_Half type = ehdr.get_e_type(); + if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN) + { + Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args); + if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp) + flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD; + else + flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT; + this->set_processor_specific_flags(flags); + } + } elfcpp::Ehdr_write<32, big_endian> oehdr(view); oehdr.put_e_ident(e_ident); + oehdr.put_e_flags(this->processor_specific_flags()); } // do_make_elf_object to override the same function in the base class. -// We need to use a target-specific sub-class of Sized_relobj<32, big_endian> -// to store ARM specific information. Hence we need to have our own -// ELF object creation. +// We need to use a target-specific sub-class of +// Sized_relobj_file<32, big_endian> to store ARM specific information. +// Hence we need to have our own ELF object creation. template Object* @@ -4946,45 +10883,2348 @@ Target_arm::do_make_elf_object( off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr) { int et = ehdr.get_e_type(); - if (et == elfcpp::ET_REL) + // ET_EXEC files are valid input for --just-symbols/-R, + // and we treat them as relocatable objects. + if (et == elfcpp::ET_REL + || (et == elfcpp::ET_EXEC && input_file->just_symbols())) { Arm_relobj* obj = - new Arm_relobj(name, input_file, offset, ehdr); + new Arm_relobj(name, input_file, offset, ehdr); obj->setup(); return obj; } else if (et == elfcpp::ET_DYN) { Sized_dynobj<32, big_endian>* obj = - new Arm_dynobj(name, input_file, offset, ehdr); + new Arm_dynobj(name, input_file, offset, ehdr); obj->setup(); return obj; } else { gold_error(_("%s: unsupported ELF file type %d"), - name.c_str(), et); + name.c_str(), et); return NULL; } } -// The selector for arm object files. +// Read the architecture from the Tag_also_compatible_with attribute, if any. +// Returns -1 if no architecture could be read. +// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c. template -class Target_selector_arm : public Target_selector +int +Target_arm::get_secondary_compatible_arch( + const Attributes_section_data* pasd) { - public: - Target_selector_arm() - : Target_selector(elfcpp::EM_ARM, 32, big_endian, - (big_endian ? "elf32-bigarm" : "elf32-littlearm")) - { } + const Object_attribute* known_attributes = + pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC); + + // Note: the tag and its argument below are uleb128 values, though + // currently-defined values fit in one byte for each. + const std::string& sv = + known_attributes[elfcpp::Tag_also_compatible_with].string_value(); + if (sv.size() == 2 + && sv.data()[0] == elfcpp::Tag_CPU_arch + && (sv.data()[1] & 128) != 128) + return sv.data()[1]; + + // This tag is "safely ignorable", so don't complain if it looks funny. + return -1; +} - Target* - do_instantiate_target() - { return new Target_arm(); } +// Set, or unset, the architecture of the Tag_also_compatible_with attribute. +// The tag is removed if ARCH is -1. +// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c. + +template +void +Target_arm::set_secondary_compatible_arch( + Attributes_section_data* pasd, + int arch) +{ + Object_attribute* known_attributes = + pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC); + + if (arch == -1) + { + known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(""); + return; + } + + // Note: the tag and its argument below are uleb128 values, though + // currently-defined values fit in one byte for each. + char sv[3]; + sv[0] = elfcpp::Tag_CPU_arch; + gold_assert(arch != 0); + sv[1] = arch; + sv[2] = '\0'; + + known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv); +} + +// Combine two values for Tag_CPU_arch, taking secondary compatibility tags +// into account. +// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c. + +template +int +Target_arm::tag_cpu_arch_combine( + const char* name, + int oldtag, + int* secondary_compat_out, + int newtag, + int secondary_compat) +{ +#define T(X) elfcpp::TAG_CPU_ARCH_##X + static const int v6t2[] = + { + T(V6T2), // PRE_V4. + T(V6T2), // V4. + T(V6T2), // V4T. + T(V6T2), // V5T. + T(V6T2), // V5TE. + T(V6T2), // V5TEJ. + T(V6T2), // V6. + T(V7), // V6KZ. + T(V6T2) // V6T2. + }; + static const int v6k[] = + { + T(V6K), // PRE_V4. + T(V6K), // V4. + T(V6K), // V4T. + T(V6K), // V5T. + T(V6K), // V5TE. + T(V6K), // V5TEJ. + T(V6K), // V6. + T(V6KZ), // V6KZ. + T(V7), // V6T2. + T(V6K) // V6K. + }; + static const int v7[] = + { + T(V7), // PRE_V4. + T(V7), // V4. + T(V7), // V4T. + T(V7), // V5T. + T(V7), // V5TE. + T(V7), // V5TEJ. + T(V7), // V6. + T(V7), // V6KZ. + T(V7), // V6T2. + T(V7), // V6K. + T(V7) // V7. + }; + static const int v6_m[] = + { + -1, // PRE_V4. + -1, // V4. + T(V6K), // V4T. + T(V6K), // V5T. + T(V6K), // V5TE. + T(V6K), // V5TEJ. + T(V6K), // V6. + T(V6KZ), // V6KZ. + T(V7), // V6T2. + T(V6K), // V6K. + T(V7), // V7. + T(V6_M) // V6_M. + }; + static const int v6s_m[] = + { + -1, // PRE_V4. + -1, // V4. + T(V6K), // V4T. + T(V6K), // V5T. + T(V6K), // V5TE. + T(V6K), // V5TEJ. + T(V6K), // V6. + T(V6KZ), // V6KZ. + T(V7), // V6T2. + T(V6K), // V6K. + T(V7), // V7. + T(V6S_M), // V6_M. + T(V6S_M) // V6S_M. + }; + static const int v7e_m[] = + { + -1, // PRE_V4. + -1, // V4. + T(V7E_M), // V4T. + T(V7E_M), // V5T. + T(V7E_M), // V5TE. + T(V7E_M), // V5TEJ. + T(V7E_M), // V6. + T(V7E_M), // V6KZ. + T(V7E_M), // V6T2. + T(V7E_M), // V6K. + T(V7E_M), // V7. + T(V7E_M), // V6_M. + T(V7E_M), // V6S_M. + T(V7E_M) // V7E_M. + }; + static const int v8[] = + { + T(V8), // PRE_V4. + T(V8), // V4. + T(V8), // V4T. + T(V8), // V5T. + T(V8), // V5TE. + T(V8), // V5TEJ. + T(V8), // V6. + T(V8), // V6KZ. + T(V8), // V6T2. + T(V8), // V6K. + T(V8), // V7. + T(V8), // V6_M. + T(V8), // V6S_M. + T(V8), // V7E_M. + T(V8) // V8. + }; + static const int v4t_plus_v6_m[] = + { + -1, // PRE_V4. + -1, // V4. + T(V4T), // V4T. + T(V5T), // V5T. + T(V5TE), // V5TE. + T(V5TEJ), // V5TEJ. + T(V6), // V6. + T(V6KZ), // V6KZ. + T(V6T2), // V6T2. + T(V6K), // V6K. + T(V7), // V7. + T(V6_M), // V6_M. + T(V6S_M), // V6S_M. + T(V7E_M), // V7E_M. + T(V8), // V8. + T(V4T_PLUS_V6_M) // V4T plus V6_M. + }; + static const int* comb[] = + { + v6t2, + v6k, + v7, + v6_m, + v6s_m, + v7e_m, + v8, + // Pseudo-architecture. + v4t_plus_v6_m + }; + + // Check we've not got a higher architecture than we know about. + + if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH) + { + gold_error(_("%s: unknown CPU architecture"), name); + return -1; + } + + // Override old tag if we have a Tag_also_compatible_with on the output. + + if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T)) + || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M))) + oldtag = T(V4T_PLUS_V6_M); + + // And override the new tag if we have a Tag_also_compatible_with on the + // input. + + if ((newtag == T(V6_M) && secondary_compat == T(V4T)) + || (newtag == T(V4T) && secondary_compat == T(V6_M))) + newtag = T(V4T_PLUS_V6_M); + + // Architectures before V6KZ add features monotonically. + int tagh = std::max(oldtag, newtag); + if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ) + return tagh; + + int tagl = std::min(oldtag, newtag); + int result = comb[tagh - T(V6T2)][tagl]; + + // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M) + // as the canonical version. + if (result == T(V4T_PLUS_V6_M)) + { + result = T(V4T); + *secondary_compat_out = T(V6_M); + } + else + *secondary_compat_out = -1; + + if (result == -1) + { + gold_error(_("%s: conflicting CPU architectures %d/%d"), + name, oldtag, newtag); + return -1; + } + + return result; +#undef T +} + +// Helper to print AEABI enum tag value. + +template +std::string +Target_arm::aeabi_enum_name(unsigned int value) +{ + static const char* aeabi_enum_names[] = + { "", "variable-size", "32-bit", "" }; + const size_t aeabi_enum_names_size = + sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]); + + if (value < aeabi_enum_names_size) + return std::string(aeabi_enum_names[value]); + else + { + char buffer[100]; + sprintf(buffer, "", value); + return std::string(buffer); + } +} + +// Return the string value to store in TAG_CPU_name. + +template +std::string +Target_arm::tag_cpu_name_value(unsigned int value) +{ + static const char* name_table[] = { + // These aren't real CPU names, but we can't guess + // that from the architecture version alone. + "Pre v4", + "ARM v4", + "ARM v4T", + "ARM v5T", + "ARM v5TE", + "ARM v5TEJ", + "ARM v6", + "ARM v6KZ", + "ARM v6T2", + "ARM v6K", + "ARM v7", + "ARM v6-M", + "ARM v6S-M", + "ARM v7E-M", + "ARM v8" + }; + const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]); + + if (value < name_table_size) + return std::string(name_table[value]); + else + { + char buffer[100]; + sprintf(buffer, "", value); + return