Move register definitions and macros out of interp.c and into sim-main.h
authorAndrew Cagney <cagney@redhat.com>
Thu, 16 Oct 1997 03:50:48 +0000 (03:50 +0000)
committerAndrew Cagney <cagney@redhat.com>
Thu, 16 Oct 1997 03:50:48 +0000 (03:50 +0000)
sim/mips/ChangeLog
sim/mips/gencode.c
sim/mips/interp.c
sim/mips/sim-main.h

index 53bf2475413ed854f7021ee25f214efdb08727b6..062eb62bee04f0ca462cdcd7b98550fed6a5fb79 100644 (file)
@@ -1,3 +1,39 @@
+Thu Oct 16 10:31:39 1997  Andrew Cagney  <cagney@b1.cygnus.com>
+
+start-sanitize-r5900
+       * sim-main.h (BYTES_IN_MMI_REGS, ..., SUB_REG_FETCH, ..., GPR_SB,
+       ...): Move to sim-main.h
+       
+end-sanitize-r5900
+       * interp.c (sync_operation): Rename from SyncOperation, make
+       global, add SD argument.
+       (prefetch): Rename from Prefetch, make global, add SD argument.
+       (decode_coproc): Make global.
+
+       * sim-main.h (SyncOperation, DecodeCoproc, Pefetch): Define.
+
+       * gencode.c (build_instruction): Generate DecodeCoproc not
+       decode_coproc calls.
+
+       * interp.c (SETFCC, GETFCC, PREVCOC1): Move to sim-main.h
+       (SizeFGR): Move to sim-main.h
+       (simHALTEX, simHALTIN, simTRACE, simPROFILE, simDELAYSLOT,
+       simSIGINT, simJALDELAYSLOT): Move to sim-main.h
+       (FP_FLAGS, FP_ENABLE, FP_CAUSE, IR, UF, OF, DZ, IO, UO): Move to
+       sim-main.h.
+       (FP_FS, FP_MASK_RM, FP_SH_RM, FP_RM_NEAREST, FP_RM_TOPINF,
+       FP_RM_TOMINF, GETRM): Move to sim-main.h.
+       (Uncached, CachedNoncoherent, CachedCoherent, Cached,
+       isINSTRUCTION, ..., AccessLength_BYTE, ...): Move to sim-main.h.
+       (UserMode, BigEndianMem, ByteSwapMem, ReverseEndian,
+       BigEndianCPU, status_KSU_mask, ...). Moved to sim-main.h
+       
+       * sim-main.h (ALU32_END, ALU64_END): Define. When overflow raise
+       exception.
+       (sim-alu.h): Include.
+       (NULLIFY_NIA, NULL_CIA, CPU_CIA): Define.
+       (sim_cia): Typedef to instruction_address.
+       
 Thu Oct 16 10:31:41 1997  Andrew Cagney  <cagney@b1.cygnus.com>
 
        * Makefile.in (interp.o): Rename generated file engine.c to
index 5c84dc1e4698ee1afb7611ed63485c8050e7d15c..ca857c0c1887845dda7b70e312ad993dc202d4f2 100644 (file)
@@ -2759,7 +2759,7 @@ build_instruction (doisa, features, mips16, insn)
      break ;
 
     case DECODE:
-     printf("   decode_coproc(instruction);\n");
+     printf("   DecodeCoproc(instruction);\n");
      break ;
 
     case CACHE:
index 215013aef8787c32e45b5e9ec126857a34d2990c..9066b0b0710173dfff334559c7edc0b3d03d6b66 100644 (file)
@@ -97,39 +97,6 @@ char* pr_uword64 PARAMS ((uword64 addr));
 #define RSVD_INSTRUCTION_ARG_MASK  0xFFFFF  
 
 
-/* The following are generic to all versions of the MIPS architecture
-   to date: */
-/* Memory Access Types (for CCA): */
-#define Uncached                (0)
-#define CachedNoncoherent       (1)
-#define CachedCoherent          (2)
-#define Cached                  (3)
-
-#define isINSTRUCTION   (1 == 0) /* FALSE */
-#define isDATA          (1 == 1) /* TRUE */
-
-#define isLOAD          (1 == 0) /* FALSE */
-#define isSTORE         (1 == 1) /* TRUE */
-
-#define isREAL          (1 == 0) /* FALSE */
-#define isRAW           (1 == 1) /* TRUE */
-
-#define isTARGET        (1 == 0) /* FALSE */
-#define isHOST          (1 == 1) /* TRUE */
-
-/* The "AccessLength" specifications for Loads and Stores. NOTE: This
-   is the number of bytes minus 1. */
-#define AccessLength_BYTE       (0)
-#define AccessLength_HALFWORD   (1)
-#define AccessLength_TRIPLEBYTE (2)
-#define AccessLength_WORD       (3)
-#define AccessLength_QUINTIBYTE (4)
-#define AccessLength_SEXTIBYTE  (5)
-#define AccessLength_SEPTIBYTE  (6)
-#define AccessLength_DOUBLEWORD (7)
-#define AccessLength_QUADWORD   (15)
-
-
 /* Bits in the Debug register */
 #define Debug_DBD 0x80000000   /* Debug Branch Delay */
 #define Debug_DM  0x40000000   /* Debug Mode         */
@@ -137,176 +104,7 @@ char* pr_uword64 PARAMS ((uword64 addr));
 
