X-Git-Url: http://drtracing.org/?a=blobdiff_plain;f=sim%2Fmn10300%2Finterp.c;h=577cc7a0d00b8359f29bfaf4942fde2ff905e669;hb=faa743bb1b9772427351b8739bdef1f6b4a32f60;hp=1a1e9f7b42aa556384bc4cd0ab7ee7dd67a2bc4d;hpb=6adf5185c18ea2eb6664fa2b1d293723dc24f04d;p=deliverable%2Fbinutils-gdb.git diff --git a/sim/mn10300/interp.c b/sim/mn10300/interp.c index 1a1e9f7b42..577cc7a0d0 100644 --- a/sim/mn10300/interp.c +++ b/sim/mn10300/interp.c @@ -1,16 +1,10 @@ +#include "config.h" #include -#if WITH_COMMON #include "sim-main.h" #include "sim-options.h" -/* start-sanitize-am30 */ #include "sim-hw.h" -/* end-sanitize-am30 */ -#else -#include "mn10300_sim.h" -#endif -#include "sysdep.h" #include "bfd.h" #include "sim-assert.h" @@ -40,6 +34,7 @@ host_callback *mn10300_callback; int mn10300_debug; +struct _state State; /* simulation target board. NULL=default configuration */ @@ -52,12 +47,11 @@ enum { }; static SIM_RC -mn10300_option_handler (sd, cpu, opt, arg, is_command) - SIM_DESC sd; - sim_cpu *cpu; - int opt; - char *arg; - int is_command; +mn10300_option_handler (SIM_DESC sd, + sim_cpu *cpu, + int opt, + char *arg, + int is_command) { int cpu_nr; switch (opt) @@ -78,1181 +72,1029 @@ mn10300_option_handler (sd, cpu, opt, arg, is_command) static const OPTION mn10300_options[] = { -/* start-sanitize-am30 */ -#define BOARD_AM32 "am32" +#define BOARD_AM32 "stdeval1" { {"board", required_argument, NULL, OPTION_BOARD}, '\0', "none" /* rely on compile-time string concatenation for other options */ "|" BOARD_AM32 , "Customize simulation for a particular board.", mn10300_option_handler }, -/* end-sanitize-am30 */ { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL } }; -#if WITH_COMMON -#else -static void dispatch PARAMS ((uint32, uint32, int)); -static long hash PARAMS ((long)); -static void init_system PARAMS ((void)); - -static SIM_OPEN_KIND sim_kind; -static char *myname; -#define MAX_HASH 127 - -struct hash_entry -{ - struct hash_entry *next; - long opcode; - long mask; - struct simops *ops; -#ifdef HASH_STAT - unsigned long count; -#endif -}; - -static int max_mem = 0; -struct hash_entry hash_table[MAX_HASH+1]; +/* For compatibility */ +SIM_DESC simulator; +/* These default values correspond to expected usage for the chip. */ -/* This probably doesn't do a very good job at bucket filling, but - it's simple... */ -static INLINE long -hash(insn) - long insn; +SIM_DESC +sim_open (SIM_OPEN_KIND kind, + host_callback *cb, + struct bfd *abfd, + char **argv) { - /* These are one byte insns, we special case these since, in theory, - they should be the most heavily used. */ - if ((insn & 0xffffff00) == 0) - { - switch (insn & 0xf0) - { - case 0x00: - return 0x70; - - case 0x40: - return 0x71; - - case 0x10: - return 0x72; - - case 0x30: - return 0x73; - - case 0x50: - return 0x74; - - case 0x60: - return 0x75; + SIM_DESC sd = sim_state_alloc (kind, cb); + mn10300_callback = cb; - case 0x70: - return 0x76; + SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER); - case 0x80: - return 0x77; + /* for compatibility */ + simulator = sd; - case 0x90: - return 0x78; + /* FIXME: should be better way of setting up interrupts. For + moment, only support watchpoints causing a breakpoint (gdb + halt). */ + STATE_WATCHPOINTS (sd)->pc = &(PC); + STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC); + STATE_WATCHPOINTS (sd)->interrupt_handler = NULL; + STATE_WATCHPOINTS (sd)->interrupt_names = NULL; - case 0xa0: - return 0x79; + if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK) + return 0; + sim_add_option_table (sd, NULL, mn10300_options); - case 0xb0: - return 0x7a; + /* Allocate core managed memory */ + sim_do_command (sd, "memory region 0,0x100000"); + sim_do_command (sd, "memory region 0x40000000,0x200000"); - case 0xe0: - return 0x7b; + /* getopt will print the error message so we just have to exit if this fails. + FIXME: Hmmm... in the case of gdb we need getopt to call + print_filtered. */ + if (sim_parse_args (sd, argv) != SIM_RC_OK) + { + /* Uninstall the modules to avoid memory leaks, + file descriptor leaks, etc. */ + sim_module_uninstall (sd); + return 0; + } - default: - return 0x7c; + if ( NULL != board + && (strcmp(board, BOARD_AM32) == 0 ) ) + { + /* environment */ + STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT; + + sim_do_command (sd, "memory region 0x44000000,0x40000"); + sim_do_command (sd, "memory region 0x48000000,0x400000"); + + /* device support for mn1030002 */ + /* interrupt controller */ + + sim_hw_parse (sd, "/mn103int@0x34000100/reg 0x34000100 0x7C 0x34000200 0x8 0x34000280 0x8"); + + /* DEBUG: NMI input's */ + sim_hw_parse (sd, "/glue@0x30000000/reg 0x30000000 12"); + sim_hw_parse (sd, "/glue@0x30000000 > int0 nmirq /mn103int"); + sim_hw_parse (sd, "/glue@0x30000000 > int1 watchdog /mn103int"); + sim_hw_parse (sd, "/glue@0x30000000 > int2 syserr /mn103int"); + + /* DEBUG: ACK input */ + sim_hw_parse (sd, "/glue@0x30002000/reg 0x30002000 4"); + sim_hw_parse (sd, "/glue@0x30002000 > int ack /mn103int"); + + /* DEBUG: LEVEL output */ + sim_hw_parse (sd, "/glue@0x30004000/reg 0x30004000 8"); + sim_hw_parse (sd, "/mn103int > nmi int0 /glue@0x30004000"); + sim_hw_parse (sd, "/mn103int > level int1 /glue@0x30004000"); + + /* DEBUG: A bunch of interrupt inputs */ + sim_hw_parse (sd, "/glue@0x30006000/reg 0x30006000 32"); + sim_hw_parse (sd, "/glue@0x30006000 > int0 irq-0 /mn103int"); + sim_hw_parse (sd, "/glue@0x30006000 > int1 irq-1 /mn103int"); + sim_hw_parse (sd, "/glue@0x30006000 > int2 irq-2 /mn103int"); + sim_hw_parse (sd, "/glue@0x30006000 > int3 irq-3 /mn103int"); + sim_hw_parse (sd, "/glue@0x30006000 > int4 irq-4 /mn103int"); + sim_hw_parse (sd, "/glue@0x30006000 > int5 irq-5 /mn103int"); + sim_hw_parse (sd, "/glue@0x30006000 > int6 irq-6 /mn103int"); + sim_hw_parse (sd, "/glue@0x30006000 > int7 irq-7 /mn103int"); + + /* processor interrupt device */ + + /* the device */ + sim_hw_parse (sd, "/mn103cpu@0x20000000"); + sim_hw_parse (sd, "/mn103cpu@0x20000000/reg 0x20000000 0x42"); + + /* DEBUG: ACK output wired upto a glue device */ + sim_hw_parse (sd, "/glue@0x20002000"); + sim_hw_parse (sd, "/glue@0x20002000/reg 0x20002000 4"); + sim_hw_parse (sd, "/mn103cpu > ack int0 /glue@0x20002000"); + + /* DEBUG: RESET/NMI/LEVEL wired up to a glue device */ + sim_hw_parse (sd, "/glue@0x20004000"); + sim_hw_parse (sd, "/glue@0x20004000/reg 0x20004000 12"); + sim_hw_parse (sd, "/glue@0x20004000 > int0 reset /mn103cpu"); + sim_hw_parse (sd, "/glue@0x20004000 > int1 nmi /mn103cpu"); + sim_hw_parse (sd, "/glue@0x20004000 > int2 level /mn103cpu"); + + /* REAL: The processor wired up to the real interrupt controller */ + sim_hw_parse (sd, "/mn103cpu > ack ack /mn103int"); + sim_hw_parse (sd, "/mn103int > level level /mn103cpu"); + sim_hw_parse (sd, "/mn103int > nmi nmi /mn103cpu"); + + + /* PAL */ + + /* the device */ + sim_hw_parse (sd, "/pal@0x31000000"); + sim_hw_parse (sd, "/pal@0x31000000/reg 0x31000000 64"); + sim_hw_parse (sd, "/pal@0x31000000/poll? true"); + + /* DEBUG: PAL wired up to a glue device */ + sim_hw_parse (sd, "/glue@0x31002000"); + sim_hw_parse (sd, "/glue@0x31002000/reg 0x31002000 16"); + sim_hw_parse (sd, "/pal@0x31000000 > countdown int0 /glue@0x31002000"); + sim_hw_parse (sd, "/pal@0x31000000 > timer int1 /glue@0x31002000"); + sim_hw_parse (sd, "/pal@0x31000000 > int int2 /glue@0x31002000"); + sim_hw_parse (sd, "/glue@0x31002000 > int0 int3 /glue@0x31002000"); + sim_hw_parse (sd, "/glue@0x31002000 > int1 int3 /glue@0x31002000"); + sim_hw_parse (sd, "/glue@0x31002000 > int2 int3 /glue@0x31002000"); + + /* REAL: The PAL wired up to the real interrupt controller */ + sim_hw_parse (sd, "/pal@0x31000000 > countdown irq-0 /mn103int"); + sim_hw_parse (sd, "/pal@0x31000000 > timer irq-1 /mn103int"); + sim_hw_parse (sd, "/pal@0x31000000 > int irq-2 /mn103int"); + + /* 8 and 16 bit timers */ + sim_hw_parse (sd, "/mn103tim@0x34001000/reg 0x34001000 36 0x34001080 100 0x34004000 16"); + + /* Hook timer interrupts up to interrupt controller */ + sim_hw_parse (sd, "/mn103tim > timer-0-underflow timer-0-underflow /mn103int"); + sim_hw_parse (sd, "/mn103tim > timer-1-underflow timer-1-underflow /mn103int"); + sim_hw_parse (sd, "/mn103tim > timer-2-underflow timer-2-underflow /mn103int"); + sim_hw_parse (sd, "/mn103tim > timer-3-underflow timer-3-underflow /mn103int"); + sim_hw_parse (sd, "/mn103tim > timer-4-underflow timer-4-underflow /mn103int"); + sim_hw_parse (sd, "/mn103tim > timer-5-underflow timer-5-underflow /mn103int"); + sim_hw_parse (sd, "/mn103tim > timer-6-underflow timer-6-underflow /mn103int"); + sim_hw_parse (sd, "/mn103tim > timer-6-compare-a timer-6-compare-a /mn103int"); + sim_hw_parse (sd, "/mn103tim > timer-6-compare-b timer-6-compare-b /mn103int"); + + + /* Serial devices 0,1,2 */ + sim_hw_parse (sd, "/mn103ser@0x34000800/reg 0x34000800 48"); + sim_hw_parse (sd, "/mn103ser@0x34000800/poll? true"); + + /* Hook serial interrupts up to interrupt controller */ + sim_hw_parse (sd, "/mn103ser > serial-0-receive serial-0-receive /mn103int"); + sim_hw_parse (sd, "/mn103ser > serial-0-transmit serial-0-transmit /mn103int"); + sim_hw_parse (sd, "/mn103ser > serial-1-receive serial-1-receive /mn103int"); + sim_hw_parse (sd, "/mn103ser > serial-1-transmit serial-1-transmit /mn103int"); + sim_hw_parse (sd, "/mn103ser > serial-2-receive serial-2-receive /mn103int"); + sim_hw_parse (sd, "/mn103ser > serial-2-transmit serial-2-transmit /mn103int"); + + sim_hw_parse (sd, "/mn103iop@0x36008000/reg 0x36008000 8 0x36008020 8 0x36008040 0xc 0x36008060 8 0x36008080 8"); + + /* Memory control registers */ + sim_do_command (sd, "memory region 0x32000020,0x30"); + /* Cache control register */ + sim_do_command (sd, "memory region 0x20000070,0x4"); + /* Cache purge regions */ + sim_do_command (sd, "memory region 0x28400000,0x800"); + sim_do_command (sd, "memory region 0x28401000,0x800"); + /* DMA registers */ + sim_do_command (sd, "memory region 0x32000100,0xF"); + sim_do_command (sd, "memory region 0x32000200,0xF"); + sim_do_command (sd, "memory region 0x32000400,0xF"); + sim_do_command (sd, "memory region 0x32000800,0xF"); + } + else + { + if (board != NULL) + { + sim_io_eprintf (sd, "Error: Board `%s' unknown.\n", board); + return 0; } } + + - /* These are two byte insns */ - if ((insn & 0xffff0000) == 0) + /* check for/establish the a reference program image */ + if (sim_analyze_program (sd, + (STATE_PROG_ARGV (sd) != NULL + ? *STATE_PROG_ARGV (sd) + : NULL), + abfd) != SIM_RC_OK) { - if ((insn & 0xf000) == 0x2000 - || (insn & 0xf000) == 0x5000) - return ((insn & 0xfc00) >> 8) & 0x7f; - - if ((insn & 0xf000) == 0x4000) - return ((insn & 0xf300) >> 8) & 0x7f; - - if ((insn & 0xf000) == 0x8000 - || (insn & 0xf000) == 0x9000 - || (insn & 0xf000) == 0xa000 - || (insn & 0xf000) == 0xb000) - return ((insn & 0xf000) >> 8) & 0x7f; - - if ((insn & 0xff00) == 0xf000 - || (insn & 0xff00) == 0xf100 - || (insn & 0xff00) == 0xf200 - || (insn & 0xff00) == 0xf500 - || (insn & 0xff00) == 0xf600) - return ((insn & 0xfff0) >> 4) & 0x7f; - - if ((insn & 0xf000) == 0xc000) - return ((insn & 0xff00) >> 8) & 0x7f; - - return ((insn & 0xffc0) >> 6) & 0x7f; + sim_module_uninstall (sd); + return 0; } - /* These are three byte insns. */ - if ((insn & 0xff000000) == 0) + /* establish any remaining configuration options */ + if (sim_config (sd) != SIM_RC_OK) { - if ((insn & 0xf00000) == 0x000000) - return ((insn & 0xf30000) >> 16) & 0x7f; - - if ((insn & 0xf00000) == 0x200000 - || (insn & 0xf00000) == 0x300000) - return ((insn & 0xfc0000) >> 16) & 0x7f; - - if ((insn & 0xff0000) == 0xf80000) - return ((insn & 0xfff000) >> 12) & 0x7f; - - if ((insn & 0xff0000) == 0xf90000) - return ((insn & 0xfffc00) >> 10) & 0x7f; + sim_module_uninstall (sd); + return 0; + } - return ((insn & 0xff0000) >> 16) & 0x7f; + if (sim_post_argv_init (sd) != SIM_RC_OK) + { + /* Uninstall the modules to avoid memory leaks, + file descriptor leaks, etc. */ + sim_module_uninstall (sd); + return 0; } - /* These are four byte or larger insns. */ - if ((insn & 0xf0000000) == 0xf0000000) - return ((insn & 0xfff00000) >> 20) & 0x7f; - return ((insn & 0xff000000) >> 24) & 0x7f; + /* set machine specific configuration */ +/* STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT */ +/* | PSW_CY | PSW_OV | PSW_S | PSW_Z); */ + + return sd; } -static INLINE void -dispatch (insn, extension, length) - uint32 insn; - uint32 extension; - int length; -{ - struct hash_entry *h; - h = &hash_table[hash(insn)]; +void +sim_close (SIM_DESC sd, int quitting) +{ + sim_module_uninstall (sd); +} - while ((insn & h->mask) != h->opcode - || (length != h->ops->length)) - { - if (!h->next) - { - (*mn10300_callback->printf_filtered) (mn10300_callback, - "ERROR looking up hash for 0x%x, PC=0x%x\n", insn, PC); - exit(1); - } - h = h->next; - } +SIM_RC +sim_create_inferior (SIM_DESC sd, + struct bfd *prog_bfd, + char **argv, + char **env) +{ + memset (&State, 0, sizeof (State)); + if (prog_bfd != NULL) { + PC = bfd_get_start_address (prog_bfd); + } else { + PC = 0; + } + CIA_SET (STATE_CPU (sd, 0), (unsigned64) PC); -#ifdef HASH_STAT - h->count++; -#endif + if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_am33_2) + PSW |= PSW_FE; - /* Now call the right function. */ - (h->ops->func)(insn, extension); - PC += length; + return SIM_RC_OK; } -void -sim_size (power) - int power; +/* FIXME These would more efficient to use than load_mem/store_mem, + but need to be changed to use the memory map. */ +uint8 +get_byte (uint8 *x) { - if (State.mem) - free (State.mem); - - max_mem = 1 << power; - State.mem = (uint8 *) calloc (1, 1 << power); - if (!State.mem) - { - (*mn10300_callback->printf_filtered) (mn10300_callback, "Allocation of main memory failed.