std::string(buffer); + } +} + +// Query attributes object to see if integer divide instructions may be +// present in an object. + +template +bool +Target_arm::attributes_accept_div(int arch, int profile, + const Object_attribute* div_attr) +{ + switch (div_attr->int_value()) + { + case 0: + // Integer divide allowed if instruction contained in + // architecture. + if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M')) + return true; + else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M) + return true; + else + return false; + + case 1: + // Integer divide explicitly prohibited. + return false; + + default: + // Unrecognised case - treat as allowing divide everywhere. + case 2: + // Integer divide allowed in ARM state. + return true; + } +} + +// Query attributes object to see if integer divide instructions are +// forbidden to be in the object. This is not the inverse of +// attributes_accept_div. + +template +bool +Target_arm::attributes_forbid_div(const Object_attribute* div_attr) +{ + return div_attr->int_value() == 1; +} + +// Merge object attributes from input file called NAME with those of the +// output. The input object attributes are in the object pointed by PASD. + +template +void +Target_arm::merge_object_attributes( + const char* name, + const Attributes_section_data* pasd) +{ + // Return if there is no attributes section data. + if (pasd == NULL) + return; + + // If output has no object attributes, just copy. + const int vendor = Object_attribute::OBJ_ATTR_PROC; + if (this->attributes_section_data_ == NULL) + { + this->attributes_section_data_ = new Attributes_section_data(*pasd); + Object_attribute* out_attr = + this->attributes_section_data_->known_attributes(vendor); + + // We do not output objects with Tag_MPextension_use_legacy - we move + // the attribute's value to Tag_MPextension_use. */ + if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0) + { + if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0 + && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() + != out_attr[elfcpp::Tag_MPextension_use].int_value()) + { + gold_error(_("%s has both the current and legacy " + "Tag_MPextension_use attributes"), + name); + } + + out_attr[elfcpp::Tag_MPextension_use] = + out_attr[elfcpp::Tag_MPextension_use_legacy]; + out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0); + out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0); + } + + return; + } + + const Object_attribute* in_attr = pasd->known_attributes(vendor); + Object_attribute* out_attr = + this->attributes_section_data_->known_attributes(vendor); + + // This needs to happen before Tag_ABI_FP_number_model is merged. */ + if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value() + != out_attr[elfcpp::Tag_ABI_VFP_args].int_value()) + { + // Ignore mismatches if the object doesn't use floating point. */ + if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() + == elfcpp::AEABI_FP_number_model_none + || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() + != elfcpp::AEABI_FP_number_model_none + && out_attr[elfcpp::Tag_ABI_VFP_args].int_value() + == elfcpp::AEABI_VFP_args_compatible)) + out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value( + in_attr[elfcpp::Tag_ABI_VFP_args].int_value()); + else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() + != elfcpp::AEABI_FP_number_model_none + && in_attr[elfcpp::Tag_ABI_VFP_args].int_value() + != elfcpp::AEABI_VFP_args_compatible + && parameters->options().warn_mismatch()) + gold_error(_("%s uses VFP register arguments, output does not"), + name); + } + + for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i) + { + // Merge this attribute with existing attributes. + switch (i) + { + case elfcpp::Tag_CPU_raw_name: + case elfcpp::Tag_CPU_name: + // These are merged after Tag_CPU_arch. + break; + + case elfcpp::Tag_ABI_optimization_goals: + case elfcpp::Tag_ABI_FP_optimization_goals: + // Use the first value seen. + break; + + case elfcpp::Tag_CPU_arch: + { + unsigned int saved_out_attr = out_attr->int_value(); + // Merge Tag_CPU_arch and Tag_also_compatible_with. + int secondary_compat = + this->get_secondary_compatible_arch(pasd); + int secondary_compat_out = + this->get_secondary_compatible_arch( + this->attributes_section_data_); + out_attr[i].set_int_value( + tag_cpu_arch_combine(name, out_attr[i].int_value(), + &secondary_compat_out, + in_attr[i].int_value(), + secondary_compat)); + this->set_secondary_compatible_arch(this->attributes_section_data_, + secondary_compat_out); + + // Merge Tag_CPU_name and Tag_CPU_raw_name. + if (out_attr[i].int_value() == saved_out_attr) + ; // Leave the names alone. + else if (out_attr[i].int_value() == in_attr[i].int_value()) + { + // The output architecture has been changed to match the + // input architecture. Use the input names. + out_attr[elfcpp::Tag_CPU_name].set_string_value( + in_attr[elfcpp::Tag_CPU_name].string_value()); + out_attr[elfcpp::Tag_CPU_raw_name].set_string_value( + in_attr[elfcpp::Tag_CPU_raw_name].string_value()); + } + else + { + out_attr[elfcpp::Tag_CPU_name].set_string_value(""); + out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(""); + } + + // If we still don't have a value for Tag_CPU_name, + // make one up now. Tag_CPU_raw_name remains blank. + if (out_attr[elfcpp::Tag_CPU_name].string_value() == "") + { + const std::string cpu_name = + this->tag_cpu_name_value(out_attr[i].int_value()); + // FIXME: If we see an unknown CPU, this will be set + // to "", where n is the attribute value. + // This is different from BFD, which leaves the name alone. + out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name); + } + } + break; + + case elfcpp::Tag_ARM_ISA_use: + case elfcpp::Tag_THUMB_ISA_use: + case elfcpp::Tag_WMMX_arch: + case elfcpp::Tag_Advanced_SIMD_arch: + // ??? Do Advanced_SIMD (NEON) and WMMX conflict? + case elfcpp::Tag_ABI_FP_rounding: + case elfcpp::Tag_ABI_FP_exceptions: + case elfcpp::Tag_ABI_FP_user_exceptions: + case elfcpp::Tag_ABI_FP_number_model: + case elfcpp::Tag_VFP_HP_extension: + case elfcpp::Tag_CPU_unaligned_access: + case elfcpp::Tag_T2EE_use: + case elfcpp::Tag_Virtualization_use: + case elfcpp::Tag_MPextension_use: + // Use the largest value specified. + if (in_attr[i].int_value() > out_attr[i].int_value()) + out_attr[i].set_int_value(in_attr[i].int_value()); + break; + + case elfcpp::Tag_ABI_align8_preserved: + case elfcpp::Tag_ABI_PCS_RO_data: + // Use the smallest value specified. + if (in_attr[i].int_value() < out_attr[i].int_value()) + out_attr[i].set_int_value(in_attr[i].int_value()); + break; + + case elfcpp::Tag_ABI_align8_needed: + if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0) + && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0 + || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value() + == 0))) + { + // This error message should be enabled once all non-conforming + // binaries in the toolchain have had the attributes set + // properly. + // gold_error(_("output 8-byte data alignment conflicts with %s"), + // name); + } + // Fall through. + case elfcpp::Tag_ABI_FP_denormal: + case elfcpp::Tag_ABI_PCS_GOT_use: + { + // These tags have 0 = don't care, 1 = strong requirement, + // 2 = weak requirement. + static const int order_021[3] = {0, 2, 1}; + + // Use the "greatest" from the sequence 0, 2, 1, or the largest + // value if greater than 2 (for future-proofing). + if ((in_attr[i].int_value() > 2 + && in_attr[i].int_value() > out_attr[i].int_value()) + || (in_attr[i].int_value() <= 2 + && out_attr[i].int_value() <= 2 + && (order_021[in_attr[i].int_value()] + > order_021[out_attr[i].int_value()]))) + out_attr[i].set_int_value(in_attr[i].int_value()); + } + break; + + case elfcpp::Tag_CPU_arch_profile: + if (out_attr[i].int_value() != in_attr[i].int_value()) + { + // 0 will merge with anything. + // 'A' and 'S' merge to 'A'. + // 'R' and 'S' merge to 'R'. + // 'M' and 'A|R|S' is an error. + if (out_attr[i].int_value() == 0 + || (out_attr[i].int_value() == 'S' + && (in_attr[i].int_value() == 'A' + || in_attr[i].int_value() == 'R'))) + out_attr[i].set_int_value(in_attr[i].int_value()); + else if (in_attr[i].int_value() == 0 + || (in_attr[i].int_value() == 'S' + && (out_attr[i].int_value() == 'A' + || out_attr[i].int_value() == 'R'))) + ; // Do nothing. + else if (parameters->options().warn_mismatch()) + { + gold_error + (_("conflicting architecture profiles %c/%c"), + in_attr[i].int_value() ? in_attr[i].int_value() : '0', + out_attr[i].int_value() ? out_attr[i].int_value() : '0'); + } + } + break; + case elfcpp::Tag_VFP_arch: + { + static const struct + { + int ver; + int regs; + } vfp_versions[7] = + { + {0, 0}, + {1, 16}, + {2, 16}, + {3, 32}, + {3, 16}, + {4, 32}, + {4, 16} + }; + + // Values greater than 6 aren't defined, so