 
 
-/* start-sanitize-r5900 */
-
-#define BYTES_IN_MMI_REGS       (sizeof(signed_word) + sizeof(signed_word))
-#define HALFWORDS_IN_MMI_REGS   (BYTES_IN_MMI_REGS/2)
-#define WORDS_IN_MMI_REGS       (BYTES_IN_MMI_REGS/4)
-#define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
-
-#define BYTES_IN_MIPS_REGS       (sizeof(signed_word))
-#define HALFWORDS_IN_MIPS_REGS   (BYTES_IN_MIPS_REGS/2)
-#define WORDS_IN_MIPS_REGS       (BYTES_IN_MIPS_REGS/4)
-#define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
-
-
-
-
-/*
-SUB_REG_FETCH - return as lvalue some sub-part of a "register"
-   T  - type of the sub part
-   TC - # of T's in the mips part of the "register"
-   I  - index (from 0) of desired sub part
-   A  - low part of "register"
-   A1 - high part of register
-*/
-#define SUB_REG_FETCH(T,TC,A,A1,I) \
-(*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
-   + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
-      ? ((TC) - 1 - (I) % (TC)) \
-      : ((I) % (TC)) \
-      ) \
-   ) \
- )
-
-/* 
-GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R 
-            where <type> has two letters:
-                  1 is S=signed or U=unsigned
-                  2 is B=byte H=halfword W=word D=doubleword 
-*/
-
-#define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8,  BYTES_IN_MIPS_REGS,       A, A1, I)
-#define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS,   A, A1, I)
-#define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS,       A, A1, I)
-#define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
-
-#define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8,  BYTES_IN_MIPS_REGS,       A, A1, I)
-#define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS,   A, A1, I)
-#define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS,       A, A1, I)
-#define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
-  
-#define GPR_SB(R,I) SUB_REG_SB(&REGISTERS[R], &REGISTERS1[R], I)
-#define GPR_SH(R,I) SUB_REG_SH(&REGISTERS[R], &REGISTERS1[R], I)
-#define GPR_SW(R,I) SUB_REG_SW(&REGISTERS[R], &REGISTERS1[R], I)
-#define GPR_SD(R,I) SUB_REG_SD(&REGISTERS[R], &REGISTERS1[R], I)
-
-#define GPR_UB(R,I) SUB_REG_UB(&REGISTERS[R], &REGISTERS1[R], I)
-#define GPR_UH(R,I) SUB_REG_UH(&REGISTERS[R], &REGISTERS1[R], I)
-#define GPR_UW(R,I) SUB_REG_UW(&REGISTERS[R], &REGISTERS1[R], I)
-#define GPR_UD(R,I) SUB_REG_UD(&REGISTERS[R], &REGISTERS1[R], I)
-
-
-#define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
-#define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
-#define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
-#define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
-
-#define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
-#define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
-#define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
-#define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
-
-#define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
-#define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
-#define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
-#define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
-
-#define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
-#define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
-#define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
-#define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
-
-
-
-#define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
-#define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
-#define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
-#define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
-
-#define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
-#define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
-#define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
-#define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
-
-#define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
-#define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
-#define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
-#define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
-
-#define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
-#define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
-#define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
-#define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
-/* end-sanitize-r5900 */
-
-
-/* TODO : these should be the bitmasks for these bits within the
-   status register. At the moment the following are VR4300
-   bit-positions: */
-#define status_KSU_mask  (0x3)          /* mask for KSU bits */
-#define status_KSU_shift (3)            /* shift for field */
-#define ksu_kernel       (0x0)
-#define ksu_supervisor   (0x1)
-#define ksu_user         (0x2)
-#define ksu_unknown      (0x3)
-
-#define status_IE       (1 <<  0)      /* Interrupt enable */
-#define status_EXL      (1 <<  1)      /* Exception level */
-#define status_RE        (1 << 25)      /* Reverse Endian in user mode */
-#define status_FR        (1 << 26)      /* enables MIPS III additional FP registers */
-#define status_SR        (1 << 20)      /* soft reset or NMI */
-#define status_BEV       (1 << 22)      /* Location of general exception vectors */
-#define status_TS        (1 << 21)      /* TLB shutdown has occurred */
-#define status_ERL       (1 <<  2)      /* Error level */
-#define status_RP        (1 << 27)      /* Reduced Power mode */
-
-#define cause_BD        ((unsigned)1 << 31)     /* Exception in branch delay slot */
-
-#if defined(HASFPU)
-/* Macro to update FPSR condition-code field. This is complicated by
-   the fact that there is a hole in the index range of the bits within
-   the FCSR register. Also, the number of bits visible depends on the
-   MIPS ISA version being supported. */
-#define SETFCC(cc,v) {\
-                    int bit = ((cc == 0) ? 23 : (24 + (cc)));\
-                    FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
-                  }
-#define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1 : 0)
-
-/* This should be the COC1 value at the start of the preceding
-   instruction: */
-#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
-#endif /* HASFPU */
 