\n"); - exit (1); - } + return *x; } -static void -init_system () +uint16 +get_half (uint8 *x) { - if (!State.mem) - sim_size(19); + uint8 *a = x; + return (a[1] << 8) + (a[0]); } -int -sim_write (sd, addr, buffer, size) - SIM_DESC sd; - SIM_ADDR addr; - unsigned char *buffer; - int size; +uint32 +get_word (uint8 *x) { - int i; - - init_system (); - - for (i = 0; i < size; i++) - store_byte (addr + i, buffer[i]); - - return size; + uint8 *a = x; + return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]); } -/* Compare two opcode table entries for qsort. */ -static int -compare_simops (arg1, arg2) - const PTR arg1; - const PTR arg2; +void +put_byte (uint8 *addr, uint8 data) { - unsigned long code1 = ((struct simops *)arg1)->opcode; - unsigned long code2 = ((struct simops *)arg2)->opcode; + uint8 *a = addr; + a[0] = data; +} - if (code1 < code2) - return -1; - if (code2 < code1) - return 1; - return 0; +void +put_half (uint8 *addr, uint16 data) +{ + uint8 *a = addr; + a[0] = data & 0xff; + a[1] = (data >> 8) & 0xff; } -SIM_DESC -sim_open (kind, cb, abfd, argv) - SIM_OPEN_KIND kind; - host_callback *cb; - struct _bfd *abfd; - char **argv; +void +put_word (uint8 *addr, uint32 data) { - struct simops *s; - struct hash_entry *h; - char **p; - int i; + uint8 *a = addr; + a[0] = data & 0xff; + a[1] = (data >> 8) & 0xff; + a[2] = (data >> 16) & 0xff; + a[3] = (data >> 24) & 0xff; +} - mn10300_callback = cb; +int +sim_fetch_register (SIM_DESC sd, + int rn, + unsigned char *memory, + int length) +{ + put_word (memory, State.regs[rn]); + return length; +} + +int +sim_store_register (SIM_DESC sd, + int rn, + unsigned char *memory, + int length) +{ + State.regs[rn] = get_word (memory); + return length; +} - /* Sort the opcode array from smallest opcode to largest. - This will generally improve simulator performance as the smaller - opcodes are generally preferred to the larger opcodes. */ - for (i = 0, s = Simops; s->func; s++, i++) - ; - qsort (Simops, i, sizeof (Simops[0]), compare_simops); - sim_kind = kind; - myname = argv[0]; +void +mn10300_core_signal (SIM_DESC sd, + sim_cpu *cpu, + sim_cia cia, + unsigned map, + int nr_bytes, + address_word addr, + transfer_type transfer, + sim_core_signals sig) +{ + const char *copy = (transfer == read_transfer ? "read" : "write"); + address_word ip = CIA_ADDR (cia); - for (p = argv + 1; *p; ++p) + switch (sig) { - if (strcmp (*p, "-E") == 0) - ++p; /* ignore endian spec */ - else -#ifdef DEBUG - if (strcmp (*p, "-t") == 0) - mn10300_debug = DEBUG; - else -#endif - (*mn10300_callback->printf_filtered) (mn10300_callback, "ERROR: unsupported option(s): %s\n",*p); + case sim_core_unmapped_signal: + sim_io_eprintf (sd, "mn10300-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n", + nr_bytes, copy, + (unsigned long) addr, (unsigned long) ip); + program_interrupt(sd, cpu, cia, SIM_SIGSEGV); + break; + + case sim_core_unaligned_signal: + sim_io_eprintf (sd, "mn10300-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n", + nr_bytes, copy, + (unsigned long) addr, (unsigned long) ip); + program_interrupt(sd, cpu, cia, SIM_SIGBUS); + break; + + default: + sim_engine_abort (sd, cpu, cia, + "mn10300_core_signal - internal error - bad switch"); } +} - /* put all the opcodes in the hash table */ - for (s = Simops; s->func; s++) - { - h = &hash_table[hash(s->opcode)]; - - /* go to the last entry in the chain */ - while (h->next) - { - /* Don't insert the same opcode more than once. */ - if (h->opcode == s->opcode - && h->mask == s->mask - && h->ops == s) - break; - else - h = h->next; - } - /* Don't insert the same opcode more than once. */ - if (h->opcode == s->opcode - && h->mask == s->mask - && h->ops == s) - continue; +void +program_interrupt (SIM_DESC sd, + sim_cpu *cpu, + sim_cia cia, + SIM_SIGNAL sig) +{ + int status; + struct hw *device; + static int in_interrupt = 0; - if (h->ops) - { - h->next = calloc(1,sizeof(struct hash_entry)); - h = h->next; - } - h->ops = s; - h->mask = s->mask; - h->opcode = s->opcode; -#if HASH_STAT - h->count = 0; +#ifdef SIM_CPU_EXCEPTION_TRIGGER + SIM_CPU_EXCEPTION_TRIGGER(sd,cpu,cia); #endif + + /* avoid infinite recursion */ + if (in_interrupt) + { + (*mn10300_callback->printf_filtered) (mn10300_callback, + "ERROR: recursion in program_interrupt during software exception dispatch."); + } + else + { + in_interrupt = 1; + /* copy NMI handler code from dv-mn103cpu.c */ + store_word (SP - 4, CIA_GET (cpu)); + store_half (SP - 8, PSW); + + /* Set the SYSEF flag in NMICR by backdoor method. See + dv-mn103int.c:write_icr(). This is necessary because + software exceptions are not modelled by actually talking to + the interrupt controller, so it cannot set its own SYSEF + flag. */ + if ((NULL != board) && (strcmp(board, BOARD_AM32) == 0)) + store_byte (0x34000103, 0x04); } + PSW &= ~PSW_IE; + SP = SP - 8; + CIA_SET (cpu, 0x40000008); - /* fudge our descriptor for now */ - return (SIM_DESC) 1; + in_interrupt = 0; + sim_engine_halt(sd, cpu, NULL, cia, sim_stopped, sig); } void -sim_close (sd, quitting) - SIM_DESC sd; - int quitting; +mn10300_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia) { - /* nothing to do */ -} + ASSERT(cpu != NULL); -void -sim_set_profile (n) - int n; -{ - (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile %d\n", n); + if(State.exc_suspended > 0) + sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", State.exc_suspended); + + CIA_SET (cpu, cia); + memcpy(State.exc_trigger_regs, State.regs, sizeof(State.exc_trigger_regs)); + State.exc_suspended = 0; } void -sim_set_profile_size (n) - int n; +mn10300_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception) { - (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile_size %d\n", n); -} + ASSERT(cpu != NULL); -int -sim_stop (sd) - SIM_DESC sd; -{ - return 0; + if(State.exc_suspended > 0) + sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n", + State.exc_suspended, exception); + + memcpy(State.exc_suspend_regs, State.regs, sizeof(State.exc_suspend_regs)); + memcpy(State.regs, State.exc_trigger_regs, sizeof(State.regs)); + CIA_SET (cpu, PC); /* copy PC back from new State.regs */ + State.exc_suspended = exception; } void -sim_resume (sd, step, siggnal) - SIM_DESC sd; - int step, siggnal; +mn10300_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception) { - uint32 inst; - reg_t oldpc; - struct hash_entry *h; + ASSERT(cpu != NULL); - if (step) - State.exception = SIGTRAP; - else - State.exception = 0; - - State.exited = 0; - - do + if(exception == 0 && State.exc_suspended > 0) { - unsigned long insn, extension; - - /* Fetch the current instruction. */ - inst = load_mem_big (PC, 2); - oldpc = PC; - - /* Using a giant case statement may seem like a waste because of the - code/rodata size the table itself will consume. However, using - a giant case statement speeds up the simulator by 10-15% by avoiding - cascading if/else statements or cascading case statements. */ - - switch ((inst >> 8) & 0xff) - { - /* All the single byte insns except 0x80, 0x90, 0xa0, 0xb0 - which must be handled specially. */ - case 0x00: - case 0x04: - case 0x08: - case 0x0c: - case 0x10: - case 0x11: - case 0x12: - case 0x13: - case 0x14: - case 0x15: - case 0x16: - case 0x17: - case 0x18: - case 0x19: - case 0x1a: - case 0x1b: - case 0x1c: - case 0x1d: - case 0x1e: - case 0x1f: - case 0x3c: - case 0x3d: - case 0x3e: - case 0x3f: - case 0x40: - case 0x41: - case 0x44: - case 0x45: - case 0x48: - case 0x49: - case 0x4c: - case 0x4d: - case 0x50: - case 0x51: - case 0x52: - case 0x53: - case 0x54: - case 0x55: - case 0x56: - case 0x57: - case 0x60: - case 0x61: - case 0x62: - case 0x63: - case 0x64: - case 0x65: - case 0x66: - case 0x67: - case 0x68: - case 0x69: - case 0x6a: - case 0x6b: - case 0x6c: - case 0x6d: - case 0x6e: - case 0x6f: - case 0x70: - case 0x71: - case 0x72: - case 0x73: - case 0x74: - case 0x75: - case 0x76: - case 0x77: - case 0x78: - case 0x79: - case 0x7a: - case 0x7b: - case 0x7c: - case 0x7d: - case 0x7e: - case 0x7f: - case 0xcb: - case 0xd0: - case 0xd1: - case 0xd2: - case 0xd3: - case 0xd4: - case 0xd5: - case 0xd6: - case 0xd7: - case 0xd8: - case 0xd9: - case 0xda: - case 0xdb: - case 0xe0: - case 0xe1: - case 0xe2: - case 0xe3: - case 0xe4: - case 0xe5: - case 0xe6: - case 0xe7: - case 0xe8: - case 0xe9: - case 0xea: - case 0xeb: - case 0xec: - case 0xed: - case 0xee: - case 0xef: - case 0xff: - insn = (inst >> 8) & 0xff; - extension = 0; - dispatch (insn, extension, 1); - break; - - /* Special cases where dm == dn is used to encode a different - instruction. */ - case 0x80: - case 0x85: - case 0x8a: - case 0x8f: - case 0x90: - case 0x95: - case 0x9a: - case 0x9f: - case 0xa0: - case 0xa5: - case 0xaa: - case 0xaf: - case 0xb0: - case 0xb5: - case 0xba: - case 0xbf: - insn = inst; - extension = 0; - dispatch (insn, extension, 2); - break; - - case 0x81: - case 0x82: - case 0x83: - case 0x84: - case 0x86: - case 0x87: - case 0x88: - case 0x89: - case 0x8b: - case 0x8c: - case 0x8d: - case 0x8e: - case 0x91: - case 0x92: - case 0x93: - case 0x94: - case 0x96: - case 0x97: - case 0x98: - case 0x99: - case 0x9b: - case 0x9c: - case 0x9d: - case 0x9e: - case 0xa1: - case 0xa2: - case 0xa3: - case 0xa4: - case 0xa6: - case 0xa7: - case 0xa8: - case 0xa9: - case 0xab: - case 0xac: - case 0xad: - case 0xae: - case 0xb1: - case 0xb2: - case 0xb3: - case 0xb4: - case 0xb6: - case 0xb7: - case 0xb8: - case 0xb9: - case 0xbb: - case 0xbc: - case 0xbd: - case 0xbe: - insn = (inst >> 8) & 0xff; - extension = 0; - dispatch (insn, extension, 1); - break; - - /* The two byte instructions. */ - case 0x20: - case 0x21: - case 0x22: - case 0x23: - case 0x28: - case 0x29: - case 0x2a: - case 0x2b: - case 0x42: - case 0x43: - case 0x46: - case 0x47: - case 0x4a: - case 0x4b: - case 0x4e: - case 0x4f: - case 0x58: - case 0x59: - case 0x5a: - case 0x5b: - case 0x5c: - case 0x5d: - case 0x5e: - case 0x5f: - case 0xc0: - case 0xc1: - case 0xc2: - case 0xc3: - case 0xc4: - case 0xc5: - case 0xc6: - case 0xc7: - case 0xc8: - case 0xc9: - case 0xca: - case 0xce: - case 0xcf: - case 0xf0: - case 0xf1: - case 0xf2: - case 0xf3: - case 0xf4: - case 0xf5: - case 0xf6: - insn = inst; - extension = 0; - dispatch (insn, extension, 2); - break; - - /* The three byte insns with a 16bit operand in little endian - format. */ - case 0x01: - case 0x02: - case 0x03: - case 0x05: - case 0x06: - case 0x07: - case 0x09: - case 0x0a: - case 0x0b: - case 0x0d: - case 0x0e: - case 0x0f: - case 0x24: - case 0x25: - case 0x26: - case 0x27: - case 0x2c: - case 0x2d: - case 0x2e: - case 0x2f: - case 0x30: - case 0x31: - case 0x32: - case 0x33: - case 0x34: - case 0x35: - case 0x36: - case 0x37: - case 0x38: - case 0x39: - case 0x3a: - case 0x3b: - case 0xcc: - insn = load_byte (PC); - insn <<= 16; - insn |= load_half (PC + 1); - extension = 0; - dispatch (insn, extension, 3); - break; - - /* The three byte insns without 16bit operand. */ - case 0xde: - case 0xdf: - case 0xf8: - case 0xf9: - insn = load_mem_big (PC, 3); - extension = 0; - dispatch (insn, extension, 3); - break; - - /* Four byte insns. */ - case 0xfa: - case 0xfb: - if ((inst & 0xfffc) == 0xfaf0 - || (inst & 0xfffc) == 0xfaf4 - || (inst & 0xfffc) == 0xfaf8) - insn = load_mem_big (PC, 4); - else - { - insn = inst; - insn <<= 16; - insn |= load_half (PC + 2); - extension = 0; - } - dispatch (insn, extension, 4); - break; - - /* Five byte insns. */ - case 0xcd: - insn = load_byte (PC); - insn <<= 24; - insn |= (load_half (PC + 1) << 8); - insn |= load_byte (PC + 3); - extension = load_byte (PC + 4); - dispatch (insn, extension, 5); - break; - - case 0xdc: - insn = load_byte (PC); - insn <<= 24; - extension = load_word (PC + 1); - insn |= (extension & 0xffffff00) >> 8; - extension &= 0xff; - dispatch (insn, extension, 5); - break; - - /* Six byte insns. */ - case 0xfc: - case 0xfd: - insn = (inst << 16); - extension = load_word (PC + 2); - insn |= ((extension & 0xffff0000) >> 16); - extension &= 0xffff; - dispatch (insn, extension, 6); - break; - - case 0xdd: - insn = load_byte (PC) << 24; - extension = load_word (PC + 1); - insn |= ((extension >> 8) & 0xffffff); - extension = (extension & 0xff) << 16; - extension |= load_byte (PC + 5) << 8; - extension |= load_byte (PC + 6); - dispatch (insn, extension, 