just pick the + // biggest. + if (in_attr[i].int_value() > 6 + && in_attr[i].int_value() > out_attr[i].int_value()) + { + *out_attr = *in_attr; + break; + } + // The output uses the superset of input features + // (ISA version) and registers. + int ver = std::max(vfp_versions[in_attr[i].int_value()].ver, + vfp_versions[out_attr[i].int_value()].ver); + int regs = std::max(vfp_versions[in_attr[i].int_value()].regs, + vfp_versions[out_attr[i].int_value()].regs); + // This assumes all possible supersets are also a valid + // options. + int newval; + for (newval = 6; newval > 0; newval--) + { + if (regs == vfp_versions[newval].regs + && ver == vfp_versions[newval].ver) + break; + } + out_attr[i].set_int_value(newval); + } + break; + case elfcpp::Tag_PCS_config: + if (out_attr[i].int_value() == 0) + out_attr[i].set_int_value(in_attr[i].int_value()); + else if (in_attr[i].int_value() != 0 + && out_attr[i].int_value() != 0 + && parameters->options().warn_mismatch()) + { + // It's sometimes ok to mix different configs, so this is only + // a warning. + gold_warning(_("%s: conflicting platform configuration"), name); + } + break; + case elfcpp::Tag_ABI_PCS_R9_use: + if (in_attr[i].int_value() != out_attr[i].int_value() + && out_attr[i].int_value() != elfcpp::AEABI_R9_unused + && in_attr[i].int_value() != elfcpp::AEABI_R9_unused + && parameters->options().warn_mismatch()) + { + gold_error(_("%s: conflicting use of R9"), name); + } + if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused) + out_attr[i].set_int_value(in_attr[i].int_value()); + break; + case elfcpp::Tag_ABI_PCS_RW_data: + if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel + && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value() + != elfcpp::AEABI_R9_SB) + && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value() + != elfcpp::AEABI_R9_unused) + && parameters->options().warn_mismatch()) + { + gold_error(_("%s: SB relative addressing conflicts with use " + "of R9"), + name); + } + // Use the smallest value specified. + if (in_attr[i].int_value() < out_attr[i].int_value()) + out_attr[i].set_int_value(in_attr[i].int_value()); + break; + case elfcpp::Tag_ABI_PCS_wchar_t: + if (out_attr[i].int_value() + && in_attr[i].int_value() + && out_attr[i].int_value() != in_attr[i].int_value() + && parameters->options().warn_mismatch() + && parameters->options().wchar_size_warning()) + { + gold_warning(_("%s uses %u-byte wchar_t yet the output is to " + "use %u-byte wchar_t; use of wchar_t values " + "across objects may fail"), + name, in_attr[i].int_value(), + out_attr[i].int_value()); + } + else if (in_attr[i].int_value() && !out_attr[i].int_value()) + out_attr[i].set_int_value(in_attr[i].int_value()); + break; + case elfcpp::Tag_ABI_enum_size: + if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused) + { + if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused + || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide) + { + // The existing object is compatible with anything. + // Use whatever requirements the new object has. + out_attr[i].set_int_value(in_attr[i].int_value()); + } + else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide + && out_attr[i].int_value() != in_attr[i].int_value() + && parameters->options().warn_mismatch() + && parameters->options().enum_size_warning()) + { + unsigned int in_value = in_attr[i].int_value(); + unsigned int out_value = out_attr[i].int_value(); + gold_warning(_("%s uses %s enums yet the output is to use " + "%s enums; use of enum values across objects " + "may fail"), + name, + this->aeabi_enum_name(in_value).c_str(), + this->aeabi_enum_name(out_value).c_str()); + } + } + break; + case elfcpp::Tag_ABI_VFP_args: + // Already done. + break; + case elfcpp::Tag_ABI_WMMX_args: + if (in_attr[i].int_value() != out_attr[i].int_value() + && parameters->options().warn_mismatch()) + { + gold_error(_("%s uses iWMMXt register arguments, output does " + "not"), + name); + } + break; + case Object_attribute::Tag_compatibility: + // Merged in target-independent code. + break; + case elfcpp::Tag_ABI_HardFP_use: + // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). + if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2) + || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1)) + out_attr[i].set_int_value(3); + else if (in_attr[i].int_value() > out_attr[i].int_value()) + out_attr[i].set_int_value(in_attr[i].int_value()); + break; + case elfcpp::Tag_ABI_FP_16bit_format: + if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0) + { + if (in_attr[i].int_value() != out_attr[i].int_value() + && parameters->options().warn_mismatch()) + gold_error(_("fp16 format mismatch between %s and output"), + name); + } + if (in_attr[i].int_value() != 0) + out_attr[i].set_int_value(in_attr[i].int_value()); + break; + + case elfcpp::Tag_DIV_use: + { + // A value of zero on input means that the divide + // instruction may be used if available in the base + // architecture as specified via Tag_CPU_arch and + // Tag_CPU_arch_profile. A value of 1 means that the user + // did not want divide instructions. A value of 2 + // explicitly means that divide instructions were allowed + // in ARM and Thumb state. + int arch = this-> + get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)-> + int_value(); + int profile = this-> + get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)-> + int_value(); + if (in_attr[i].int_value() == out_attr[i].int_value()) + { + // Do nothing. + } + else if (attributes_forbid_div(&in_attr[i]) + && !attributes_accept_div(arch, profile, &out_attr[i])) + out_attr[i].set_int_value(1); + else if (attributes_forbid_div(&out_attr[i]) + && attributes_accept_div(arch, profile, &in_attr[i])) + out_attr[i].set_int_value(in_attr[i].int_value()); + else if (in_attr[i].int_value() == 2) + out_attr[i].set_int_value(in_attr[i].int_value()); + } + break; + + case elfcpp::Tag_MPextension_use_legacy: + // We don't output objects with Tag_MPextension_use_legacy - we + // move the value to Tag_MPextension_use. + if (in_attr[i].int_value() != 0 + && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0) + { + if (in_attr[elfcpp::Tag_MPextension_use].int_value() + != in_attr[i].int_value()) + { + gold_error(_("%s has both the current and legacy " + "Tag_MPextension_use attributes"), + name); + } + } + + if (in_attr[i].int_value() + > out_attr[elfcpp::Tag_MPextension_use].int_value()) + out_attr[elfcpp::Tag_MPextension_use] = in_attr[i]; + + break; + + case elfcpp::Tag_nodefaults: + // This tag is set if it exists, but the value is unused (and is + // typically zero). We don't actually need to do anything here - + // the merge happens automatically when the type flags are merged + // below. + break; + case elfcpp::Tag_also_compatible_with: + // Already done in Tag_CPU_arch. + break; + case elfcpp::Tag_conformance: + // Keep the attribute if it matches. Throw it away otherwise. + // No attribute means no claim to conform. + if (in_attr[i].string_value() != out_attr[i].string_value()) + out_attr[i].set_string_value(""); + break; + + default: + { + const char* err_object = NULL; + + // The "known_obj_attributes" table does contain some undefined + // attributes. Ensure that there are unused. + if (out_attr[i].int_value() != 0 + || out_attr[i].string_value() != "") + err_object = "output"; + else if (in_attr[i].int_value() != 0 + || in_attr[i].string_value() != "") + err_object = name; + + if (err_object != NULL + && parameters->options().warn_mismatch()) + { + // Attribute numbers >=64 (mod 128) can be safely ignored. + if ((i & 127) < 64) + gold_error(_("%s: unknown mandatory EABI object attribute " + "%d"), + err_object, i); + else + gold_warning(_("%s: unknown EABI object attribute %d"), + err_object, i); + } + + // Only pass on attributes that match in both inputs. + if (!in_attr[i].matches(out_attr[i])) + { + out_attr[i].set_int_value(0); + out_attr[i].set_string_value(""); + } + } + } + + // If out_attr was copied from in_attr then it won't have a type yet. + if (in_attr[i].type() && !out_attr[i].type()) + out_attr[i].set_type(in_attr[i].type()); + } + + // Merge Tag_compatibility attributes and any common GNU ones. + this->attributes_section_data_->merge(name, pasd); + + // Check for any attributes not known on ARM. + typedef Vendor_object_attributes::Other_attributes Other_attributes; + const Other_attributes* in_other_attributes = pasd->other_attributes(vendor); + Other_attributes::const_iterator in_iter = in_other_attributes->begin(); + Other_attributes* out_other_attributes = + this->attributes_section_data_->other_attributes(vendor); + Other_attributes::iterator out_iter = out_other_attributes->begin(); + + while (in_iter != in_other_attributes->end() + || out_iter != out_other_attributes->end()) + { + const char* err_object = NULL; + int