-/* Standard FCRS bits: */
-#define IR (0) /* Inexact Result */
-#define UF (1) /* UnderFlow */
-#define OF (2) /* OverFlow */
-#define DZ (3) /* Division by Zero */
-#define IO (4) /* Invalid Operation */
-#define UO (5) /* Unimplemented Operation */
-
-/* Get masks for individual flags: */
-#if 1 /* SAFE version */
-#define FP_FLAGS(b)  (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
-#define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
-#define FP_CAUSE(b)  (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
-#else
-#define FP_FLAGS(b)  (1 << ((b) + 2))
-#define FP_ENABLE(b) (1 << ((b) + 7))
-#define FP_CAUSE(b)  (1 << ((b) + 12))
-#endif
-
-#define FP_FS         (1 << 24) /* MIPS III onwards : Flush to Zero */
-
-#define FP_MASK_RM    (0x3)
-#define FP_SH_RM      (0)
-#define FP_RM_NEAREST (0) /* Round to nearest        (Round) */
-#define FP_RM_TOZERO  (1) /* Round to zero           (Trunc) */
-#define FP_RM_TOPINF  (2) /* Round to Plus infinity  (Ceil) */
-#define FP_RM_TOMINF  (3) /* Round to Minus infinity (Floor) */
-#define GETRM()       (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
 
 /*---------------------------------------------------------------------------*/
 /*-- GDB simulator interface ------------------------------------------------*/
@@ -322,54 +120,7 @@ static void mips_size PARAMS((SIM_DESC sd, int n));
 
 /*---------------------------------------------------------------------------*/
 
-/* The following are not used for MIPS IV onwards: */
-#define PENDING_FILL(r,v) {\
-/* printf("DBG: FILL BEFORE pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL); */\
-                            if (PENDING_SLOT_REG[PENDING_IN] != (LAST_EMBED_REGNUM + 1))\
-                             sim_io_eprintf(sd,"Attempt to over-write pending value\n");\
-                            PENDING_SLOT_COUNT[PENDING_IN] = 2;\
-                            PENDING_SLOT_REG[PENDING_IN] = (r);\
-                            PENDING_SLOT_VALUE[PENDING_IN] = (uword64)(v);\
-/*printf("DBG: FILL        reg %d value = 0x%s\n",(r),pr_addr(v));*/\
-                            PENDING_TOTAL++;\
-                            PENDING_IN++;\
-                            if (PENDING_IN == PSLOTS)\
-                             PENDING_IN = 0;\
-/*printf("DBG: FILL AFTER  pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL);*/\
-                          }
-
-
-/* NOTE: We keep the following status flags as bit values (1 for true,
-   0 for false). This allows them to be used in binary boolean
-   operations without worrying about what exactly the non-zero true
-   value is. */
 
-/* UserMode */
-#define UserMode        ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
-
-/* BigEndianMem */
-/* Hardware configuration. Affects endianness of LoadMemory and
-   StoreMemory and the endianness of Kernel and Supervisor mode
-   execution. The value is 0 for little-endian; 1 for big-endian. */
-#define BigEndianMem    (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
-/*(state & simBE) ? 1 : 0)*/
-
-/* ByteSwapMem */
-/* This is true if the host and target have different endianness.  */
-#define ByteSwapMem (CURRENT_TARGET_BYTE_ORDER != CURRENT_HOST_BYTE_ORDER)
-
-/* ReverseEndian */
-/* This mode is selected if in User mode with the RE bit being set in
-   SR (Status Register). It reverses the endianness of load and store
-   instructions. */
-#define ReverseEndian   (((SR & status_RE) && UserMode) ? 1 : 0)
-
-/* BigEndianCPU */
-/* The endianness for load and store instructions (0=little;1=big). In
-   User mode this endianness may be switched by setting the state_RE
-   bit in the SR register. Thus, BigEndianCPU may be computed as
-   (BigEndianMem EOR ReverseEndian). */
-#define BigEndianCPU    (BigEndianMem ^ ReverseEndian) /* Already bits */
 