7); - break; - - case 0xfe: - insn = inst << 16; - extension = load_word (PC + 2); - insn |= ((extension >> 16) & 0xffff); - extension <<= 8; - extension &= 0xffff00; - extension |= load_byte (PC + 6); - dispatch (insn, extension, 7); - break; - - default: - abort (); - } + if(State.exc_suspended != SIGTRAP) /* warn not for breakpoints */ + sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n", + State.exc_suspended); } - while (!State.exception); - -#ifdef HASH_STAT - { - int i; - for (i = 0; i < MAX_HASH; i++) - { - struct hash_entry *h; - h = &hash_table[i]; - - printf("hash 0x%x:\n", i); - - while (h) - { - printf("h->opcode = 0x%x, count = 0x%x\n", h->opcode, h->count); - h = h->next; - } - - printf("\n\n"); - } - fflush (stdout); - } -#endif - + else if(exception != 0 && State.exc_suspended > 0) + { + if(exception != State.exc_suspended) + sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n", + State.exc_suspended, exception); + + memcpy(State.regs, State.exc_suspend_regs, sizeof(State.regs)); + CIA_SET (cpu, PC); /* copy PC back from new State.regs */ + } + else if(exception != 0 && State.exc_suspended == 0) + { + sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception); + } + State.exc_suspended = 0; } -int -sim_trace (sd) - SIM_DESC sd; +/* This is called when an FP instruction is issued when the FP unit is + disabled, i.e., the FE bit of PSW is zero. It raises interrupt + code 0x1c0. */ +void +fpu_disabled_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia) { -#ifdef DEBUG - mn10300_debug = DEBUG; -#endif - sim_resume (sd, 0, 0); - return 1; + sim_io_eprintf(sd, "FPU disabled exception\n"); + program_interrupt (sd, cpu, cia, SIM_SIGFPE); } +/* This is called when the FP unit is enabled but one of the + unimplemented insns is issued. It raises interrupt code 0x1c8. */ void -sim_info (sd, verbose) - SIM_DESC sd; - int verbose; +fpu_unimp_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia) { - (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_info\n"); + sim_io_eprintf(sd, "Unimplemented FPU instruction exception\n"); + program_interrupt (sd, cpu, cia, SIM_SIGFPE); } -SIM_RC -sim_create_inferior (sd, abfd, argv, env) - SIM_DESC sd; - struct _bfd *abfd; - char **argv; - char **env; +/* This is called at the end of any FP insns that may have triggered + FP exceptions. If no exception is enabled, it returns immediately. + Otherwise, it raises an exception code 0x1d0. */ +void +fpu_check_signal_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia) { - if (abfd != NULL) - PC = bfd_get_start_address (abfd); - else - PC = 0; - return SIM_RC_OK; + if ((FPCR & EC_MASK) == 0) + return; + + sim_io_eprintf(sd, "FPU %s%s%s%s%s exception\n", + (FPCR & EC_V) ? "V" : "", + (FPCR & EC_Z) ? "Z" : "", + (FPCR & EC_O) ? "O" : "", + (FPCR & EC_U) ? "U" : "", + (FPCR & EC_I) ? "I" : ""); + program_interrupt (sd, cpu, cia, SIM_SIGFPE); } -void -sim_set_callbacks (p) - host_callback *p; +/* Convert a 32-bit single-precision FP value in the target platform + format to a sim_fpu value. */ +static void +reg2val_32 (const void *reg, sim_fpu *val) { - mn10300_callback = p; + FS2FPU (*(reg_t *)reg, *val); } -/* All the code for exiting, signals, etc needs to be revamped. - - This is enough to get c-torture limping though. */ - -void -sim_stop_reason (sd, reason, sigrc) - SIM_DESC sd; - enum sim_stop *reason; - int *sigrc; +/* Round the given sim_fpu value to single precision, following the + target platform rounding and denormalization conventions. On + AM33/2.0, round_near is the only rounding mode. */ +static int +round_32 (sim_fpu *val) { - if (State.exited) - *reason = sim_exited; - else - *reason = sim_stopped; - if (State.exception == SIGQUIT) - *sigrc = 0; - else - *sigrc = State.exception; + return sim_fpu_round_32 (val, sim_fpu_round_near, sim_fpu_denorm_zero); } -int -sim_read (sd, addr, buffer, size) - SIM_DESC sd; - SIM_ADDR addr; - unsigned char *buffer; - int size; +/* Convert a sim_fpu value to the 32-bit single-precision target + representation. */ +static void +val2reg_32 (const sim_fpu *val, void *reg) { - int i; - for (i = 0; i < size; i++) - buffer[i] = load_byte (addr + i); + FPU2FS (*val, *(reg_t *)reg); +} - return size; -} +/* Define the 32-bit single-precision conversion and rounding uniform + interface. */ +const struct fp_prec_t +fp_single_prec = { + reg2val_32, round_32, val2reg_32 +}; -void -sim_do_command (sd, cmd) - SIM_DESC sd; - char *cmd; +/* Convert a 64-bit double-precision FP value in the target platform + format to a sim_fpu value. */ +static void +reg2val_64 (const void *reg, sim_fpu *val) { - (*mn10300_callback->printf_filtered) (mn10300_callback, "\"%s\" is not a valid mn10300 simulator command.\n", cmd); + FD2FPU (*(dword *)reg, *val); } -SIM_RC -sim_load (sd, prog, abfd, from_tty) - SIM_DESC sd; - char *prog; - bfd *abfd; - int from_tty; +/* Round the given sim_fpu value to double precision, following the + target platform rounding and denormalization conventions. On + AM33/2.0, round_near is the only rounding mode. */ +int +round_64 (sim_fpu *val) { - extern bfd *sim_load_file (); /* ??? Don't know where this should live. */ - bfd *prog_bfd; - - prog_bfd = sim_load_file (sd, myname, mn10300_callback, prog, abfd, - sim_kind == SIM_OPEN_DEBUG, - 0, sim_write); - if (prog_bfd == NULL) - return SIM_RC_FAIL; - if (abfd == NULL) - bfd_close (prog_bfd); - return SIM_RC_OK; -} -#endif /* not WITH_COMMON */ - + return sim_fpu_round_64 (val, sim_fpu_round_near, sim_fpu_denorm_zero); +} -#if WITH_COMMON +/* Convert a sim_fpu value to the 64-bit double-precision target + representation. */ +static void +val2reg_64 (const sim_fpu *val, void *reg) +{ + FPU2FD (*val, *(dword *)reg); +} -/* For compatibility */ -SIM_DESC simulator; +/* Define the 64-bit single-precision conversion and rounding uniform + interface. */ +const struct fp_prec_t +fp_double_prec = { + reg2val_64, round_64, val2reg_64 +}; -/* These default values correspond to expected usage for the chip. */ +/* Define shortcuts to the uniform interface operations. */ +#define REG2VAL(reg,val) (*ops->reg2val) (reg,val) +#define ROUND(val) (*ops->round) (val) +#define VAL2REG(val,reg) (*ops->val2reg) (val,reg) -SIM_DESC -sim_open (kind, cb, abfd, argv) - SIM_OPEN_KIND kind; - host_callback *cb; - struct _bfd *abfd; - char **argv; +/* Check whether overflow, underflow or inexact exceptions should be + raised. */ +int +fpu_status_ok (sim_fpu_status stat) { - SIM_DESC sd = sim_state_alloc (kind, cb); - mn10300_callback = cb; + if ((stat & sim_fpu_status_overflow) + && (FPCR & EE_O)) + FPCR |= EC_O; + else if ((stat & (sim_fpu_status_underflow | sim_fpu_status_denorm)) + && (FPCR & EE_U)) + FPCR |= EC_U; + else if ((stat & (sim_fpu_status_inexact | sim_fpu_status_rounded)) + && (FPCR & EE_I)) + FPCR |= EC_I; + else if (stat & ~ (sim_fpu_status_overflow + | sim_fpu_status_underflow + | sim_fpu_status_denorm + | sim_fpu_status_inexact + | sim_fpu_status_rounded)) + abort (); + else + return 1; + return 0; +} - SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER); +/* Implement a 32/64 bit reciprocal square root, signaling FP + exceptions when appropriate. */ +void +fpu_rsqrt (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, + const void *reg_in, void *reg_out, const struct fp_prec_t *ops) +{ + sim_fpu in, med, out; - /* for compatibility */ - simulator = sd; + REG2VAL (reg_in, &in); + ROUND (&in); + FPCR &= ~ EC_MASK; + switch (sim_fpu_is (&in)) + { + case SIM_FPU_IS_SNAN: + case SIM_FPU_IS_NNUMBER: + case SIM_FPU_IS_NINF: + if (FPCR & EE_V) + FPCR |= EC_V; + else + VAL2REG (&sim_fpu_qnan, reg_out); + break; + + case SIM_FPU_IS_QNAN: + VAL2REG (&sim_fpu_qnan, reg_out); + break; - /* FIXME: should be better way of setting up interrupts. For - moment, only support watchpoints causing a breakpoint (gdb - halt). */ - STATE_WATCHPOINTS (sd)->pc = &(PC); - STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC); - STATE_WATCHPOINTS (sd)->interrupt_handler = NULL; - STATE_WATCHPOINTS (sd)->interrupt_names = NULL; + case SIM_FPU_IS_PINF: + VAL2REG (&sim_fpu_zero, reg_out); + break; - if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK) - return 0; - sim_add_option_table (sd, NULL, mn10300_options); + case SIM_FPU_IS_PNUMBER: + { + /* Since we don't have a function to compute rsqrt directly, + use sqrt and inv. */ + sim_fpu_status stat = 0; + stat |= sim_fpu_sqrt (&med, &in); + stat |= sim_fpu_inv (&out, &med); + stat |= ROUND (&out); + if (fpu_status_ok (stat)) + VAL2REG (&out, reg_out); + } + break; - /* Allocate core managed memory */ - sim_do_command (sd, "memory region 0,0x100000"); - sim_do_command (sd, "memory region 0x40000000,0x100000"); + case SIM_FPU_IS_NZERO: + case SIM_FPU_IS_PZERO: + if (FPCR & EE_Z) + FPCR |= EC_Z; + else + { + /* Generate an INF with the same sign. */ + sim_fpu_inv (&out, &in); + VAL2REG (&out, reg_out); + } + break; - /* getopt will print the error message so we just have to exit if this fails. - FIXME: Hmmm... in the case of gdb we need getopt to call - print_filtered. */ - if (sim_parse_args (sd, argv) != SIM_RC_OK) - { - /* Uninstall the modules to avoid memory leaks, - file descriptor leaks, etc. */ - sim_module_uninstall (sd); - return 0; + default: + abort (); } - /* start-sanitize-am30 */ - if ( NULL != board - && (strcmp(board, BOARD_AM32) == 0 ) ) - { - /* device support for mn1030002 */ - /* interrupt controller */ - - sim_hw_parse (sd, "/mn103int@0x34000100/reg 0x34000100 0x7C 0x34000200 0x8 0x3400280 0x8"); - - /* DEBUG: NMI input's */ - sim_hw_parse (sd, "/glue@0x30000000/reg 0x30000000 12"); - sim_hw_parse (sd, "/glue@0x30000000 > int0 nmirq /mn103int"); - sim_hw_parse (sd, "/glue@0x30000000 > int1 watchdog /mn103int"); - sim_hw_parse (sd, "/glue@0x30000000 > int2 syserr /mn103int"); - - /* DEBUG: ACK input */ - sim_hw_parse (sd, "/glue@0x30002000/reg 0x30002000 4"); - sim_hw_parse (sd, "/glue@0x30002000 > int ack /mn103int"); - - /* DEBUG: LEVEL output */ - sim_hw_parse (sd, "/glue@0x30004000/reg 0x30004000 8"); - sim_hw_parse (sd, "/mn103int > nmi int0 /glue@0x30004000"); - sim_hw_parse (sd, "/mn103int > level int1 /glue@0x30004000"); - - /* DEBUG: A bunch of interrupt inputs */ - sim_hw_parse (sd, "/glue@0x30006000/reg 0x30006000 32"); - sim_hw_parse (sd, "/glue@0x30006000 > int0 irq-0 /mn103int"); - sim_hw_parse (sd, "/glue@0x30006000 > int1 irq-1 /mn103int"); - sim_hw_parse (sd, "/glue@0x30006000 > int2 irq-2 /mn103int"); - sim_hw_parse (sd, "/glue@0x30006000 > int3 irq-3 /mn103int"); - sim_hw_parse (sd, "/glue@0x30006000 > int4 irq-4 /mn103int"); - sim_hw_parse (sd, "/glue@0x30006000 > int5 irq-5 /mn103int"); - sim_hw_parse (sd, "/glue@0x30006000 > int6 irq-6 /mn103int"); - sim_hw_parse (sd, "/glue@0x30006000 > int7 irq-7 /mn103int"); - - /* processor interrupt device */ - - /* the device */ - sim_hw_parse (sd, "/mn103cpu@0x20000000"); - sim_hw_parse (sd, "/mn103cpu@0x20000000/reg 0x20000000 0x42"); - - /* DEBUG: ACK output wired upto a glue device */ - sim_hw_parse (sd, "/glue@0x20002000"); - sim_hw_parse (sd, "/glue@0x20002000/reg 0x20002000 4"); - sim_hw_parse (sd, "/mn103cpu > ack int0 /glue@0x20002000"); - - /* DEBUG: RESET/NMI/LEVEL wired up to a glue device */ - sim_hw_parse (sd, "/glue@0x20004000"); - sim_hw_parse (sd, "/glue@0x20004000/reg 0x20004000 12"); - sim_hw_parse (sd, "/glue@0x20004000 > int0 reset /mn103cpu"); - sim_hw_parse (sd, "/glue@0x20004000 > int1 nmi /mn103cpu"); - sim_hw_parse (sd, "/glue@0x20004000 > int2 level /mn103cpu"); - - /* REAL: The processor wired up to the real interrupt controller */ - sim_hw_parse (sd, "/mn103cpu > ack ack /mn103int"); - sim_hw_parse (sd, "/mn103int > level level /mn103cpu"); - sim_hw_parse (sd, "/mn103int > nmi nmi /mn103cpu"); - - - /* PAL */ - - /* the device */ - sim_hw_parse (sd, "/pal@0x31000000"); - sim_hw_parse (sd, "/pal@0x31000000/reg 0x31000000 64"); - sim_hw_parse (sd, "/pal@0x31000000/poll? true"); - - /* DEBUG: PAL wired up to a glue device */ - sim_hw_parse (sd, "/glue@0x31002000"); - sim_hw_parse (sd, "/glue@0x31002000/reg 0x31002000 16"); - sim_hw_parse (sd, "/pal@0x31000000 > countdown int0 /glue@0x31002000"); - sim_hw_parse (sd, "/pal@0x31000000 > timer int1 /glue@0x31002000"); - sim_hw_parse (sd, "/pal@0x31000000 > int int2 /glue@0x31002000"); - sim_hw_parse (sd, "/glue@0x31002000 > int0 int3 /glue@0x31002000"); - sim_hw_parse (sd, "/glue@0x31002000 > int1 int3 /glue@0x31002000"); - sim_hw_parse (sd, "/glue@0x31002000 > int2 int3 /glue@0x31002000"); - - /* REAL: The PAL wired up to the real interrupt controller */ - sim_hw_parse (sd, "/pal@0x31000000 > countdown irq-0 /mn103int"); - sim_hw_parse (sd, "/pal@0x31000000 > timer irq-1 /mn103int"); - sim_hw_parse (sd, "/pal@0x31000000 > int irq-2 /mn103int"); - - /* 8 and 16 bit timers */ - sim_hw_parse (sd, "/mn103tim@0x34001000/reg 0x34001000 36 0x34001080 100"); - - /* Hook timer interrupts up to interrupt controller */ - sim_hw_parse (sd, "/mn103tim > timer-0-underflow timer-0-underflow /mn103int"); - sim_hw_parse (sd, "/mn103tim > timer-1-underflow timer-1-underflow /mn103int"); - sim_hw_parse (sd, "/mn103tim > timer-2-underflow timer-2-underflow /mn103int"); - sim_hw_parse (sd, "/mn103tim > timer-3-underflow timer-3-underflow /mn103int"); - sim_hw_parse (sd, "/mn103tim > timer-4-underflow timer-4-underflow /mn103int"); - sim_hw_parse (sd, "/mn103tim > timer-5-underflow timer-5-underflow /mn103int"); - sim_hw_parse (sd, "/mn103tim > timer-6-underflow timer-6-underflow /mn103int"); - sim_hw_parse (sd, "/mn103tim > timer-6-compare-a timer-6-compare-a /mn103int"); - sim_hw_parse (sd, "/mn103tim > timer-6-compare-b timer-6-compare-b /mn103int"); - - - /* Serial devices 0,1,2 */ - sim_hw_parse (sd, "/mn103ser@0x34000800/reg 0x34000800 48"); - - /* Hook serial interrupts up to interrupt controller */ - sim_hw_parse (sd, "/mn103ser > serial-0-receive serial-0-receive /mn103int"); - sim_hw_parse (sd, "/mn103ser > serial-0-transmit serial-0-transmit /mn103int"); - sim_hw_parse (sd, "/mn103ser > serial-1-receive serial-0-receive /mn103int"); - sim_hw_parse (sd, "/mn103ser > serial-1-transmit serial-0-transmit /mn103int"); - sim_hw_parse (sd, "/mn103ser > serial-2-receive serial-0-receive /mn103int"); - sim_hw_parse (sd, "/mn103ser > serial-2-transmit serial-0-transmit /mn103int"); - } - - /* end-sanitize-am30 */ - - /* check for/establish the a reference program image */ - if (sim_analyze_program (sd, - (STATE_PROG_ARGV (sd) != NULL - ? *STATE_PROG_ARGV (sd) - : NULL), - abfd) != SIM_RC_OK) - { - sim_module_uninstall (sd); - return 0; - } + fpu_check_signal_exception (sd, cpu, cia); +} - /* establish any remaining configuration options */ - if (sim_config (sd) != SIM_RC_OK) +static inline reg_t +cmp2fcc (int res) +{ + switch (res) { - sim_module_uninstall (sd); - return 0; + case SIM_FPU_IS_SNAN: + case SIM_FPU_IS_QNAN: + return FCC_U; + + case SIM_FPU_IS_NINF: + case SIM_FPU_IS_NNUMBER: + case SIM_FPU_IS_NDENORM: + return FCC_L; + + case SIM_FPU_IS_PINF: + case SIM_FPU_IS_PNUMBER: + case SIM_FPU_IS_PDENORM: + return FCC_G; + + case SIM_FPU_IS_NZERO: + case SIM_FPU_IS_PZERO: + return FCC_E; + + default: + abort (); } +} - if (sim_post_argv_init (sd) != SIM_RC_OK) +/* Implement a 32/64 bit FP compare, setting the FPCR status and/or + exception bits as specified. */ +void +fpu_cmp (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, + const void *reg_in1, const void *reg_in2, + const struct fp_prec_t *ops) +{ + sim_fpu m, n; + + REG2VAL (reg_in1, &m); + REG2VAL (reg_in2, &n); + FPCR &= ~ EC_MASK; + FPCR &= ~ FCC_MASK; + ROUND (&m); + ROUND (&n); + if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)) { - /* Uninstall the modules to avoid memory leaks, - file descriptor leaks, etc. */ - sim_module_uninstall (sd); - return 0; + if (FPCR & EE_V) + FPCR |= EC_V; + else + FPCR |= FCC_U; } + else + FPCR |= cmp2fcc (sim_fpu_cmp (&m, &n)); - - /* set machine specific configuration */ -/* STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT */ -/* | PSW_CY | PSW_OV | PSW_S | PSW_Z); */ - - return sd; + fpu_check_signal_exception (sd, cpu, cia); } - +/* Implement a 32/64 bit FP add, setting FP exception bits when + appropriate. */ void -sim_close (sd, quitting) - SIM_DESC sd; - int quitting; +fpu_add (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, + const void *reg_in1, const void *reg_in2, + void *reg_out, const struct fp_prec_t *ops) { - sim_module_uninstall (sd); + sim_fpu m, n, r; + + REG2VAL (reg_in1, &m); + REG2VAL (reg_in2, &n); + ROUND (&m); + ROUND (&n); + FPCR &= ~ EC_MASK; + if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n) + || (sim_fpu_is (&m) == SIM_FPU_IS_PINF + && sim_fpu_is (&n) == SIM_FPU_IS_NINF) + || (sim_fpu_is (&m) == SIM_FPU_IS_NINF + && sim_fpu_is (&n) == SIM_FPU_IS_PINF)) + { + if (FPCR & EE_V) + FPCR |= EC_V; + else + VAL2REG (&sim_fpu_qnan, reg_out); + } + else + { + sim_fpu_status stat = sim_fpu_add (&r, &m, &n); + stat |= ROUND (&r); + if (fpu_status_ok (stat)) + VAL2REG (&r, reg_out); + } + + fpu_check_signal_exception (sd, cpu, cia); } - -SIM_RC -sim_create_inferior (sd, prog_bfd, argv, env) - SIM_DESC sd; - struct _bfd *prog_bfd; - char **argv; - char **env; +/* Implement a 32/64 bit FP sub, setting FP exception bits when + appropriate. */ +void +fpu_sub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, + const void *reg_in1, const void *reg_in2, + void *reg_out, const struct fp_prec_t *ops) { - memset (&State, 0, sizeof (State)); - if (prog_bfd != NULL) { - PC = bfd_get_start_address (prog_bfd); - } else { - PC = 0; - } - CIA_SET (STATE_CPU (sd, 0), (unsigned64) PC); - - return SIM_RC_OK; + sim_fpu m, n, r; + + REG2VAL (reg_in1, &m); + REG2VAL (reg_in2, &n); + ROUND (&m); + ROUND (&n); + FPCR &= ~ EC_MASK; + if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n) + || (sim_fpu_is (&m) == SIM_FPU_IS_PINF + && sim_fpu_is (&n) == SIM_FPU_IS_PINF) + || (sim_fpu_is (&m) == SIM_FPU_IS_NINF + && sim_fpu_is (&n) == SIM_FPU_IS_NINF)) + { + if (FPCR & EE_V) + FPCR |= EC_V; + else + VAL2REG (&sim_fpu_qnan, reg_out); + } + else + { + sim_fpu_status stat = sim_fpu_sub (&r, &m, &n); + stat |= ROUND (&r); + if (fpu_status_ok (stat)) + VAL2REG (&r, reg_out); + } + + fpu_check_signal_exception (sd, cpu, cia); } +/* Implement a 32/64 bit FP mul, setting FP exception bits when + appropriate. */ void -sim_do_command (sd, cmd) - SIM_DESC sd; - char *cmd; +fpu_mul (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, + const void *reg_in1, const void *reg_in2, + void *reg_out, const struct fp_prec_t *ops) { - char *mm_cmd = "memory-map"; - char *int_cmd = "interrupt"; - - if (sim_args_command (sd, cmd) != SIM_RC_OK) + sim_fpu m, n, r; + + REG2VAL (reg_in1, &m); + REG2VAL (reg_in2, &n); + ROUND (&m); + ROUND (&n); + FPCR &= ~ EC_MASK; + if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n) + || (sim_fpu_is_infinity (&m) && sim_fpu_is_zero (&n)) + || (sim_fpu_is_zero (&m) && sim_fpu_is_infinity (&n))) { - if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0)) - sim_io_eprintf (sd, "`memory-map' command replaced by `sim memory'\n"); - else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0) - sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n"); + if (FPCR & EE_V) + FPCR |= EC_V; else - sim_io_eprintf (sd, "Unknown command `%s'\n", cmd); + VAL2REG (&sim_fpu_qnan, reg_out); } + else + { + sim_fpu_status stat = sim_fpu_mul (&r, &m, &n); + stat |= ROUND (&r); + if (fpu_status_ok (stat)) + VAL2REG (&r, reg_out); + } + + fpu_check_signal_exception (sd, cpu, cia); } -#endif /* WITH_COMMON */ - -/* FIXME These would more efficient to use than load_mem/store_mem, - but need to be changed to use the memory map. */ -uint8 -get_byte (x) - uint8 *x; +/* Implement a 32/64 bit FP div, setting FP exception bits when + appropriate. */ +void +fpu_div (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, + const void *reg_in1, const void *reg_in2, + void *reg_out, const struct fp_prec_t *ops) { - return *x; + sim_fpu m, n, r; + + REG2VAL (reg_in1, &m); + REG2VAL (reg_in2, &n); + ROUND (&m); + ROUND (&n); + FPCR &= ~ EC_MASK; + if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n) + || (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)) + || (sim_fpu_is_zero (&m) && sim_fpu_is_zero (&n))) + { + if (FPCR & EE_V) + FPCR |= EC_V; + else + VAL2REG (&sim_fpu_qnan, reg_out); + } + else if (sim_fpu_is_number (&m) && sim_fpu_is_zero (&n) + && (FPCR & EE_Z)) + FPCR |= EC_Z; + else + { + sim_fpu_status stat = sim_fpu_div (&r, &m, &n); + stat |= ROUND (&r); + if (fpu_status_ok (stat)) + VAL2REG (&r, reg_out); + } + + fpu_check_signal_exception (sd, cpu, cia); } -uint16 -get_half (x) - uint8 *x; +/* Implement a 32/64 bit FP madd, setting FP exception bits when + appropriate. */ +void +fpu_fmadd (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, + const void *reg_in1, const void *reg_in2, const void *reg_in3, + void *reg_out, const struct fp_prec_t *ops) { - uint8 *a = x; - return (a[1] << 8) + (a[0]); -} + sim_fpu m1, m2, m, n, r; + + REG2VAL (reg_in1, &m1); + REG2VAL (reg_in2, &m2); + REG2VAL (reg_in3, &n); + ROUND (&m1); + ROUND (&m2); + ROUND (&n); + FPCR &= ~ EC_MASK; + if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n) + || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2)) + || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2))) + { + invalid_operands: + if (FPCR & EE_V) + FPCR |= EC_V; + else + VAL2REG (&sim_fpu_qnan, reg_out); + } + else + { + sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2); -uint32 -get_word (x) - uint8 *x; -{ - uint8 *a = x; - return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]); + if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n) + && sim_fpu_sign (&m) != sim_fpu_sign (&n)) + goto invalid_operands; + + stat |= sim_fpu_add (&r, &m, &n); + stat |= ROUND (&r); + if (fpu_status_ok (stat)) + VAL2REG (&r, reg_out); + } + + fpu_check_signal_exception (sd, cpu, cia); } +/* Implement a 32/64 bit FP msub, setting FP exception bits when + appropriate. */ void -put_byte (addr, data) - uint8 *addr; - uint8 data; +fpu_fmsub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, + const void *reg_in1, const void *reg_in2, const void *reg_in3, + void *reg_out, const struct fp_prec_t *ops) { - uint8 *a = addr; - a[0] = data; + sim_fpu m1, m2, m, n, r; + + REG2VAL (reg_in1, &m1); + REG2VAL (reg_in2, &m2); + REG2VAL (reg_in3, &n); + ROUND (&m1); + ROUND (&m2); + ROUND (&n); + FPCR &= ~ EC_MASK; + if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n) + || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2)) + || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2))) + { + invalid_operands: + if (FPCR & EE_V) + FPCR |= EC_V; + else + VAL2REG (&sim_fpu_qnan, reg_out); + } + else + { + sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2); + + if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n) + && sim_fpu_sign (&m) == sim_fpu_sign (&n)) + goto invalid_operands; + + stat |= sim_fpu_sub (&r, &m, &n); + stat |= ROUND (&r); + if (fpu_status_ok (stat)) + VAL2REG (&r, reg_out); + } + + fpu_check_signal_exception (sd, cpu, cia); } +/* Implement a 32/64 bit FP nmadd, setting FP exception bits when + appropriate. */ void -put_half (addr, data) - uint8 *addr; - uint16 data; +fpu_fnmadd (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, + const void *reg_in1, const void *reg_in2, const void *reg_in3, + void *reg_out, const struct fp_prec_t *ops) { - uint8 *a = addr; - a[0] = data & 0xff; - a[1] = (data >> 8) & 0xff; + sim_fpu m1, m2, m, mm, n, r; + + REG2VAL (reg_in1, &m1); + REG2VAL (reg_in2, &m2); + REG2VAL (reg_in3, &n); + ROUND (&m1); + ROUND (&m2); + ROUND (&n); + FPCR &= ~ EC_MASK; + if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n) + || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2)) + || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2))) + { + invalid_operands: + if (FPCR & EE_V) + FPCR |= EC_V; + else + VAL2REG (&sim_fpu_qnan, reg_out); + } + else + { + sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2); + + if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n) + && sim_fpu_sign (&m) == sim_fpu_sign (&n)) + goto invalid_operands; + + stat |= sim_fpu_neg (&mm, &m); + stat |= sim_fpu_add (&r, &mm, &n); + stat |= ROUND (&r); + if (fpu_status_ok (stat)) + VAL2REG (&r, reg_out); + } + + fpu_check_signal_exception (sd, cpu, cia); } +/* Implement a 32/64 bit FP nmsub, setting FP exception bits when + appropriate. */ void -put_word (addr, data) - uint8 *addr; - uint32 data; +fpu_fnmsub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia, + const void *reg_in1, const void *reg_in2, const void *reg_in3, + void *reg_out, const struct fp_prec_t *ops) { - uint8 *a = addr; - a[0] = data & 0xff; - a[1] = (data >> 8) & 0xff; - a[2] = (data >> 16) & 0xff; - a[3] = (data >> 24) & 0xff; -} + sim_fpu m1, m2, m, mm, n, r; + + REG2VAL (reg_in1, &m1); + REG2VAL (reg_in2, &m2); + REG2VAL (reg_in3, &n); + ROUND (&m1); + ROUND (&m2); + ROUND (&n); + FPCR &= ~ EC_MASK; + if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n) + || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2)) + || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2))) + { + invalid_operands: + if (FPCR & EE_V) + FPCR |= EC_V; + else + VAL2REG (&sim_fpu_qnan, reg_out); + } + else + { + sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2); -int -sim_fetch_register (sd, rn, memory, length) - SIM_DESC sd; - int rn; - unsigned char *memory; - int length; -{ - put_word (memory, State.regs[rn]); - return -1; -} - -int -sim_store_register (sd, rn, memory, length) - SIM_DESC sd; - int rn; - unsigned char *memory; - int length; -{ - State.regs[rn] = get_word (memory); - return -1; + if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n) + && sim_fpu_sign (&m) != sim_fpu_sign (&n)) + goto invalid_operands; + + stat |= sim_fpu_neg (&mm, &m); + stat |= sim_fpu_sub (&r, &mm, &n); + stat |= ROUND (&r); + if (fpu_status_ok (stat)) + VAL2REG (&r, reg_out); + } + + fpu_check_signal_exception (sd, cpu, cia); }