err_tag = 0; + + // The tags for each list are in numerical order. + // If the tags are equal, then merge. + if (out_iter != out_other_attributes->end() + && (in_iter == in_other_attributes->end() + || in_iter->first > out_iter->first)) + { + // This attribute only exists in output. We can't merge, and we + // don't know what the tag means, so delete it. + err_object = "output"; + err_tag = out_iter->first; + int saved_tag = out_iter->first; + delete out_iter->second; + out_other_attributes->erase(out_iter); + out_iter = out_other_attributes->upper_bound(saved_tag); + } + else if (in_iter != in_other_attributes->end() + && (out_iter != out_other_attributes->end() + || in_iter->first < out_iter->first)) + { + // This attribute only exists in input. We can't merge, and we + // don't know what the tag means, so ignore it. + err_object = name; + err_tag = in_iter->first; + ++in_iter; + } + else // The tags are equal. + { + // As present, all attributes in the list are unknown, and + // therefore can't be merged meaningfully. + err_object = "output"; + err_tag = out_iter->first; + + // Only pass on attributes that match in both inputs. + if (!in_iter->second->matches(*(out_iter->second))) + { + // No match. Delete the attribute. + int saved_tag = out_iter->first; + delete out_iter->second; + out_other_attributes->erase(out_iter); + out_iter = out_other_attributes->upper_bound(saved_tag); + } + else + { + // Matched. Keep the attribute and move to the next. + ++out_iter; + ++in_iter; + } + } + + if (err_object && parameters->options().warn_mismatch()) + { + // Attribute numbers >=64 (mod 128) can be safely ignored. */ + if ((err_tag & 127) < 64) + { + gold_error(_("%s: unknown mandatory EABI object attribute %d"), + err_object, err_tag); + } + else + { + gold_warning(_("%s: unknown EABI object attribute %d"), + err_object, err_tag); + } + } + } +} + +// Stub-generation methods for Target_arm. + +// Make a new Arm_input_section object. + +template +Arm_input_section* +Target_arm::new_arm_input_section( + Relobj* relobj, + unsigned int shndx) +{ + Section_id sid(relobj, shndx); + + Arm_input_section* arm_input_section = + new Arm_input_section(relobj, shndx); + arm_input_section->init(); + + // Register new Arm_input_section in map for look-up. + std::pair ins = + this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section)); + + // Make sure that it we have not created another Arm_input_section + // for this input section already. + gold_assert(ins.second); + + return arm_input_section; +} + +// Find the Arm_input_section object corresponding to the SHNDX-th input +// section of RELOBJ. + +template +Arm_input_section* +Target_arm::find_arm_input_section( + Relobj* relobj, + unsigned int shndx) const +{ + Section_id sid(relobj, shndx); + typename Arm_input_section_map::const_iterator p = + this->arm_input_section_map_.find(sid); + return (p != this->arm_input_section_map_.end()) ? p->second : NULL; +} + +// Make a new stub table. + +template +Stub_table* +Target_arm::new_stub_table(Arm_input_section* owner) +{ + Stub_table* stub_table = + new Stub_table(owner); + this->stub_tables_.push_back(stub_table); + + stub_table->set_address(owner->address() + owner->data_size()); + stub_table->set_file_offset(owner->offset() + owner->data_size()); + stub_table->finalize_data_size(); + + return stub_table; +} + +// Scan a relocation for stub generation. + +template +void +Target_arm::scan_reloc_for_stub( + const Relocate_info<32, big_endian>* relinfo, + unsigned int r_type, + const Sized_symbol<32>* gsym, + unsigned int r_sym, + const Symbol_value<32>* psymval, + elfcpp::Elf_types<32>::Elf_Swxword addend, + Arm_address address) +{ + const Arm_relobj* arm_relobj = + Arm_relobj::as_arm_relobj(relinfo->object); + + bool target_is_thumb; + Symbol_value<32> symval; + if (gsym != NULL) + { + // This is a global symbol. Determine if we use PLT and if the + // final target is THUMB. + if (gsym->use_plt_offset(Scan::get_reference_flags(r_type))) + { + // This uses a PLT, change the symbol value. + symval.set_output_value(this->plt_address_for_global(gsym)); + psymval = &symval; + target_is_thumb = false; + } + else if (gsym->is_undefined()) + // There is no need to generate a stub symbol is undefined. + return; + else + { + target_is_thumb = + ((gsym->type() == elfcpp::STT_ARM_TFUNC) + || (gsym->type() == elfcpp::STT_FUNC + && !gsym->is_undefined() + && ((psymval->value(arm_relobj, 0) & 1) != 0))); + } + } + else + { + // This is a local symbol. Determine if the final target is THUMB. + target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym); + } + + // Strip LSB if this points to a THUMB target. + const Arm_reloc_property* reloc_property = + arm_reloc_property_table->get_implemented_static_reloc_property(r_type); + gold_assert(reloc_property != NULL); + if (target_is_thumb + && reloc_property->uses_thumb_bit() + && ((psymval->value(arm_relobj, 0) & 1) != 0)) + { + Arm_address stripped_value = + psymval->value(arm_relobj, 0) & ~static_cast(1); + symval.set_output_value(stripped_value); + psymval = &symval; + } + + // Get the symbol value. + Symbol_value<32>::Value value = psymval->value(arm_relobj, 0); + + // Owing to pipelining, the PC relative branches below actually skip + // two instructions when the branch offset is 0. + Arm_address destination; + switch (r_type) + { + case elfcpp::R_ARM_CALL: + case elfcpp::R_ARM_JUMP24: + case elfcpp::R_ARM_PLT32: + // ARM branches. + destination = value + addend + 8; + break; + case elfcpp::R_ARM_THM_CALL: + case elfcpp::R_ARM_THM_XPC22: + case elfcpp::R_ARM_THM_JUMP24: + case elfcpp::R_ARM_THM_JUMP19: + // THUMB branches. + destination = value + addend + 4; + break; + default: + gold_unreachable(); + } + + Reloc_stub* stub = NULL; + Stub_type stub_type = + Reloc_stub::stub_type_for_reloc(r_type, address, destination, + target_is_thumb); + if (stub_type != arm_stub_none) + { + // Try looking up an existing stub from a stub table. + Stub_table* stub_table = + arm_relobj->stub_table(relinfo->data_shndx); + gold_assert(stub_table != NULL); + + // Locate stub by destination. + Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend); + + // Create a stub if there is not one already + stub = stub_table->find_reloc_stub(stub_key); + if (stub == NULL) + { + // create a new stub and add it to stub table. + stub = this->stub_factory().make_reloc_stub(stub_type); + stub_table->add_reloc_stub(stub, stub_key); + } + + // Record the destination address. + stub->set_destination_address(destination + | (target_is_thumb ? 1 : 0)); + } + + // For Cortex-A8, we need to record a relocation at 4K page boundary. + if (this->fix_cortex_a8_ + && (r_type == elfcpp::R_ARM_THM_JUMP24 + || r_type == elfcpp::R_ARM_THM_JUMP19 + || r_type == elfcpp::R_ARM_THM_CALL + || r_type == elfcpp::R_ARM_THM_XPC22) + && (address & 0xfffU) == 0xffeU) + { + // Found a candidate. Note we haven't checked the destination is + // within 4K here: if we do so (and don't create a record) we can't + // tell that a branch should have been relocated when scanning later. + this->cortex_a8_relocs_info_[address] = + new Cortex_a8_reloc(stub, r_type, + destination | (target_is_thumb ? 1 : 0)); + } +} + +// This function scans a relocation sections for stub generation. +// The template parameter Relocate must be a class type which provides +// a single function, relocate(), which implements the machine +// specific part of a relocation. + +// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type: +// SHT_REL or SHT_RELA. + +// PRELOCS points to the relocation data. RELOC_COUNT is the number +// of relocs. OUTPUT_SECTION is the output section. +// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be +// mapped to output offsets. + +// VIEW is the section data, VIEW_ADDRESS is its memory address, and +// VIEW_SIZE is the size. These refer to the input section, unless +// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to +// the output section. + +template +template +void inline +Target_arm::scan_reloc_section_for_stubs( + const Relocate_info<32, big_endian>* relinfo, + const unsigned char* prelocs, + size_t reloc_count, + Output_section* output_section, + bool needs_special_offset_handling, + const unsigned char* view, + elfcpp::Elf_types<32>::Elf_Addr view_address, + section_size_type) +{ + typedef typename Reloc_types::Reloc Reltype; + const int reloc_size = + Reloc_types::reloc_size; + + Arm_relobj* arm_object = + Arm_relobj::as_arm_relobj(relinfo->object); + unsigned int local_count = arm_object->local_symbol_count(); + + gold::Default_comdat_behavior default_comdat_behavior; + Comdat_behavior comdat_behavior = CB_UNDETERMINED; + + for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) + { + Reltype