 #if !defined(FASTSIM) || defined(PROFILE)
 /* At the moment these values will be the same, since we do not have
@@ -380,17 +131,6 @@ static unsigned int instruction_fetches = 0;
 static unsigned int instruction_fetch_overflow = 0;
 #endif
 
-/* Flags in the "state" variable: */
-#define simHALTEX       (1 << 2)  /* 0 = run; 1 = halt on exception */
-#define simHALTIN       (1 << 3)  /* 0 = run; 1 = halt on interrupt */
-#define simTRACE        (1 << 8)  /* 0 = do nothing; 1 = trace address activity */
-#define simPROFILE      (1 << 9)  /* 0 = do nothing; 1 = gather profiling samples */
-#define simPCOC0        (1 << 17) /* COC[1] from current */
-#define simPCOC1        (1 << 18) /* COC[1] from previous */
-#define simDELAYSLOT    (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
-#define simSKIPNEXT     (1 << 25) /* 0 = do nothing; 1 = skip instruction */
-#define simSIGINT      (1 << 28)  /* 0 = do nothing; 1 = SIGINT has occured */
-#define simJALDELAYSLOT        (1 << 29) /* 1 = in jal delay slot */
 
 #define DELAYSLOT()     {\
                           if (STATE & simDELAYSLOT)\
@@ -2076,8 +1816,9 @@ address_translation(sd,vAddr,IorD,LorS,pAddr,CCA,host,raw)
    may increase performance, but must not change the meaning of the
    program, or alter architecturally-visible state. */
 
-static void UNUSED
-Prefetch(CCA,pAddr,vAddr,DATA,hint)
+void 
+prefetch(sd,CCA,pAddr,vAddr,DATA,hint)
+     SIM_DESC sd;
      int CCA;
      uword64 pAddr;
      uword64 vAddr;
@@ -2477,8 +2218,9 @@ store_memory(sd,CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw)
    action necessary to make the effects of groups of synchronizable
    loads and stores indicated by stype occur in the same order for all
    processors. */
-static void
-SyncOperation(stype)
+void
+sync_operation(sd,stype)
+     SIM_DESC sd;
      int stype;
 {
 #ifdef DEBUG
@@ -2812,13 +2554,6 @@ cache_op(sd,op,pAddr,vAddr,instruction)
 
 #if defined(HASFPU) /* Only needed when building FPU aware simulators */
 
-#if 1
-#define SizeFGR() (GPRLEN)
-#else
-/* They depend on the CPU being simulated */
-#define SizeFGR() ((PROCESSOR_64BIT && ((SR & status_FR) == 1)) ? 64 : 32)
-#endif
-
 /* Numbers are held in normalized form. The SINGLE and DOUBLE binary
    formats conform to ANSI/IEEE Std 754-1985. */
 /* SINGLE precision floating:
@@ -3873,7 +3608,7 @@ cop_sd(sd,coproc_num,coproc_reg)
   return(value);
 }
 
-static void
+void
 decode_coproc(sd,instruction)
      SIM_DESC sd;
      unsigned int instruction;
index f1dd362717ae9addd61b6d8d696f8ef335608dfd..78227497404a461dcbec4d2a0c0d3aa59cfb17b7 100644 (file)
@@ -36,9 +36,21 @@ with this program; if not, write to the Free Software Foundation, Inc.,
 
 #include "sim-basics.h"
 
+
+#if 0
+/* These are generated files.  */
+#include "itable.h"
+#include "idecode.h"
+#include "idecode.h"
+
 /* dummy - not used */
+typedef instruction_address sim_cia;
+static const sim_cia null_cia = {0}; /* dummy */
+#define NULL_CIA null_cia
+#else
 typedef int sim_cia;
-#define NULL_CIA 0
+#endif
+
 
 #include "sim-base.h"
 
@@ -78,6 +90,7 @@ typedef unsigned64 uword64;
 #endif
 
 
+
 /* Floating-point operations: */
 
 /* FPU registers must be one of the following types. All other values
@@ -114,6 +127,174 @@ unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
 unsigned64 convert PARAMS ((SIM_DESC sd, int rm, unsigned64 op, FP_formats from, FP_formats to));
 #define Convert(rm,op,from,to) convert(sd,rm,op,from,to)
 
