From: Ingo Molnar Date: Wed, 6 Nov 2013 06:50:37 +0000 (+0100) Subject: Merge branch 'sched/core' into core/locking, to prepare the kernel/locking/ file... X-Git-Url: http://drtracing.org/?a=commitdiff_plain;h=c90423d1de12fbeaf0c898e1db0e962de347302b;p=deliverable%2Flinux.git Merge branch 'sched/core' into core/locking, to prepare the kernel/locking/ file move Conflicts: kernel/Makefile There are conflicts in kernel/Makefile due to file moving in the scheduler tree - resolve them. Signed-off-by: Ingo Molnar --- c90423d1de12fbeaf0c898e1db0e962de347302b diff --cc kernel/Makefile index f99d908b5550,b3d51e229356..a4d1aa8da9bc --- a/kernel/Makefile +++ b/kernel/Makefile @@@ -6,9 -6,9 +6,9 @@@ obj-y = fork.o exec_domain.o panic. cpu.o exit.o itimer.o time.o softirq.o resource.o \ sysctl.o sysctl_binary.o capability.o ptrace.o timer.o user.o \ signal.o sys.o kmod.o workqueue.o pid.o task_work.o \ - rcupdate.o extable.o params.o posix-timers.o \ + extable.o params.o posix-timers.o \ - kthread.o wait.o sys_ni.o posix-cpu-timers.o mutex.o \ + kthread.o sys_ni.o posix-cpu-timers.o mutex.o \ - hrtimer.o rwsem.o nsproxy.o srcu.o semaphore.o \ + hrtimer.o rwsem.o nsproxy.o semaphore.o \ notifier.o ksysfs.o cred.o reboot.o \ async.o range.o groups.o lglock.o smpboot.o diff --cc kernel/rcu/tree.c index 8a2c81e86dda,000000000000..4c06ddfea7cd mode 100644,000000..100644 --- a/kernel/rcu/tree.c +++ b/kernel/rcu/tree.c @@@ -1,3403 -1,0 +1,3416 @@@ +/* + * Read-Copy Update mechanism for mutual exclusion + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + * Copyright IBM Corporation, 2008 + * + * Authors: Dipankar Sarma + * Manfred Spraul + * Paul E. McKenney Hierarchical version + * + * Based on the original work by Paul McKenney + * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. + * + * For detailed explanation of Read-Copy Update mechanism see - + * Documentation/RCU + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "tree.h" +#include + +#include "rcu.h" + +MODULE_ALIAS("rcutree"); +#ifdef MODULE_PARAM_PREFIX +#undef MODULE_PARAM_PREFIX +#endif +#define MODULE_PARAM_PREFIX "rcutree." + +/* Data structures. */ + +static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; +static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; + +/* + * In order to export the rcu_state name to the tracing tools, it + * needs to be added in the __tracepoint_string section. + * This requires defining a separate variable tp__varname + * that points to the string being used, and this will allow + * the tracing userspace tools to be able to decipher the string + * address to the matching string. + */ +#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ +static char sname##_varname[] = #sname; \ +static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \ +struct rcu_state sname##_state = { \ + .level = { &sname##_state.node[0] }, \ + .call = cr, \ + .fqs_state = RCU_GP_IDLE, \ + .gpnum = 0UL - 300UL, \ + .completed = 0UL - 300UL, \ + .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ + .orphan_nxttail = &sname##_state.orphan_nxtlist, \ + .orphan_donetail = &sname##_state.orphan_donelist, \ + .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ + .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \ + .name = sname##_varname, \ + .abbr = sabbr, \ +}; \ +DEFINE_PER_CPU(struct rcu_data, sname##_data) + +RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); +RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); + +static struct rcu_state *rcu_state; +LIST_HEAD(rcu_struct_flavors); + +/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */ +static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF; +module_param(rcu_fanout_leaf, int, 0444); +int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; +static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */ + NUM_RCU_LVL_0, + NUM_RCU_LVL_1, + NUM_RCU_LVL_2, + NUM_RCU_LVL_3, + NUM_RCU_LVL_4, +}; +int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ + +/* + * The rcu_scheduler_active variable transitions from zero to one just + * before the first task is spawned. So when this variable is zero, RCU + * can assume that there is but one task, allowing RCU to (for example) + * optimize synchronize_sched() to a simple barrier(). When this variable + * is one, RCU must actually do all the hard work required to detect real + * grace periods. This variable is also used to suppress boot-time false + * positives from lockdep-RCU error checking. + */ +int rcu_scheduler_active __read_mostly; +EXPORT_SYMBOL_GPL(rcu_scheduler_active); + +/* + * The rcu_scheduler_fully_active variable transitions from zero to one + * during the early_initcall() processing, which is after the scheduler + * is capable of creating new tasks. So RCU processing (for example, + * creating tasks for RCU priority boosting) must be delayed until after + * rcu_scheduler_fully_active transitions from zero to one. We also + * currently delay invocation of any RCU callbacks until after this point. + * + * It might later prove better for people registering RCU callbacks during + * early boot to take responsibility for these callbacks, but one step at + * a time. + */ +static int rcu_scheduler_fully_active __read_mostly; + +#ifdef CONFIG_RCU_BOOST + +/* + * Control variables for per-CPU and per-rcu_node kthreads. These + * handle all flavors of RCU. + */ +static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); +DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); +DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); +DEFINE_PER_CPU(char, rcu_cpu_has_work); + +#endif /* #ifdef CONFIG_RCU_BOOST */ + +static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); +static void invoke_rcu_core(void); +static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); + +/* + * Track the rcutorture test sequence number and the update version + * number within a given test. The rcutorture_testseq is incremented + * on every rcutorture module load and unload, so has an odd value + * when a test is running. The rcutorture_vernum is set to zero + * when rcutorture starts and is incremented on each rcutorture update. + * These variables enable correlating rcutorture output with the + * RCU tracing information. + */ +unsigned long rcutorture_testseq; +unsigned long rcutorture_vernum; + +/* + * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s + * permit this function to be invoked without holding the root rcu_node + * structure's ->lock, but of course results can be subject to change. + */ +static int rcu_gp_in_progress(struct rcu_state *rsp) +{ + return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); +} + +/* + * Note a quiescent state. Because we do not need to know + * how many quiescent states passed, just if there was at least + * one since the start of the grace period, this just sets a flag. + * The caller must have disabled preemption. + */ +void rcu_sched_qs(int cpu) +{ + struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu); + + if (rdp->passed_quiesce == 0) + trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs")); + rdp->passed_quiesce = 1; +} + +void rcu_bh_qs(int cpu) +{ + struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); + + if (rdp->passed_quiesce == 0) + trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs")); + rdp->passed_quiesce = 1; +} + +/* + * Note a context switch. This is a quiescent state for RCU-sched, + * and requires special handling for preemptible RCU. + * The caller must have disabled preemption. + */ +void rcu_note_context_switch(int cpu) +{ + trace_rcu_utilization(TPS("Start context switch")); + rcu_sched_qs(cpu); + rcu_preempt_note_context_switch(cpu); + trace_rcu_utilization(TPS("End context switch")); +} +EXPORT_SYMBOL_GPL(rcu_note_context_switch); + +static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { + .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, + .dynticks = ATOMIC_INIT(1), +#ifdef CONFIG_NO_HZ_FULL_SYSIDLE + .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, + .dynticks_idle = ATOMIC_INIT(1), +#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ +}; + +static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ +static long qhimark = 10000; /* If this many pending, ignore blimit. */ +static long qlowmark = 100; /* Once only this many pending, use blimit. */ + +module_param(blimit, long, 0444); +module_param(qhimark, long, 0444); +module_param(qlowmark, long, 0444); + +static ulong jiffies_till_first_fqs = ULONG_MAX; +static ulong jiffies_till_next_fqs = ULONG_MAX; + +module_param(jiffies_till_first_fqs, ulong, 0644); +module_param(jiffies_till_next_fqs, ulong, 0644); + +static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, + struct rcu_data *rdp); +static void force_qs_rnp(struct rcu_state *rsp, + int (*f)(struct rcu_data *rsp, bool *isidle, + unsigned long *maxj), + bool *isidle, unsigned long *maxj); +static void force_quiescent_state(struct rcu_state *rsp); +static int rcu_pending(int cpu); + +/* + * Return the number of RCU-sched batches processed thus far for debug & stats. + */ +long rcu_batches_completed_sched(void) +{ + return rcu_sched_state.completed; +} +EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); + +/* + * Return the number of RCU BH batches processed thus far for debug & stats. + */ +long rcu_batches_completed_bh(void) +{ + return rcu_bh_state.completed; +} +EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); + +/* + * Force a quiescent state for RCU BH. + */ +void rcu_bh_force_quiescent_state(void) +{ + force_quiescent_state(&rcu_bh_state); +} +EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); + +/* + * Record the number of times rcutorture tests have been initiated and + * terminated. This information allows the debugfs tracing stats to be + * correlated to the rcutorture messages, even when the rcutorture module + * is being repeatedly loaded and unloaded. In other words, we cannot + * store this state in rcutorture itself. + */ +void rcutorture_record_test_transition(void) +{ + rcutorture_testseq++; + rcutorture_vernum = 0; +} +EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); + +/* + * Record the number of writer passes through the current rcutorture test. + * This is also used to correlate debugfs tracing stats with the rcutorture + * messages. + */ +void rcutorture_record_progress(unsigned long vernum) +{ + rcutorture_vernum++; +} +EXPORT_SYMBOL_GPL(rcutorture_record_progress); + +/* + * Force a quiescent state for RCU-sched. + */ +void rcu_sched_force_quiescent_state(void) +{ + force_quiescent_state(&rcu_sched_state); +} +EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); + +/* + * Does the CPU have callbacks ready to be invoked? + */ +static int +cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) +{ + return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && + rdp->nxttail[RCU_DONE_TAIL] != NULL; +} + +/* + * Does the current CPU require a not-yet-started grace period? + * The caller must have disabled interrupts to prevent races with + * normal callback registry. + */ +static int +cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) +{ + int i; + + if (rcu_gp_in_progress(rsp)) + return 0; /* No, a grace period is already in progress. */ + if (rcu_nocb_needs_gp(rsp)) + return 1; /* Yes, a no-CBs CPU needs one. */ + if (!rdp->nxttail[RCU_NEXT_TAIL]) + return 0; /* No, this is a no-CBs (or offline) CPU. */ + if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) + return 1; /* Yes, this CPU has newly registered callbacks. */ + for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) + if (rdp->nxttail[i - 1] != rdp->nxttail[i] && + ULONG_CMP_LT(ACCESS_ONCE(rsp->completed), + rdp->nxtcompleted[i])) + return 1; /* Yes, CBs for future grace period. */ + return 0; /* No grace period needed. */ +} + +/* + * Return the root node of the specified rcu_state structure. + */ +static struct rcu_node *rcu_get_root(struct rcu_state *rsp) +{ + return &rsp->node[0]; +} + +/* + * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state + * + * If the new value of the ->dynticks_nesting counter now is zero, + * we really have entered idle, and must do the appropriate accounting. + * The caller must have disabled interrupts. + */ +static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval, + bool user) +{ + trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); + if (!user && !is_idle_task(current)) { + struct task_struct *idle __maybe_unused = + idle_task(smp_processor_id()); + + trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); + ftrace_dump(DUMP_ORIG); + WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", + current->pid, current->comm, + idle->pid, idle->comm); /* must be idle task! */ + } + rcu_prepare_for_idle(smp_processor_id()); + /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ + smp_mb__before_atomic_inc(); /* See above. */ + atomic_inc(&rdtp->dynticks); + smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */ + WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); + + /* + * It is illegal to enter an extended quiescent state while + * in an RCU read-side critical section. + */ + rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), + "Illegal idle entry in RCU read-side critical section."); + rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), + "Illegal idle entry in RCU-bh read-side critical section."); + rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), + "Illegal idle entry in RCU-sched read-side critical section."); +} + +/* + * Enter an RCU extended quiescent state, which can be either the + * idle loop or adaptive-tickless usermode execution. + */ +static void rcu_eqs_enter(bool user) +{ + long long oldval; + struct rcu_dynticks *rdtp; + + rdtp = this_cpu_ptr(&rcu_dynticks); + oldval = rdtp->dynticks_nesting; + WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); + if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) + rdtp->dynticks_nesting = 0; + else + rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; + rcu_eqs_enter_common(rdtp, oldval, user); +} + +/** + * rcu_idle_enter - inform RCU that current CPU is entering idle + * + * Enter idle mode, in other words, -leave- the mode in which RCU + * read-side critical sections can occur. (Though RCU read-side + * critical sections can occur in irq handlers in idle, a possibility + * handled by irq_enter() and irq_exit().) + * + * We crowbar the ->dynticks_nesting field to zero to allow for + * the possibility of usermode upcalls having messed up our count + * of interrupt nesting level during the prior busy period. + */ +void rcu_idle_enter(void) +{ + unsigned long flags; + + local_irq_save(flags); + rcu_eqs_enter(false); + rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0); + local_irq_restore(flags); +} +EXPORT_SYMBOL_GPL(rcu_idle_enter); + +#ifdef CONFIG_RCU_USER_QS +/** + * rcu_user_enter - inform RCU that we are resuming userspace. + * + * Enter RCU idle mode right before resuming userspace. No use of RCU + * is permitted between this call and rcu_user_exit(). This way the + * CPU doesn't need to maintain the tick for RCU maintenance purposes + * when the CPU runs in userspace. + */ +void rcu_user_enter(void) +{ + rcu_eqs_enter(1); +} +#endif /* CONFIG_RCU_USER_QS */ + +/** + * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle + * + * Exit from an interrupt handler, which might possibly result in entering + * idle mode, in other words, leaving the mode in which read-side critical + * sections can occur. + * + * This code assumes that the idle loop never does anything that might + * result in unbalanced calls to irq_enter() and irq_exit(). If your + * architecture violates this assumption, RCU will give you what you + * deserve, good and hard. But very infrequently and irreproducibly. + * + * Use things like work queues to work around this limitation. + * + * You have been warned. + */ +void rcu_irq_exit(void) +{ + unsigned long flags; + long long oldval; + struct rcu_dynticks *rdtp; + + local_irq_save(flags); + rdtp = this_cpu_ptr(&rcu_dynticks); + oldval = rdtp->dynticks_nesting; + rdtp->dynticks_nesting--; + WARN_ON_ONCE(rdtp->dynticks_nesting < 0); + if (rdtp->dynticks_nesting) + trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); + else + rcu_eqs_enter_common(rdtp, oldval, true); + rcu_sysidle_enter(rdtp, 1); + local_irq_restore(flags); +} + +/* + * rcu_eqs_exit_common - current CPU moving away from extended quiescent state + * + * If the new value of the ->dynticks_nesting counter was previously zero, + * we really have exited idle, and must do the appropriate accounting. + * The caller must have disabled interrupts. + */ +static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval, + int user) +{ + smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */ + atomic_inc(&rdtp->dynticks); + /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ + smp_mb__after_atomic_inc(); /* See above. */ + WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); + rcu_cleanup_after_idle(smp_processor_id()); + trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); + if (!user && !is_idle_task(current)) { + struct task_struct *idle __maybe_unused = + idle_task(smp_processor_id()); + + trace_rcu_dyntick(TPS("Error on exit: not idle task"), + oldval, rdtp->dynticks_nesting); + ftrace_dump(DUMP_ORIG); + WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", + current->pid, current->comm, + idle->pid, idle->comm); /* must be idle task! */ + } +} + +/* + * Exit an RCU extended quiescent state, which can be either the + * idle loop or adaptive-tickless usermode execution. + */ +static void rcu_eqs_exit(bool user) +{ + struct rcu_dynticks *rdtp; + long long oldval; + + rdtp = this_cpu_ptr(&rcu_dynticks); + oldval = rdtp->dynticks_nesting; + WARN_ON_ONCE(oldval < 0); + if (oldval & DYNTICK_TASK_NEST_MASK) + rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; + else + rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; + rcu_eqs_exit_common(rdtp, oldval, user); +} + +/** + * rcu_idle_exit - inform RCU that current CPU is leaving idle + * + * Exit idle mode, in other words, -enter- the mode in which RCU + * read-side critical sections can occur. + * + * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to + * allow for the possibility of usermode upcalls messing up our count + * of interrupt nesting level during the busy period that is just + * now starting. + */ +void rcu_idle_exit(void) +{ + unsigned long flags; + + local_irq_save(flags); + rcu_eqs_exit(false); + rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0); + local_irq_restore(flags); +} +EXPORT_SYMBOL_GPL(rcu_idle_exit); + +#ifdef CONFIG_RCU_USER_QS +/** + * rcu_user_exit - inform RCU that we are exiting userspace. + * + * Exit RCU idle mode while entering the kernel because it can + * run a RCU read side critical section anytime. + */ +void rcu_user_exit(void) +{ + rcu_eqs_exit(1); +} +#endif /* CONFIG_RCU_USER_QS */ + +/** + * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle + * + * Enter an interrupt handler, which might possibly result in exiting + * idle mode, in other words, entering the mode in which read-side critical + * sections can occur. + * + * Note that the Linux kernel is fully capable of entering an interrupt + * handler that it never exits, for example when doing upcalls to + * user mode! This code assumes that the idle loop never does upcalls to + * user mode. If your architecture does do upcalls from the idle loop (or + * does anything else that results in unbalanced calls to the irq_enter() + * and irq_exit() functions), RCU will give you what you deserve, good + * and hard. But very infrequently and irreproducibly. + * + * Use things like work queues to work around this limitation. + * + * You have been warned. + */ +void rcu_irq_enter(void) +{ + unsigned long flags; + struct rcu_dynticks *rdtp; + long long oldval; + + local_irq_save(flags); + rdtp = this_cpu_ptr(&rcu_dynticks); + oldval = rdtp->dynticks_nesting; + rdtp->dynticks_nesting++; + WARN_ON_ONCE(rdtp->dynticks_nesting == 0); + if (oldval) + trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); + else + rcu_eqs_exit_common(rdtp, oldval, true); + rcu_sysidle_exit(rdtp, 1); + local_irq_restore(flags); +} + +/** + * rcu_nmi_enter - inform RCU of entry to NMI context + * + * If the CPU was idle with dynamic ticks active, and there is no + * irq handler running, this updates rdtp->dynticks_nmi to let the + * RCU grace-period handling know that the CPU is active. + */ +void rcu_nmi_enter(void) +{ + struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); + + if (rdtp->dynticks_nmi_nesting == 0 && + (atomic_read(&rdtp->dynticks) & 0x1)) + return; + rdtp->dynticks_nmi_nesting++; + smp_mb__before_atomic_inc(); /* Force delay from prior write. */ + atomic_inc(&rdtp->dynticks); + /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ + smp_mb__after_atomic_inc(); /* See above. */ + WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); +} + +/** + * rcu_nmi_exit - inform RCU of exit from NMI context + * + * If the CPU was idle with dynamic ticks active, and there is no + * irq handler running, this updates rdtp->dynticks_nmi to let the + * RCU grace-period handling know that the CPU is no longer active. + */ +void rcu_nmi_exit(void) +{ + struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); + + if (rdtp->dynticks_nmi_nesting == 0 || + --rdtp->dynticks_nmi_nesting != 0) + return; + /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ + smp_mb__before_atomic_inc(); /* See above. */ + atomic_inc(&rdtp->dynticks); + smp_mb__after_atomic_inc(); /* Force delay to next write. */ + WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); +} + +/** + * __rcu_is_watching - are RCU read-side critical sections safe? + * + * Return true if RCU is watching the running CPU, which means that + * this CPU can safely enter RCU read-side critical sections. Unlike + * rcu_is_watching(), the caller of __rcu_is_watching() must have at + * least disabled preemption. + */ +bool __rcu_is_watching(void) +{ + return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; +} + +/** + * rcu_is_watching - see if RCU thinks that the current CPU is idle + * + * If the current CPU is in its idle loop and is neither in an interrupt + * or NMI handler, return true. + */ +bool rcu_is_watching(void) +{ + int ret; + + preempt_disable(); + ret = __rcu_is_watching(); + preempt_enable(); + return ret; +} +EXPORT_SYMBOL_GPL(rcu_is_watching); + +#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) + +/* + * Is the current CPU online? Disable preemption to avoid false positives + * that could otherwise happen due to the current CPU number being sampled, + * this task being preempted, its old CPU being taken offline, resuming + * on some other CPU, then determining that its old CPU is now offline. + * It is OK to use RCU on an offline processor during initial boot, hence + * the check for rcu_scheduler_fully_active. Note also that it is OK + * for a CPU coming online to use RCU for one jiffy prior to marking itself + * online in the cpu_online_mask. Similarly, it is OK for a CPU going + * offline to continue to use RCU for one jiffy after marking itself + * offline in the cpu_online_mask. This leniency is necessary given the + * non-atomic nature of the online and offline processing, for example, + * the fact that a CPU enters the scheduler after completing the CPU_DYING + * notifiers. + * + * This is also why RCU internally marks CPUs online during the + * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. + * + * Disable checking if in an NMI handler because we cannot safely report + * errors from NMI handlers anyway. + */ +bool rcu_lockdep_current_cpu_online(void) +{ + struct rcu_data *rdp; + struct rcu_node *rnp; + bool ret; + + if (in_nmi()) + return 1; + preempt_disable(); + rdp = this_cpu_ptr(&rcu_sched_data); + rnp = rdp->mynode; + ret = (rdp->grpmask & rnp->qsmaskinit) || + !rcu_scheduler_fully_active; + preempt_enable(); + return ret; +} +EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); + +#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ + +/** + * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle + * + * If the current CPU is idle or running at a first-level (not nested) + * interrupt from idle, return true. The caller must have at least + * disabled preemption. + */ +static int rcu_is_cpu_rrupt_from_idle(void) +{ + return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; +} + +/* + * Snapshot the specified CPU's dynticks counter so that we can later + * credit them with an implicit quiescent state. Return 1 if this CPU + * is in dynticks idle mode, which is an extended quiescent state. + */ +static int dyntick_save_progress_counter(struct rcu_data *rdp, + bool *isidle, unsigned long *maxj) +{ + rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); + rcu_sysidle_check_cpu(rdp, isidle, maxj); + return (rdp->dynticks_snap & 0x1) == 0; +} + +/* + * Return true if the specified CPU has passed through a quiescent + * state by virtue of being in or having passed through an dynticks + * idle state since the last call to dyntick_save_progress_counter() + * for this same CPU, or by virtue of having been offline. + */ +static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, + bool *isidle, unsigned long *maxj) +{ + unsigned int curr; + unsigned int snap; + + curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); + snap = (unsigned int)rdp->dynticks_snap; + + /* + * If the CPU passed through or entered a dynticks idle phase with + * no active irq/NMI handlers, then we can safely pretend that the CPU + * already acknowledged the request to pass through a quiescent + * state. Either way, that CPU cannot possibly be in an RCU + * read-side critical section that started before the beginning + * of the current RCU grace period. + */ + if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { + trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); + rdp->dynticks_fqs++; + return 1; + } + + /* + * Check for the CPU being offline, but only if the grace period + * is old enough. We don't need to worry about the CPU changing + * state: If we see it offline even once, it has been through a + * quiescent state. + * + * The reason for insisting that the grace period be at least + * one jiffy old is that CPUs that are not quite online and that + * have just gone offline can still execute RCU read-side critical + * sections. + */ + if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) + return 0; /* Grace period is not old enough. */ + barrier(); + if (cpu_is_offline(rdp->cpu)) { + trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); + rdp->offline_fqs++; + return 1; + } + + /* + * There is a possibility that a CPU in adaptive-ticks state + * might run in the kernel with the scheduling-clock tick disabled + * for an extended time period. Invoke rcu_kick_nohz_cpu() to + * force the CPU to restart the scheduling-clock tick in this + * CPU is in this state. + */ + rcu_kick_nohz_cpu(rdp->cpu); + + return 0; +} + +static void record_gp_stall_check_time(struct rcu_state *rsp) +{ + unsigned long j = ACCESS_ONCE(jiffies); + + rsp->gp_start = j; + smp_wmb(); /* Record start time before stall time. */ + rsp->jiffies_stall = j + rcu_jiffies_till_stall_check(); +} + +/* + * Dump stacks of all tasks running on stalled CPUs. This is a fallback + * for architectures that do not implement trigger_all_cpu_backtrace(). + * The NMI-triggered stack traces are more accurate because they are + * printed by the target CPU. + */ +static void rcu_dump_cpu_stacks(struct rcu_state *rsp) +{ + int cpu; + unsigned long flags; + struct rcu_node *rnp; + + rcu_for_each_leaf_node(rsp, rnp) { + raw_spin_lock_irqsave(&rnp->lock, flags); + if (rnp->qsmask != 0) { + for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) + if (rnp->qsmask & (1UL << cpu)) + dump_cpu_task(rnp->grplo + cpu); + } + raw_spin_unlock_irqrestore(&rnp->lock, flags); + } +} + +static void print_other_cpu_stall(struct rcu_state *rsp) +{ + int cpu; + long delta; + unsigned long flags; + int ndetected = 0; + struct rcu_node *rnp = rcu_get_root(rsp); + long totqlen = 0; + + /* Only let one CPU complain about others per time interval. */ + + raw_spin_lock_irqsave(&rnp->lock, flags); + delta = jiffies - rsp->jiffies_stall; + if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { + raw_spin_unlock_irqrestore(&rnp->lock, flags); + return; + } + rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; + raw_spin_unlock_irqrestore(&rnp->lock, flags); + + /* + * OK, time to rat on our buddy... + * See Documentation/RCU/stallwarn.txt for info on how to debug + * RCU CPU stall warnings. + */ + pr_err("INFO: %s detected stalls on CPUs/tasks:", + rsp->name); + print_cpu_stall_info_begin(); + rcu_for_each_leaf_node(rsp, rnp) { + raw_spin_lock_irqsave(&rnp->lock, flags); + ndetected += rcu_print_task_stall(rnp); + if (rnp->qsmask != 0) { + for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) + if (rnp->qsmask & (1UL << cpu)) { + print_cpu_stall_info(rsp, + rnp->grplo + cpu); + ndetected++; + } + } + raw_spin_unlock_irqrestore(&rnp->lock, flags); + } + + /* + * Now rat on any tasks that got kicked up to the root rcu_node + * due to CPU offlining. + */ + rnp = rcu_get_root(rsp); + raw_spin_lock_irqsave(&rnp->lock, flags); + ndetected += rcu_print_task_stall(rnp); + raw_spin_unlock_irqrestore(&rnp->lock, flags); + + print_cpu_stall_info_end(); + for_each_possible_cpu(cpu) + totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; + pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n", + smp_processor_id(), (long)(jiffies - rsp->gp_start), + rsp->gpnum, rsp->completed, totqlen); + if (ndetected == 0) + pr_err("INFO: Stall ended before state dump start\n"); + else if (!trigger_all_cpu_backtrace()) + rcu_dump_cpu_stacks(rsp); + + /* Complain about tasks blocking the grace period. */ + + rcu_print_detail_task_stall(rsp); + + force_quiescent_state(rsp); /* Kick them all. */ +} + ++/* ++ * This function really isn't for public consumption, but RCU is special in ++ * that context switches can allow the state machine to make progress. ++ */ ++extern void resched_cpu(int cpu); ++ +static void print_cpu_stall(struct rcu_state *rsp) +{ + int cpu; + unsigned long flags; + struct rcu_node *rnp = rcu_get_root(rsp); + long totqlen = 0; + + /* + * OK, time to rat on ourselves... + * See Documentation/RCU/stallwarn.txt for info on how to debug + * RCU CPU stall warnings. + */ + pr_err("INFO: %s self-detected stall on CPU", rsp->name); + print_cpu_stall_info_begin(); + print_cpu_stall_info(rsp, smp_processor_id()); + print_cpu_stall_info_end(); + for_each_possible_cpu(cpu) + totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; + pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n", + jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen); + if (!trigger_all_cpu_backtrace()) + dump_stack(); + + raw_spin_lock_irqsave(&rnp->lock, flags); + if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall)) + rsp->jiffies_stall = jiffies + + 3 * rcu_jiffies_till_stall_check() + 3; + raw_spin_unlock_irqrestore(&rnp->lock, flags); + - set_need_resched(); /* kick ourselves to get things going. */ ++ /* ++ * Attempt to revive the RCU machinery by forcing a context switch. ++ * ++ * A context switch would normally allow the RCU state machine to make ++ * progress and it could be we're stuck in kernel space without context ++ * switches for an entirely unreasonable amount of time. ++ */ ++ resched_cpu(smp_processor_id()); +} + +static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) +{ + unsigned long completed; + unsigned long gpnum; + unsigned long gps; + unsigned long j; + unsigned long js; + struct rcu_node *rnp; + + if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp)) + return; + j = ACCESS_ONCE(jiffies); + + /* + * Lots of memory barriers to reject false positives. + * + * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, + * then rsp->gp_start, and finally rsp->completed. These values + * are updated in the opposite order with memory barriers (or + * equivalent) during grace-period initialization and cleanup. + * Now, a false positive can occur if we get an new value of + * rsp->gp_start and a old value of rsp->jiffies_stall. But given + * the memory barriers, the only way that this can happen is if one + * grace period ends and another starts between these two fetches. + * Detect this by comparing rsp->completed with the previous fetch + * from rsp->gpnum. + * + * Given this check, comparisons of jiffies, rsp->jiffies_stall, + * and rsp->gp_start suffice to forestall false positives. + */ + gpnum = ACCESS_ONCE(rsp->gpnum); + smp_rmb(); /* Pick up ->gpnum first... */ + js = ACCESS_ONCE(rsp->jiffies_stall); + smp_rmb(); /* ...then ->jiffies_stall before the rest... */ + gps = ACCESS_ONCE(rsp->gp_start); + smp_rmb(); /* ...and finally ->gp_start before ->completed. */ + completed = ACCESS_ONCE(rsp->completed); + if (ULONG_CMP_GE(completed, gpnum) || + ULONG_CMP_LT(j, js) || + ULONG_CMP_GE(gps, js)) + return; /* No stall or GP completed since entering function. */ + rnp = rdp->mynode; + if (rcu_gp_in_progress(rsp) && + (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) { + + /* We haven't checked in, so go dump stack. */ + print_cpu_stall(rsp); + + } else if (rcu_gp_in_progress(rsp) && + ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { + + /* They had a few time units to dump stack, so complain. */ + print_other_cpu_stall(rsp); + } +} + +/** + * rcu_cpu_stall_reset - prevent further stall warnings in current grace period + * + * Set the stall-warning timeout way off into the future, thus preventing + * any RCU CPU stall-warning messages from appearing in the current set of + * RCU grace periods. + * + * The caller must disable hard irqs. + */ +void rcu_cpu_stall_reset(void) +{ + struct rcu_state *rsp; + + for_each_rcu_flavor(rsp) + rsp->jiffies_stall = jiffies + ULONG_MAX / 2; +} + +/* + * Initialize the specified rcu_data structure's callback list to empty. + */ +static void init_callback_list(struct rcu_data *rdp) +{ + int i; + + if (init_nocb_callback_list(rdp)) + return; + rdp->nxtlist = NULL; + for (i = 0; i < RCU_NEXT_SIZE; i++) + rdp->nxttail[i] = &rdp->nxtlist; +} + +/* + * Determine the value that ->completed will have at the end of the + * next subsequent grace period. This is used to tag callbacks so that + * a CPU can invoke callbacks in a timely fashion even if that CPU has + * been dyntick-idle for an extended period with callbacks under the + * influence of RCU_FAST_NO_HZ. + * + * The caller must hold rnp->lock with interrupts disabled. + */ +static unsigned long rcu_cbs_completed(struct rcu_state *rsp, + struct rcu_node *rnp) +{ + /* + * If RCU is idle, we just wait for the next grace period. + * But we can only be sure that RCU is idle if we are looking + * at the root rcu_node structure -- otherwise, a new grace + * period might have started, but just not yet gotten around + * to initializing the current non-root rcu_node structure. + */ + if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) + return rnp->completed + 1; + + /* + * Otherwise, wait for a possible partial grace period and + * then the subsequent full grace period. + */ + return rnp->completed + 2; +} + +/* + * Trace-event helper function for rcu_start_future_gp() and + * rcu_nocb_wait_gp(). + */ +static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, + unsigned long c, const char *s) +{ + trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, + rnp->completed, c, rnp->level, + rnp->grplo, rnp->grphi, s); +} + +/* + * Start some future grace period, as needed to handle newly arrived + * callbacks. The required future grace periods are recorded in each + * rcu_node structure's ->need_future_gp field. + * + * The caller must hold the specified rcu_node structure's ->lock. + */ +static unsigned long __maybe_unused +rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp) +{ + unsigned long c; + int i; + struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); + + /* + * Pick up grace-period number for new callbacks. If this + * grace period is already marked as needed, return to the caller. + */ + c = rcu_cbs_completed(rdp->rsp, rnp); + trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); + if (rnp->need_future_gp[c & 0x1]) { + trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); + return c; + } + + /* + * If either this rcu_node structure or the root rcu_node structure + * believe that a grace period is in progress, then we must wait + * for the one following, which is in "c". Because our request + * will be noticed at the end of the current grace period, we don't + * need to explicitly start one. + */ + if (rnp->gpnum != rnp->completed || + ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) { + rnp->need_future_gp[c & 0x1]++; + trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); + return c; + } + + /* + * There might be no grace period in progress. If we don't already + * hold it, acquire the root rcu_node structure's lock in order to + * start one (if needed). + */ + if (rnp != rnp_root) + raw_spin_lock(&rnp_root->lock); + + /* + * Get a new grace-period number. If there really is no grace + * period in progress, it will be smaller than the one we obtained + * earlier. Adjust callbacks as needed. Note that even no-CBs + * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. + */ + c = rcu_cbs_completed(rdp->rsp, rnp_root); + for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) + if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) + rdp->nxtcompleted[i] = c; + + /* + * If the needed for the required grace period is already + * recorded, trace and leave. + */ + if (rnp_root->need_future_gp[c & 0x1]) { + trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); + goto unlock_out; + } + + /* Record the need for the future grace period. */ + rnp_root->need_future_gp[c & 0x1]++; + + /* If a grace period is not already in progress, start one. */ + if (rnp_root->gpnum != rnp_root->completed) { + trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); + } else { + trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); + rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); + } +unlock_out: + if (rnp != rnp_root) + raw_spin_unlock(&rnp_root->lock); + return c; +} + +/* + * Clean up any old requests for the just-ended grace period. Also return + * whether any additional grace periods have been requested. Also invoke + * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads + * waiting for this grace period to complete. + */ +static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) +{ + int c = rnp->completed; + int needmore; + struct rcu_data *rdp = this_cpu_ptr(rsp->rda); + + rcu_nocb_gp_cleanup(rsp, rnp); + rnp->need_future_gp[c & 0x1] = 0; + needmore = rnp->need_future_gp[(c + 1) & 0x1]; + trace_rcu_future_gp(rnp, rdp, c, + needmore ? TPS("CleanupMore") : TPS("Cleanup")); + return needmore; +} + +/* + * If there is room, assign a ->completed number to any callbacks on + * this CPU that have not already been assigned. Also accelerate any + * callbacks that were previously assigned a ->completed number that has + * since proven to be too conservative, which can happen if callbacks get + * assigned a ->completed number while RCU is idle, but with reference to + * a non-root rcu_node structure. This function is idempotent, so it does + * not hurt to call it repeatedly. + * + * The caller must hold rnp->lock with interrupts disabled. + */ +static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, + struct rcu_data *rdp) +{ + unsigned long c; + int i; + + /* If the CPU has no callbacks, nothing to do. */ + if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) + return; + + /* + * Starting from the sublist containing the callbacks most + * recently assigned a ->completed number and working down, find the + * first sublist that is not assignable to an upcoming grace period. + * Such a sublist has something in it (first two tests) and has + * a ->completed number assigned that will complete sooner than + * the ->completed number for newly arrived callbacks (last test). + * + * The key point is that any later sublist can be assigned the + * same ->completed number as the newly arrived callbacks, which + * means that the callbacks in any of these later sublist can be + * grouped into a single sublist, whether or not they have already + * been assigned a ->completed number. + */ + c = rcu_cbs_completed(rsp, rnp); + for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) + if (rdp->nxttail[i] != rdp->nxttail[i - 1] && + !