reloc(prelocs); + + typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info(); + unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); + unsigned int r_type = elfcpp::elf_r_type<32>(r_info); + + r_type = this->get_real_reloc_type(r_type); + + // Only a few relocation types need stubs. + if ((r_type != elfcpp::R_ARM_CALL) + && (r_type != elfcpp::R_ARM_JUMP24) + && (r_type != elfcpp::R_ARM_PLT32) + && (r_type != elfcpp::R_ARM_THM_CALL) + && (r_type != elfcpp::R_ARM_THM_XPC22) + && (r_type != elfcpp::R_ARM_THM_JUMP24) + && (r_type != elfcpp::R_ARM_THM_JUMP19) + && (r_type != elfcpp::R_ARM_V4BX)) + continue; + + section_offset_type offset = + convert_to_section_size_type(reloc.get_r_offset()); + + if (needs_special_offset_handling) + { + offset = output_section->output_offset(relinfo->object, + relinfo->data_shndx, + offset); + if (offset == -1) + continue; + } + + // Create a v4bx stub if --fix-v4bx-interworking is used. + if (r_type == elfcpp::R_ARM_V4BX) + { + if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING) + { + // Get the BX instruction. + typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; + const Valtype* wv = + reinterpret_cast(view + offset); + elfcpp::Elf_types<32>::Elf_Swxword insn = + elfcpp::Swap<32, big_endian>::readval(wv); + const uint32_t reg = (insn & 0xf); + + if (reg < 0xf) + { + // Try looking up an existing stub from a stub table. + Stub_table* stub_table = + arm_object->stub_table(relinfo->data_shndx); + gold_assert(stub_table != NULL); + + if (stub_table->find_arm_v4bx_stub(reg) == NULL) + { + // create a new stub and add it to stub table. + Arm_v4bx_stub* stub = + this->stub_factory().make_arm_v4bx_stub(reg); + gold_assert(stub != NULL); + stub_table->add_arm_v4bx_stub(stub); + } + } + } + continue; + } + + // Get the addend. + Stub_addend_reader stub_addend_reader; + elfcpp::Elf_types<32>::Elf_Swxword addend = + stub_addend_reader(r_type, view + offset, reloc); + + const Sized_symbol<32>* sym; + + Symbol_value<32> symval; + const Symbol_value<32> *psymval; + bool is_defined_in_discarded_section; + unsigned int shndx; + const Symbol* gsym = NULL; + if (r_sym < local_count) + { + sym = NULL; + psymval = arm_object->local_symbol(r_sym); + + // If the local symbol belongs to a section we are discarding, + // and that section is a debug section, try to find the + // corresponding kept section and map this symbol to its + // counterpart in the kept section. The symbol must not + // correspond to a section we are folding. + bool is_ordinary; + shndx = psymval->input_shndx(&is_ordinary); + is_defined_in_discarded_section = + (is_ordinary + && shndx != elfcpp::SHN_UNDEF + && !arm_object->is_section_included(shndx) + && !relinfo->symtab->is_section_folded(arm_object, shndx)); + + // We need to compute the would-be final value of this local + // symbol. + if (!is_defined_in_discarded_section) + { + typedef Sized_relobj_file<32, big_endian> ObjType; + if (psymval->is_section_symbol()) + symval.set_is_section_symbol(); + typename ObjType::Compute_final_local_value_status status = + arm_object->compute_final_local_value(r_sym, psymval, &symval, + relinfo->symtab); + if (status == ObjType::CFLV_OK) + { + // Currently we cannot handle a branch to a target in + // a merged section. If this is the case, issue an error + // and also free the merge symbol value. + if (!symval.has_output_value()) + { + const std::string& section_name = + arm_object->section_name(shndx); + arm_object->error(_("cannot handle branch to local %u " + "in a merged section %s"), + r_sym, section_name.c_str()); + } + psymval = &symval; + } + else + { + // We cannot determine the final value. + continue; + } + } + } + else + { + gsym = arm_object->global_symbol(r_sym); + gold_assert(gsym != NULL); + if (gsym->is_forwarder()) + gsym = relinfo->symtab->resolve_forwards(gsym); + + sym = static_cast*>(gsym); + if (sym->has_symtab_index() && sym->symtab_index() != -1U) + symval.set_output_symtab_index(sym->symtab_index()); + else + symval.set_no_output_symtab_entry(); + + // We need to compute the would-be final value of this global + // symbol. + const Symbol_table* symtab = relinfo->symtab; + const Sized_symbol<32>* sized_symbol = + symtab->get_sized_symbol<32>(gsym); + Symbol_table::Compute_final_value_status status; + Arm_address value = + symtab->compute_final_value<32>(sized_symbol, &status); + + // Skip this if the symbol has not output section. + if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION) + continue; + symval.set_output_value(value); + + if (gsym->type() == elfcpp::STT_TLS) + symval.set_is_tls_symbol(); + else if (gsym->type() == elfcpp::STT_GNU_IFUNC) + symval.set_is_ifunc_symbol(); + psymval = &symval; + + is_defined_in_discarded_section = + (gsym->is_defined_in_discarded_section() + && gsym->is_undefined()); + shndx = 0; + } + + Symbol_value<32> symval2; + if (is_defined_in_discarded_section) + { + std::string name = arm_object->section_name(relinfo->data_shndx); + + if (comdat_behavior == CB_UNDETERMINED) + comdat_behavior = default_comdat_behavior.get(name.c_str()); + + if (comdat_behavior == CB_PRETEND) + { + // FIXME: This case does not work for global symbols. + // We have no place to store the original section index. + // Fortunately this does not matter for comdat sections, + // only for sections explicitly discarded by a linker + // script. + bool found; + typename elfcpp::Elf_types<32>::Elf_Addr value = + arm_object->map_to_kept_section(shndx, name, &found); + if (found) + symval2.set_output_value(value + psymval->input_value()); + else + symval2.set_output_value(0); + } + else + { + if (comdat_behavior == CB_ERROR) + issue_discarded_error(relinfo, i, offset, r_sym, gsym); + symval2.set_output_value(0); + } + symval2.set_no_output_symtab_entry(); + psymval = &symval2; + } + + // If symbol is a section symbol, we don't know the actual type of + // destination. Give up. + if (psymval->is_section_symbol()) + continue; + + this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval, + addend, view_address + offset); + } +} + +// Scan an input section for stub generation. + +template +void +Target_arm::scan_section_for_stubs( + const Relocate_info<32, big_endian>* relinfo, + unsigned int sh_type, + const unsigned char* prelocs, + size_t reloc_count, + Output_section* output_section, + bool needs_special_offset_handling, + const unsigned char* view, + Arm_address view_address, + section_size_type view_size) +{ + if (sh_type == elfcpp::SHT_REL) + this->scan_reloc_section_for_stubs( + relinfo, + prelocs, + reloc_count, + output_section, + needs_special_offset_handling, + view, + view_address, + view_size); + else if (sh_type == elfcpp::SHT_RELA) + // We do not support RELA type relocations yet. This is provided for + // completeness. + this->scan_reloc_section_for_stubs( + relinfo, + prelocs, + reloc_count, + output_section, + needs_special_offset_handling, + view, + view_address, + view_size); + else + gold_unreachable(); +} + +// Group input sections for stub generation. +// +// We group input sections in an output section so that the total size, +// including any padding space due to alignment is smaller than GROUP_SIZE +// unless the only input section in group is bigger than GROUP_SIZE already. +// Then an ARM stub table is created to follow the last input section +// in group. For each group an ARM stub table is created an is placed +// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further +// extend the group after the stub table. + +template +void +Target_arm::group_sections( + Layout* layout, + section_size_type group_size, + bool stubs_always_after_branch, + const Task* task) +{ + // Group input sections and insert stub table + Layout::Section_list section_list; + layout->get_executable_sections(§ion_list); + for (Layout::Section_list::const_iterator p = section_list.begin(); + p != section_list.end(); + ++p) + { + Arm_output_section* output_section = + Arm_output_section::as_arm_output_section(*p); + output_section->group_sections(group_size, stubs_always_after_branch, + this, task); + } +} + +// Relaxation hook. This is where we do stub generation. + +template +bool +Target_arm::do_relax( + int pass, + const Input_objects* input_objects, + Symbol_table* symtab, + Layout* layout, + const Task* task) +{ + // No need to generate stubs if this is a relocatable link. + gold_assert(!parameters->options().relocatable()); + + // If this is the first pass, we need to group input sections into + // stub groups. + bool done_exidx_fixup = false; + typedef typename Stub_table_list::iterator Stub_table_iterator; + if (pass == 1) + { + // Determine the stub group size. The group size is the absolute + // value of the parameter --stub-group-size. If --stub-group-size + // is passed a negative value, we restrict stubs to be always after + // the stubbed branches. + int32_t stub_group_size_param = + parameters->options().stub_group_size(); + bool stubs_always_after_branch = stub_group_size_param < 0; + section_size_type stub_group_size = abs(stub_group_size_param); + + if (stub_group_size == 1) + { + // Default value. + // Thumb branch range is +-4MB has to be used as the default + // maximum size (a given section can contain both ARM and Thumb + // code, so the worst case has to be taken into account). If we are + // fixing cortex-a8 errata, the branch range has to be even smaller, + // since wide conditional branch has a range of +-1MB only. + // + // This value is 48K less than that, which allows for 4096 + // 12-byte stubs. If we exceed that, then we will fail to link. + // The user will have to relink with an explicit group size + // option. + stub_group_size = 4145152; + } + + // The Cortex-A8 erratum fix depends on stubs not being in the same 4K + // page as the first half of a 32-bit branch straddling two 4K pages. + // This is a crude way of enforcing that. In addition, long conditional + // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8 + // erratum, limit the group size to (1M - 12k) to avoid unreachable + // cortex-A8 stubs from long conditional branches. + if (this->fix_cortex_a8_) + { + stubs_always_after_branch = true; + const section_size_type cortex_a8_group_size = 1024 * (1024 - 12); + stub_group_size = std::max(stub_group_size, cortex_a8_group_size); + } + + group_sections(layout, stub_group_size, stubs_always_after_branch, task); + + // Also fix .ARM.exidx section coverage. + Arm_output_section* exidx_output_section = NULL; + for (Layout::Section_list::const_iterator p = + layout->section_list().begin(); + p != layout->section_list().end(); + ++p) + if ((*p)->type() == elfcpp::SHT_ARM_EXIDX) + { + if (exidx_output_section == NULL) + exidx_output_section = + Arm_output_section::as_arm_output_section(*p); + else + // We cannot handle this now. + gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a " + "non-relocatable link"), + exidx_output_section->name(), + (*p)->name()); + } + + if (exidx_output_section != NULL) + { + this->fix_exidx_coverage(layout, input_objects, exidx_output_section, + symtab, task); + done_exidx_fixup = true; + } + } + else + { + // If this is not the first pass, addresses and file offsets have + // been reset at this point, set them here. + for (Stub_table_iterator sp = this->stub_tables_.begin(); + sp != this->stub_tables_.end(); + ++sp) + { + Arm_input_section* owner = (*sp)->owner(); + off_t off = align_address(owner->original_size(), + (*sp)->addralign()); + (*sp)->set_address_and_file_offset(owner->address() + off, + owner->offset() + off); + } + } + + // The Cortex-A8 stubs are sensitive to layout of code sections. At the + // beginning of each relaxation pass, just blow away all the stubs. + // Alternatively, we could selectively remove only the stubs and reloc + // information for code sections that have moved since the last pass. + // That would require more book-keeping. + if (this->fix_cortex_a8_) + { + // Clear all Cortex-A8 reloc information. + for (typename Cortex_a8_relocs_info::const_iterator p = + this->cortex_a8_relocs_info_.begin(); + p != this->cortex_a8_relocs_info_.end(); + ++p) + delete p->second; + this->cortex_a8_relocs_info_.clear(); + + // Remove all Cortex-A8 stubs. + for (Stub_table_iterator sp = this->stub_tables_.begin(); + sp != this->stub_tables_.end(); + ++sp) + (*sp)->remove_all_cortex_a8_stubs(); + } + + // Scan relocs for relocation stubs + for (Input_objects::Relobj_iterator op = input_objects->relobj_begin(); + op != input_objects->relobj_end(); + ++op) + { + Arm_relobj* arm_relobj = + Arm_relobj::as_arm_relobj(*op); + // Lock the object so we can read from it. This is only called + // single-threaded from Layout::finalize, so it is OK to lock. + Task_lock_obj tl(task, arm_relobj); + arm_relobj->scan_sections_for_stubs(this, symtab, layout); + } + + // Check all stub tables to see if any of them have their data sizes + // or addresses alignments changed. These are the only things that + // matter. + bool any_stub_table_changed = false; + Unordered_set sections_needing_adjustment; + for (Stub_table_iterator sp = this->stub_tables_.begin(); + (sp != this->stub_tables_.end()) && !any_stub_table_changed; + ++sp) + { + if ((*sp)->update_data_size_and_addralign()) + { + // Update data size of stub table owner. + Arm_input_section* owner = (*sp)->owner(); + uint64_t address = owner->address(); + off_t offset = owner->offset(); + owner->reset_address_and_file_offset(); + owner->set_address_and_file_offset(address, offset); + + sections_needing_adjustment.insert(owner->output_section()); + any_stub_table_changed = true; + } + } + + // Output_section_data::output_section() returns a const pointer but we + // need to update output sections, so we record all output sections needing + // update above and scan the sections here to find out what sections need + // to be updated. + for (Layout::Section_list::const_iterator p = layout->section_list().begin(); + p != layout->section_list().end(); + ++p) + { + if (sections_needing_adjustment.find(*p) + != sections_needing_adjustment.end()) + (*p)->set_section_offsets_need_adjustment(); + } + + // Stop relaxation if no EXIDX fix-up and no stub table change. + bool continue_relaxation = done_exidx_fixup || any_stub_table_changed; + + // Finalize the stubs in the last relaxation pass. + if (!continue_relaxation) + { + for (Stub_table_iterator sp = this->stub_tables_.begin(); + (sp != this->stub_tables_.end()) && !any_stub_table_changed; + ++sp) + (*sp)->finalize_stubs(); + + // Update output local symbol counts of objects if necessary. + for (Input_objects::Relobj_iterator op = input_objects->relobj_begin(); + op != input_objects->relobj_end(); + ++op) + { + Arm_relobj* arm_relobj = + Arm_relobj::as_arm_relobj(*op); + + // Update output local symbol counts. We need to discard local + // symbols defined in parts of input sections that are discarded by + // relaxation. + if (arm_relobj->output_local_symbol_count_needs_update()) + { + // We need to lock the object's file to update it. + Task_lock_obj tl(task, arm_relobj); + arm_relobj->update_output_local_symbol_count(); + } + } + } + + return continue_relaxation; +} + +// Relocate a stub. + +template +void +Target_arm::relocate_stub( + Stub* stub, + const Relocate_info<32, big_endian>* relinfo, + Output_section* output_section, + unsigned char* view, + Arm_address address, + section_size_type view_size) +{ + Relocate relocate; + const Stub_template* stub_template = stub->stub_template(); + for (size_t i = 0; i < stub_template->reloc_count(); i++) + { + size_t reloc_insn_index = stub_template->reloc_insn_index(i); + const Insn_template* insn = &stub_template->insns()[reloc_insn_index]; + + unsigned int r_type = insn->r_type(); + section_size_type reloc_offset = stub_template->reloc_offset(i); + section_size_type reloc_size = insn->size(); + gold_assert(reloc_offset + reloc_size <= view_size); + + // This is the address of the stub destination. + Arm_address target = stub->reloc_target(i) + insn->reloc_addend(); + Symbol_value<32> symval; + symval.set_output_value(target); + + // Synthesize a fake reloc just in case. We don't have a symbol so + // we use 0. + unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size]; + memset(reloc_buffer, 0, sizeof(reloc_buffer)); + elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer); + reloc_write.put_r_offset(reloc_offset); + reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type)); + + relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section, + this->fake_relnum_for_stubs, reloc_buffer, + NULL, &symval, view + reloc_offset, + address + reloc_offset, reloc_size); + } +} + +// Determine whether an object attribute tag takes an integer, a +// string or both. + +template +int +Target_arm::do_attribute_arg_type(int tag) const +{ + if (tag == Object_attribute::Tag_compatibility) + return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL + | Object_attribute::ATTR_TYPE_FLAG_STR_VAL); + else if (tag == elfcpp::Tag_nodefaults) + return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL + | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT); + else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name) + return Object_attribute::ATTR_TYPE_FLAG_STR_VAL; + else if (tag < 32) + return Object_attribute::ATTR_TYPE_FLAG_INT_VAL; + else + return ((tag & 1) != 0 + ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL + : Object_attribute::ATTR_TYPE_FLAG_INT_VAL); +} + +// Reorder attributes. +// +// The ABI defines that Tag_conformance should be emitted first, and that +// Tag_nodefaults should be second (if either is defined). This sets those +// two positions, and bumps up the position of all the remaining tags to +// compensate. + +template +int +Target_arm::do_attributes_order(int num) const +{ + // Reorder the known object attributes in output. We want to move + // Tag_conformance to position 4 and Tag_conformance to position 5 + // and shift everything between 4 .. Tag_conformance - 1 to make room. + if (num == 4) + return elfcpp::Tag_conformance; + if (num == 5) + return elfcpp::Tag_nodefaults; + if ((num - 2) < elfcpp::Tag_nodefaults) + return num - 2; + if ((num - 1) < elfcpp::Tag_conformance) + return num - 1; + return num; +} + +// Scan a span of THUMB code for Cortex-A8 erratum. + +template +void +Target_arm::scan_span_for_cortex_a8_erratum( + Arm_relobj* arm_relobj, + unsigned int shndx, + section_size_type span_start, + section_size_type span_end, + const unsigned char* view, + Arm_address address) +{ + // Scan for 32-bit Thumb-2 branches which span two 4K regions, where: + // + // The opcode is BLX.W, BL.W, B.W, Bcc.W + // The branch target is in the same 4KB region as the + // first half of the branch. + // The instruction before the branch is a 32-bit + // length non-branch instruction. + section_size_type i = span_start; + bool last_was_32bit = false; + bool last_was_branch = false; + while (i < span_end) + { + typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; + const Valtype* wv = reinterpret_cast(view + i); + uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv); + bool is_blx = false, is_b = false; + bool is_bl = false, is_bcc = false; + + bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000; + if (insn_32bit) + { + // Load the rest of the insn (in manual-friendly order). + insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1); + + // Encoding T4: B.W. + is_b = (insn & 0xf800d000U) == 0xf0009000U; + // Encoding T1: BL.W. + is_bl = (insn & 0xf800d000U) == 0xf000d000U; + // Encoding T2: BLX.W. + is_blx = (insn & 0xf800d000U) == 0xf000c000U; + // Encoding T3: B.W (not permitted in IT block). + is_bcc = ((insn & 0xf800d000U) == 0xf0008000U + && (insn & 0x07f00000U) != 0x03800000U); + } + + bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc; + + // If this instruction is a 32-bit THUMB branch that crosses a 4K + // page boundary and it follows 32-bit non-branch instruction, + // we need to work around. + if (is_32bit_branch + && ((address + i) & 0xfffU) == 0xffeU + && last_was_32bit + && !last_was_branch) + { + // Check to see if there is a relocation stub for this branch. + bool force_target_arm = false; + bool force_target_thumb = false; + const Cortex_a8_reloc* cortex_a8_reloc = NULL; + Cortex_a8_relocs_info::const_iterator p = + this->cortex_a8_relocs_info_.find(address + i); + + if (p != this->cortex_a8_relocs_info_.end()) + { + cortex_a8_reloc = p->second; + bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0; + + if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL + && !target_is_thumb) + force_target_arm = true; + else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL + && target_is_thumb) + force_target_thumb = true; + } + + off_t offset; + Stub_type stub_type = arm_stub_none; + + // Check if we have an offending branch instruction. + uint16_t upper_insn = (insn >> 16) & 0xffffU; + uint16_t lower_insn = insn & 0xffffU; + typedef class Arm_relocate_functions RelocFuncs; + + if (cortex_a8_reloc != NULL + && cortex_a8_reloc->reloc_stub() != NULL) + // We've already made a stub for this instruction, e.g. + // it's a long branch or a Thumb->ARM stub. Assume that + // stub will suffice to work around the A8 erratum (see + // setting of always_after_branch above). + ; + else if (is_bcc) + { + offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn, + lower_insn); + stub_type = arm_stub_a8_veneer_b_cond; + } + else if (is_b || is_bl || is_blx) + { + offset = RelocFuncs::thumb32_branch_offset(upper_insn, + lower_insn); + if (is_blx) + offset &= ~3; + + stub_type = (is_blx + ? arm_stub_a8_veneer_blx + : (is_bl + ? arm_stub_a8_veneer_bl + : arm_stub_a8_veneer_b)); + } + + if (stub_type != arm_stub_none) + { + Arm_address pc_for_insn = address + i + 4; + + // The original instruction is a BL, but the target is + // an ARM instruction. If we were not making a stub, + // the BL would have been converted to a BLX. Use the + // BLX stub instead in that case. + if (this->may_use_v5t_interworking() && force_target_arm + && stub_type == arm_stub_a8_veneer_bl) + { + stub_type = arm_stub_a8_veneer_blx; + is_blx = true; + is_bl = false; + } + // Conversely, if the original instruction was + // BLX but the target is Thumb mode, use the BL stub. + else if (force_target_thumb + && stub_type == arm_stub_a8_veneer_blx) + { + stub_type = arm_stub_a8_veneer_bl; + is_blx = false; + is_bl = true; + } + + if (is_blx) + pc_for_insn &= ~3; + + // If we found a relocation, use the proper destination, + // not the offset in the (unrelocated) instruction. + // Note this is always done if we switched the stub type above. + if (cortex_a8_reloc != NULL) + offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn); + + Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1); + + // Add a new stub if destination address is in the same page. + if (((address + i) & ~0xfffU) == (target & ~0xfffU)) + { + Cortex_a8_stub* stub = + this->stub_factory_.make_cortex_a8_stub(stub_type, + arm_relobj, shndx, + address + i, + target, insn); + Stub_table* stub_table = + arm_relobj->stub_table(shndx); + gold_assert(stub_table != NULL); + stub_table->add_cortex_a8_stub(address + i, stub); + } + } + } + + i += insn_32bit ? 4 : 2; + last_was_32bit = insn_32bit; + last_was_branch = is_32bit_branch; + } +} + +// Apply the Cortex-A8 workaround. + +template +void +Target_arm::apply_cortex_a8_workaround( + const Cortex_a8_stub* stub, + Arm_address stub_address, + unsigned char* insn_view, + Arm_address insn_address) +{ + typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; + Valtype* wv = reinterpret_cast(insn_view); + Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); + Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); + off_t branch_offset = stub_address - (insn_address + 4); + + typedef class Arm_relocate_functions RelocFuncs; + switch (stub->stub_template()->type()) + { + case arm_stub_a8_veneer_b_cond: + // For a conditional branch, we re-write it to be an unconditional + // branch to the stub. We use the THUMB-2 encoding here. + upper_insn = 0xf000U; + lower_insn = 0xb800U; + // Fall through. + case arm_stub_a8_veneer_b: + case arm_stub_a8_veneer_bl: + case arm_stub_a8_veneer_blx: + if ((lower_insn & 0x5000U) == 0x4000U) + // For a BLX instruction, make sure that the relocation is + // rounded up to a word boundary. This follows the semantics of + // the instruction which specifies that bit 1 of the target + // address will come from bit 1 of the base address. + branch_offset = (branch_offset + 2) & ~3; + + // Put BRANCH_OFFSET back into the insn. + gold_assert(!Bits<25>::has_overflow32(branch_offset)); + upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset); + lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset); + break; + + default: + gold_unreachable(); + } + + // Put the relocated value back in the object file: + elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn); + elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn); +} + +// Target selector for ARM. Note this is never instantiated directly. +// It's only used in Target_selector_arm_nacl, below. + +template +class Target_selector_arm : public Target_selector +{ + public: + Target_selector_arm() + : Target_selector(elfcpp::EM_ARM, 32, big_endian, + (big_endian ? "elf32-bigarm" : "elf32-littlearm"), + (big_endian ? "armelfb" : "armelf")) + { } + + Target* + do_instantiate_target() + { return new Target_arm(); } +}; + +// Fix .ARM.exidx section coverage. + +template +void +Target_arm::fix_exidx_coverage( + Layout* layout, + const Input_objects* input_objects, + Arm_output_section* exidx_section, + Symbol_table* symtab, + const Task* task) +{ + // We need to look at all the input sections in output in ascending + // order of output address. We do that by building a sorted list + // of output sections by addresses. Then we looks at the output sections + // in order. The input sections in an output section are already sorted + // by addresses within the output section. + + typedef std::set + Sorted_output_section_list; + Sorted_output_section_list sorted_output_sections; + + // Find out all the output sections of input sections pointed by + // EXIDX input sections. + for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); + p != input_objects->relobj_end(); + ++p) + { + Arm_relobj* arm_relobj = + Arm_relobj::as_arm_relobj(*p); + std::vector shndx_list; + arm_relobj->get_exidx_shndx_list(&shndx_list); + for (size_t i = 0; i < shndx_list.size(); ++i) + { + const