+/* Macro to update FPSR condition-code field. This is complicated by
+   the fact that there is a hole in the index range of the bits within
+   the FCSR register. Also, the number of bits visible depends on the
+   MIPS ISA version being supported. */
+
+#define SETFCC(cc,v) {\
+  int bit = ((cc == 0) ? 23 : (24 + (cc)));\
+  FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
+}
+#define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1 : 0)
+
+/* This should be the COC1 value at the start of the preceding
+   instruction: */
+#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
+
+#if 1
+#define SizeFGR() (WITH_TARGET_WORD_BITSIZE)
+#else
+/* They depend on the CPU being simulated */
+#define SizeFGR() ((WITH_TARGET_WORD_BITSIZE == 64 && ((SR & status_FR) == 1)) ? 64 : 32)
+#endif
+
+/* Standard FCRS bits: */
+#define IR (0) /* Inexact Result */
+#define UF (1) /* UnderFlow */
+#define OF (2) /* OverFlow */
+#define DZ (3) /* Division by Zero */
+#define IO (4) /* Invalid Operation */
+#define UO (5) /* Unimplemented Operation */
+
+/* Get masks for individual flags: */
+#if 1 /* SAFE version */
+#define FP_FLAGS(b)  (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
+#define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
+#define FP_CAUSE(b)  (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
+#else
+#define FP_FLAGS(b)  (1 << ((b) + 2))
+#define FP_ENABLE(b) (1 << ((b) + 7))
+#define FP_CAUSE(b)  (1 << ((b) + 12))
+#endif
+
+#define FP_FS         (1 << 24) /* MIPS III onwards : Flush to Zero */
+
+#define FP_MASK_RM    (0x3)
+#define FP_SH_RM      (0)
+#define FP_RM_NEAREST (0) /* Round to nearest        (Round) */
+#define FP_RM_TOZERO  (1) /* Round to zero           (Trunc) */
+#define FP_RM_TOPINF  (2) /* Round to Plus infinity  (Ceil) */
+#define FP_RM_TOMINF  (3) /* Round to Minus infinity (Floor) */
+#define GETRM()       (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
+
+
+
+/* Integer ALU operations: */
+
+#include "sim-alu.h"
+
+#define ALU32_END(ANS) \
+  if (ALU32_HAD_OVERFLOW) \
+    SignalExceptionIntegerOverflow (); \
+  (ANS) = alu_overflow_val;
+
+
+#define ALU64_END(ANS) \
+  if (ALU64_HAD_OVERFLOW) \
+    SignalExceptionIntegerOverflow (); \
+  (ANS) = alu_val;
+
+/* start-sanitize-r5900 */
+
+#define BYTES_IN_MMI_REGS       (sizeof(signed_word) + sizeof(signed_word))
+#define HALFWORDS_IN_MMI_REGS   (BYTES_IN_MMI_REGS/2)
+#define WORDS_IN_MMI_REGS       (BYTES_IN_MMI_REGS/4)
+#define DOUBLEWORDS_IN_MMI_REGS (BYTES_IN_MMI_REGS/8)
+
+#define BYTES_IN_MIPS_REGS       (sizeof(signed_word))
+#define HALFWORDS_IN_MIPS_REGS   (BYTES_IN_MIPS_REGS/2)
+#define WORDS_IN_MIPS_REGS       (BYTES_IN_MIPS_REGS/4)
+#define DOUBLEWORDS_IN_MIPS_REGS (BYTES_IN_MIPS_REGS/8)
+
+/* SUB_REG_FETCH - return as lvalue some sub-part of a "register"
+   T  - type of the sub part
+   TC - # of T's in the mips part of the "register"
+   I  - index (from 0) of desired sub part
+   A  - low part of "register"
+   A1 - high part of register
+*/
+#define SUB_REG_FETCH(T,TC,A,A1,I) \
+(*(((I) < (TC) ? (T*)(A) : (T*)(A1)) \
+   + (CURRENT_HOST_BYTE_ORDER == BIG_ENDIAN \