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) + break; + + /* + * If there are no sublist for unassigned callbacks, leave. + * At the same time, advance "i" one sublist, so that "i" will + * index into the sublist where all the remaining callbacks should + * be grouped into. + */ + if (++i >= RCU_NEXT_TAIL) + return; + + /* + * Assign all subsequent callbacks' ->completed number to the next + * full grace period and group them all in the sublist initially + * indexed by "i". + */ + for (; i <= RCU_NEXT_TAIL; i++) { + rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; + rdp->nxtcompleted[i] = c; + } + /* Record any needed additional grace periods. */ + rcu_start_future_gp(rnp, rdp); + + /* Trace depending on how much we were able to accelerate. */ + if (!*rdp->nxttail[RCU_WAIT_TAIL]) + trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); + else + trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); +} + +/* + * Move any callbacks whose grace period has completed to the + * RCU_DONE_TAIL sublist, then compact the remaining sublists and + * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL + * sublist. This function is idempotent, so it does not hurt to + * invoke it repeatedly. As long as it is not invoked -too- often... + * + * The caller must hold rnp->lock with interrupts disabled. + */ +static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, + struct rcu_data *rdp) +{ + int i, j; + + /* If the CPU has no callbacks, nothing to do. */ + if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) + return; + + /* + * Find all callbacks whose ->completed numbers indicate that they + * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. + */ + for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { + if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) + break; + rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; + } + /* Clean up any sublist tail pointers that were misordered above. */ + for (j = RCU_WAIT_TAIL; j < i; j++) + rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; + + /* Copy down callbacks to fill in empty sublists. */ + for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { + if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) + break; + rdp->nxttail[j] = rdp->nxttail[i]; + rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; + } + + /* Classify any remaining callbacks. */ + rcu_accelerate_cbs(rsp, rnp, rdp); +} + +/* + * Update CPU-local rcu_data state to record the beginnings and ends of + * grace periods. The caller must hold the ->lock of the leaf rcu_node + * structure corresponding to the current CPU, and must have irqs disabled. + */ +static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) +{ + /* Handle the ends of any preceding grace periods first. */ + if (rdp->completed == rnp->completed) { + + /* No grace period end, so just accelerate recent callbacks. */ + rcu_accelerate_cbs(rsp, rnp, rdp); + + } else { + + /* Advance callbacks. */ + rcu_advance_cbs(rsp, rnp, rdp); + + /* Remember that we saw this grace-period completion. */ + rdp->completed = rnp->completed; + trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); + } + + if (rdp->gpnum != rnp->gpnum) { + /* + * If the current grace period is waiting for this CPU, + * set up to detect a quiescent state, otherwise don't + * go looking for one. + */ + rdp->gpnum = rnp->gpnum; + trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); + rdp->passed_quiesce = 0; + rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask); + zero_cpu_stall_ticks(rdp); + } +} + +static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) +{ + unsigned long flags; + struct rcu_node *rnp; + + local_irq_save(flags); + rnp = rdp->mynode; + if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) && + rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */ + !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ + local_irq_restore(flags); + return; + } + __note_gp_changes(rsp, rnp, rdp); + raw_spin_unlock_irqrestore(&rnp->lock, flags); +} + +/* + * Initialize a new grace period. Return 0 if no grace period required. + */ +static int rcu_gp_init(struct rcu_state *rsp) +{ + struct rcu_data *rdp; + struct rcu_node *rnp = rcu_get_root(rsp); + + rcu_bind_gp_kthread(); + raw_spin_lock_irq(&rnp->lock); + if (rsp->gp_flags == 0) { + /* Spurious wakeup, tell caller to go back to sleep. */ + raw_spin_unlock_irq(&rnp->lock); + return 0; + } + rsp->gp_flags = 0; /* Clear all flags: New grace period. */ + + if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { + /* + * Grace period already in progress, don't start another. + * Not supposed to be able to happen. + */ + raw_spin_unlock_irq(&rnp->lock); + return 0; + } + + /* Advance to a new grace period and initialize state. */ + record_gp_stall_check_time(rsp); + smp_wmb(); /* Record GP times before starting GP. */ + rsp->gpnum++; + trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); + raw_spin_unlock_irq(&rnp->lock); + + /* Exclude any concurrent CPU-hotplug operations. */ + mutex_lock(&rsp->onoff_mutex); + + /* + * Set the quiescent-state-needed bits in all the rcu_node + * structures for all currently online CPUs in breadth-first order, + * starting from the root rcu_node structure, relying on the layout + * of the tree within the rsp->node[] array. Note that other CPUs + * will access only the leaves of the hierarchy, thus seeing that no + * grace period is in progress, at least until the corresponding + * leaf node has been initialized. In addition, we have excluded + * CPU-hotplug operations. + * + * The grace period cannot complete until the initialization + * process finishes, because this kthread handles both. + */ + rcu_for_each_node_breadth_first(rsp, rnp) { + raw_spin_lock_irq(&rnp->lock); + rdp = this_cpu_ptr(rsp->rda); + rcu_preempt_check_blocked_tasks(rnp); + rnp->qsmask = rnp->qsmaskinit; + ACCESS_ONCE(rnp->gpnum) = rsp->gpnum; + WARN_ON_ONCE(rnp->completed != rsp->completed); + ACCESS_ONCE(rnp->completed) = rsp->completed; + if (rnp == rdp->mynode) + __note_gp_changes(rsp, rnp, rdp); + rcu_preempt_boost_start_gp(rnp); + trace_rcu_grace_period_init(rsp->name, rnp->gpnum, + rnp->level, rnp->grplo, + rnp->grphi, rnp->qsmask); + raw_spin_unlock_irq(&rnp->lock); +#ifdef CONFIG_PROVE_RCU_DELAY + if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 && + system_state == SYSTEM_RUNNING) + udelay(200); +#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */ + cond_resched(); + } + + mutex_unlock(&rsp->onoff_mutex); + return 1; +} + +/* + * Do one round of quiescent-state forcing. + */ +static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) +{ + int fqs_state = fqs_state_in; + bool isidle = false; + unsigned long maxj; + struct rcu_node *rnp = rcu_get_root(rsp); + + rsp->n_force_qs++; + if (fqs_state == RCU_SAVE_DYNTICK) { + /* Collect dyntick-idle snapshots. */ + if (is_sysidle_rcu_state(rsp)) { + isidle = 1; + maxj = jiffies - ULONG_MAX / 4; + } + force_qs_rnp(rsp, dyntick_save_progress_counter, + &isidle, &maxj); + rcu_sysidle_report_gp(rsp, isidle, maxj); + fqs_state = RCU_FORCE_QS; + } else { + /* Handle dyntick-idle and offline CPUs. */ + isidle = 0; + force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); + } + /* Clear flag to prevent immediate re-entry. */ + if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { + raw_spin_lock_irq(&rnp->lock); + rsp->gp_flags &= ~RCU_GP_FLAG_FQS; + raw_spin_unlock_irq(&rnp->lock); + } + return fqs_state; +} + +/* + * Clean up after the old grace period. + */ +static void rcu_gp_cleanup(struct rcu_state *rsp) +{ + unsigned long gp_duration; + int nocb = 0; + struct rcu_data *rdp; + struct rcu_node *rnp = rcu_get_root(rsp); + + raw_spin_lock_irq(&rnp->lock); + gp_duration = jiffies - rsp->gp_start; + if (gp_duration > rsp->gp_max) + rsp->gp_max = gp_duration; + + /* + * We know the grace period is complete, but to everyone else + * it appears to still be ongoing. But it is also the case + * that to everyone else it looks like there is nothing that + * they can do to advance the grace period. It is therefore + * safe for us to drop the lock in order to mark the grace + * period as completed in all of the rcu_node structures. + */ + raw_spin_unlock_irq(&rnp->lock); + + /* + * Propagate new ->completed value to rcu_node structures so + * that other CPUs don't have to wait until the start of the next + * grace period to process their callbacks. This also avoids + * some nasty RCU grace-period initialization races by forcing + * the end of the current grace period to be completely recorded in + * all of the rcu_node structures before the beginning of the next + * grace period is recorded in any of the rcu_node structures. + */ + rcu_for_each_node_breadth_first(rsp, rnp) { + raw_spin_lock_irq(&rnp->lock); + ACCESS_ONCE(rnp->completed) = rsp->gpnum; + rdp = this_cpu_ptr(rsp->rda); + if (rnp == rdp->mynode) + __note_gp_changes(rsp, rnp, rdp); + nocb += rcu_future_gp_cleanup(rsp, rnp); + raw_spin_unlock_irq(&rnp->lock); + cond_resched(); + } + rnp = rcu_get_root(rsp); + raw_spin_lock_irq(&rnp->lock); + rcu_nocb_gp_set(rnp, nocb); + + rsp->completed = rsp->gpnum; /* Declare grace period done. */ + trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); + rsp->fqs_state = RCU_GP_IDLE; + rdp = this_cpu_ptr(rsp->rda); + rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */ + if (cpu_needs_another_gp(rsp, rdp)) { + rsp->gp_flags = RCU_GP_FLAG_INIT; + trace_rcu_grace_period(rsp->name, + ACCESS_ONCE(rsp->gpnum), + TPS("newreq")); + } + raw_spin_unlock_irq(&rnp->lock); +} + +/* + * Body of kthread that handles grace periods. + */ +static int __noreturn rcu_gp_kthread(void *arg) +{ + int fqs_state; + int gf; + unsigned long j; + int ret; + struct rcu_state *rsp = arg; + struct rcu_node *rnp = rcu_get_root(rsp); + + for (;;) { + + /* Handle grace-period start. */ + for (;;) { + trace_rcu_grace_period(rsp->name, + ACCESS_ONCE(rsp->gpnum), + TPS("reqwait")); + wait_event_interruptible(rsp->gp_wq, + ACCESS_ONCE(rsp->gp_flags) & + RCU_GP_FLAG_INIT); + if (rcu_gp_init(rsp)) + break; + cond_resched(); + flush_signals(current); + trace_rcu_grace_period(rsp->name, + ACCESS_ONCE(rsp->gpnum), + TPS("reqwaitsig")); + } + + /* Handle quiescent-state forcing. */ + fqs_state = RCU_SAVE_DYNTICK; + j = jiffies_till_first_fqs; + if (j > HZ) { + j = HZ; + jiffies_till_first_fqs = HZ; + } + ret = 0; + for (;;) { + if (!ret) + rsp->jiffies_force_qs = jiffies + j; + trace_rcu_grace_period(rsp->name, + ACCESS_ONCE(rsp->gpnum), + TPS("fqswait")); + ret = wait_event_interruptible_timeout(rsp->gp_wq, + ((gf = ACCESS_ONCE(rsp->gp_flags)) & + RCU_GP_FLAG_FQS) || + (!ACCESS_ONCE(rnp->qsmask) && + !rcu_preempt_blocked_readers_cgp(rnp)), + j); + /* If grace period done, leave loop. */ + if (!ACCESS_ONCE(rnp->qsmask) && + !rcu_preempt_blocked_readers_cgp(rnp)) + break; + /* If time for quiescent-state forcing, do it. */ + if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || + (gf & RCU_GP_FLAG_FQS)) { + trace_rcu_grace_period(rsp->name, + ACCESS_ONCE(rsp->gpnum), + TPS("fqsstart")); + fqs_state = rcu_gp_fqs(rsp, fqs_state); + trace_rcu_grace_period(rsp->name, + ACCESS_ONCE(rsp->gpnum), + TPS("fqsend")); + cond_resched(); + } else { + /* Deal with stray signal. */ + cond_resched(); + flush_signals(current); + trace_rcu_grace_period(rsp->name, + ACCESS_ONCE(rsp->gpnum), + TPS("fqswaitsig")); + } + j = jiffies_till_next_fqs; + if (j > HZ) { + j = HZ; + jiffies_till_next_fqs = HZ; + } else if (j < 1) { + j = 1; + jiffies_till_next_fqs = 1; + } + } + + /* Handle grace-period end. */ + rcu_gp_cleanup(rsp); + } +} + +static void rsp_wakeup(struct irq_work *work) +{ + struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work); + + /* Wake up rcu_gp_kthread() to start the grace period. */ + wake_up(&rsp->gp_wq); +} + +/* + * Start a new RCU grace period if warranted, re-initializing the hierarchy + * in preparation for detecting the next grace period. The caller must hold + * the root node's ->lock and hard irqs must be disabled. + * + * Note that it is legal for a dying CPU (which is marked as offline) to + * invoke this function. This can happen when the dying CPU reports its + * quiescent state. + */ +static void +rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, + struct rcu_data *rdp) +{ + if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { + /* + * Either we have not yet spawned the grace-period + * task, this CPU does not need another grace period, + * or a grace period is already in progress. + * Either way, don't start a new grace period. + */ + return; + } + rsp->gp_flags = RCU_GP_FLAG_INIT; + trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum), + TPS("newreq")); + + /* + * We can't do wakeups while holding the rnp->lock, as that + * could cause possible deadlocks with the rq->lock. Defer + * the wakeup to interrupt context. And don't bother waking + * up the running kthread. + */ + if (current != rsp->gp_kthread) + irq_work_queue(&rsp->wakeup_work); +} + +/* + * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's + * callbacks. Note that rcu_start_gp_advanced() cannot do this because it + * is invoked indirectly from rcu_advance_cbs(), which would result in + * endless recursion -- or would do so if it wasn't for the self-deadlock + * that is encountered beforehand. + */ +static void +rcu_start_gp(struct rcu_state *rsp) +{ + struct rcu_data *rdp = this_cpu_ptr(rsp->rda); + struct rcu_node *rnp = rcu_get_root(rsp); + + /* + * If there is no grace period in progress right now, any + * callbacks we have up to this point will be satisfied by the + * next grace period. Also, advancing the callbacks reduces the + * probability of false positives from cpu_needs_another_gp() + * resulting in pointless grace periods. So, advance callbacks + * then start the grace period! + */ + rcu_advance_cbs(rsp, rnp, rdp); + rcu_start_gp_advanced(rsp, rnp, rdp); +} + +/* + * Report a full set of quiescent states to the specified rcu_state + * data structure. This involves cleaning up after the prior grace + * period and letting rcu_start_gp() start up the next grace period + * if one is needed. Note that the caller must hold rnp->lock, which + * is released before return. + */ +static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) + __releases(rcu_get_root(rsp)->lock) +{ + WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); + raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); + wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ +} + +/* + * Similar to rcu_report_qs_rdp(), for which it is a helper function. + * Allows quiescent states for a group of CPUs to be reported at one go + * to the specified rcu_node structure, though all the CPUs in the group + * must be represented by the same rcu_node structure (which need not be + * a leaf rcu_node structure, though it often will be). That structure's + * lock must be held upon entry, and it is released before return. + */ +static void +rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, + struct rcu_node *rnp, unsigned long flags) + __releases(rnp->lock) +{ + struct rcu_node *rnp_c; + + /* Walk up the rcu_node hierarchy. */ + for (;;) { + if (!