Arm_exidx_input_section* exidx_input_section = + arm_relobj->exidx_input_section_by_shndx(shndx_list[i]); + gold_assert(exidx_input_section != NULL); + if (!exidx_input_section->has_errors()) + { + unsigned int text_shndx = exidx_input_section->link(); + Output_section* os = arm_relobj->output_section(text_shndx); + if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0) + sorted_output_sections.insert(os); + } + } + } + + // Go over the output sections in ascending order of output addresses. + typedef typename Arm_output_section::Text_section_list + Text_section_list; + Text_section_list sorted_text_sections; + for (typename Sorted_output_section_list::iterator p = + sorted_output_sections.begin(); + p != sorted_output_sections.end(); + ++p) + { + Arm_output_section* arm_output_section = + Arm_output_section::as_arm_output_section(*p); + arm_output_section->append_text_sections_to_list(&sorted_text_sections); + } + + exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab, + merge_exidx_entries(), task); +} + +template +void +Target_arm::do_define_standard_symbols( + Symbol_table* symtab, + Layout* layout) +{ + // Handle the .ARM.exidx section. + Output_section* exidx_section = layout->find_output_section(".ARM.exidx"); + + if (exidx_section != NULL) + { + // Create __exidx_start and __exidx_end symbols. + symtab->define_in_output_data("__exidx_start", + NULL, // version + Symbol_table::PREDEFINED, + exidx_section, + 0, // value + 0, // symsize + elfcpp::STT_NOTYPE, + elfcpp::STB_GLOBAL, + elfcpp::STV_HIDDEN, + 0, // nonvis + false, // offset_is_from_end + true); // only_if_ref + + symtab->define_in_output_data("__exidx_end", + NULL, // version + Symbol_table::PREDEFINED, + exidx_section, + 0, // value + 0, // symsize + elfcpp::STT_NOTYPE, + elfcpp::STB_GLOBAL, + elfcpp::STV_HIDDEN, + 0, // nonvis + true, // offset_is_from_end + true); // only_if_ref + } + else + { + // Define __exidx_start and __exidx_end even when .ARM.exidx + // section is missing to match ld's behaviour. + symtab->define_as_constant("__exidx_start", NULL, + Symbol_table::PREDEFINED, + 0, 0, elfcpp::STT_OBJECT, + elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, + true, false); + symtab->define_as_constant("__exidx_end", NULL, + Symbol_table::PREDEFINED, + 0, 0, elfcpp::STT_OBJECT, + elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, + true, false); + } +} + +// NaCl variant. It uses different PLT contents. + +template +class Output_data_plt_arm_nacl; + +template +class Target_arm_nacl : public Target_arm +{ + public: + Target_arm_nacl() + : Target_arm(&arm_nacl_info) + { } + + protected: + virtual Output_data_plt_arm* + do_make_data_plt( + Layout* layout, + Arm_output_data_got* got, + Output_data_space* got_plt, + Output_data_space* got_irelative) + { return new Output_data_plt_arm_nacl( + layout, got, got_plt, got_irelative); } + + private: + static const Target::Target_info arm_nacl_info; +}; + +template +const Target::Target_info Target_arm_nacl::arm_nacl_info = +{ + 32, // size + big_endian, // is_big_endian + elfcpp::EM_ARM, // machine_code + false, // has_make_symbol + false, // has_resolve + false, // has_code_fill + true, // is_default_stack_executable + false, // can_icf_inline_merge_sections + '\0', // wrap_char + "/lib/ld-nacl-arm.so.1", // dynamic_linker + 0x20000, // default_text_segment_address + 0x10000, // abi_pagesize (overridable by -z max-page-size) + 0x10000, // common_pagesize (overridable by -z common-page-size) + true, // isolate_execinstr + 0x10000000, // rosegment_gap + elfcpp::SHN_UNDEF, // small_common_shndx + elfcpp::SHN_UNDEF, // large_common_shndx + 0, // small_common_section_flags + 0, // large_common_section_flags + ".ARM.attributes", // attributes_section + "aeabi", // attributes_vendor + "_start", // entry_symbol_name + 32, // hash_entry_size + elfcpp::SHT_PROGBITS, // unwind_section_type +}; + +template +class Output_data_plt_arm_nacl : public Output_data_plt_arm +{ + public: + Output_data_plt_arm_nacl( + Layout* layout, + Arm_output_data_got* got, + Output_data_space* got_plt, + Output_data_space* got_irelative) + : Output_data_plt_arm(layout, 16, got, got_plt, got_irelative) + { } + + protected: + // Return the offset of the first non-reserved PLT entry. + virtual unsigned int + do_first_plt_entry_offset() const + { return sizeof(first_plt_entry); } + + // Return the size of a PLT entry. + virtual unsigned int + do_get_plt_entry_size() const + { return sizeof(plt_entry); } + + virtual void + do_fill_first_plt_entry(unsigned char* pov, + Arm_address got_address, + Arm_address plt_address); + + virtual void + do_fill_plt_entry(unsigned char* pov, + Arm_address got_address, + Arm_address plt_address, + unsigned int got_offset, + unsigned int plt_offset); + + private: + inline uint32_t arm_movw_immediate(uint32_t value) + { + return (value & 0x00000fff) | ((value & 0x0000f000) << 4); + } + + inline uint32_t arm_movt_immediate(uint32_t value) + { + return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12); + } + + // Template for the first PLT entry. + static const uint32_t first_plt_entry[16]; + + // Template for subsequent PLT entries. + static const uint32_t plt_entry[4]; +}; + +// The first entry in the PLT. +template +const uint32_t Output_data_plt_arm_nacl::first_plt_entry[16] = +{ + // First bundle: + 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8 + 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8 + 0xe08cc00f, // add ip, ip, pc + 0xe52dc008, // str ip, [sp, #-8]! + // Second bundle: + 0xe3ccc103, // bic ip, ip, #0xc0000000 + 0xe59cc000, // ldr ip, [ip] + 0xe3ccc13f, // bic ip, ip, #0xc000000f + 0xe12fff1c, // bx ip + // Third bundle: + 0xe320f000, // nop + 0xe320f000, // nop + 0xe320f000, // nop + // .Lplt_tail: + 0xe50dc004, // str ip, [sp, #-4] + // Fourth bundle: + 0xe3ccc103, // bic ip, ip, #0xc0000000 + 0xe59cc000, // ldr ip, [ip] + 0xe3ccc13f, // bic ip, ip, #0xc000000f + 0xe12fff1c, // bx ip +}; + +template +void +Output_data_plt_arm_nacl::do_fill_first_plt_entry( + unsigned char* pov, + Arm_address got_address, + Arm_address plt_address) +{ + // Write first PLT entry. All but first two words are constants. + const size_t num_first_plt_words = (sizeof(first_plt_entry) + / sizeof(first_plt_entry[0])); + + int32_t got_displacement = got_address + 8 - (plt_address + 16); + + elfcpp::Swap<32, big_endian>::writeval + (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement)); + elfcpp::Swap<32, big_endian>::writeval + (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement)); + + for (size_t i = 2; i < num_first_plt_words; ++i) + elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]); +} + +// Subsequent entries in the PLT. + +template +const uint32_t Output_data_plt_arm_nacl::plt_entry[4] = +{ + 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8 + 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8 + 0xe08cc00f, // add ip, ip, pc + 0xea000000, // b .Lplt_tail +}; + +template +void +Output_data_plt_arm_nacl::do_fill_plt_entry( + unsigned char* pov, + Arm_address got_address, + Arm_address plt_address, + unsigned int got_offset, + unsigned int plt_offset) +{ + // Calculate the displacement between the PLT slot and the + // common tail that's part of the special initial PLT slot. + int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t)) + - (plt_address + plt_offset + + sizeof(plt_entry) + sizeof(uint32_t))); + gold_assert((tail_displacement & 3) == 0); + tail_displacement >>= 2; + + gold_assert ((tail_displacement & 0xff000000) == 0 + || (-tail_displacement & 0xff000000) == 0); + + // Calculate the displacement between the PLT slot and the entry + // in the GOT. The offset accounts for the value produced by + // adding to pc in the penultimate instruction of the PLT stub. + const int32_t got_displacement = (got_address + got_offset + - (plt_address + sizeof(plt_entry))); + + elfcpp::Swap<32, big_endian>::writeval + (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement)); + elfcpp::Swap<32, big_endian>::writeval + (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement)); + elfcpp::Swap<32, big_endian>::writeval + (pov + 8, plt_entry[2]); + elfcpp::Swap<32, big_endian>::writeval + (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff)); +} + +// Target selectors. + +template +class Target_selector_arm_nacl + : public Target_selector_nacl, + Target_arm_nacl > +{ + public: + Target_selector_arm_nacl() + : Target_selector_nacl, + Target_arm_nacl >( + "arm", + big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl", + big_endian ? "armelfb_nacl" : "armelf_nacl") + { } }; -Target_selector_arm target_selector_arm; -Target_selector_arm target_selector_armbe; +Target_selector_arm_nacl target_selector_arm; +Target_selector_arm_nacl target_selector_armbe; } // End anonymous namespace.