+      ? ((TC) - 1 - (I) % (TC)) \
+      : ((I) % (TC)) \
+      ) \
+   ) \
+ )
+
+/* 
+GPR_<type>(R,I) - return, as lvalue, the I'th <type> of general register R 
+            where <type> has two letters:
+                  1 is S=signed or U=unsigned
+                  2 is B=byte H=halfword W=word D=doubleword 
+*/
+
+#define SUB_REG_SB(A,A1,I) SUB_REG_FETCH(signed8,  BYTES_IN_MIPS_REGS,       A, A1, I)
+#define SUB_REG_SH(A,A1,I) SUB_REG_FETCH(signed16, HALFWORDS_IN_MIPS_REGS,   A, A1, I)
+#define SUB_REG_SW(A,A1,I) SUB_REG_FETCH(signed32, WORDS_IN_MIPS_REGS,       A, A1, I)
+#define SUB_REG_SD(A,A1,I) SUB_REG_FETCH(signed64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
+
+#define SUB_REG_UB(A,A1,I) SUB_REG_FETCH(unsigned8,  BYTES_IN_MIPS_REGS,       A, A1, I)
+#define SUB_REG_UH(A,A1,I) SUB_REG_FETCH(unsigned16, HALFWORDS_IN_MIPS_REGS,   A, A1, I)
+#define SUB_REG_UW(A,A1,I) SUB_REG_FETCH(unsigned32, WORDS_IN_MIPS_REGS,       A, A1, I)
+#define SUB_REG_UD(A,A1,I) SUB_REG_FETCH(unsigned64, DOUBLEWORDS_IN_MIPS_REGS, A, A1, I)
+  
+#define GPR_SB(R,I) SUB_REG_SB(&REGISTERS[R], &REGISTERS1[R], I)
+#define GPR_SH(R,I) SUB_REG_SH(&REGISTERS[R], &REGISTERS1[R], I)
+#define GPR_SW(R,I) SUB_REG_SW(&REGISTERS[R], &REGISTERS1[R], I)
+#define GPR_SD(R,I) SUB_REG_SD(&REGISTERS[R], &REGISTERS1[R], I)
+
+#define GPR_UB(R,I) SUB_REG_UB(&REGISTERS[R], &REGISTERS1[R], I)
+#define GPR_UH(R,I) SUB_REG_UH(&REGISTERS[R], &REGISTERS1[R], I)
+#define GPR_UW(R,I) SUB_REG_UW(&REGISTERS[R], &REGISTERS1[R], I)
+#define GPR_UD(R,I) SUB_REG_UD(&REGISTERS[R], &REGISTERS1[R], I)
+
+
+#define RS_SB(I) SUB_REG_SB(&rs_reg, &rs_reg1, I)
+#define RS_SH(I) SUB_REG_SH(&rs_reg, &rs_reg1, I)
+#define RS_SW(I) SUB_REG_SW(&rs_reg, &rs_reg1, I)
+#define RS_SD(I) SUB_REG_SD(&rs_reg, &rs_reg1, I)
+
+#define RS_UB(I) SUB_REG_UB(&rs_reg, &rs_reg1, I)
+#define RS_UH(I) SUB_REG_UH(&rs_reg, &rs_reg1, I)
+#define RS_UW(I) SUB_REG_UW(&rs_reg, &rs_reg1, I)
+#define RS_UD(I) SUB_REG_UD(&rs_reg, &rs_reg1, I)
+
+#define RT_SB(I) SUB_REG_SB(&rt_reg, &rt_reg1, I)
+#define RT_SH(I) SUB_REG_SH(&rt_reg, &rt_reg1, I)
+#define RT_SW(I) SUB_REG_SW(&rt_reg, &rt_reg1, I)
+#define RT_SD(I) SUB_REG_SD(&rt_reg, &rt_reg1, I)
+
+#define RT_UB(I) SUB_REG_UB(&rt_reg, &rt_reg1, I)
+#define RT_UH(I) SUB_REG_UH(&rt_reg, &rt_reg1, I)
+#define RT_UW(I) SUB_REG_UW(&rt_reg, &rt_reg1, I)
+#define RT_UD(I) SUB_REG_UD(&rt_reg, &rt_reg1, I)
+
+
+
+#define LO_SB(I) SUB_REG_SB(&LO, &LO1, I)
+#define LO_SH(I) SUB_REG_SH(&LO, &LO1, I)
+#define LO_SW(I) SUB_REG_SW(&LO, &LO1, I)
+#define LO_SD(I) SUB_REG_SD(&LO, &LO1, I)
+
+#define LO_UB(I) SUB_REG_UB(&LO, &LO1, I)
+#define LO_UH(I) SUB_REG_UH(&LO, &LO1, I)
+#define LO_UW(I) SUB_REG_UW(&LO, &LO1, I)
+#define LO_UD(I) SUB_REG_UD(&LO, &LO1, I)
+
+#define HI_SB(I) SUB_REG_SB(&HI, &HI1, I)
+#define HI_SH(I) SUB_REG_SH(&HI, &HI1, I)
+#define HI_SW(I) SUB_REG_SW(&HI, &HI1, I)
+#define HI_SD(I) SUB_REG_SD(&HI, &HI1, I)
+
+#define HI_UB(I) SUB_REG_UB(&HI, &HI1, I)
+#define HI_UH(I) SUB_REG_UH(&HI, &HI1, I)
+#define HI_UW(I) SUB_REG_UW(&HI, &HI1, I)
+#define HI_UD(I) SUB_REG_UD(&HI, &HI1, I)
+
+/* end-sanitize-r5900 */
+
 