(rnp->qsmask & mask)) { + + /* Our bit has already been cleared, so done. */ + raw_spin_unlock_irqrestore(&rnp->lock, flags); + return; + } + rnp->qsmask &= ~mask; + trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, + mask, rnp->qsmask, rnp->level, + rnp->grplo, rnp->grphi, + !!rnp->gp_tasks); + if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { + + /* Other bits still set at this level, so done. */ + raw_spin_unlock_irqrestore(&rnp->lock, flags); + return; + } + mask = rnp->grpmask; + if (rnp->parent == NULL) { + + /* No more levels. Exit loop holding root lock. */ + + break; + } + raw_spin_unlock_irqrestore(&rnp->lock, flags); + rnp_c = rnp; + rnp = rnp->parent; + raw_spin_lock_irqsave(&rnp->lock, flags); + WARN_ON_ONCE(rnp_c->qsmask); + } + + /* + * Get here if we are the last CPU to pass through a quiescent + * state for this grace period. Invoke rcu_report_qs_rsp() + * to clean up and start the next grace period if one is needed. + */ + rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ +} + +/* + * Record a quiescent state for the specified CPU to that CPU's rcu_data + * structure. This must be either called from the specified CPU, or + * called when the specified CPU is known to be offline (and when it is + * also known that no other CPU is concurrently trying to help the offline + * CPU). The lastcomp argument is used to make sure we are still in the + * grace period of interest. We don't want to end the current grace period + * based on quiescent states detected in an earlier grace period! + */ +static void +rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) +{ + unsigned long flags; + unsigned long mask; + struct rcu_node *rnp; + + rnp = rdp->mynode; + raw_spin_lock_irqsave(&rnp->lock, flags); + if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum || + rnp->completed == rnp->gpnum) { + + /* + * The grace period in which this quiescent state was + * recorded has ended, so don't report it upwards. + * We will instead need a new quiescent state that lies + * within the current grace period. + */ + rdp->passed_quiesce = 0; /* need qs for new gp. */ + raw_spin_unlock_irqrestore(&rnp->lock, flags); + return; + } + mask = rdp->grpmask; + if ((rnp->qsmask & mask) == 0) { + raw_spin_unlock_irqrestore(&rnp->lock, flags); + } else { + rdp->qs_pending = 0; + + /* + * This GP can't end until cpu checks in, so all of our + * callbacks can be processed during the next GP. + */ + rcu_accelerate_cbs(rsp, rnp, rdp); + + rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ + } +} + +/* + * Check to see if there is a new grace period of which this CPU + * is not yet aware, and if so, set up local rcu_data state for it. + * Otherwise, see if this CPU has just passed through its first + * quiescent state for this grace period, and record that fact if so. + */ +static void +rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) +{ + /* Check for grace-period ends and beginnings. */ + note_gp_changes(rsp, rdp); + + /* + * Does this CPU still need to do its part for current grace period? + * If no, return and let the other CPUs do their part as well. + */ + if (!rdp->qs_pending) + return; + + /* + * Was there a quiescent state since the beginning of the grace + * period? If no, then exit and wait for the next call. + */ + if (!rdp->passed_quiesce) + return; + + /* + * Tell RCU we are done (but rcu_report_qs_rdp() will be the + * judge of that). + */ + rcu_report_qs_rdp(rdp->cpu, rsp, rdp); +} + +#ifdef CONFIG_HOTPLUG_CPU + +/* + * Send the specified CPU's RCU callbacks to the orphanage. The + * specified CPU must be offline, and the caller must hold the + * ->orphan_lock. + */ +static void +rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, + struct rcu_node *rnp, struct rcu_data *rdp) +{ + /* No-CBs CPUs do not have orphanable callbacks. */ + if (rcu_is_nocb_cpu(rdp->cpu)) + return; + + /* + * Orphan the callbacks. First adjust the counts. This is safe + * because _rcu_barrier() excludes CPU-hotplug operations, so it + * cannot be running now. Thus no memory barrier is required. + */ + if (rdp->nxtlist != NULL) { + rsp->qlen_lazy += rdp->qlen_lazy; + rsp->qlen += rdp->qlen; + rdp->n_cbs_orphaned += rdp->qlen; + rdp->qlen_lazy = 0; + ACCESS_ONCE(rdp->qlen) = 0; + } + + /* + * Next, move those callbacks still needing a grace period to + * the orphanage, where some other CPU will pick them up. + * Some of the callbacks might have gone partway through a grace + * period, but that is too bad. They get to start over because we + * cannot assume that grace periods are synchronized across CPUs. + * We don't bother updating the ->nxttail[] array yet, instead + * we just reset the whole thing later on. + */ + if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { + *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; + rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; + *rdp->nxttail[RCU_DONE_TAIL] = NULL; + } + + /* + * Then move the ready-to-invoke callbacks to the orphanage, + * where some other CPU will pick them up. These will not be + * required to pass though another grace period: They are done. + */ + if (rdp->nxtlist != NULL) { + *rsp->orphan_donetail = rdp->nxtlist; + rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; + } + + /* Finally, initialize the rcu_data structure's list to empty. */ + init_callback_list(rdp); +} + +/* + * Adopt the RCU callbacks from the specified rcu_state structure's + * orphanage. The caller must hold the ->orphan_lock. + */ +static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) +{ + int i; + struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); + + /* No-CBs CPUs are handled specially. */ + if (rcu_nocb_adopt_orphan_cbs(rsp, rdp)) + return; + + /* Do the accounting first. */ + rdp->qlen_lazy += rsp->qlen_lazy; + rdp->qlen += rsp->qlen; + rdp->n_cbs_adopted += rsp->qlen; + if (rsp->qlen_lazy != rsp->qlen) + rcu_idle_count_callbacks_posted(); + rsp->qlen_lazy = 0; + rsp->qlen = 0; + + /* + * We do not need a memory barrier here because the only way we + * can get here if there is an rcu_barrier() in flight is if + * we are the task doing the rcu_barrier(). + */ + + /* First adopt the ready-to-invoke callbacks. */ + if (rsp->orphan_donelist != NULL) { + *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; + *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; + for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) + if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) + rdp->nxttail[i] = rsp->orphan_donetail; + rsp->orphan_donelist = NULL; + rsp->orphan_donetail = &rsp->orphan_donelist; + } + + /* And then adopt the callbacks that still need a grace period. */ + if (rsp->orphan_nxtlist != NULL) { + *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; + rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; + rsp->orphan_nxtlist = NULL; + rsp->orphan_nxttail = &rsp->orphan_nxtlist; + } +} + +/* + * Trace the fact that this CPU is going offline. + */ +static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) +{ + RCU_TRACE(unsigned long mask); + RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); + RCU_TRACE(struct rcu_node *rnp = rdp->mynode); + + RCU_TRACE(mask = rdp->grpmask); + trace_rcu_grace_period(rsp->name, + rnp->gpnum + 1 - !!(rnp->qsmask & mask), + TPS("cpuofl")); +} + +/* + * The CPU has been completely removed, and some other CPU is reporting + * this fact from process context. Do the remainder of the cleanup, + * including orphaning the outgoing CPU's RCU callbacks, and also + * adopting them. There can only be one CPU hotplug operation at a time, + * so no other CPU can be attempting to update rcu_cpu_kthread_task. + */ +static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) +{ + unsigned long flags; + unsigned long mask; + int need_report = 0; + struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); + struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ + + /* Adjust any no-longer-needed kthreads. */ + rcu_boost_kthread_setaffinity(rnp, -1); + + /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */ + + /* Exclude any attempts to start a new grace period. */ + mutex_lock(&rsp->onoff_mutex); + raw_spin_lock_irqsave(&rsp->orphan_lock, flags); + + /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ + rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); + rcu_adopt_orphan_cbs(rsp); + + /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ + mask = rdp->grpmask; /* rnp->grplo is constant. */ + do { + raw_spin_lock(&rnp->lock); /* irqs already disabled. */ + rnp->qsmaskinit &= ~mask; + if (rnp->qsmaskinit != 0) { + if (rnp != rdp->mynode) + raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ + break; + } + if (rnp == rdp->mynode) + need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); + else + raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ + mask = rnp->grpmask; + rnp = rnp->parent; + } while (rnp != NULL); + + /* + * We still hold the leaf rcu_node structure lock here, and + * irqs are still disabled. The reason for this subterfuge is + * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock + * held leads to deadlock. + */ + raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */ + rnp = rdp->mynode; + if (need_report & RCU_OFL_TASKS_NORM_GP) + rcu_report_unblock_qs_rnp(rnp, flags); + else + raw_spin_unlock_irqrestore(&rnp->lock, flags); + if (need_report & RCU_OFL_TASKS_EXP_GP) + rcu_report_exp_rnp(rsp, rnp, true); + WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, + "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", + cpu, rdp->qlen, rdp->nxtlist); + init_callback_list(rdp); + /* Disallow further callbacks on this CPU. */ + rdp->nxttail[RCU_NEXT_TAIL] = NULL; + mutex_unlock(&rsp->onoff_mutex); +} + +#else /* #ifdef CONFIG_HOTPLUG_CPU */ + +static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) +{ +} + +static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) +{ +} + +#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ + +/* + * Invoke any RCU callbacks that have made it to the end of their grace + * period. Thottle as specified by rdp->blimit. + */ +static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) +{ + unsigned long flags; + struct rcu_head *next, *list, **tail; + long bl, count, count_lazy; + int i; + + /* If no callbacks are ready, just return. */ + if (!cpu_has_callbacks_ready_to_invoke(rdp)) { + trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); + trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), + need_resched(), is_idle_task(current), + rcu_is_callbacks_kthread()); + return; + } + + /* + * Extract the list of ready callbacks, disabling to prevent + * races with call_rcu() from interrupt handlers. + */ + local_irq_save(flags); + WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); + bl = rdp->blimit; + trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); + list = rdp->nxtlist; + rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; + *rdp->nxttail[RCU_DONE_TAIL] = NULL; + tail = rdp->nxttail[RCU_DONE_TAIL]; + for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) + if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) + rdp->nxttail[i] = &rdp->nxtlist; + local_irq_restore(flags); + + /* Invoke callbacks. */ + count = count_lazy = 0; + while (list) { + next = list->next; + prefetch(next); + debug_rcu_head_unqueue(list); + if (__rcu_reclaim(rsp->name, list)) + count_lazy++; + list = next; + /* Stop only if limit reached and CPU has something to do. */ + if (++count >= bl && + (need_resched() || + (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) + break; + } + + local_irq_save(flags); + trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), + is_idle_task(current), + rcu_is_callbacks_kthread()); + + /* Update count, and requeue any remaining callbacks. */ + if (list != NULL) { + *tail = rdp->nxtlist; + rdp->nxtlist = list; + for (i = 0; i < RCU_NEXT_SIZE; i++) + if (&rdp->nxtlist == rdp->nxttail[i]) + rdp->nxttail[i] = tail; + else + break; + } + smp_mb(); /* List handling before counting for rcu_barrier(). */ + rdp->qlen_lazy -= count_lazy; + ACCESS_ONCE(rdp->qlen) -= count; + rdp->n_cbs_invoked += count; + + /* Reinstate batch limit if we have worked down the excess. */ + if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) + rdp->blimit = blimit; + + /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ + if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { + rdp->qlen_last_fqs_check = 0; + rdp->n_force_qs_snap = rsp->n_force_qs; + } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) + rdp->qlen_last_fqs_check = rdp->qlen; + WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); + + local_irq_restore(flags); + + /* Re-invoke RCU core processing if there are callbacks remaining. */ + if (cpu_has_callbacks_ready_to_invoke(rdp)) + invoke_rcu_core(); +} + +/* + * Check to see if this CPU is in a non-context-switch quiescent state + * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). + * Also schedule RCU core processing. + * + * This function must be called from hardirq context. It is normally + * invoked from the scheduling-clock interrupt. If rcu_pending returns + * false, there is no point in invoking rcu_check_callbacks(). + */ +void rcu_check_callbacks(int cpu, int user) +{ + trace_rcu_utilization(TPS("Start scheduler-tick")); + increment_cpu_stall_ticks(); + if (user || rcu_is_cpu_rrupt_from_idle()) { + + /* + * Get here if this CPU took its interrupt from user + * mode or from the idle loop, and if this is not a + * nested interrupt. In this case, the CPU is in + * a quiescent state, so note it. + * + * No memory barrier is required here because both + * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local + * variables that other CPUs neither access nor modify, + * at least not while the corresponding CPU is online. + */ + + rcu_sched_qs(cpu); + rcu_bh_qs(cpu); + + } else if (!in_softirq()) { + + /* + * Get here if this CPU did not take its interrupt from + * softirq, in other words, if it is not interrupting + * a rcu_bh read-side critical section. This is an _bh + * critical section, so note it. + */ + + rcu_bh_qs(cpu); + } + rcu_preempt_check_callbacks(cpu); + if (rcu_pending(cpu)) + invoke_rcu_core(); + trace_rcu_utilization(TPS("End scheduler-tick")); +} + +/* + * Scan the leaf rcu_node structures, processing dyntick state for any that + * have not yet encountered a quiescent state, using the function specified. + * Also initiate boosting for any threads blocked on the root rcu_node. + * + * The caller must have suppressed start of new grace periods. + */ +static void force_qs_rnp(struct rcu_state *rsp, + int (*f)(struct rcu_data *rsp, bool *isidle, + unsigned long *maxj), + bool *isidle, unsigned long *maxj) +{ + unsigned long bit; + int cpu; + unsigned long flags; + unsigned long mask; + struct rcu_node *rnp; + + rcu_for_each_leaf_node(rsp, rnp) { + cond_resched(); + mask = 0; + raw_spin_lock_irqsave(&rnp->lock, flags); + if (!rcu_gp_in_progress(rsp)) { + raw_spin_unlock_irqrestore(&rnp->lock, flags); + return; + } + if (rnp->qsmask == 0) { + rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ + continue; + } + cpu = rnp->grplo; + bit = 1; + for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { + if ((rnp->qsmask & bit) != 0) { + if ((rnp->qsmaskinit & bit) != 0) + *isidle = 0; + if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) + mask |= bit; + } + } + if (mask != 0) { + + /* rcu_report_qs_rnp() releases rnp->lock. */ + rcu_report_qs_rnp(mask, rsp, rnp, flags); + continue; + } + raw_spin_unlock_irqrestore(&rnp->lock, flags); + } + rnp = rcu_get_root(rsp); + if (rnp->qsmask == 0) { + raw_spin_lock_irqsave(&rnp->lock, flags); + rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */ + } +} + +/* + * Force quiescent states on reluctant CPUs, and also detect which + * CPUs are in dyntick-idle mode. + */ +static void force_quiescent_state(struct rcu_state *rsp) +{ + unsigned long flags; + bool ret; + struct rcu_node *rnp; + struct rcu_node *rnp_old = NULL; + + /* Funnel through hierarchy to reduce memory contention. */ + rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode; + for (; rnp != NULL; rnp = rnp->parent) { + ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || + !raw_spin_trylock(&rnp->fqslock); + if (rnp_old != NULL) + raw_spin_unlock(&rnp_old->fqslock); + if (ret) { + rsp->n_force_qs_lh++; + return; + } + rnp_old = rnp; + } + /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ + + /* Reached the root of the rcu_node tree, acquire lock. */ + raw_spin_lock_irqsave(&rnp_old->lock, flags); + raw_spin_unlock(&rnp_old->fqslock); + if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { + rsp->n_force_qs_lh++; + raw_spin_unlock_irqrestore(&rnp_old->lock, flags); + return; /* Someone beat us to it. */ + } + rsp->gp_flags |= RCU_GP_FLAG_FQS; + raw_spin_unlock_irqrestore(&rnp_old->lock, flags); + wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */ +} + +/* + * This does the RCU core processing work for the specified rcu_state + * and rcu_data structures. This may be called only from the CPU to + * whom the rdp belongs. + */ +static void +__rcu_process_callbacks(struct rcu_state *rsp) +{ + unsigned long flags; + struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); + + WARN_ON_ONCE(rdp->beenonline == 0); + + /* Update RCU state based on any recent quiescent states. */ + rcu_check_quiescent_state(rsp, rdp); + + /* Does this CPU require a not-yet-started grace period? */ + local_irq_save(flags); + if (cpu_needs_another_gp(rsp, rdp)) { + raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */ + rcu_start_gp(rsp); + raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); + } else { + local_irq_restore(flags); + } + + /* If there are callbacks ready, invoke them. */ + if (cpu_has_callbacks_ready_to_invoke(rdp)) + invoke_rcu_callbacks(rsp, rdp); +} + +/* + * Do RCU core processing for the current CPU. + */ +static void rcu_process_callbacks(struct softirq_action *unused) +{ + struct rcu_state *rsp; + + if (cpu_is_offline(smp_processor_id())) + return; + trace_rcu_utilization(TPS("Start RCU core")); + for_each_rcu_flavor(rsp) + __rcu_process_callbacks(rsp); + trace_rcu_utilization(TPS("End RCU core")); +} + +/* + * Schedule RCU callback invocation. If the specified type of RCU + * does not support RCU priority boosting, just do a direct call, + * otherwise wake up the per-CPU kernel kthread. Note that because we + * are running on the current CPU with interrupts disabled, the + * rcu_cpu_kthread_task cannot disappear out from under us. + */ +static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) +{ + if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) + return; + if (likely(!rsp->boost)) { + rcu_do_batch(rsp, rdp); + return; + } + invoke_rcu_callbacks_kthread(); +} + +static void invoke_rcu_core(void) +{ + if (cpu_online(smp_processor_id())) + raise_softirq(RCU_SOFTIRQ); +} + +/* + * Handle any core-RCU processing required by a call_rcu() invocation. + */ +static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, + struct rcu_head *head, unsigned long flags) +{ + /* + * If called from an extended quiescent state, invoke the RCU + * core in order to force a re-evaluation of RCU's idleness. + */ + if (!rcu_is_watching() && cpu_online(smp_processor_id())) + invoke_rcu_core(); + + /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ + if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) + return; + + /* + * Force the grace period if too many callbacks or too long waiting. + * Enforce hysteresis, and don't invoke force_quiescent_state() + * if some other CPU has recently done so. Also, don't bother + * invoking force_quiescent_state() if the newly enqueued callback + * is the only one waiting for a grace period to complete. + */ + if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { + + /* Are we ignoring a completed grace period? */ + note_gp_changes(rsp, rdp); + + /* Start a new grace period if one not already started. */ + if (!rcu_gp_in_progress(rsp)) { + struct rcu_node *rnp_root = rcu_get_root(rsp); + + raw_spin_lock(&rnp_root->lock); + rcu_start_gp(rsp); + raw_spin_unlock(&rnp_root->lock); + } else { + /* Give the grace period a kick. */ + rdp->blimit = LONG_MAX; + if (rsp->n_force_qs == rdp->n_force_qs_snap && + *rdp->nxttail[RCU_DONE_TAIL] != head) + force_quiescent_state(rsp); + rdp->n_force_qs_snap = rsp->n_force_qs; + rdp->qlen_last_fqs_check = rdp->qlen; + } + } +} + +/* + * RCU callback function to leak a callback. + */ +static void rcu_leak_callback(struct rcu_head *rhp) +{ +} + +/* + * Helper function for call_rcu() and friends. The cpu argument will + * normally be -1, indicating "currently running CPU". It may specify + * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() + * is expected to specify a CPU. + */ +static void +__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), + struct rcu_state *rsp, int cpu, bool lazy) +{ + unsigned long flags; + struct rcu_data *rdp; + + WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */ + if (debug_rcu_head_queue(head)) { + /* Probable double call_rcu(), so leak the callback. */ + ACCESS_ONCE(head->func) = rcu_leak_callback; + WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); + return; + } + head->func = func; + head->next = NULL; + + /* + * Opportunistically note grace-period endings and beginnings. + * Note that we might see a beginning right after we see an + * end, but never vice versa, since this CPU has to pass through + * a quiescent state betweentimes. + */ + local_irq_save(flags); + rdp = this_cpu_ptr(rsp->rda); + + /* Add the callback to our list. */ + if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { + int offline; + + if (cpu != -1) + rdp = per_cpu_ptr(rsp->rda, cpu); + offline = !__call_rcu_nocb(rdp, head, lazy); + WARN_ON_ONCE(offline); + /* _call_rcu() is illegal on offline CPU; leak the callback. */ + local_irq_restore(flags); + return; + } + ACCESS_ONCE(rdp->qlen)++; + if (lazy) + rdp->qlen_lazy++; + else + rcu_idle_count_callbacks_posted(); + smp_mb(); /* Count before adding callback for rcu_barrier(). */ + *rdp->nxttail[RCU_NEXT_TAIL] = head; + rdp->nxttail[RCU_NEXT_TAIL] = &head->next; + + if (__is_kfree_rcu_offset((unsigned long)func)) + trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, + rdp->qlen_lazy, rdp->qlen); + else + trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); + + /* Go handle any RCU core processing required. */ + __call_rcu_core(rsp, rdp, head, flags); + local_irq_restore(flags); +} + +/* + * Queue an RCU-sched callback for invocation after a grace period. + */ +void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) +{ + __call_rcu(head, func, &rcu_sched_state, -1, 0); +} +EXPORT_SYMBOL_GPL(call_rcu_sched); + +/* + * Queue an RCU callback for invocation after a quicker grace period. + */ +void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) +{ + __call_rcu(head, func, &rcu_bh_state, -1, 0); +} +EXPORT_SYMBOL_GPL(call_rcu_bh); + +/* + * Because a context switch is a grace period for RCU-sched and RCU-bh, + * any blocking grace-period wait automatically implies a grace period + * if there is only one CPU online at any point time during execution + * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to + * occasionally incorrectly indicate that there are multiple CPUs online + * when there was in fact only one the whole time, as this just adds + * some overhead: RCU still operates correctly. + */ +static inline int rcu_blocking_is_gp(void) +{ + int ret; + + might_sleep(); /* Check for RCU read-side critical section. */ + preempt_disable(); + ret = num_online_cpus() <= 1; + preempt_enable(); + return ret; +} + +/** + * synchronize_sched - wait until an rcu-sched grace period has elapsed. + * + * Control will return to the caller some time after a full rcu-sched + * grace period has elapsed, in other words after all currently executing + * rcu-sched read-side critical sections have completed. These read-side + * critical sections are delimited by rcu_read_lock_sched() and + * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), + * local_irq_disable(), and so on may be used in place of + * rcu_read_lock_sched(). + * + * This means that all preempt_disable code sequences, including NMI and + * non-threaded hardware-interrupt handlers, in progress on entry will + * have completed before this primitive returns. However, this does not + * guarantee that softirq handlers will have completed, since in some + * kernels, these handlers can run in process context, and can block. + * + * Note that this guarantee implies further memory-ordering guarantees. + * On systems with more than one CPU, when synchronize_sched() returns, + * each CPU is guaranteed to have executed a full memory barrier since the + * end of its last RCU-sched read-side critical section whose beginning + * preceded the call to synchronize_sched(). In addition, each CPU having + * an RCU read-side critical section that extends beyond the return from + * synchronize_sched() is guaranteed to have executed a full memory barrier + * after the beginning of synchronize_sched() and before the beginning of + * that RCU read-side critical section. Note that these guarantees include + * CPUs that are offline, idle, or executing in user mode, as well as CPUs + * that are executing in the kernel. + * + * Furthermore, if CPU A invoked synchronize_sched(), which returned + * to its caller on CPU B, then both CPU A and CPU B are guaranteed + * to have executed a full memory barrier during the execution of + * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but + * again only if the system has more than one CPU). + * + * This primitive provides the guarantees made by the (now removed) + * synchronize_kernel() API. In contrast, synchronize_rcu() only + * guarantees