 
 
@@ -121,11 +302,16 @@ struct _sim_cpu {
 
 
   /* The following are internal simulator state variables: */
+  sim_cia cia;
+#define CPU_CIA(CPU) ((CPU)->cia)
   address_word ipc; /* internal Instruction PC */
   address_word dspc;  /* delay-slot PC */
 #define IPC ((STATE_CPU (sd,0))->ipc)
 #define DSPC ((STATE_CPU (sd,0))->dspc)
 
+#define NULLIFY_NIA() { nia.ip = cia.dp + 4; nia.dp = nia.ip += 4; }
+
+
 
   /* State of the simulator */
   unsigned int state;
@@ -133,6 +319,20 @@ struct _sim_cpu {
 #define STATE ((STATE_CPU (sd,0))->state)
 #define DSSTATE ((STATE_CPU (sd,0))->dsstate)
 
+/* Flags in the "state" variable: */
+#define simHALTEX       (1 << 2)  /* 0 = run; 1 = halt on exception */
+#define simHALTIN       (1 << 3)  /* 0 = run; 1 = halt on interrupt */
+#define simTRACE        (1 << 8)  /* 0 = do nothing; 1 = trace address activity */
+#define simPROFILE      (1 << 9)  /* 0 = do nothing; 1 = gather profiling samples */
+#define simPCOC0        (1 << 17) /* COC[1] from current */
+#define simPCOC1        (1 << 18) /* COC[1] from previous */
+#define simDELAYSLOT    (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
+#define simSKIPNEXT     (1 << 25) /* 0 = do nothing; 1 = skip instruction */
+#define simSIGINT      (1 << 28)  /* 0 = do nothing; 1 = SIGINT has occured */
+#define simJALDELAYSLOT        (1 << 29) /* 1 = in jal delay slot */
+
+
+
 
 /* This is nasty, since we have to rely on matching the register
    numbers used by GDB. Unfortunately, depending on the MIPS target
@@ -211,6 +411,22 @@ struct _sim_cpu {
 #define PENDING_SLOT_REG ((STATE_CPU (sd, 0))->pending_slot_reg)
 #define PENDING_SLOT_VALUE ((STATE_CPU (sd, 0))->pending_slot_value)
 
+  /* The following are not used for MIPS IV onwards: */
+#define PENDING_FILL(r,v) {\
+/* printf("DBG: FILL BEFORE pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL); */\
+                            if (PENDING_SLOT_REG[PENDING_IN] != (LAST_EMBED_REGNUM + 1))\
+                             sim_io_eprintf(sd,"Attempt to over-write pending value\n");\
+                            PENDING_SLOT_COUNT[PENDING_IN] = 2;\
+                            PENDING_SLOT_REG[PENDING_IN] = (r);\
+                            PENDING_SLOT_VALUE[PENDING_IN] = (uword64)(v);\
+/*printf("DBG: FILL        reg %d value = 0x%s\n",(r),pr_addr(v));*/\
+                            PENDING_TOTAL++;\
+                            PENDING_IN++;\
+                            if (PENDING_IN == PSLOTS)\
+                             PENDING_IN = 0;\
+/*printf("DBG: FILL AFTER  pending_in = %d, pending_out = %d, pending_total = %d\n",PENDING_IN,PENDING_OUT,PENDING_TOTAL);*/\
+                          }
+
 
   /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
      read-write instructions. It is set when a linked load occurs. It
@@ -318,6 +534,65 @@ struct sim_state {
 };
 
 
+
+/* Status information: */
+
+/* TODO : these should be the bitmasks for these bits within the
+   status register. At the moment the following are VR4300
+   bit-positions: */
+#define status_KSU_mask  (0x3)          /* mask for KSU bits */
+#define status_KSU_shift (3)            /* shift for field */
+#define ksu_kernel       (0x0)
+#define ksu_supervisor   (0x1)
+#define ksu_user         (0x2)
+#define ksu_unknown      (0x3)
+
+#define status_IE       (1 <<  0)      /* Interrupt enable */
+#define status_EXL      (1 <<  1)      /* Exception level */
+#define status_RE        (1 << 25)      /* Reverse Endian in user mode */
+#define status_FR        (1 << 26)      /* enables MIPS III additional FP registers */
+#define status_SR        (1 << 20)      /* soft reset or NMI */
+#define status_BEV       (1 << 22)      /* Location of general exception vectors */
+#define status_TS        (1 << 21)      /* TLB shutdown has occurred */
+#define status_ERL       (1 <<  2)      /* Error level */
+#define status_RP        (1 << 27)      /* Reduced Power mode */
+
+#define cause_BD        ((unsigned)1 << 31)     /* Exception in branch delay slot */
+
+/* NOTE: We keep the following status flags as bit values (1 for true,
+   0 for false). This allows them to be used in binary boolean
+   operations without worrying about what exactly the non-zero true
+   value is. */
+
+/* UserMode */
+#define UserMode        ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
+
+/* BigEndianMem */
+/* Hardware configuration. Affects endianness of LoadMemory and
+   StoreMemory and the endianness of Kernel and Supervisor mode
+   execution. The value is 0 for little-endian; 1 for big-endian. */
+#define BigEndianMem    (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
+/*(state & simBE) ? 1 : 0)*/
+
+/* ByteSwapMem */
+/* This is true if the host and target have different endianness.  */
+#define ByteSwapMem (CURRENT_TARGET_BYTE_ORDER != CURRENT_HOST_BYTE_ORDER)
+
+/* ReverseEndian */
+/* This mode is selected if in User mode with the RE bit being set in
+   SR (Status Register). It reverses the endianness of load and store
+   instructions. */
+#define ReverseEndian   (((SR & status_RE) && UserMode) ? 1 : 0)
+
+/* BigEndianCPU */
+/* The endianness for load and store instructions (0=little;1=big). In
+   User mode this endianness may be switched by setting the state_RE
+   bit in the SR register. Thus, BigEndianCPU may be computed as
+   (BigEndianMem EOR ReverseEndian). */
+#define BigEndianCPU    (BigEndianMem ^ ReverseEndian) /* Already bits */
+
+
+
 /* Exceptions: */
 
 /* NOTE: These numbers depend on the processor architecture being
@@ -369,10 +644,43 @@ uword64 cop_sd PARAMS ((SIM_DESC sd, int coproc_num, int coproc_reg));
 #define COP_SW(coproc_num,coproc_reg) cop_sw(sd,coproc_num,coproc_reg)
 #define COP_SD(coproc_num,coproc_reg) cop_sd(sd,coproc_num,coproc_reg)
 
+void decode_coproc PARAMS ((SIM_DESC sd,unsigned int instruction));
+#define DecodeCoproc(instruction) decode_coproc(sd, (instruction))
+
 
 
 /* Memory accesses */
 
+/* The following are generic to all versions of the MIPS architecture
+   to date: */
+
+/* Memory Access Types (for CCA): */
+#define Uncached                (0)
+#define CachedNoncoherent       (1)
+#define CachedCoherent          (2)
+#define Cached                  (3)
+
+#define isINSTRUCTION   (1 == 0) /* FALSE */
+#define isDATA          (1 == 1) /* TRUE */
+#define isLOAD          (1 == 0) /* FALSE */
+#define isSTORE         (1 == 1) /* TRUE */
+#define isREAL          (1 == 0) /* FALSE */
+#define isRAW           (1 == 1) /* TRUE */
+#define isTARGET        (1 == 0) /* FALSE */
+#define isHOST          (1 == 1) /* TRUE */
+
+/* The "AccessLength" specifications for Loads and Stores. NOTE: This
+   is the number of bytes minus 1. */
+#define AccessLength_BYTE       (0)
+#define AccessLength_HALFWORD   (1)
+#define AccessLength_TRIPLEBYTE (2)
+#define AccessLength_WORD       (3)
+#define AccessLength_QUINTIBYTE (4)
+#define AccessLength_SEXTIBYTE  (5)
+#define AccessLength_SEPTIBYTE  (6)
+#define AccessLength_DOUBLEWORD (7)
+#define AccessLength_QUADWORD   (15)
+
 int address_translation PARAMS ((SIM_DESC sd, uword64 vAddr, int IorD, int LorS, uword64 *pAddr, int *CCA, int host, int raw));
 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
 address_translation(sd, vAddr,IorD,LorS,pAddr,CCA,host,raw)
@@ -388,4 +696,13 @@ store_memory(sd,CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw)
 void cache_op PARAMS ((SIM_DESC sd, int op, uword64 pAddr, uword64 vAddr, unsigned int instruction));
 #define CacheOp(op,pAddr,vAddr,instruction) cache_op(sd,op,pAddr,vAddr,instruction)
 
+void sync_operation PARAMS ((SIM_DESC sd, int stype));
+#define SyncOperation(stype) sync_operation (sd, (stype))
+
+void prefetch PARAMS ((SIM_DESC sd, int CCA, uword64 pAddr, uword64 vAddr, int DATA, int hint));
+#define Prefetch(CCA,pAddr,vAddr,DATA,hint) prefetch(sd,CCA,pAddr,vAddr,DATA,hint)
+
+#define IMEM(CIA) 0 /* FIXME */
+
+
 #endif
This page took 0.038889 seconds and 4 git commands to generate.