that rcu_read_lock() sections will have completed. + * In "classic RCU", these two guarantees happen to be one and + * the same, but can differ in realtime RCU implementations. + */ +void synchronize_sched(void) +{ + rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && + !lock_is_held(&rcu_lock_map) && + !lock_is_held(&rcu_sched_lock_map), + "Illegal synchronize_sched() in RCU-sched read-side critical section"); + if (rcu_blocking_is_gp()) + return; + if (rcu_expedited) + synchronize_sched_expedited(); + else + wait_rcu_gp(call_rcu_sched); +} +EXPORT_SYMBOL_GPL(synchronize_sched); + +/** + * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. + * + * Control will return to the caller some time after a full rcu_bh grace + * period has elapsed, in other words after all currently executing rcu_bh + * read-side critical sections have completed. RCU read-side critical + * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), + * and may be nested. + * + * See the description of synchronize_sched() for more detailed information + * on memory ordering guarantees. + */ +void synchronize_rcu_bh(void) +{ + rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && + !lock_is_held(&rcu_lock_map) && + !lock_is_held(&rcu_sched_lock_map), + "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); + if (rcu_blocking_is_gp()) + return; + if (rcu_expedited) + synchronize_rcu_bh_expedited(); + else + wait_rcu_gp(call_rcu_bh); +} +EXPORT_SYMBOL_GPL(synchronize_rcu_bh); + +static int synchronize_sched_expedited_cpu_stop(void *data) +{ + /* + * There must be a full memory barrier on each affected CPU + * between the time that try_stop_cpus() is called and the + * time that it returns. + * + * In the current initial implementation of cpu_stop, the + * above condition is already met when the control reaches + * this point and the following smp_mb() is not strictly + * necessary. Do smp_mb() anyway for documentation and + * robustness against future implementation changes. + */ + smp_mb(); /* See above comment block. */ + return 0; +} + +/** + * synchronize_sched_expedited - Brute-force RCU-sched grace period + * + * Wait for an RCU-sched grace period to elapse, but use a "big hammer" + * approach to force the grace period to end quickly. This consumes + * significant time on all CPUs and is unfriendly to real-time workloads, + * so is thus not recommended for any sort of common-case code. In fact, + * if you are using synchronize_sched_expedited() in a loop, please + * restructure your code to batch your updates, and then use a single + * synchronize_sched() instead. + * + * Note that it is illegal to call this function while holding any lock + * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal + * to call this function from a CPU-hotplug notifier. Failing to observe + * these restriction will result in deadlock. + * + * This implementation can be thought of as an application of ticket + * locking to RCU, with sync_sched_expedited_started and + * sync_sched_expedited_done taking on the roles of the halves + * of the ticket-lock word. Each task atomically increments + * sync_sched_expedited_started upon entry, snapshotting the old value, + * then attempts to stop all the CPUs. If this succeeds, then each + * CPU will have executed a context switch, resulting in an RCU-sched + * grace period. We are then done, so we use atomic_cmpxchg() to + * update sync_sched_expedited_done to match our snapshot -- but + * only if someone else has not already advanced past our snapshot. + * + * On the other hand, if try_stop_cpus() fails, we check the value + * of sync_sched_expedited_done. If it has advanced past our + * initial snapshot, then someone else must have forced a grace period + * some time after we took our snapshot. In this case, our work is + * done for us, and we can simply return. Otherwise, we try again, + * but keep our initial snapshot for purposes of checking for someone + * doing our work for us. + * + * If we fail too many times in a row, we fall back to synchronize_sched(). + */ +void synchronize_sched_expedited(void) +{ + long firstsnap, s, snap; + int trycount = 0; + struct rcu_state *rsp = &rcu_sched_state; + + /* + * If we are in danger of counter wrap, just do synchronize_sched(). + * By allowing sync_sched_expedited_started to advance no more than + * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring + * that more than 3.5 billion CPUs would be required to force a + * counter wrap on a 32-bit system. Quite a few more CPUs would of + * course be required on a 64-bit system. + */ + if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start), + (ulong)atomic_long_read(&rsp->expedited_done) + + ULONG_MAX / 8)) { + synchronize_sched(); + atomic_long_inc(&rsp->expedited_wrap); + return; + } + + /* + * Take a ticket. Note that atomic_inc_return() implies a + * full memory barrier. + */ + snap = atomic_long_inc_return(&rsp->expedited_start); + firstsnap = snap; + get_online_cpus(); + WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); + + /* + * Each pass through the following loop attempts to force a + * context switch on each CPU. + */ + while (try_stop_cpus(cpu_online_mask, + synchronize_sched_expedited_cpu_stop, + NULL) == -EAGAIN) { + put_online_cpus(); + atomic_long_inc(&rsp->expedited_tryfail); + + /* Check to see if someone else did our work for us. */ + s = atomic_long_read(&rsp->expedited_done); + if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { + /* ensure test happens before caller kfree */ + smp_mb__before_atomic_inc(); /* ^^^ */ + atomic_long_inc(&rsp->expedited_workdone1); + return; + } + + /* No joy, try again later. Or just synchronize_sched(). */ + if (trycount++ < 10) { + udelay(trycount * num_online_cpus()); + } else { + wait_rcu_gp(call_rcu_sched); + atomic_long_inc(&rsp->expedited_normal); + return; + } + + /* Recheck to see if someone else did our work for us. */ + s = atomic_long_read(&rsp->expedited_done); + if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { + /* ensure test happens before caller kfree */ + smp_mb__before_atomic_inc(); /* ^^^ */ + atomic_long_inc(&rsp->expedited_workdone2); + return; + } + + /* + * Refetching sync_sched_expedited_started allows later + * callers to piggyback on our grace period. We retry + * after they started, so our grace period works for them, + * and they started after our first try, so their grace + * period works for us. + */ + get_online_cpus(); + snap = atomic_long_read(&rsp->expedited_start); + smp_mb(); /* ensure read is before try_stop_cpus(). */ + } + atomic_long_inc(&rsp->expedited_stoppedcpus); + + /* + * Everyone up to our most recent fetch is covered by our grace + * period. Update the counter, but only if our work is still + * relevant -- which it won't be if someone who started later + * than we did already did their update. + */ + do { + atomic_long_inc(&rsp->expedited_done_tries); + s = atomic_long_read(&rsp->expedited_done); + if (ULONG_CMP_GE((ulong)s, (ulong)snap)) { + /* ensure test happens before caller kfree */ + smp_mb__before_atomic_inc(); /* ^^^ */ + atomic_long_inc(&rsp->expedited_done_lost); + break; + } + } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s); + atomic_long_inc(&rsp->expedited_done_exit); + + put_online_cpus(); +} +EXPORT_SYMBOL_GPL(synchronize_sched_expedited); + +/* + * Check to see if there is any immediate RCU-related work to be done + * by the current CPU, for the specified type of RCU, returning 1 if so. + * The checks are in order of increasing expense: checks that can be + * carried out against CPU-local state are performed first. However, + * we must check for CPU stalls first, else we might not get a chance. + */ +static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) +{ + struct rcu_node *rnp = rdp->mynode; + + rdp->n_rcu_pending++; + + /* Check for CPU stalls, if enabled. */ + check_cpu_stall(rsp, rdp); + + /* Is the RCU core waiting for a quiescent state from this CPU? */ + if (rcu_scheduler_fully_active && + rdp->qs_pending && !rdp->passed_quiesce) { + rdp->n_rp_qs_pending++; + } else if (rdp->qs_pending && rdp->passed_quiesce) { + rdp->n_rp_report_qs++; + return 1; + } + + /* Does this CPU have callbacks ready to invoke? */ + if (cpu_has_callbacks_ready_to_invoke(rdp)) { + rdp->n_rp_cb_ready++; + return 1; + } + + /* Has RCU gone idle with this CPU needing another grace period? */ + if (cpu_needs_another_gp(rsp, rdp)) { + rdp->n_rp_cpu_needs_gp++; + return 1; + } + + /* Has another RCU grace period completed? */ + if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ + rdp->n_rp_gp_completed++; + return 1; + } + + /* Has a new RCU grace period started? */ + if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */ + rdp->n_rp_gp_started++; + return 1; + } + + /* nothing to do */ + rdp->n_rp_need_nothing++; + return 0; +} + +/* + * Check to see if there is any immediate RCU-related work to be done + * by the current CPU, returning 1 if so. This function is part of the + * RCU implementation; it is -not- an exported member of the RCU API. + */ +static int rcu_pending(int cpu) +{ + struct rcu_state *rsp; + + for_each_rcu_flavor(rsp) + if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu))) + return 1; + return 0; +} + +/* + * Return true if the specified CPU has any callback. If all_lazy is + * non-NULL, store an indication of whether all callbacks are lazy. + * (If there are no callbacks, all of them are deemed to be lazy.) + */ +static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy) +{ + bool al = true; + bool hc = false; + struct rcu_data *rdp; + struct rcu_state *rsp; + + for_each_rcu_flavor(rsp) { + rdp = per_cpu_ptr(rsp->rda, cpu); + if (!rdp->nxtlist) + continue; + hc = true; + if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { + al = false; + break; + } + } + if (all_lazy) + *all_lazy = al; + return hc; +} + +/* + * Helper function for _rcu_barrier() tracing. If tracing is disabled, + * the compiler is expected to optimize this away. + */ +static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, + int cpu, unsigned long done) +{ + trace_rcu_barrier(rsp->name, s, cpu, + atomic_read(&rsp->barrier_cpu_count), done); +} + +/* + * RCU callback function for _rcu_barrier(). If we are last, wake + * up the task executing _rcu_barrier(). + */ +static void rcu_barrier_callback(struct rcu_head *rhp) +{ + struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); + struct rcu_state *rsp = rdp->rsp; + + if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { + _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done); + complete(&rsp->barrier_completion); + } else { + _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done); + } +} + +/* + * Called with preemption disabled, and from cross-cpu IRQ context. + */ +static void rcu_barrier_func(void *type) +{ + struct rcu_state *rsp = type; + struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); + + _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done); + atomic_inc(&rsp->barrier_cpu_count); + rsp->call(&rdp->barrier_head, rcu_barrier_callback); +} + +/* + * Orchestrate the specified type of RCU barrier, waiting for all + * RCU callbacks of the specified type to complete. + */ +static void _rcu_barrier(struct rcu_state *rsp) +{ + int cpu; + struct rcu_data *rdp; + unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done); + unsigned long snap_done; + + _rcu_barrier_trace(rsp, "Begin", -1, snap); + + /* Take mutex to serialize concurrent rcu_barrier() requests. */ + mutex_lock(&rsp->barrier_mutex); + + /* + * Ensure that all prior references, including to ->n_barrier_done, + * are ordered before the _rcu_barrier() machinery. + */ + smp_mb(); /* See above block comment. */ + + /* + * Recheck ->n_barrier_done to see if others did our work for us. + * This means checking ->n_barrier_done for an even-to-odd-to-even + * transition. The "if" expression below therefore rounds the old + * value up to the next even number and adds two before comparing. + */ + snap_done = rsp->n_barrier_done; + _rcu_barrier_trace(rsp, "Check", -1, snap_done); + + /* + * If the value in snap is odd, we needed to wait for the current + * rcu_barrier() to complete, then wait for the next one, in other + * words, we need the value of snap_done to be three larger than + * the value of snap. On the other hand, if the value in snap is + * even, we only had to wait for the next rcu_barrier() to complete, + * in other words, we need the value of snap_done to be only two + * greater than the value of snap. The "(snap + 3) & ~0x1" computes + * this for us (thank you, Linus!). + */ + if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) { + _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done); + smp_mb(); /* caller's subsequent code after above check. */ + mutex_unlock(&rsp->barrier_mutex); + return; + } + + /* + * Increment ->n_barrier_done to avoid duplicate work. Use + * ACCESS_ONCE() to prevent the compiler from speculating + * the increment to precede the early-exit check. + */ + ACCESS_ONCE(rsp->n_barrier_done)++; + WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1); + _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done); + smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */ + + /* + * Initialize the count to one rather than to zero in order to + * avoid a too-soon return to zero in case of a short grace period + * (or preemption of this task). Exclude CPU-hotplug operations + * to ensure that no offline CPU has callbacks queued. + */ + init_completion(&rsp->barrier_completion); + atomic_set(&rsp->barrier_cpu_count, 1); + get_online_cpus(); + + /* + * Force each CPU with callbacks to register a new callback. + * When that callback is invoked, we will know that all of the + * corresponding CPU's preceding callbacks have been invoked. + */ + for_each_possible_cpu(cpu) { + if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) + continue; + rdp = per_cpu_ptr(rsp->rda, cpu); + if (rcu_is_nocb_cpu(cpu)) { + _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, + rsp->n_barrier_done); + atomic_inc(&rsp->barrier_cpu_count); + __call_rcu(&rdp->barrier_head, rcu_barrier_callback, + rsp, cpu, 0); + } else if (ACCESS_ONCE(rdp->qlen)) { + _rcu_barrier_trace(rsp, "OnlineQ", cpu, + rsp->n_barrier_done); + smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); + } else { + _rcu_barrier_trace(rsp, "OnlineNQ", cpu, + rsp->n_barrier_done); + } + } + put_online_cpus(); + + /* + * Now that we have an rcu_barrier_callback() callback on each + * CPU, and thus each counted, remove the initial count. + */ + if (atomic_dec_and_test(&rsp->barrier_cpu_count)) + complete(&rsp->barrier_completion); + + /* Increment ->n_barrier_done to prevent duplicate work. */ + smp_mb(); /* Keep increment after above mechanism. */ + ACCESS_ONCE(rsp->n_barrier_done)++; + WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0); + _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done); + smp_mb(); /* Keep increment before caller's subsequent code. */ + + /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ + wait_for_completion(&rsp->barrier_completion); + + /* Other rcu_barrier() invocations can now safely proceed. */ + mutex_unlock(&rsp->barrier_mutex); +} + +/** + * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. + */ +void rcu_barrier_bh(void) +{ + _rcu_barrier(&rcu_bh_state); +} +EXPORT_SYMBOL_GPL(rcu_barrier_bh); + +/** + * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. + */ +void rcu_barrier_sched(void) +{ + _rcu_barrier(&rcu_sched_state); +} +EXPORT_SYMBOL_GPL(rcu_barrier_sched); + +/* + * Do boot-time initialization of a CPU's per-CPU RCU data. + */ +static void __init +rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) +{ + unsigned long flags; + struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); + struct rcu_node *rnp = rcu_get_root(rsp); + + /* Set up local state, ensuring consistent view of global state. */ + raw_spin_lock_irqsave(&rnp->lock, flags); + rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); + init_callback_list(rdp); + rdp->qlen_lazy = 0; + ACCESS_ONCE(rdp->qlen) = 0; + rdp->dynticks = &per_cpu(rcu_dynticks, cpu); + WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); + WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); + rdp->cpu = cpu; + rdp->rsp = rsp; + rcu_boot_init_nocb_percpu_data(rdp); + raw_spin_unlock_irqrestore(&rnp->lock, flags); +} + +/* + * Initialize a CPU's per-CPU RCU data. Note that only one online or + * offline event can be happening at a given time. Note also that we + * can accept some slop in the rsp->completed access due to the fact + * that this CPU cannot possibly have any RCU callbacks in flight yet. + */ +static void +rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible) +{ + unsigned long flags; + unsigned long mask; + struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); + struct rcu_node *rnp = rcu_get_root(rsp); + + /* Exclude new grace periods. */ + mutex_lock(&rsp->onoff_mutex); + + /* Set up local state, ensuring consistent view of global state. */ + raw_spin_lock_irqsave(&rnp->lock, flags); + rdp->beenonline = 1; /* We have now been online. */ + rdp->preemptible = preemptible; + rdp->qlen_last_fqs_check = 0; + rdp->n_force_qs_snap = rsp->n_force_qs; + rdp->blimit = blimit; + init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ + rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; + rcu_sysidle_init_percpu_data(rdp->dynticks); + atomic_set(&rdp->dynticks->dynticks, + (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); + raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ + + /* Add CPU to rcu_node bitmasks. */ + rnp = rdp->mynode; + mask = rdp->grpmask; + do { + /* Exclude any attempts to start a new GP on small systems. */ + raw_spin_lock(&rnp->lock); /* irqs already disabled. */ + rnp->qsmaskinit |= mask; + mask = rnp->grpmask; + if (rnp == rdp->mynode) { + /* + * If there is a grace period in progress, we will + * set up to wait for it next time we run the + * RCU core code. + */ + rdp->gpnum = rnp->completed; + rdp->completed = rnp->completed; + rdp->passed_quiesce = 0; + rdp->qs_pending = 0; + trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); + } + raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ + rnp = rnp->parent; + } while (rnp != NULL && !(rnp->qsmaskinit & mask)); + local_irq_restore(flags); + + mutex_unlock(&rsp->onoff_mutex); +} + +static void rcu_prepare_cpu(int cpu) +{ + struct rcu_state *rsp; + + for_each_rcu_flavor(rsp) + rcu_init_percpu_data(cpu, rsp, + strcmp(rsp->name, "rcu_preempt") == 0); +} + +/* + * Handle CPU online/offline notification events. + */ +static int rcu_cpu_notify(struct notifier_block *self, + unsigned long action, void *hcpu) +{ + long cpu = (long)hcpu; + struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); + struct rcu_node *rnp = rdp->mynode; + struct rcu_state *rsp; + + trace_rcu_utilization(TPS("Start CPU hotplug")); + switch (action) { + case CPU_UP_PREPARE: + case CPU_UP_PREPARE_FROZEN: + rcu_prepare_cpu(cpu); + rcu_prepare_kthreads(cpu); + break; + case CPU_ONLINE: + case CPU_DOWN_FAILED: + rcu_boost_kthread_setaffinity(rnp, -1); + break; + case CPU_DOWN_PREPARE: + rcu_boost_kthread_setaffinity(rnp, cpu); + break; + case CPU_DYING: + case CPU_DYING_FROZEN: + for_each_rcu_flavor(rsp) + rcu_cleanup_dying_cpu(rsp); + break; + case CPU_DEAD: + case CPU_DEAD_FROZEN: + case CPU_UP_CANCELED: + case CPU_UP_CANCELED_FROZEN: + for_each_rcu_flavor(rsp) + rcu_cleanup_dead_cpu(cpu, rsp); + break; + default: + break; + } + trace_rcu_utilization(TPS("End CPU hotplug")); + return NOTIFY_OK; +} + +static int rcu_pm_notify(struct notifier_block *self, + unsigned long action, void *hcpu) +{ + switch (action) { + case PM_HIBERNATION_PREPARE: + case PM_SUSPEND_PREPARE: + if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ + rcu_expedited = 1; + break; + case PM_POST_HIBERNATION: + case PM_POST_SUSPEND: + rcu_expedited = 0; + break; + default: + break; + } + return NOTIFY_OK; +} + +/* + * Spawn the kthread that handles this RCU flavor's grace periods. + */ +static int __init rcu_spawn_gp_kthread(void) +{ + unsigned long flags; + struct rcu_node *rnp; + struct rcu_state *rsp; + struct task_struct *t; + + for_each_rcu_flavor(rsp) { + t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name); + BUG_ON(IS_ERR(t)); + rnp = rcu_get_root(rsp); + raw_spin_lock_irqsave(&rnp->lock, flags); + rsp->gp_kthread = t; + raw_spin_unlock_irqrestore(&rnp->lock, flags); + rcu_spawn_nocb_kthreads(rsp); + } + return 0; +} +early_initcall(rcu_spawn_gp_kthread); + +/* + * This function is invoked towards the end of the scheduler's initialization + * process. Before this is called, the idle task might contain + * RCU read-side critical sections (during which time, this idle + * task is booting the system). After this function is called, the + * idle tasks are prohibited from containing RCU read-side critical + * sections. This function also enables RCU lockdep checking. + */ +void rcu_scheduler_starting(void) +{ + WARN_ON(num_online_cpus() != 1); + WARN_ON(nr_context_switches() > 0); + rcu_scheduler_active = 1; +} + +/* + * Compute the per-level fanout, either using the exact fanout specified + * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. + */ +#ifdef CONFIG_RCU_FANOUT_EXACT +static void __init rcu_init_levelspread(struct rcu_state *rsp) +{ + int i; + + for (i = rcu_num_lvls - 1; i > 0; i--) + rsp->levelspread[i] = CONFIG_RCU_FANOUT; + rsp->levelspread[0] = rcu_fanout_leaf; +} +#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ +static void __init rcu_init_levelspread(struct rcu_state *rsp) +{ + int ccur; + int cprv; + int i; + + cprv = nr_cpu_ids; + for (i = rcu_num_lvls - 1; i >= 0; i--) { + ccur = rsp->levelcnt[i]; + rsp->levelspread[i] = (cprv + ccur - 1) / ccur; + cprv = ccur; + } +} +#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ + +/* + * Helper function for rcu_init() that initializes one rcu_state structure. + */ +static void __init rcu_init_one(struct rcu_state *rsp, + struct rcu_data __percpu *rda) +{ + static char *buf[] = { "rcu_node_0", + "rcu_node_1", + "rcu_node_2", + "rcu_node_3" }; /* Match MAX_RCU_LVLS */ + static char *fqs[] = { "rcu_node_fqs_0", + "rcu_node_fqs_1", + "rcu_node_fqs_2", + "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */ + int cpustride = 1; + int i; + int j; + struct rcu_node *rnp; + + BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ + + /* Silence gcc 4.8 warning about array index out of range. */ + if (rcu_num_lvls > RCU_NUM_LVLS) + panic("rcu_init_one: rcu_num_lvls overflow"); + + /* Initialize the level-tracking arrays. */ + + for (i = 0; i < rcu_num_lvls; i++) + rsp->levelcnt[i] = num_rcu_lvl[i]; + for (i = 1; i < rcu_num_lvls; i++) + rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; + rcu_init_levelspread(rsp); + + /* Initialize the elements themselves, starting from the leaves. */ + + for (i = rcu_num_lvls - 1; i >= 0; i--) { + cpustride *= rsp->levelspread[i]; + rnp = rsp->level[i]; + for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { + raw_spin_lock_init(&rnp->lock); + lockdep_set_class_and_name(&rnp->lock, + &rcu_node_class[i], buf[i]); + raw_spin_lock_init(&rnp->fqslock); + lockdep_set_class_and_name(&rnp->fqslock, + &rcu_fqs_class[i], fqs[i]); + rnp->gpnum = rsp->gpnum; + rnp->completed = rsp->completed; + rnp->qsmask = 0; + rnp->qsmaskinit = 0; + rnp->grplo = j * cpustride; + rnp->grphi = (j + 1) * cpustride - 1; + if (rnp->grphi >= NR_CPUS) + rnp->grphi = NR_CPUS - 1; + if (i == 0) { + rnp->grpnum = 0; + rnp->grpmask = 0; + rnp->parent = NULL; + } else { + rnp->grpnum = j % rsp->levelspread[i - 1]; + rnp->grpmask = 1UL << rnp->grpnum; + rnp->parent = rsp->level[i - 1] + + j / rsp->levelspread[i - 1]; + } + rnp->level = i; + INIT_LIST_HEAD(&rnp->blkd_tasks); + rcu_init_one_nocb(rnp); + } + } + + rsp->rda = rda; + init_waitqueue_head(&rsp->gp_wq); + init_irq_work(&rsp->wakeup_work, rsp_wakeup); + rnp = rsp->level[rcu_num_lvls - 1]; + for_each_possible_cpu(i) { + while (i > rnp->grphi) + rnp++; + per_cpu_ptr(rsp->rda, i)->mynode = rnp; + rcu_boot_init_percpu_data(i, rsp); + } + list_add(&rsp->flavors, &rcu_struct_flavors); +} + +/* + * Compute the rcu_node tree geometry from kernel parameters. This cannot + * replace the definitions in tree.h because those are needed to size + * the ->node array in the rcu_state structure. + */ +static void __init rcu_init_geometry(void) +{ + ulong d; + int i; + int j; + int n = nr_cpu_ids; + int rcu_capacity[MAX_RCU_LVLS + 1]; + + /* + * Initialize any unspecified boot parameters. + * The default values of jiffies_till_first_fqs and + * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS + * value, which is a function of HZ, then adding one for each + * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. + */ + d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; + if (jiffies_till_first_fqs == ULONG_MAX) + jiffies_till_first_fqs = d; + if (jiffies_till_next_fqs == ULONG_MAX) + jiffies_till_next_fqs = d; + + /* If the compile-time values are accurate, just leave. */ + if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF && + nr_cpu_ids == NR_CPUS) + return; + + /* + * Compute number of nodes that can be handled an rcu_node tree + * with the given number of levels. Setting rcu_capacity[0] makes + * some of the arithmetic easier. + */ + rcu_capacity[0] = 1; + rcu_capacity[1] = rcu_fanout_leaf; + for (i = 2; i <= MAX_RCU_LVLS; i++) + rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT; + + /* + * The boot-time rcu_fanout_leaf parameter is only permitted + * to increase the leaf-level fanout, not decrease it. Of course, + * the leaf-level fanout cannot exceed the number of bits in + * the rcu_node masks. Finally, the tree must be able to accommodate + * the configured number of CPUs. Complain and fall back to the + * compile-time values if these limits are exceeded. + */ + if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF || + rcu_fanout_leaf > sizeof(unsigned long) * 8 || + n > rcu_capacity[MAX_RCU_LVLS]) { + WARN_ON(1); + return; + } + + /* Calculate the number of rcu_nodes at each level of the tree. */ + for (i = 1; i <= MAX_RCU_LVLS; i++) + if (n <= rcu_capacity[i]) { + for (j = 0; j <= i; j++) + num_rcu_lvl[j] = + DIV_ROUND_UP(n, rcu_capacity[i - j]); + rcu_num_lvls = i; + for (j = i + 1; j <= MAX_RCU_LVLS; j++) + num_rcu_lvl[j] = 0; + break; + } + + /* Calculate the total number of rcu_node structures. */ + rcu_num_nodes = 0; + for (i = 0; i <= MAX_RCU_LVLS; i++) + rcu_num_nodes += num_rcu_lvl[i]; + rcu_num_nodes -= n; +} + +void __init rcu_init(void) +{ + int cpu; + + rcu_bootup_announce(); + rcu_init_geometry(); + rcu_init_one(&rcu_bh_state, &rcu_bh_data); + rcu_init_one(&rcu_sched_state, &rcu_sched_data); + __rcu_init_preempt(); + open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); + + /* + * We don't need protection against CPU-hotplug here because + * this is called early in boot, before either interrupts + * or the scheduler are operational. + */ + cpu_notifier(rcu_cpu_notify, 0); + pm_notifier(rcu_pm_notify, 0); + for_each_online_cpu(cpu) + rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); +} + +#include "tree_plugin.h"